説明

センシング装置およびこれを用いたセンシング方法

【課題】プラズモン増強場を利用したセンシングにおいて、同一試料内の複数の測定箇所に対して短時間且つ高感度なセンシングを可能にする。
【解決手段】センシング装置1は、励起光L1、L2が照射されることにより試料接触面10sにプラズモン増強場を生じるプラズモン活性基体10と、励起光L1を照射する励起光照射光学系20と、試料Sに励起光を含む測定光L2を照射する測定光照射光学系30と、測定光L2の照射により試料接触面10s上の試料Sから発せられ、且つ、該照射により試料接触面10sに生じたプラズモン増強場により増強された信号光L3の物理特性を検出する物理特性検出系40とを備えてなり、測定光L2を試料Sの複数の測定点に照射して、該複数の測定点における物理特性を検出するものであり、励起光照射光学系20は、試料接触面10sの少なくとも2つの測定点を含む領域を同時に照射可能な励起光L1を照射するものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被測定物質を含む試料を、励起光が照射されプラズモン増強場を生じさせるプラズモン活性基体と接触させた状態で、活性基体表面の被測定物質の特性を検出するセンシング装置および方法に関するものである。
【背景技術】
【0002】
光照射によりプラズモン増強場を生じうる金属微細凹凸構造等を表面に備えたプラズモン活性基体を利用して、ラマン散乱光や蛍光等の信号光を感度良く検出するセンサデバイスやそれらを用いたセンシング装置の研究開発が活発に行われている。
【0003】
プラズモン増強場は、プラズモン増強場を生じる表面(センシング面)上が最も強く、該面からの距離に対して指数関数的にその強度が減少することが知られており、センシング時に、被測定物質がセンシング面の近くにあればあるほど高感度なセンシングを行うことができる。従って、プラズモン増強場を利用するセンシングにおいては、試料溶液中の被測定物質のセンシング面近傍における濃度をできるだけ高くすることが重要な課題の1つとなっている。
【0004】
プラズモン活性基体のセンシング面近傍において、被測定物質濃度を高くする方法としては、例えば、センシング面上に被測定物質と特異結合するリガンドを固定しておき、リガンドに被測定物質を結合させる方法があげられる。これによりセンシング面近傍に試料中の被測定物質が固定され、高感度なセンシングを行うことできる。
【0005】
また、特許文献1には、電気泳動法により金属膜上に被測定物質を集めることにより金属膜上における被測定物質濃度を高めて、表面プラズモン共鳴の測定を行う装置として、試料溶液中に複数の電極を設置して、この複数の電極への印加電圧を制御することにより測定箇所での被測定物質の濃度を上昇させる構成の誘電泳動検出装置が開示されている。
【0006】
特許文献2及び特許文献3には、プラズモン増強場を生じるセンシング面に、試料溶液中の被測定物質を光捕捉効果により捕捉させる捕捉光を照射する、光捕捉光照射光学系を備えたセンシング装置が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2005-195397号公報
【特許文献2】特開2009-42112号公報
【特許文献3】特開2009-222484号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、リガンドを利用して被測定物質をセンシング面に固定させる方法では、リガンドと被測定物質との反応を充分に待たなければ、充分な量の結合量を確保できず、測定を迅速に実施することが難しい。しかも、リガンドと結合する物質は限られており、被測定物質の種類が限定されてしまう。
【0009】
また、特許文献1に記載の装置では、溶液中に配置した複数の電極に対して印加電圧を制御する必要があり、また試料毎に印加電圧を調整しなければ基体表面での被測定物質濃度を高めることができないという問題がある。また、印加電圧をかける場合、被測定物質に対して電荷をチャージする必要があり、電荷をチャージすることで被測定物質の物性が変化する恐れもある。
【0010】
特許文献2や特許文献3のように、光捕捉効果を用いて捕捉光により被測定物質をセンシング面に捕捉させてからセンシングを行う場合、被測定物質の種類の限定や印加電圧の付与をすることなくセンシング面における被測定物質の濃度を高めてセンシングを実施することができる。しかしながら、かかる方法では、複数の測定点におけるセンシングをする場合には、各測定点毎に被測定物質の光捕捉を行う必要があり、測定点の数に比例してその測定時間が増加する。従って、大面積の試料に対して面内で一様にセンシングを行う場合や、データ信頼性向上を目的として同一試料に対して光照射箇所を変えて測定を実施して複数のデータを取る場合には莫大な時間を要することになり実用的でない。
