説明

ホログラムシート

【課題】
ホログラムを用いたホログラムシートにおいて、その真正性を高めるために、通常照明光下で観察できる体積ホログラムの再生と併せて、所定の電界印加によるレリーフホログラムの再生も可能な、新規なホログラムシートを提供する。
【解決手段】
体積ホログラム形成層の背後にレリーフホログラム形成層を交互に設け、そのホログラムレリーフに追従して、エレクトロルミネッセンス素子層を設けて、所定の電界を印加することで、エレクトロルミネッセンス素子層を発光させ、可視光領域にある、その発光する光の色調によるレリーフホログラム再生像を再生させ、目視にて判定可能とし、その偽造防止性を高めたホログラムシートとした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なホログラムシート、特に、体積ホログラムの背後に、エレクトロルミネッセンス素子層の発光によってレリーフホログラム再生像を発現するレリーフホログラム形成層を設けた複合型のホログラムシートに関するものである。
さらに、体積ホログラム形成層に記録された体積ホログラムの記録領域と、ホログラムレリーフの形成領域が交互に設けられ、観察する際に、その記録領域と形成領域が重ならず、各々の領域から発生する体積ホログラム再生像の光束と、レリーフホログラム再生像の光速とが、互いに干渉せず、各々を鮮明に視認することが可能なホログラムシートに関する。
但し、各々の領域が、300μm以下の幅の帯状として、交互に設けられると、所定の電界を印加すると、各々の再生像の光束が干渉して、いずれのホログラム再生像も出現しなくなって、あたかもホログラム再生像が消失したように観察される、偽造防止性に優れるホログラムシートに関する。
本明細書において、配合を示す「部」は質量基準である。また、「ホログラム」はホログラムと、回折格子などの光回折性機能を有するものも含む。
【背景技術】
【0002】
(主なる用途)
本発明のホログラムシートの主なる用途としては、ホログラムそのものを装飾用として用いる美術・工芸品分野や商業用分野があるが、それにとどまらず、偽造防止分野に使用されるホログラムシートであって、具体的には、クレジットカード等の偽造されて使用されると、カード保持者やカード会社等に損害を与え得るもの、運転免許証、社員証、会員証等の身分証明書、入学試験用の受験票、パスポート等、紙幣、商品券、ポイントカード、株券、証券、抽選券、馬券、預金通帳、乗車券、通行券、航空券、種々の催事の入場券、遊戯券、交通機関や公衆電話用のプリペイドカード等がある。
これらはいずれも、経済的、もしくは社会的な価値を有する情報を保持した情報記録体であり、偽造による損害を防止する目的で、記録体そのものの真正性を識別できる機能を有することが望まれる。
【0003】
また、これら情報記録体以外であっても、高額商品、例えば、高級腕時計、高級皮革製品、貴金属製品、もしくは宝飾品等の、しばしば、高級ブランド品と言われるもの、または、それら高額商品の収納箱やケース等も偽造され得るものである。また、量産品でも有名ブランドのもの、例えば、オーディオ製品、電化製品等、または、それらに吊り下げられるタグも、偽造の対象となりやすい。
さらに、著作物である音楽ソフト、映像ソフト、コンピュータソフト、もしくはゲームソフト等が記録された記憶体、またはそれらのケース等も、やはり偽造の対象となり得る。また、プリンター用のトナー、用紙など、交換する備品を純正材料に限定している製品などにも、偽造による損害を防止する目的で、そのものの真正性を識別できる機能を有することが望まれる。
【0004】
(背景技術)
従来、情報記録体や上記した種々の物品(総称して、真正性識別対象物と言う。)の偽造を防止する目的で、その構造の精密さから、製造上の困難性を有すると言われるホログラムを真正性の識別可能なものとして適用することが多く行なわれている。しかしながら、ホログラムの製造方法自体は知られており、その方法により精密な加工を施すことができることから、ホログラムが単に目視による判定だけのものであるときは、真正なホログラムと偽造されたホログラムとの区別は困難である。
これらの真正性識別対象物、特にラベル形態や転写形態にてホログラム画像を施された物品は、ホログラム画像の目視確認という真正性識別のみでなく、新たな真正性識別方法を用いてその対象物の真正性を識別する必要が生じている。
【0005】
(先行技術)
これらの要求に応えるため、ホログラムに積層して、入射した光の内、左回り偏光もしくは、右回り偏光のいずれか一方の光のみを反射する光選択反射層を有するホログラムシートが提案された。(例えば、特許文献1参照。)
この光選択反射層として、コレステリック液晶を使用し、偏光版等を用いて確認する方法で偽造防止性を高めている。
しかしながら、特許文献1の記載にあるように、ホログラム形成層上の反射性薄膜層の反射率が高いため、コレステリック液晶層で反射されず透過した光(選択的反射光の補色光)が、この反射性薄膜層で反射し、再びコレステリック液晶層へ戻る(以下戻り光とする)ことにより、この戻り光が、コレステリック液晶を観察する際のノイズ成分となって、選択的反射光に付加・混在し、液晶本来の色調とならず、視認・識別することすら難しくなっていた。
【0006】
また、特許文献2の記載にあるように、ホログラムとして、その製造に高度な技術を要する反射型体積ホログラムを用い、白色光下においても立体感のあるホログラム再生像を視認することにより、その真偽判定を行う偽造防止技術も提案されている。
このような反射型体積ホログラムは、それ自体が透明性を有するとともに、また、波長域の広い白色光源による照明において所定の波長(単波長に近い。)の光のみを反射して、その反射光によるホログラム再生像を出現させるものである。
しかし、この反射型体積ホログラムも、その波長選択性によって、白色光のような広い波長域に渡って光の強度を有する照明光の中から、非常に狭い波長域の光のみを干渉させ、その光の強度のみでホログラム再生像を出現させるため、そのホログラム再生像の「明るさ」が、照明光の「明るさ」の1/10以下となってしまい、ホログラム再生像を明確に視認した上で真正性判定を行うという目的には不十分であるという欠点を有していた。
【0007】
【特許文献1】特開2007−90538号公報
【特許文献2】特開平10−97171号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、体積ホログラム形成層の背後に、エレクトロルミネッセンス素子層の発光によってレリーフホログラム再生像を発現するレリーフホログラム形成層を設けた複合型のホログラムシートに関するものである。
さらに、体積ホログラム記録領域と、ホログラムレリーフ形成領域が交互に設けられ、いずれのホログラム再生像も鮮明に観察することが可能なホログラムシートに関し、さらには、各々の領域を300μm以下の幅の帯状として、交互に設けることにより、所定の電界を印加すると、あたかもホログラム再生像が消失したように観察される、偽造防止性に優れるホログラムシートを提供することである。
また、このようなホログラムシートはこれまでに存在しないため、新規な装飾性及び、これを応用する偽造防止性を提供することである。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、
本発明のホログラムシートの第1の態様は、
透明基材の一方の面に、体積ホログラム形成層、ホログラムレリーフが設けられたレリーフホログラム形成層、及び、前記レリーフホログラム形成層の前記ホログラムレリーフに追従して設けられたエレクトロルミネッセンス素子層がこの順序で設けられているホログラムシートであって、
前記体積ホログラム形成層に記録された体積ホログラムの記録領域と、前記ホログラムレリーフの形成領域が交互に設けられていることを特徴とするものである。
上記第1の態様のホログラムシートによれば、
透明基材の一方の面に、体積ホログラム形成層、ホログラムレリーフが設けられたレリーフホログラム形成層、及び、前記レリーフホログラム形成層の前記ホログラムレリーフに追従して設けられたエレクトロルミネッセンス素子層がこの順序で設けられているホログラムシートであって、
前記体積ホログラム形成層に記録された体積ホログラムの記録領域と、前記ホログラムレリーフの形成領域が交互に設けられていることを特徴とするホログラムシートを提供することができ、ホログラム再生像を明確に判定可能な、ホログラムシートを提供する。
本発明のホログラムシートの第2の態様は、
前記体積ホログラムの記録領域、及び、前記ホログラムレリーフの形成領域が、100μm〜300μmの幅を有する帯状領域であることを特徴とするものである。
上記第2の態様のホログラムシートによれば、
前記体積ホログラムの記録領域、及び、前記ホログラムレリーフの形成領域が、100μm〜300μmの幅を有する帯状領域であるを提供することができ、所定の電界の印加によって、あたかもホログラム再生像が全て消失したように観察される、意外性や偽造防止性に優れる、ホログラムシートを提供することができる。

本発明のホログラムシートの第3の態様は、
前記エレクトロルミネッセンス素子層の厚さが、0.01μm〜2.0μmであることを特徴とするものである。
上記第3の態様のホログラムシートによれば、
前記エレクトロルミネッセンス素子層の厚さが、0.01μm〜2.0μmであることを特徴とする第1または第2の態様に記載のホログラムシートを提供することができ、所定の電界の印加により、さらに鮮明なレリーフホログラム再生像を視認可能とするか、または、ホログラムの消失が確実となることにより、偽造防止性を向上可能な、ホログラムシートを提供することができる。
【0010】
本発明のホログラムシートは、透明基材の上に、体積ホログラム形成層、ホログラムレリーフが設けられたレリーフホログラム形成層、及び、そのホログラムレリーフに追従して設けられたエレクトロルミネッセンス素子層をこの順序で設けたものであって、その体積ホログラム形成層に記録された体積ホログラムの記録領域と、そのホログラムレリーフの形成領域が交互に設けられているホログラムシートである。
すなわち、観察者からみると、体積ホログラムの記録領域と、体積ホログラムの記録領域が、所定の形状、所定の大きさで互い違いに並べられているように観察される。例えば、一辺が3mmの正方形が縦横に敷き詰められた領域を想定し、その個々の正方形に、一つ飛ばしにそれぞれの領域が形成され、自然光や蛍光灯の照明下においては、体積ホログラムのみが、その飛び飛びの領域から再生され、一つの体積ホログラム再生像として観察されるが、所定の電圧の印加により、残りの正方形にあるレリーフホログラムも再生されて、それぞれ独立した二つのホログラム再生像として視認することができることとなる。
この個々の領域のサイズが、0.5mm〜5.0mmの大きさであると、観察者には、それらのホログラムが個々に分離されているとは判別できず、あたかも2つのホログラムが多重記録されているように観察される。
しかし、個々の領域のサイズが、5.0mmを超えると、個々の領域の存在が観察者に容易に視認可能となるため、本発明のホログラムシートの装飾性を考慮すると、個々の領域のサイズは、5.0mm以下とすることが好ましい。
また、個々の領域のサイズが、0.5mmより小さくなると、二つのホログラム再生像が互いに干渉しだし、0.3mm以下、すなわち、300μm以下となると、互いの干渉が強くなり、どちらのホログラム再生像も独立したホログラム再生像を形成できず、あたかもホログラム再生像が消失したように観察される。
但し、微細な領域の集合体として、一つのホログラム再生像を視認可能とするためには、その一つの微細な領域の占める大きさは、100μm以上とする必要があるため、上記した交互に設ける記録領域、もしくは、形成領域の最小サイズを100μmとする。
【0011】
この体積ホログラム形成層には、通常の照明光下で視認可能な「反射型体積ホログラム(リップマンホログラム)」や、「透過型体積ホログラム」が記録されており、通常は、一般的な「反射型体積ホログラム(リップマンホログラム)」や、「透過型体積ホログラム」が記録されたホログラムシートとして観察されるが、このホログラムシートに所定の電界を印加すると、上記のエレクトロルミネッセンス素子層が発光し、その発光によりレリーフホログラム再生像が発現し、体積ホログラムに加えて、レリーフホログラムをも観察可能となるホログラムシートである。
この「体積ホログラム」の記録は、所定の光学的な撮影方式を用いて、直接記録することもできるが、その直接記録した体積ホログラムを複製用原版として、密着露光方式により、未記録の体積ホログラム形成層へ複製することにより、記録することもできる。
一般的に「体積型ホログラム」を記録する際には、「ブラッグ条件」と呼ばれる回折の条件が重要となり、この「体積ホログラム」から回折光(すなわち、体積ホログラム再生像)を得るためには、照射する読み出し光(ホログラム再生像の再生用照明光を意味する。)が、その「体積ホログラム」と「ブラッグ条件」を満足していなければならない。
読み出し光として、記録に用いた光とまったく同じ波長・入射角度・ビーム広がり角をもつ光を用いた場合には、その「ブラッグ条件」は自動的に満足される。そのため体積型ホログラムの再生には、記録に用いた「参照光」(体積ホログラムは、「物体光」と「参照光」を記録材料中で干渉させて記録される。)をそのまま用いる必要がある。
本発明のホログラムシートに用いられる、「体積ホログラムが形成された体積ホログラム形成層」は、フォトポリマーフィルム等の透明なフィルムそのものに、体積ホログラムを記録した後、透明基材の上にラミネート処理する方法、又は、透明基材の上に、透明な樹脂をコーティングして、「体積ホログラム形成層」を設けた後、その体積ホログラム形成層に、直接撮影する方法や、原版を密着させた光学的複製方法により体積ホログラムを記録する方法により設ける。
このときに、適宜なパターンでマスキングを施すことにより、体積ホログラムを飛び飛びに形成することができる。
【0012】
この体積ホログラム形成層の上に、ホログラム画像を再生する回折格子群が、ホログラムレリーフとして、透明樹脂材料からなるレリーフホログラム形成層面上に略一平面として、且つ、所定の間隔をおいて飛び飛びに形成されており(ホログラムレリーフの形成されていない領域は、単純な平面となっている。)、このホログラムレリーフ上及び、単純平面上に、追従して均一な厚さでエレクトロルミネッセンス素子層が設けられている。
すなわち、飛び飛びに形成されたホログラムレリーフは、位相ホログラムとしての位相差を「飛び飛びのレリーフ形状」に現しているが、この位相差を有する「ホログラムレリーフ形状」に追従して(沿って)エレクトロルミネッセンス素子層が設けられることにより、エレクトロルミネッセンス素子層が発する光が、上記位相差を有して(含んで)発することになる。
以下、エレクトロルミネッセンス素子層により、レリーフホログラム再生像が出現する原理について以下に説明する。
レリーフホログラムを再生する場合に、そのレリーフホログラムを所定の照明光で照明した際に、そのレリーフホログラム面上のあらゆる点(場所)で生じるホイヘンスの2次波が発生するが、これに対し、本発明のホログラムシートの場合においては、この2次波に相当するものが、ホログラムレリーフ面に配されたエレクトロルミネッセンス素子層の発光(発する光)であり、この光がその役目を担い、ホログラム画像に対応したホログラムレリーフが有する位相差を含んで発する光(発光)を観察者側に届けるものである。
すなわち、この発する光(発光)が、ホログラムレリーフ面上の空間において干渉現象を起こし、その結果、所定の方向に所定のレリーフホログラム再生像を発現する。
そもそも、エレクトロルミネッセンスとは、電場のエネルギーによって、蛍光物質等が発光する現象であって、面光源を得ることが可能であり、大別して、有機エレクトロルミネッセンスと、無機エレクトロルミネッセンスとがある。