【0011】
本発明は、上記事情を鑑みてなされたものであり、光照射によりプラズモン増強場を生じうるプラズモン活性基体を利用して、ラマン散乱光や蛍光等の信号光を感度良く検出するセンシング装置において、同一試料内の複数の測定箇所に対して短時間且つ高感度に被測定物質のセンシングが可能なセンシング装置及びそれを用いたセンシング方法を提供することを目的とするものである。
【課題を解決するための手段】
【0012】
本発明のセンシング装置は、被測定物質を含む試料が接触される試料接触面を有し、該試料接触面に励起光が照射されることにより該試料接触面にプラズモン増強場を生じるプラズモン活性基体と、
前記励起光を照射する励起光照射光学系と、
前記試料に前記励起光を含む測定光を照射する測定光照射光学系と、
前記測定光の照射により前記試料接触面上の試料から発せられ、且つ、該照射により前記試料接触面に生じたプラズモン増強場により増強された信号光の物理特性を検出する物理特性検出系とを備えてなり、
前記測定光を前記試料の複数の測定点に照射して、該複数の測定点における前記物理特性を検出するものであり、
前記励起光照射光学系は、前記試料接触面の少なくとも2つの前記測定点を含む領域を同時に照射可能な前記励起光を照射するものであることを特徴とするものである。
【0013】
本明細書において、「測定点」とは、1回のセンシングを実施する任意の測定光照射面における点であり、1回のセンシングで測定光が照射されるスポットを意味する。
【0014】
前記励起光照射光学系は、前記試料接触面の全ての前記測定点を含む領域を同時に照射可能な前記励起光を照射するものであることが好ましい。
【0015】
本発明のセンシング装置において、前記励起光及び前記測定光は略同一方向の偏光を有していることが好ましく、偏光は直線偏光又は円偏光であることが好ましい。
【0016】
また、前記励起光は、前記試料接触面における強度が略均一であることが好ましく、波長が700nm〜1600nmであることが好ましい。ここで、「強度が略均一である」とは、試料接触面における励起光の照射領域において、強度の自乗平均平方根粗さ(RMS)が90%超であることを意味する。
【0017】
本発明のセンシング装置は、前記試料から発せられる信号光が、蛍光、ラマン散乱光、コヒーレントアンチストークス散乱光、第二次高調波光、第三次高調波光のいずれかである場合に好適に用いることができる。
【0018】
本発明のセンシング方法は、励起光が照射されることによりプラズモン増強場を生じる試料接触面に被測定物質を含む試料を接触させる試料接触工程と、
該試料に前記励起光を照射して、該励起光照射部分の前記試料接触面にプラズモン増強場を生じさせて、該プラズモン増強場により前記被測定物質の少なくとも一部を前記試料接触面に吸着させる吸着工程と、
該吸着工程後に、前記試料接触面上の該試料に前記励起光を含む測定光を照射して、該照射により前記試料接触面にプラズモン増強場を生じさせるとともに、前記試料から発せられる信号光の物理特性を検出する測定工程とを有するセンシング方法であって、
前記測定工程は、前記試料の複数の測定点に対して該測定点毎に実施されるものであり、
前記吸着工程において、少なくとも2つの前記測定点を含む領域に前記励起光を同時に照射することを特徴とするものである。
【0019】
前記吸着工程において、全ての前記測定点を含む領域に前記励起光を同時に照射することが好ましい。また、前記プラズモン増強場により前記被測定物質の少なくとも一部を前記試料接触面上に配向させて吸着させることがより好ましい。
【発明の効果】
【0020】
本発明のセンシング装置は、プラズモン活性基体上の試料の複数の測定点においてプラズモン増強場により増強された信号光を検出してセンシングを行うものであり、プラズモンを励起する励起光照射光学系と、試料に励起光を含む測定光を照射する測定光照射光学系とをそれぞれ備え、励起光照射光学系を、試料接触面の少なくとも2つの測定点を含む領域を同時に照射可能なものとしている。かかる構成によれば、複数の測定点において同時にプラズモン増強場を生じさせて被測定物質を試料接触面に吸着させることができる上、試料接触面に被測定物質を吸着させた後に、測定光を照射して、該照射により被測定物質から発せられ、且つ、該照射により試料接触面に生じたプラズモン増強場により増強された信号光の物理特性の検出を行うことができる。従って、本発明によれば、同一試料内の複数の測定箇所に対して、短時間且つ高感度に被測定物質のセンシングを行うことができる。また、同時に照射可能な面積を大きくすることにより、大面積の試料におけるセンシングを効率的かつ高感度に実施することができる。
【図面の簡単な説明】
【0021】
【図1】本発明に係る一実施形態のセンシング装置の概略構成図
【図2】プラズモン活性基体の好適な態様を示す厚み方向断面図
【図3】マイクロウェルプレート状のプラズモン活性基体の態様を示す厚み方向断面図
【発明を実施するための形態】
【0022】
「センシング方法」
本発明のセンシング方法について詳述する。
【0023】
本発明のセンシング方法は、プラズモン増強場により増強された信号光を検出するセンシング方法において、試料の複数箇所におけるセンシングを行う際に、プラズモン増強場を高効率に発生させることにより、短時間に高感度なセンシングを実現するものである。
【0024】
本発明のセンシング方法は、励起光が照射されることによりプラズモン増強場を生じる試料接触面に被測定物質を含む試料を接触させる試料接触工程と、
該試料に励起光を照射して、励起光照射部分の試料接触面にプラズモン増強場を生じさせて、該プラズモン増強場により被測定物質の少なくとも一部を試料接触面に吸着させる吸着工程と、
該吸着工程後に、試料接触面上の試料に励起光を含む測定光を照射して、該照射により試料接触面にプラズモン増強場を生じさせるとともに、試料から発せられる信号光の物理特性を検出する測定工程とを有するセンシング方法であって、
測定工程は、試料の複数の測定点に対して該測定点毎に実施されるものであり、
吸着工程において、少なくとも2つの測定点を含む領域に励起光を同時に照射することを特徴としている。
【0025】
プラズモン増強場は、プラズモンが励起されている面からの距離に対して指数関数的にその強度が減少する。従って、効果的に信号光を増強するためには、より被測定物質をプラズモン励起される試料接触面に近づけておく必要がある。
【0026】
本発明では、測定工程の前に、被測定物質をプラズモン増強場の電場勾配により試料接触面に引き寄せ、少なくとも一部を試料接触面に吸着させる吸着工程を実施し、この吸着工程を少なくとも2つの複数の測定点において同時に実施する。
【0027】
被測定物質の試料接触面における吸着は、物理吸着、化学吸着、静電吸着のいずれであってもよい。被測定物質が、試料接触面に吸着しにくい物質である場合は、被測定物質及び/又は試料接触面に官能基を付与する修飾等を施せばよい。
【0028】
吸着態様が物理吸着である場合は、吸着工程後、測定工程を実施する際に、吸着させた被測定物質が吸着状態でなくなることもあるが、一度吸着した被測定物質であれば、測定工程における測定光照射により生じるプラズモン増強場による電場増強効果を充分に受けられる領域に存在した状態で測定工程を実施することができる。
【0029】
より強固な吸着状態とするには、化学吸着させることが好ましい。被測定物質が試料接触面を構成する物質と化学反応性を有する場合(例えば、試料接触面の金属がAuであり、被測定物質が試料中においてS2−を有する場合等)は、化学吸着となりうるが、そうでない場合は、試料接触面及び/又は被測定物質に化学結合可能な表面修飾を施しておけばよい。しかしながら、物理吸着や静電吸着であっても、本発明のセンシング方法においては充分に高感度なセンシングを実施することができる。
【0030】
被測定物質が非対称性を有する場合は、励起光として直線偏光を用いることによりプラズモン増強場により被測定物質を試料接触面上に配向させて吸着させることができる。かかる態様とし、測定光として励起光と同じ偏光方向の直線偏光を用いることで、より高感度なセンシングが可能となる。
【0031】
ただし、ラマン分光法によるセンシング等、配向によりスペクトル内のピークが特異的に変化してしまう場合は、被測定物質が配向して吸着されないように、例えば、励起光及び測定光として円偏光を用いる等工夫することが好ましい。
【0032】
上記のとおり、吸着工程を複数の測定点において同時に実施するが、より大面積な測定領域に対して高感度なセンシングを短時間に実施するためには、吸着工程において全ての測定点を含む領域に励起光を同時に照射することが好ましい。
【0033】