有機エレクトロルミネッセンスは、電流を流すと発光する性質を有する有機物質を用いた発光現象のことであり、ベースとなる層に有機物質を挟み込んだ構造をしている。
その層間に電流を流すことで、その有機物質の分子が励起され発光する仕組みとなっている。
代表的な層構成は、/陽極(透明導電層)/ホール輸送層/有機物質層/電子輸送層/陰極(透明導電層)からなり、陽極側から発する光(発光)が出る。
すなわち、薄膜で形成された有機エレクトロルミネッセンス素子は、陰極(陰極層)から電子輸送層を経て有機物質層に到達した電子と、陽極からホール輸送層を経て有機物質層に到達した正孔とを再結合させることにより生じた HYPERLINK "http://www.weblio.jp/content/%E5%8A%B1%E8%B5%B7%E5%AD%90" \o "励起子" 励起子(エキシトン)によって発光する。
【0013】
つまり、その再結合の際に発生するエネルギーにより有機物質の分子等を励起し、励起状態から、再び、基底状態へ戻るときに、蛍光(燐光を含む。)発光等が起こる。
蛍光発光の原理は、図1に示すジャブロンスキー図にあるように、その有機物質(複数の物質の複合系を含む。)の分子等の基底状態(S0:一重項状態)からエネルギー吸収によって第一(S1)、第二(S2)、第三励起状態(S3)・・・のどれかの振動状態に励起された有機物質の分子等が、無放射過程で非常に速やかに緩和してS1の電子励起状態に移るか、あるいは項間交差によって三重項状態(T1、T2)へ移る。
S1の最低振動状態になった蛍光体は、無放射過程によるか蛍光を発して基底状態に戻り、三重項状態になった分子は、無放射過程によるか、燐光を発して基底状態に戻る。
励起しても光に上手く利用できないエネルギーは無放射失活(熱失活)する。
一重項同士の遷移は瞬間的に起こるため、蛍光の半減期は10-4sec以下と短いものである。遷移に要する時間は、10-15secで励起が起こり、その後10-9〜10-7secで蛍光発光が起こるとされている。
一方、三重項から一重項への遷移はスピン変化禁止により禁制遷移となり自発的放出が起こりにくいので、燐光の半減期は大きく、秒単位のものもある。
基底状態に戻る際に光を発するか否か、光の強度が強いか弱いか、蛍光寿命が長いか短いかは、その有機物質の分子等の分子構造や分子等の置かれた環境に大きく依存する。
有機物質の分子等の放出光の波長分布を発光スペクトルといい、発光スペクトルは発光の波長に対し相対的な発光強度をプロットして作成される。発光スペクトルに示される波長(エネルギー)は一次励起状態の最低振動エネルギー準位から基底状態の優先的な振動エネルギー準位までのエネルギー差と等しくなる。
【0014】
無機エレクトロルミネッセンスとは、物質に電界を印加したときに発光する物理現象であり、その機構は、固体である HYPERLINK "http://ja.wikipedia.org/wiki/%E7%84%A1%E6%A9%9F%E5%8C%96%E5%90%88%E7%89%A9" \o "無機化合物" 無機化合物の蛍光体(発光層)に電圧を印加するとその固体内にあらかじめ存在する電子、あるいは電極から注入された電子が高電界によって加速され、発光中心に衝突してこれを励起し、そのとき生じた電子と正孔が再結合することによって発光するというものである。外部から電流によって注入された電子と正孔の再結合によって発光する有機エレクトロルミネッセンスとは、励起の点で異なる。
すなわち、薄膜で形成された無機エレクトロルミネッセンス素子は、二重絶縁構造を有しており、この構造に電界を印加することにより発光が起こる。
発光層の構成形態から「分散型」と「薄膜型」の2種類に分けられ、分散型は、強誘電体粉末を有機バインダーに分散させた絶縁層と蛍光体粉末を有機バインダーに分散させた発光層とを積層させて、透明電極と背面電極で挟んだ構造であり、その代表的な構成は、/透明電極/絶縁層/発光層/背面電極/、若しくは、/透明電極/絶縁層/発光層/絶縁層/背面電極/である。
この層構成において、
薄膜型は、薄膜電極付き基板上に薄膜蛍光体からなる発光層と絶縁層を積層させ、電極を付けた構造であって、スパッタリング法や真空蒸着法等の薄膜形成方法を用いて層を形成する。その代表的な構成は、分散型と同様である。
いずれも、透明電極側から、発する光(発光)が出る。
本発明のホログラムシートのレリーフホログラムは、従来のレリーフホログラムの再生方法、すなわち、レリーフホログラムに照明光源からの照明光を当て、ホログラムレリーフ面での反射光の干渉現象によって、その照明光の波長のレリーフホログラムを再生するもの、とは異なり、電圧を印加することによって、エレクトロルミネッセンス素子が発光し、その発する光(発光)そのものが上記干渉現象を生じて、その発する光(発光)の波長におけるレリーフホログラムを再生するものである。従って、回折角度も、その発する光(発光)の波長に依存する。
【0015】
例えば、透明でほとんど何も見えない空間(レーザー再生ホログラム等のようにその再生に単波長光を必要とするものは、白色光光源では視認できない。また、白色光再生に適するレインボーホログラムであっても、ホログラフレリーフ面の界面反射強度が小さい場合にも、やはり視認しにくくなる。)に、電圧印加によって初めて、例えば「緑色」のレリーフホログラムを視認することもできるため、観察者の目には、あたかも、通常再生に用いられる「緑色の照明光源」の無いところに、レリーフホログラムだけが光輝き、空中に浮いているように見え、意匠性にも優れるものとなる。
さらに、レリーフホログラムを再生可能な電界印加用の電極端子(陽極端子と、陰極端子。複数設けてもよいし、ダミー端子を設けることで、その偽造防止性を高めることが出来る。)がどの部分に形成されているか判別しにくくして、その構造を知りうる者のみがホログラム再生を果たすことができるよう設けて、真正性判定用に有用なものとすることができる。
また、上記した、発する光(発光)の波長を知りうる者のみがレリーフホログラム再生像の色調を予測でき、その再生波長に調整したバンドパスフィルターを通して覗いて、そのバンドパスフィルターを通過できるレリーフホログラムのみが、真正であると判定することもできる。
また、このバンドパスフィルターを通過する角度(回折角度)も、その発光波長に依存し、やはり、その値を知りうる者のみがその所定の角度で判定を行うことができる。
さらに、薄膜で形成されたエレクトロルミネッセンス素子を複数含めることにより、この再生像は複数の角度に異なる色調で現れることになり、意匠性の面でも、真正性判定の面でもより優れたものとすることができる。
もちろん、エレクトロルミネッセンス素子は、その印加する電圧により、発光スペクトルが大きく異なり、また個々の素子独特の発光特性を有するため、真正性判定に使用する印加電圧(電圧強度や、周波数等。)を知りえない偽造者が、真正品と全く同一のホログラムシートを作製しようとしても、物理的に不可能と言える。
【0016】
有機エレクトロルミネッセンス素子の構造は、具体的には、発光層となる有機薄膜を陰極と陽極で挟んだ単層構造のものや、陽極と発光層との間に正孔輸送層を有する構造のもの、陰極と発光層との間に電子輸送層を有するもの、発光層部分を電子輸送層、発光層、正孔輸送層の3層構造とするもの、さらには必要に応じて多層化した構造のもの等を用いることができる。
これらの陽極と陰極で挟んだ層は、すべて有機薄膜(固体)で構成されており、各層の厚さは、10〜100nmである。
10nm未満では、各層の機能を十分発揮できず、また、100nmあれば、各層の機能を達成するためには十分であり、それより厚くすることによる不要なレリーフ追従性低下を避けるため、100nm以下とする。
発光層は、主材料(ホスト材料)と不純物材料(ドーパント材料:発光強度向上等の機能向上のために添加される。)との2成分系であり、発光する不純物材料は、0.1〜30%添加で主材料中に均一に分散されている。
0.1%以下では、発光性が不十分であり、30%を超えると、その不純物性(特異点としての存在性)が薄れ、かえって発光性が低下し始める。
陽極には、透明導電性薄膜と称される、透明性と導電性をあわせもつITO薄膜(インジウム・スズ酸化物薄膜)、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸化錫、フッ素ドープ酸化錫、酸化亜鉛などの金属酸化物、銀の薄膜を高屈折率層で挟んだ多層構造、ポリアニリン、ポリピロールなどの共役系高分子などが挙げられる。
形成方法は、薄膜形成方法、すなわち、スパッタリング法や、真空蒸着法等を用いて、厚さ50〜500nmで形成する。以上の配慮から、透明導電性薄膜の表面抵抗値は、0.001Ω/□〜0.1Ω/□とする。
形成方法として、印刷法等も用いることが可能であるが、ホログラムレリーフに接して、且つ、追従して設ける必要があり、この層がレリーフ形状を維持し、次の薄膜層にもそのレリーフ形状を与えるためには、この層の膜厚さが、薄く且つ高度に均一である必要があり、上記した薄膜形成方法が望ましい。
【0017】
ホログラムレリーフのレリーフ形状の凹凸は、0.01μm〜1μmと微細であり、その周期も0.01μm〜1μmと、非常に微細でなだらかな変化を有しているが、このなだらかな変化を忠実に再現できないと、再生されるホログラムの像を正確に、且つ、明るく再現することができない。
従って、上記した「ホログラムレリーフへの追従性」は、多層構造となる、エレクトロルミネッセンス素子の発光層及び、発光層から光が放出される透明導電性薄膜層の膜厚さ及び、その均一性が、より薄く、且つ、より均一であることが要求されることを意味する。
すなわち、ホログラムレリーフ面と、発光層との間に、多層が介在しても、発光層の発光面のレリーフ形状が、そのホログラムレリーフのレリーフ形状と同一乃至はほぼ同一となることが重要である。ほぼ同一とは、レリーフ形状の凹凸の再現性が、90%以上、さらには、95%以上であることが望ましい。
これは、一つの凹凸の再現性であると同時に、ホログラムを再生する領域全体の再現性を示す指標である。
この再現性は、例えば、2つの3次元曲線の比較において、元の3次元曲線の凹凸領域の体積に対して、もう一つの3次元曲線との差分領域の体積が、その10%以内、さらには、5%以内にあることを意味する。これは、一つの凹凸の再現性であると同時に、ホログラムを再生する領域全体の再現性を示す指標である。簡易的な評価として、レリーフ断面同士を2次曲線で比較する方法を用いることも好適である。
以上を配慮して、その膜厚さは、50nm未満では、その導電性が不十分であり、500nmを超えると、ホログラムレリーフへの追従性が劣化する。さらに、ホログラムレリーフに接して設けた場合に、その加熱負荷により、ホログラムレリーフ形状を保持している透明樹脂の劣化、すなわち、ホログラムレリーフ形状の変形(劣化)を起こす。
陰極には、陽極と同様の材料を同様の方法を用いて、厚さ、50〜500nmで形成する。
50nm未満では、その導電性が不十分であり、500nmを超えると、やはり、ホログラムレリーフへの追従性が劣化する。さらに、ホログラムレリーフに接して設けていなくても、その薄膜形成時の加熱負荷により、この場合であっても、ホログラムレリーフ形状を保持している透明樹脂の劣化、すなわち、ホログラムレリーフ形状の変形(劣化)を起こし易くなる。
【0018】
発光層である有機薄膜には、低分子系と高分子系とを用いることができる。
低分子系には、正孔輸送材料として、TPAC(1,1−ビス[4-[N,N―ジ(p−トリル)アミノ]フェニル]シクロヘキサン)、TPD(N,N´―ジフェニル−N,N´―ジ(m―トリル)ベンジジン)、CuPc(フタロシアニン銅)、α―NPD(4,4´―ビス[フェニル(1−ナフチル)アミノ]−1,1´ビフェニール等、
電子輸送材料として、BND(2,5−ビス(1−ナフチル)−1,3,4− オキサジアゾール)、PBD(2−(ターシャリー−ブチルフェニル)―5― (4−ビフェニル)−1,3,4−オキサジアゾール)、Butyl−PBD(2−ビフェニル−5−(パラ−tert−ブチルフェニル)−1,3,4−オキサジアゾール)、TAZ(1−フェニル−2−ビフェニル−5−パラ−tert−ブチルフェニル−1,3,4−トリアゾール)、Alq3(トリス(8−ヒドロキシキノリナト)アルミニウム)、Beq2(ビス(8−ヒドロキシ−キノリノ)ベリリウム)、Zn(BOZ)2(亜鉛−ビス−ベンゾキサゾール)、Zn(BTZ)2(亜鉛−ビス−ベンゾチアゾール)、Eu(DBM)3(Phen)(トリス(1,3−ジフェニル−1,3−プロパンジオノ)(モノフェナントロリン)ユーロピウム(III))等、
発光層材料として、ZnPBO(ビス[2−(2−ベンゾキサゾリル)フェノラト]亜鉛)等、
ドーピング色素材料として、Coumarin6(3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)コーマリン、QN−(N,N´−ジメチルキナクリドン)、ナイルレッド、ベリレンラブレン、TBP(1,1,4,4−テトラフェニル−1,3−ブタジエン)キナクリドン等、その他、4−(ジシアノメチレン)−2−メチル−6−(4−ジメチルアミノスチリル)−4H−ピラン、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール、4,4'−ビス(9−カルバゾリル)ビフェニル等を用いることができる。
これらの低分子系材料は、真空蒸着法、CVD法(化学蒸着法)等の薄膜形成法により設けることができる。
【0019】
高分子系には、
発光層材料として、PPV(ポリパラフェニレンビニレン)系、PAT(ポリチオフェン)系、PF(ポリフルオレン)系、PPP系(ポリパラフェニレン)等、
正孔層材料として、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)+PSS(ポリスチレンスルホン酸:ドーパント)共重合体、PEDOT+PVS(ポリビニルスルホン酸)共重合体、ポリアニリン+PSS共重合体、ポリピロール+PSS共重合体等、を用いることができる。
これらの高分子系材料は、各種のコーティング法、印刷法により設けることことができる。印加直流電圧は、1〜10Vである。
無機エレクトロルミネッセンス素子の構造は、基本構造として、透明電極、絶縁層、発光層、背面電極を積層したものであり、発光は、発光層である蛍光体膜から出る。蛍光体は、薄膜型の場合、誘電性のある母体材料に、発光中心となる微量の添加不純物を混ぜたもので、エネルギーを受けることで、その発光中心物質の外殻軌道または高い順位に移動(励起)した、発光中心物質の持つ電子が、元の順位に戻る(遷移)ときに、発光を生じる。
発光層である蛍光体の膜を、絶縁層である誘電体で挟み込み、その両端に電極を配した構造は、コンデンサを3個直列に接続した回路と考えることができ、ここに、交流電圧をかけると、誘電体と蛍光体の中で分極が生じ、印加電圧を上げ、蛍光体の膜にかかる電界が、100MV/m以上となると、発光中心が電界で加速された電子等の衝突のエネルギーを受け取り、励起されるようになる。
発光層としては、母体にZnSや、SrSなどのII族硫化物を用い、発光中心にMnや希土類を添加したもの、母体にBaAL24(バリウム・アルミニウム複合硫化物)を用い、発光中心にEuを添加したもの、等が用いられる。
発光層には、周期表の第2族元素と第16族元素とから成る群から選ばれる少なくとも1種の元素及び/又は周期表の第13族元素と第15族元素とから成る群から選ばれる少なくとも1種の元素とを含む半導体を好ましく用いることができる。
そのキャリア密度は、1017/cm3以下であることが好ましい。
発光層を形成する物質の具体例をさらに挙げると、CdS,CdSe,CdTe,ZnSe,ZnTe,CaS,MgS,GaP,GaAs,GaN,InP,InAs及びそれらの混晶などが挙げられるが、ZnSe,CaSなどを好ましく用いることができる。
【0020】