測定領域が広く、同時に励起光を照射することが難しい場合は、同時に励起光照射可能な領域において吸着工程を実施した後、励起光照射位置を吸着工程未実施領域に移動させて同様に吸着工程を実施し、測定領域全体において吸着工程が完了した後に測定工程を実施することが好ましい。
【0034】
励起光は、試料接触面における強度が略均一であることが好ましく、また、波長700nm〜1600nmの光であることが好ましい。
【0035】
吸着工程は、試料中の被検出物質の少なくとも一部が、プラズモン活性基体の試料接触面に吸着されるまで、励起光を試料に照射すればよいが、測定精度の向上の観点から、できるだけ広い領域において多くの被検出物質が吸着されるまで実施することが好ましい。
【0036】
吸着に要する時間は、例えば、信号光がラマン散乱光である場合は、被検出物質のラマン誘導放出断面積や濃度によって変わるため、これらの数値、及び、使用する光源の出力、ビーム径等を考慮して吸着時間は調整する必要がある。最大出力300mW、ピーク波長808nmのシングルモード半導体レーザを用いて、直径約10mmにビーム径を拡大した後、拡散板にてビーム面内強度を一様化した励起光により吸着工程を実施する場合は、2〜5分程度照射すればよい。
【0037】
測定工程は、吸着工程後に、試料接触面上の試料に励起光を含む測定光を照射して、該照射により試料接触面にプラズモン増強場を生じさせるとともに、試料から発せられる信号光の物理特性を検出するものである。
【0038】
本発明のセンシング方法では、複数の測定点においてセンシングを行うものであり、測定工程は、試料の複数の測定点に対して測定点毎に実施する。
【0039】
測定工程において、検出する信号光及びその物理特性は特に制限されない。信号光としては、例えば、ラマン散乱光、蛍光、コヒーレントアンチストークス光、レイリー散乱光、ミー散乱光、第2高調波光、第3次高調波光等が挙げられ、本発明のセンシング方法は、信号光に応じた物理特性を検出するセンシングに適用することができる。例えば、信号光がラマン散乱光である場合は、ラマン散乱光から得られるラマンスペクトル(物理特性)から物質固有の波長シフトを検出することにより被測定物質を特定することができる。
【0040】
以下に、本発明のセンシング方法に好適な、本発明のセンシング装置について、信号光がラマン散乱光であるラマン分光装置を例に説明する。
【0041】
「センシング装置」
図面を参照して本発明に係る一実施形態のセンシング装置について説明する。図1は、本実施形態のセンシング装置(ラマン分光装置)の概略構成図である。本明細書の図面において、各構成要素の縮尺は、視認しやすくするため適宜変更して示してある。
【0042】
ラマン分光装置(センシング装置)1は、被測定物質Rを含む試料Sが接触される試料接触面10sを有し、励起光L1が照射されることにより試料接触面10sにプラズモン増強場を生じるプラズモン活性基体10と、励起光L1を照射する励起光照射光学系20と、試料Sに励起光を含む測定光L2を照射する測定光照射光学系30と、測定光L2の照射により試料接触面10s上の試料Sから発せられ、且つ、該照射により前記試料接触面に生じたプラズモン増強場により増強された信号光(ラマン散乱光)L3の物理特性を検出する物理特性検出系40とを備えてなり、測定光L2を試料Sの複数の測定点に照射して、複数の測定点におけるラマン散乱光L3のラマンスペクトル(物理特性)を検出するものである。ラマン分光装置1において、励起光照射光学系20は、試料接触面10sの少なくとも2つの測定点を含む領域を同時に照射可能な励起光L1を照射するものである。
【0043】
図1に示されるラマン分光装置1は、プラズモン活性基体10の試料接触面10s上に裁置された試料Sに対して、励起光照射光学系20を用いて上記本発明のセンシング方法における吸着工程を実施した後に、励起光L1の照射を解除し、測定光照射光学系30により励起光を含む測定光L2を照射して、該照射により試料接触面10sにおいてプラズモン増強場を生じさせるとともに、試料Sから発せられるラマン散乱光L3のラマンスペクトル(物理特性)を物理特性検出系30により検出する測定工程を実施するものである。
【0044】
図1に示されるラマン分光装置1では、励起光照射光学系20が試料接触面10sの全ての測定点を含む領域を同時に照射可能な励起光L1を照射し、上記本発明のセンシング方法における吸着工程を実施する態様を示してあるが、プラズモン活性基体10を図示x軸方向に相対的に移動させることができる走査手段を備えておくことにより、同時に全ての測定点を含む領域を照射できない場合であっても、励起光L1の照射位置を変えて吸着工程を実施することにより、測定工程前に、全ての測定点を含む領域の吸着工程を実施することができる。走査手段としては、例えば、ガルバノミラー等の励起光L1を走査させるものであってもよいし、プラズモン活性基体10をx方向に可動とするものであってもよい。