さらに、BaAl24、CaGa24、Ga23、Zn2SiO4、Zn2GaO4、ZnGa24,ZnGeO3,ZnGeO4,ZnAl24,CaGa24,CaGeO3,Ca2Ge27,CaO,Ga23,GeO2,SrAl24,SrGa24,SrP27,MgGa24,Mg2GeO4,MgGeO3,BaAl24,Ga2Ge27,BeGa24,Y2SiO5,Y2GeO5,Y2Ge27,Y4GeO8,Y23、Y22S,SnO2及びそれらの混晶などを好ましく用いることができる。
キャリア密度等は、一般に用いられるホール効果測定法などで求めることができる。
絶縁層である誘電体膜としては、金属酸化物、窒化物が用いられる。BaTiO3などのペロブスカイト系酸化物は高い誘電率を持ち好適である。
酸化物に含むことができる元素としては、周期表の第2族、3族、9族、12族(旧2B族(旧IIb族))、13族(旧3B族(旧III族))、14族(旧4B族(旧IV族))、第15族、第16族の元素が好ましく、第12族、第13族及び第14族の元素からなる群より選ばれる少なくとも1種の元素を含むことがより好ましい。具体的にはGa、In、Sn、Zn、Al、Sc、Y、La、Si、Ge、Mg、Ca、Sr、Rh、Ir等を挙げることができ、より好ましくは、Ga,In,Sn,Zn,Si,Ge等である。またこれらの元素以外に透明半導体が、S、Se、Te等のカルコゲナイドやCu、Ag等を好ましく含むことができる。
絶縁層と発光層の層厚さは、0.1μm〜2μmとする。もちろん、2μmを超えて10μm程度の厚さとすることで、発光性性能をより向上させることができるが、ホログラムレリーフの追従性の面で、2μmが限界である。
透明電極、背面電極は、有機エレクトロルミネッセンス素子と同様に、ITOや、金属薄膜が好適に用いられる。
異なる発光色の蛍光体膜を交互に並置して、多色とすることもできるが、輝度の高い1色の発光体膜の上に、色変換材料(クマリン系:クマリン6、ローダミン系:ローダミン6G、ローダミンB等の蛍光色素の混合物や、2種以上のベンゾ−α−ビロン骨格を持つ蛍光色素の混合物等、波長350nm〜600nmの光を吸収して、波長600nm以上の可視領域に発光極大を有する光を放出する等。)を重ねて多色とすることも好適である。
印加電圧としては、100V・50〜1000Hzの交流電源等を用いることができる。
エレクトロルミネッセンス素子層を多色発色とした場合には、それらの発光波長に対応した体積ホログラムを設けておき、これらの体積ホログラムを同時に再生することも好適であるが、エレクトロルミネッセンス素子層そのものを複数積層し、個々の発光により、個々の体積ホログラムを再生するものとしてもさらに好適である。
【0021】
この際の発光波長間の差は、50nm以上とし、好適には、100nm以上とする。再生波長を異なるものとすることは、上記したフリンジの周期を異なるものとすることを意味し、体積ホログラム形成層内におけるそれぞれのフリンジ間の不要な干渉を低減することができる。
そして、再生角度差は、10度〜40度とする。この差が40度を超えると、一方の観察角度がホログラムシート面に近いものとなるため、観察するのに不便となる。
次に、ホログラフィの原理について説明する。
物体がコヒーレント光で照明され,物体から回折された光が記録媒体(フォトレジスト等。)を照明しているとした場合、物体から回折されて記録面に到達した波面を物体波は、
F(x,y)=A(x,y)EXP[φ(x,y)]
であらわされる。ここで、
A(x,y) は物体波の振幅分布とし、
φ(x,y) は位相分布とする。
このとき、記録媒体には、記録媒体に到達する光波の強度分布が記録される。その強度分布は、
I(x,y)=|F(x,y)|2=A2(x,y) (1)
となり、位相分布は記録されない。
ここで,物体波にこれと干渉性のある光波(参照波という)を重ね合わせると,記録される光波の強度分布は、
I(x,y)=|F(x,y)+R(x,y)|2
=|F(x,y)|2+|R(x,y)|2
+F(x,y)R*(x,y)+F*(x,y)R(x,y) (2)
となる.(*は複素共役項を表す。)
【0022】
ただし,参照光が記録面に角度θで入射する平面波であるとすれば、
R(x,y)=r(x,y)EXP(2πiαx) (3)
と書け、
α = SIN(θ)/λ (4)
である。(2)の第1項と第2項はそれぞれ、物体波の強度と参照波の強度でいずれも位相情報は欠落している。第3項と第4項は干渉の項でそれぞれ
F(x,y)R*(x,y)=
A(x,y)r(x,y)EXP[i [φ(x,y)−2παx] ] (5)
F*(x,y)R(x,y)=
A(x,y)r(x,y)EXP[−i [φ(x,y)−2παx]] (6)
とあらわされ、物体の位相項 φ(x,y) が残っている。(5)、(6)は互いに複素共役であり、(4.2)の第3項は物体の複素振幅分布を含んでいる。(5)、(6)を(2)に代入すると、
I(x,y)=|F(x,y)|2+|R(x,y)|2
+2A(x,y)r(x,y)COS [2παx−φ(x,y)] (7)
となる.物体波と参照波が干渉して干渉縞を形成していることがわかる。
このように、物体波に参照波を重ね合わせて干渉記録し、 物体の位相情報を欠落させずに記録する方法がホログラフィである。(7)を記録したものが「ホログラム」と呼ばれる。ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布 I(x,y)
比例し、
T(x,y)=τI(x,y) (8)
とかけるとする。このホログラムに、記録したときに用いた参照波を所定の角度であてると、ホログラムを透過もしくは反射してきた波面は、
T(x,y)R(x,y)=τ(|F(x,y)|2+|R(x,y)|2
+τF(x,y)|R(x,y)|2
+τF*(x,y)R2(x,y) (9)
とあらわすことが出来る.この第2項は
τF(x,y)|R(x,y)|2
τA(x,y)r2(x,y)EXP[iφ(x,y)]] (10)
第3項は、
τF*(x,y)R2(x,y)=
τA(x,y)r2(x,y)EXP[−iφ(x,y)+2πiα] (11)
とかける。
【0023】
このことから、(9)の第1項は、照明光と同じ方向にホログラムを突き抜ける光束もしくは正反射する光束であり、第2項は、(10)より、物体光に比例した振幅を持つ光波であることがわかり、第3項は、(11)より、物体波と共役な位相分布を持ち、2θの方向に伝播する光波であることがわかる。
このようにして,ホログラフィの技術を使うと複素振幅分布を記録して再生することが出来る。
本発明の場合は、ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布に比例し、(8)の式で表されてはいるものの、このホログラムに、記録したときに用いた参照波を所定の角度であてるのではなく、(8)の振幅透過率もしくは振幅反射率と同様の空間的な分布を持つ発光波がこのホログラムから発せられることになる。
従って、参照光にホログラムに記録された位相項を付与するという従来のホログラム再生の原理によらず、既にホログラムに記録されている位相項を保持して発光波を放射するものである。従って、理論上は、物体の位相差を含む空間関数を持つ3次元の連続曲面状の発光面を有し、その1曲面から光が放射されることになる。
【0024】
従来のホログラム再生原理を透過タイプについて、単純化して説明すると、参照光としての平行光をホログラムにあてた際、遮蔽部分では、平行光が遮蔽され、透過部分からのみその平行光を透過し、透過部分と遮蔽部分との境界において回折が起こり、物体の持つ位相項を受け取り、ホログラムを透過した成分全体が重ね合わさり、それがホログラム再生光となって観察者の目に届くものである。
本発明の場合は、上記した参照光としての平行光が存在せず、ホログラムレリーフに接するように設けられた発光面での発光時、その放射光が物体の位相項を保持しており、その放射光同士の干渉現象により、ホログラム再生がなされるものである。