【0045】
なお、図1において、個々の測定点については図示していないが、測定光L2が試料接触面10sにて集光している点が1つの測定点である。
【0046】
また、ラマン分光装置1は、プラズモン活性基体10の裏面からラマン散乱光を検出する構成としている。かかる構成とすることにより、試料S中に細胞のような大きな検体を配し、検体からしみだす被検出物質Rを検出するような場合に、試料接触面10sと被検出物質Rとの界面で最も強く生じる増強ラマン散乱光が検体自身により遮蔽されることなく基体10の裏面側から検出することができる。
【0047】
以下、ラマン分光装置1の各構成要素について説明する。
【0048】
本実施形態において、試料Sを裁置するプラズモン活性基体10は、試料接触面10sが、励起光L1によりプラズモンが励起されうる基体であり、基体10の裏面側から測定光L2の照射及びラマン散乱光L3の検出を実施可能なものであれば特に制限されない。
【0049】
プラズモンは、金属の自由電子が光の電場に共鳴して振動することで励起されるものであり、微細な凹凸構造を有する金属層等では、凸部の自由電子が光の電場に共鳴して振動することで凸部周辺に強い電場を生じ、局在プラズモン共鳴が効果的に起こるとされている。
【0050】
図2は、プラズモン活性基体10の好適な態様の一例を示す厚み方向断面図である。図2に示されるように、プラズモン活性基体10は、透明基板11と、透明基板11の表面に備えられた微細凹凸構造12と、その微細凹凸構造12表面に形成された金属膜13とからなる。金属膜13が微細凹凸構造12に沿って形成されて金属の微細凹凸構造を構成するものとなり、表面に金属微細凹凸構造を備えた、局在プラズモン共鳴による光電増強効果を得ることが可能な光電場増強デバイスとして機能するものである。
【0051】
本実施形態のように、試料接触面10sの裏面側から励起光L1又は測定光L2の照射、あるいはラマン散乱光L3の検出を実施する場合、プラズモン活性面各光に対して透光性を有する必要がある。ここでいう透光性は、励起光L1であればプラズモン励起が可能な強度、測定光L2であれば高感度検出が可能なラマン散乱光の励起が可能な強度、そしてラマン散乱光L3であれば、光検出部41において高感度な検出が可能な強度を、基体10から出射後にそれぞれ有するような透光性とする。
【0052】
このように、プラズモン活性基体10に透明基板11を用いることにより、金属膜13の表面側、あるいは透明基板11の裏面側のいずれからでも光を照射することができ、また、この光の照射により試料から生じた光についても、金属膜13の表面側あるいは透明基板11の裏面側のいずれからでも検出することができる。そのため、被検出物質の種類、サイズ等に応じて、励起光L1、測定光L2の照射、ラマン散乱光L3の検出を金属膜13の表面側あるいは透明基板11の裏面側のいずれからでも行うことができるので、測定における自由度が高く、より高いS/Nで検出することが可能となる。
【0053】
透明基板11としては特に制限されず、ガラスや透明樹脂等から選択することができる。
【0054】
微細凹凸構造12は、この微細凹凸構造12表面に金属膜13が形成されて構成される金属微細構造の表面においてプラズモンを生じうる構造であればよいが、凹凸の凸部の平均的な大きさおよび平均ピッチが励起光の波長より短いものとなる程度の微細な凹凸構造であることが好ましい。特には、微細凹凸構造12は、凸部頂点から隣接する凹部の底部までの平均深さが200nm以下、凹部を隔てた最隣接凸部の頂点同士の平均ピッチが200nm以下であることが望ましい。凹凸の平均ピッチは、走査型電子顕微鏡(SEM)により撮影された表面画像を、画像処理により2値化して統計的処理によって求めるものとする。
【0055】
かかる微細凹凸構造12としては、上記透光性を有していればその材質及びその製造方法は特に制限されないが、ベーマイト層や陽極酸化アルミナ層が好ましい。また、微細凹凸構造12は透明基板11と異なる材料により構成されたもののみならず、透明基板本体の表面を加工することにより基板本体と同一の材料により構成されていてもよい。例えば、ガラス基板の表面をリソグラフィーとドライエッチング処理することにより、表面に微細凹凸構造を形成して用いてもよい。
【0056】