時間的且つ空間的コヒーレンス性を持たない放射光同士の干渉効果は、レーザー光のような十分な干渉を生じないが、低コヒーレント光で ホログラムを照明した際と同様のレベルでホログラム再生が行われる。以上のような原理による再生であるため、ホログラム撮影時の参照光は平行光であることが好ましく(複雑な参照光を再現できないため。)、もしくは、「回折格子により表現されたホログラム」(回折格子は、物体光、参照光とも平行光である。)であることが好ましく、回折格子は計算機ホログラム等、電子線描画により形成したものが精密であり、好適である。
さらに、上記の理由から、レリーフホログラム再生像をより鮮明にするためには、放射光に対して、時間的若しくは空間的なコヒーレンス性に関する特性を付与することが必要であり、例えば、発光体の発光する部分の厚さ(放射方向の距離)を薄いものとして、発光点の厚さ方向におけるばらつきを小さいものとしたり、発光層その他の層を均一(層厚さを均一にしたり、均一分散や、均一組成とするなど、層内のムラをなくすこと。)にして、発光スペクトルのばらつきや、発光スペクトルの幅を小さいものとすることが望ましい。
【0025】
また、レリーフホログラムを光学的に記録する際に使用する光の主波長や、回折格子等を形成する際に想定する回折光の主波長と、エレクトロルミネッセンス素子からの発光波長を同一、乃至はほぼ同一とすることで、より鮮明なレリーフホログラム再生像を得ることができる。
さらには、発光光が通過する透明導電性薄膜、絶縁層、正孔輸送層等の透明な層での光の多重反射を考慮して、発光発光波長の通過する光の強度が最大となるように、各層の屈折率と厚さを設定することが好ましい。
特に、陽極もしくは陰極に用いる透明導電性薄膜の厚さを、精密に制御して、その透明導電性薄膜を通過する光が、透明導電層内で多重反射し、所定の方向(通常は、形成面に垂直な方向。)へ進む光の強度を大きくし、それ以外の方向へ進む光の強度を抑制することも好適である。
但し、本発明のホログラムシートの本来の目的は、発光層の発光面で有する位相差分布を維持したまま素子から光を放出し、放出直後の空間において、その位相差分布に基づく光の干渉を十分行わせることであるから、この位相差分布を撹乱するような多重反射は、光の強度を増すことはあっても、返ってホログラム再生像の鮮明度の低下を招く。
従って、上記した透明導電薄膜層等の屈折率分布や、厚さの設定は、これを配慮して行う必要がある。例えば、ホログラムレリーフの凹凸がほとんど0.01μm程度と小さく、透明基材表面に平行な領域が多いホログラムを用いた場合には、この多重反射を利用し、この透明導電薄膜層の厚さを、その発光波長に対して、その平面に垂直に通過する光の強度を最大となるよう設定することで、そのホログラムレリーフ面から「発する」光の方向をおおよそ垂直方向のみとすることが可能となる。
もちろん、偽造防止性を高めるために、敢えて、発光する波長を記録形成時の波長と異ならせることも好適である。その場合は、波長が異なることによる、ホログラム再生像の変形や、回折角度の変化を予想し、あらかじめ確認しておくことが必須となる。
【0026】
さらに、エレクトロルミネッセンス素子形成領域の部分的なばらつき、すなわち、形成場所による発光波長や、発光強度のばらつきは、ホログラム再生像の品質を劣化させるため、発光層の均一性は重要となる。
少なくとも、発光波長のピーク値の部分的なばらつき(ある1mm径のスポット領域と、それに隣接する1mm径のスポット領域との差など。)や半値幅のばらつきは、30nm以内、発光強度ばらつきは10%以内であることが好適である。発光波長のピーク値や、半値幅のバラツキが30nmを超えると、ホログラム再生像の再生位置のばらつきが発生し、ホログラム再生像がボケて不鮮明となる。また、発光強度のばらつきが10%を超えると、光の干渉にもばらつきが発生し、結果的に不鮮明な再生となる。
また、エレクトロルミネッセンス素子を多数の微細なスポット(例えば、網点状等)として、離散させて設けた場合(発光層のみを網点状とする等、素子全体を離散的に設けても良いし、単層乃至は複数の層のみを離散的に設けても良い。)には、発光量が減少し、全体的な明るさは低下するものの、個々のスポットに隣接する領域から発光光がでないため、不要な干渉を低減させることができ、ホログラム再生像のシャープさが増し、好適である。
但し、このスポットの大きさや、発光層等の厚さが、ホログラムレリーフとは無関係にそのホログラム面上に離散的に形成されている場合には、その大きさ分布や、厚さ分布に起因する発光強度分布が、場合によっては、ホログラムを再生する光と不要な干渉を生じ、若しくは、あるべき干渉を撹乱し、ホログラム再生像を不鮮明にする要因となり得る。
この要因を排除するため、発光層を、連続して形成する場合、及び、離散的に形成する場合においても、ホログラムレリーフを形成する凹凸に追従して均一な厚さ、そして、均一な分布で形成して、ホログラムレリーフ面のどの領域からも、同一の強度の発光が生じるようにし、ホログラム再生像の鮮明化を図ることができる。
【0027】
本発明のホログラムシートのホログラム再生像は、空間的なホログラムの位相を含んでいるとはいえ、その発光光同士の時間的及び空間的なコヒーレント性は小さく、このホログラム再生像は通常のレーザー再生レリーフホログラムの再生像より微弱であって且つ不鮮明となっている。
もちろん、ビーム形状の回折光を観察するのみであれば、その色調と回折方向を確認することは容易であり、そのままでも真正性の判定に差し支えないものの、この微弱、且つ、不鮮明なホログラム再生像を観察者が認識しその存在を正確に判定可能とするために、発光体の発光性能を向上させ、且つ、回折角度を大きくとって波長―回折角依存性を強め、0次回折光の角度と発光の回折角度の差を大きくし、さらには、発光層を薄くして、発光層厚さ方向のばらつきを抑え、且つ、均一なものとすることが必要となる。(発光面が位相情報を含んでいるため、その空間的な形状を正確に再現するものとする。)
さらには、時間的なコヒーレント性をより強く発現するため、電圧の印加をパルス状とし、パルスとパルスの時間的間隔を蛍光等の発光時間である10-7sec以上あけて照明することも好適である。これにより、一つの印加パルスによって生じた一つの発光面が、次の印加パルスによって生じた発光面とは、互いに撹乱現象を起こさず、一つのパルスによって発現した一つの発光面によって生じるホログラフィックな干渉現象により、鮮明なホログラム再生像を観察することができるようになる。もちろん、単純に秒単位でON−OFFする電圧印加手法(手動でも可能なシート。)を使用した場合でも、観察者には、連続して発光しているようにも見えるため、このような簡易な手段であっても目視で確認する場合には、上記した効果を十分得ることができる。
【0028】
本発明のホログラムシートにおいては、エレクトロルミネッセンス素子層の発光側、すなわち、発光層、正孔輸送層と、透明導電性薄膜の積層や、発光層、絶縁層と、透明導電性薄膜の積層等における、透明導電性薄膜の最表面が、レリーフホログラム形成層のホログラムレリーフに接し、且つ追従しているため、透明導電性薄膜の最表面を通過した発光が、レリーフホログラム形成層や、透明基材を通過して、観察者側にその発光波長におけるホログラム再生像を再生する。
この場合には、レリーフホログラム形成層、透明導電性薄膜、及び発光層等の屈折率差を小さくしたり(それらの屈折率を同一とするか、または、その屈折率差を0.1以下とすることが好適である。)、その分布を制御することで、各層の界面での不要な反射を抑制することができ、エレクトロルミネッセンス素子に電圧を印加する前の視認性を抑制可能であって、より意匠性を高いものとすることができる。(エレクトロルミネッセンス素子層の見え方を意味し、その存在が目立たないことが望ましい。)
さらには、発光層の表面からレリーフホログラム形成層のホログラムレリーフ面までの距離(その間の各層の層厚さ)を極力小さいものとすることで、発光層表面のレリーフ形状のホログラムレリーフに対する追従性を高いものとすることができる。これにより、より鮮明なレリーフホログラム再生像を得ることができる。