特に、製造が容易で低コストであることから、微細凹凸構造12はベーマイト層がより好ましい。ベーマイトとは、アルミニウムの水和物である。透明基板11上へのベーマイト層12の形成は、例えば、純水洗浄した透明基板11を用意し、その表面にスパッタ法によりアルミニウムを数十nm程度成膜した後、純水を沸騰させた中に、アルミニウム付き透明基板11を浸水させ、数分(5分程度)後に取り出す(煮沸処理(ベーマイト処理))ことにより実施することができる。
【0057】
金属膜13は、励起光の照射を受けて局在プラズモンを生じうる金属からなるものであればよいが、例えば、Au、Ag、Cu、Al、Pt、およびこれらを主成分とする合金からなる群より選択される少なくとも1種の金属からなるものである。特には、AuあるいはAgが好ましい。ここで主成分とは、含量90質量%以上の成分を意味する。
【0058】
金属膜13の膜厚は、微細凹凸構造12の表面に形成されたときに、金属微細凹凸構造として励起光の照射を受けて局在プラズモンを生じうる凹凸形状を維持することができる程度の厚みであれば特に制限はないが、10〜100nmであることが好ましい。
【0059】
金属膜13は、微細凹凸構造12上に蒸着等により成膜すればよい。
【0060】
プラズモン活性基体10は、図3に示されるようなマイクロウェルプレートの態様としてもよい。かかる態様とすることにより、複数のウェルに注入された試料Sに対して同時に吸着工程を実施し、短時間に高感度なセンシングを実施することができる。
【0061】
一般的なマイクロウェルプレートは、例えば上面視面積100mm×50mm程度の大きさを有し、ウェル数96個のもの等が挙げられることから、本発明を適用することにより測定効率を劇的に向上させることができる。
【0062】
マイクロウェルプレート状プラズモン活性基体10は、例えば、透明基板11とその上に配された微細凹凸構造12及び金属膜13を備えた構成となっている。マイクロウェルプレート状プラズモン活性基体10では、金属微細凹凸構造は試料接触面となる各ウェルの表面にのみ形成されていればよい。
【0063】
励起光照射光学系20は、励起光源21と、励起光源21から出射された励起光L1をプラズモン活性基体10方向に導くミラー22と、励起光L1のビーム径を拡げて試料S全体に同時に励起光L1を照射可能にするビームエクスパンダー23と、ビームエクスパンダー23によりビーム径が拡大された励起光L1の、試料接触面10sにおける強度を均一化する拡散板24とから構成されている。
【0064】
ビームエクスパンダー23は、所望のビーム径となるように拡大可能な構成であれば特に制限されないが、例えば曲率の異なる2種のレンズにより構成することができる。特に、上記マイクロウェルプレート状のプラズモン活性基体に適用する場合等の拡大率が大きい場合は、曲率の異なる2種類のシリンドリカルレンズを用いて、ビーム形状の一軸を拡大してビーム形状を楕円化することが好ましい。
【0065】
励起光源21としては、プラズモン活性基体10の試料接触面10sにプラズモンを励起可能な波長を含む光を射出する光源であれば特に制限されない。プラズモンを励起するのに好適な波長は、プラズモン活性基体10において、プラズモンを励起する金属の種類に応じて異なることから、金属の種類に応じて、好適な波長の光源を選択することが好ましい。被測定物質Rが生体物質である場合は、できるだけダメージを与えない方が好ましいことから、エネルギーの比較的低い700nm〜2μmの可視〜近赤外光であることが好ましい。
【0066】
測定光照射光学系(ラマン散乱励起光照射光学系)30は、励起光を含む測定光(ラマン散乱励起光)L2を射出する光源31と、光L2をプラズモン活性基体10の試料接触面10sへ導くミラー32〜34と、ミラー34により反射された光L2をプラズモン活性基体10の試料Sが載置された領域に集光するレンズ35とを備えている。
【0067】
なお、ミラー33(43)は、測定光L2を反射し、且つ、測定光L2の照射により試料Sの被検出物質Rから生じ増強されたラマン散乱光L3を含むプラズモン活性基体10側からの光を光検出部(分光器)41側へ透過するダイクロイックミラーとなっている。
【0068】
ラマン分光法において、測定光L2の光源31は、特定波長の光を射出するレーザ等の単波長光源であり、分布帰還型(DFB)半導体レーザ等を好ましく用いることができる。
【0069】
測定光L2の照射により、プラズモン活性基体10の試料接触面10sにはプラズモンが励起され、プラズモン増強場を生じると共に、被測定物質Rが含まれる試料Sにおいてラマン散乱光L3が含まれる光(散乱光等)を生じる。ラマン散乱光L3を含む光は、生じたプラズモン増強場により増強されたものとなる。
【0070】
ラマン分光装置1は、複数の測定点に対して測定を実施するものである。ラマン分光装置1において、測定点(測定光L2の試料接触面10sにおける集光位置)の移動を、手動により実施する態様としてもよいが、図示x方向に相対的に移動させることができる走査手段を備えていることが好ましい。走査手段としては、例えば、ガルバノミラー等の測定光L2を走査させるものであってもよいし、プラズモン活性基体10をx方向に可動とするものであってもよい。
【0071】
物理特性検出系40は、被測定物質R由来のラマン散乱光を含む、試料Sから発せられたラマン散乱光L3を含む光をダイクロイックミラー43へ導くレンズ45及びミラー44と、ダイクロイックミラー43から透過してきたラマン散乱光L3を含む光のうち、測定光L2の波長の光を吸収し、それ以外の光を透過するノッチフィルタ46と、ノイズ光を除去するためのピンホールを備えたピンホール板48と、ノッチフィルタ46を透過したラマン散乱光L3を含む光をピンホール板48のピンホールに集光するためのレンズ47と、ピンホールを通ってきたラマン散乱光L3を平行光化して光検出部(分光器)41へ導くレンズ49と、ラマン散乱光L3を分光してラマンスペクトルを得る光検出部(分光器)41とを備えている。
【0072】
図1において、わかりやすくするためにラマン散乱光L3を含む光をL3と表示し、ラマン散乱光L3を含む光と測定光L2の経路を同じで表示したが、実際、ラマン散乱光L3を含む光には、測定光L2の反射光、試料Sにおけるラマン散乱光、レイリー散乱光、ミー散乱光等の様々な光が含まれているため、ラマン散乱光L3を含む光は、レンズ45に図示されている角度よりも幅広い角度で入射される。従って、ダイクロイックミラー43にて、全ての測定光L2と同じ波長の光を反射することはできない。
【0073】
ノッチフィルタ46は、ダイクロイックミラー43を透過してきた測定光L2と同じ波長の光(反射光、レイリー散乱光、ミー散乱光等)をカットするものである。励起光とは波長が異なる光(ラマン散乱光)はノッチフィルタ46を透過し、レンズ47で集光され、ピンホール48を通り、再度レンズ49により平行光化され、分光器41へ入射され、ラマンスペクトル(物理特性)の検出がなされる。
【0074】
以上のように、ラマン分光装置(センシング装置)1は構成されている。
【0075】
ラマン分光装置(センシング装置)1は、プラズモン活性基体10上の試料Sの複数の測定点においてプラズモン増強場におより増強された信号光L3を検出してセンシングを行うものであり、プラズモンを励起する励起光照射光学系20と、試料Sに励起光を含む測定光L2を照射する測定光照射光学系30とをそれぞれ備え、励起光照射光学系20を、試料接触面10sの少なくとも2つの測定点を含む領域を同時に照射可能なものとしている。かかる構成によれば、複数の測定点において同時にプラズモン増強場を生じさせて被測定物質Rを試料接触面10sに吸着させることができる上、試料接触面10sに被測定物質Rを吸着させた後に、該照射により被測定物質Rから発せられ、且つ、該照射により試料接触面10sに生じたプラズモン増強場により増強されたラマン散乱光(信号光)L3のラマンスペクトル(物理特性)を検出することができる。従って、本発明によれば、同一試料内の複数の測定箇所に対して、短時間且つ高感度に被測定物質のセンシングを行うことができる。また、同時に照射可能な面積を大きくすることにより、大面積の試料におけるセンシングを効率的かつ高感度に実施することができる。
【0076】
「設計変更」
上記実施形態では、信号光がラマン散乱光であるラマン分光装置について説明したが、信号光は、ラマン散乱光に限定されず、蛍光、コヒーレントアンチストークス光、レイリー散乱光、ミー散乱光、第2次高調波、第3次高調波光等とし、それに応じた物理特性を検出する装置に適用することができる。例えば、蛍光の場合はその蛍光に合わせたフィルターを用い、検出器として冷却CCDや光電子増倍管(PMT)等を用いることで、シンプルな光学系でセンシングを行うことができる。
【0077】
また、上記実施形態では、試料接触面にプラズモンを励起する励起光が、試料が裁置されている試料接触面全体を同時に照射可能な態様について説明したが、少なくとも2つの複数の測定点を同時照射する態様とするだけでも本発明の効果を得ることができる。その際は、全ての測定点において吸着工程を実施した後に測定工程を実施してもよいし、1回の吸着工程の後に測定工程を実施し、測定工程終了後に励起光照射領域をずらして該領域の吸着工程及び測定工程を実施してもよい。