さらに、エレクトロルミネッセンス素子層を、ホログラムレリーフ形状に、接するように、且つ追従するように設ける際に、レリーフホログラム再生像をより鮮明にするためには、エレクトロルミネッセンス素子層の厚さは、すなわち、素子全体の厚さは、薄く形成することが好適であり、ホログラムレリーフの凹凸の深さや、ピッチの大きさに対して、同じ程度とすることが望ましく、0.01μm〜2.0μmであることが好ましい。
この厚さが、0.01μm、すなわち、10nm未満であれば、素子としての性能が不十分であり、2.0μmを超えると、ホログラムレリーフの追従性が低下し、いずれにしても鮮明なホロググラム再生像を得ることはできない。
【0029】
また、このエレクトロルミネッセンス素子層の厚さが、ホログラムレリーフとは無関係にそのレリーフホログラム面上に分布(変動を意味する。)している場合には、その厚さ分布に起因する発光強度分布が、場合によっては、レリーフホログラムを再生する光と不要な干渉を生じ、レリーフホログラム再生像を不鮮明にする要因となり得る。
しかも、エレクトロルミネッセンス素子層の「ホログラムレリーフを有するレリーフホログラム形成層と接していない側」の「レリーフ形状」と、ホログラムレリーフを有するレリーフホログラム形成層上に設けられている「ホログラムレリーフ」の「レリーフ形状」との間に、「ズレ」が発生することとなる。
この「ズレ」は、「レリーフ形状」の深さ方向に発生し易く、エレクトロルミネッセンス素子層の厚さが厚くなればなる程、その「ズレの大きさ」が大きくなる。
ホログラムレリーフにおける「深さ方向のズレ」は、ホログラム再生像の「明るさ」に強く影響し、ホログラムレリーフの深さが「最適深さ(最も明るいホログラム再生像を再生し得る深さを意味する。)」より一様に浅くなっても、また、一様に深くなっても、その「明るさ」が低下することとなる。
この「ズレ」を最小限に抑えるために、まず、透明基材/体積ホログラム形成層の積層体上に、「均一な厚さの透明な層」を形成し、その透明な層の上に、「均一な厚さのエレクトロルミネッセンス素子層」を形成する。
このとき、透明基材/体積ホログラム形成層の積層体として、表面平滑性の高いもの(例えば、その表面粗さ:Raが0.01μm以下。)を用いて、その表面上に、透明な樹脂材料を用いて、1μm〜10μmで形成し、その厚さ精度を±1%以内とした「均一な厚さの透明な層」を設け、さらに、その上に、エレクトロルミネッセンス素子層を0.01μm〜2.0μmで形成し、その厚さ精度を±5%以内とした「均一な厚さのエレクトロルミネッセンス素子層」を設ける。
この「均一な厚さの透明な層」のエレクトロルミネッセンス素子層と接している平面が、下記する変形により、「ホログラムレリーフ」の「レリーフ形状」とされ、「均一な厚さの透明な層」が、「ホログラムレリーフを有するレリーフホログラム形成層」となる。通常は、そのレリーフホログラム形成層の厚さは、1μm〜30μmの厚さで形成するところ、より均一な厚さを実現すべく、より薄く形成する。
【0030】
このような「均一さ」は、スピンコーティング方式等の精密コーティング方式により得ることができ、また、使用するインキ組成において、インキ中の固形分を0.5%〜5.0%と低く設定し、インキ塗布後に緩やかな乾燥を行うことで、その乾燥前の塗膜の厚さムラを1/20〜1/200の大きさとする手法を用いることもできる。
例えば、3μm厚さの透明な層を、その厚さ精度±1%、すなわち、±0.03μm以下の厚さムラで設け、その上に、1.0μm厚さのエレクトロルミネッセンス素子層を、その厚さ精度±5%、すなわち、±0.05μm以下の厚さムラで設けて、「透明基材」上に、「均一な厚さの透明な層」と、「均一な厚さのエレクトロルミネッセンス素子層」を重ねて形成する。
この均一な2層に対して、そのエレクトロルミネッセンス素子層の最表面上に、あらかじめホログラムレリーフを設けてある原版(プレス型。)を押し当て、適宜な加熱と加圧を加えて、その均一な2層を変形させ、「均一な厚さの透明な層」においては、「均一な厚さのエレクトロルミネッセンス素子層」と接している面側のみを、そして、「均一な厚さのエレクトロルミネッセンス素子層」においては、「均一な厚さのエレクトロルミネッセンス素子層」そのものを、「レリーフ形状」とする。
これにより、「均一な厚さの透明な層」と「均一な厚さのエレクトロルミネッセンス素子層」との界面、及び、「均一な厚さのエレクトロルミネッセンス素子層」の最表面に形成される「ホログラムレリーフ」が、あらかじめ金型に設けていた「ホログラムレリーフ」と高い精度で同一となり、この「均一な厚さのエレクトロルミネッセンス素子層」の最表面に形成される全反射性反射層の表面形状をも、高い精度で「ホログラムレリーフ」そのものとすることができる。
【0031】
本発明のホログラムシートに用いられる透明基材としては、厚みを薄くすることが可能であって、機械的強度や、ホログラムシートを製造する際の処理や加工における、各種加工機の搬送用ガイドロールとの接触に対する耐磨耗性等が高く、それらの処理や、加工に適した耐溶剤性、耐熱性及び耐摩耗性等を有するものであって、封筒に用いる材料との適度な接着性および再剥離性を有する、透明基材を用いることが好ましい。
その加工方法にもよるので、限定されるものではないが、フィルム状もしくはシート状のプラスチックが好ましい。
例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、トリアセチルセルロース(TAC)、等の各種のプラスチックフィルムを例示することができる。
本発明に用いられる体積ホログラムは、その体積ホログラム形成層の層中に、種々の屈折率のパターンとして、そのホログラム画像を形成する(ホログラム記録ともいう。体積ホログラム形成層は、ホログラム記録用媒体にホログラム画像を形成した際の記録層を意味する。)、いわゆる、位相ホログラムであって、その透過型体積体積ホログラム形成層に光をあて、これを透過させるとき、光の位相は、「屈折率のパターン」により変調され、その透過光において体積ホログラム再生像を観察することができる。
ホログラム画像として画像化される「物体」(一般的には、3次元物体、もしくは2次元物体が用いられる。もしくは、「物体光」を与え得るものであれば、「光学系によって創出したもの」、または、「電子的に創出したもの」であっても、別途作成したホログラムからの「ホログラム再生像」であってもよい。)は、最も単純な方法によれば、レーザー等が発振するコヒーレントな光によって照明され、そして感光性の記録用媒体が、この「物体」から反射(発散)された光を受けるように配置される。「物体」上の各点は記録媒体の全体に対して光を反射し、また記録用媒体上の各点は「物体」全体からの光を受け入れる。この反射(発散)された光束は「物体光」といわれている。
同時に、コヒーレントな光の一部は「物体」をバイパスし(「物体」を避けて通るという意味。)、反射鏡等により、記録用媒体に向けられる。この光束は「参照光」といわれている。
記録用媒体上に記録されるものは、媒体上に当たった「参照光」と「物体光」との相互作用で生ずる「干渉パターン」であり、この記録が、ホログラムとなる。
この記録用媒体、すなわち、記録されたホログラムが、照明され、適切に観察されるとき、照明光源からの光は、「物体」から記録用媒体にもともと到達した波面を再生するように、そのホログラムにより回折され、それにより、ホログラムは、観察者に対して、「物体」の虚像を、記録媒体という「窓」を通して、完全な遠近差をもつ3次元の「物体」を見たように、認識させる。
【0032】
この体積ホログラム記録及び再生の原理は、上記したレリーフホログラムの記録及び再生の原理と同様であるが、体積ホログラムの場合は、体積ホログラム形成層の厚さ方向にもその屈折率分布が存在し、このことにより、体積ホログラムを再生可能な光の波長、及び、その照明角度が制限されるという特徴を持つ。
言い換えれば、体積ホログラム形成層に記録された体積ホログラムが、照明光の「波長」選択、及び、「方向」選択をする機能を有している。