【0078】
また、上記実施形態では、プラズモン活性基体の試料接触面とは逆側(プラズモン活性基体の裏面)から励起光及び測定光を入射し、ラマン散乱光(信号光)を検出する態様について説明したが、試料接触面側から励起光、測定光の入射及び/又はラマン散乱光の検出を行う態様としてもよい。
【符号の説明】
【0079】
1 センシング装置(ラマン分光装置)
10 プラズモン活性基体
10s 試料接触面
11 基板(透明基板)
12 微細凹凸構造(ベーマイト層)
13 金属膜
20 励起光照射光学系
30 測定光照射光学系
40 物理特性検出系
S 試料
R 被測定物質
L1 励起光
L2 測定光
L3 信号光(ラマン散乱光)

【特許請求の範囲】
【請求項1】
被測定物質を含む試料が接触される試料接触面を有し、該試料接触面に励起光が照射されることにより該試料接触面にプラズモン増強場を生じるプラズモン活性基体と、
前記励起光を照射する励起光照射光学系と、
前記試料に前記励起光を含む測定光を照射する測定光照射光学系と、
前記測定光の照射により前記試料接触面上の試料から発せられ、且つ、該照射により前記試料接触面に生じたプラズモン増強場により増強された信号光の物理特性を検出する物理特性検出系とを備えてなり、
前記測定光を前記試料の複数の測定点に照射して、該複数の測定点における前記物理特性を検出するものであり、
前記励起光照射光学系は、前記試料接触面の少なくとも2つの前記測定点を含む領域を同時に照射可能な前記励起光を照射するものであることを特徴とするセンシング装置。
【請求項2】
前記励起光照射光学系は、前記試料接触面の全ての前記測定点を含む領域を同時に照射可能な前記励起光を照射するものであることを特徴とする請求項1に記載のセンシング装置。
【請求項3】
前記試料接触面における前記励起光の強度が略均一であることを特徴とする請求項1又は2に記載のセンシング装置。
【請求項4】
前記励起光及び前記測定光が直線偏光であり、前記励起光の偏光方向と前記測定光の偏光方向とが略同一であることを特徴とする請求項1〜3のいずれかに記載のセンシング装置。
【請求項5】
前記励起光及び前記測定光が円偏光であることを特徴とする請求項1〜3のいずれかに記載のセンシング装置。
【請求項6】
前記試料から発せられる信号光が、蛍光、ラマン散乱光、コヒーレントアンチストークス散乱光、第二次高調波光、第三次高調波光のいずれかであることを特徴とする請求項1〜5のいずれかに記載のセンシング装置。
【請求項7】
前記励起光の波長が、700nm〜1600nmであることを特徴とする請求項1〜6のいずれかに記載のセンシング装置。
【請求項8】
励起光が照射されることによりプラズモン増強場を生じる試料接触面に被測定物質を含む試料を接触させる試料接触工程と、
該試料に前記励起光を照射して、該励起光照射部分の前記試料接触面にプラズモン増強場を生じさせて、該プラズモン増強場により前記被測定物質の少なくとも一部を前記試料接触面に吸着させる吸着工程と、
該吸着工程後に、前記試料接触面上の該試料に前記励起光を含む測定光を照射して、該照射により前記試料接触面にプラズモン増強場を生じさせるとともに、前記試料から発せられる信号光の物理特性を検出する測定工程とを有するセンシング方法であって、
前記測定工程は、前記試料の複数の測定点に対して該測定点毎に実施されるものであり、
前記吸着工程において、少なくとも2つの前記測定点を含む領域に前記励起光を同時に照射することを特徴とするセンシング方法。
【請求項9】
前記吸着工程において、全ての前記測定点を含む領域に前記励起光を同時に照射することを特徴とする請求項8に記載のセンシング方法。
【請求項10】
前記吸着工程において、前記プラズモン増強場により前記被測定物質の少なくとも一部を前記試料接触面上に配向させて吸着させることを特徴とする請求項8又は9に記載のセンシング方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−113655(P2013−113655A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−258744(P2011−258744)
【出願日】平成23年11月28日(2011.11.28)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】