本発明に用いられる体積ホログラムは、適宜なパターンでマスキングした領域を除き、「参照光」と「物体光」を同一の側から記録用媒体中に入射させ、両者がクロスしながら同一方向に進行するようにして形成したホログラムであって、形成層自体を透明なものとすることにより、その「位相分布」のみを記録として残したものである。
【0033】
この場合において、記録媒体中の「物体光」と「参照光」との相互作用は、屈折率の変化する材料の屈折率変化という「フリンジ(干渉縞)」を形成するが、このフリンジは、記録用媒体の面に対して、垂直もしくはやや傾いた面となる。
この体積ホログラムが、反射型体積ホログラムであるときは、この反射型体積ホログラムを再生するとき、これらの各フリンジは入射光を観察者に向けて反射する「鏡」として作用し、それで、この反射型体積ホログラムは、「透過」よりもむしろ「反射」で観察される。
また、この体積ホログラムが、透過型体積ホログラムであるときは、この透過型体積ホログラムを再生するとき、これらの各フリンジは入射光を観察者に向けて浅い角度で反射させて透過させる「鏡」として作用し、それで、この透過型体積ホログラムは、「反射」よりもむしろ「透過」で観察される。
このように形成された「体積ホログラム」は、「波長感度」が甚だ高いため(波長選択性のこと。特定の波長にのみ作用するという意味。)、その再生には、「白色光」を用いることができるものである。
すなわち、ホログラムを記録した際の光源に用いた波長の光をあらかじめ準備してその光で再生しなくとも、容易に得られる、広い波長領域を持つ光(例えば、波長範囲が可視光線波長[400nm〜800nm]をカバーするような太陽光や、ハロゲンランプ光など。)を、その再生光として用いたとしても、その「ホログラム記録に用いた波長」以外の波長の光(「ホログラム記録に用いた波長」以外の波長成分という意味。)は、ほとんど位相変化を受けずそのまま透過し、「ホログラム記録に用いた波長」の光(該当する波長成分という意味。)のみ所定の角度に回折して、その光の像(該当する波長成分により作られる、反射型もしくは透過型体積ホログラム再生像)を、視認することができる。
【0034】
一例として、反射型体積ホログラムの記録方法及び、その再生方法を、図2に示す。(但し、マスキング処理については図示していない。)
図2では、(1)をマスターホログラムを作成する方法(その1)を示し、(2)には、反射型体積ホログラムを作成する方法(その2)を示している。そして、(3)において、反射型体積ホログラムの再生方法を示している。
体積ホログラムを形成する、体積ホログラム形成層には、各種の透明な材料又は、透明なフィルムが用いられる。
すなわち、銀塩写真乳剤、重クロム酸ゼラチン、フォトレジスト、フォトポリマー材料、無機材料からなるフォトリフラクティブ材料、フォトクロミック材料等及び、それらの材料からなるフィルムがある。
銀塩写真乳剤としては、高感度及び、高解像度が求められる。
フォトレジストには、ポジ型フォトレジストと、ネガ型フォトレジストをいずれも用い得る。
フォトポリマー材料としては、架橋型フォトポリマー、ラジカル重合型フォトポリマー、カチオン重合型フォトポリマー、化学増幅型フォトポリマー、ナノ粒子分散系フォトポリマー等を用いることができ、その取り扱い適正は、特に優れる。
フォトクロミック材料は、光や熱等の特定の環境下において、その色調が変化するため、その意匠性はさらに高いものとなる。
重クロム酸ゼラチンは、その屈折率変調の高さ(すなわち、高い回折効率、帯域幅対応性)から、「反射ホログラム」の製作に選ばれる材料である。但し、重クロム酸ゼラチンは保存性に課題があり、「反射ホログラム」形成後に、湿式処理を必要とする。このため、この材料はホログラム記録の直前に新たに調製しなければならず、あるいは、予備硬化させたゼラチンを使用しなければならず、画像の再生効率を低下させる。
湿式処理は、ホログラム形成に際し、付加的工程をもち込むことになり、そして処理中に材料が膨潤し、ついで収縮する際に寸法的な変化を生じやすい。これらの寸法的な変化はフリンジの間隔に影響する。従って、重クロム酸ゼラチンによって高品質の「反射ホログラム」を作製することは、時間がかかり、かつ、困難である。
【0035】
いくつかの処理工程を必要とする、銀塩写真乳剤、或いは、重クロム酸ゼラチンに対して、1回処理工程のみを必要とする固体光重合性材料、すなわち、フォトポリマー材料は、好適である。
フォトポリマー材料の例としては、固体の光重合性組成物であって、熱可塑性重合体結合剤、付加重合可能なエチレン系不飽和単量体、及び、不飽和単量体の重合を活性化する光開始剤からなる、屈折率変調を有する光重合性組成物が挙げられる。
熱可塑性重合体結合剤は、溶媒可溶性の熱可塑性重合体であるが、単独で、又は、互に組合せて使用することができ、例えば、アクリレート及びアルファーアルキルアクリレートエステル、ポリビニルエステル、飽和及び不飽和ポリウレタン、ブタジェン及びイソプレン重合体及び共重合体、エポキシ化物、ポリアミド等、並びに、それらの混合物を使用できる。
エチレン系不飽和単量体は、単一の単量体として、又は、組合せて使用することができる単量体として、スチレン、2−クロロスチレン、2−ブロモスチレン、メトキシスチレン、アクリル酸フェニル等を用いることができる。
光開始剤としは、遊離ラジカル発生付加重合開始剤等を使用することができる。
フォトポリマー材料としては、さらに、フッ素含有ポリマー、付加重合可能なエチレン性不飽和モノマー、及び、光開始剤を有する、光重合性組成物を用いることができる。
フッ素含有ポリマーとしては、テトラフルオロエチレンまたはへキサフルオロプロピレンのような、過フッ素化モノマーとビニルアセテートとから作られたポリマーが挙げられる。
コヒーレント光による露光によって、このモノマーは、未露光域とは異なる屈折率とレオロジー的性質をもつ、高分子量のフォトポリマーを形成するように(光)重合する。この高分子量のフォトポリマーは実質的に固体ではあるが、各成分は電離放射線による一様、且つ、全面に渡る露光、または、高温度で熱処理することで「定着」されるまでは、コヒーレント光による露光中、および、露光後も、内部拡散をする。
【0036】
このフォトポリマーは、その厚さと屈折率変調とにより決定される、所定の中心波長、及び、波長領域(分散帯域)をもつ光を反射する。そこで、その厚さは、用途、および、光学系の光学的な要請、すなわち使用中にホログラムを照明(再生)するのに用いる光の帯域幅、に対して一致させられる。一般的に狭い帯域幅用の応用には、比較的厚いフォトポリマーが選ばれ、広い帯域幅用の応用には比較的薄いフォトポリマーが選ばれる。
使用されるフッ素含有ポリマーは、フォトポリマーのその他の各成分と両立し得るフッ素含有ポリマーであり、塗布されたときに実質的に固体の透明な皮膜を作るものである。
「実質的に固体」とは塗布された皮膜が、溶剤を除去した後に、一般的に固体材料の有している諸特性(例えば寸法安定性)を有していることを意味している。
フッ素含有ポリマー中のフッ素の存在は、一般に、フォトポリマーの屈折率を低下させ、これによりホログラム画像化後のフォトポリマーにおいて、増加した(「より大きな」という意味。)屈折率変調が達成される。屈折率変調は、フッ素含有量の増加とともに増大するが、フォトポリマーに不透明化を起こさせないためには、そのフッ素の存在量は限定される。
従って、フッ素の含有量は、その効果が、1%のような低レベルにあっても達成されるものの、代表的には、10〜20%の範囲内とされる。フッ素の含有量は、用途に応じた屈折率変調を達成するために調整可能である。
フッ素は、フッ素含有ポリマーを構成する他のモノマーとフッ素含有モノマーとを共重合するか、または、フッ素含有ポリマーとの反応により導入する。例えば、フッ素含有ポリマーが、アルコール、または、酸置換基のような官能基を含むとき、フッ素を導入するためには縮合、アセタール化、ケタール化、またはエステル化反応などが使用できる。
フッ素含有ポリマーには、ビニルエステル、ビニルアルコール、ビニルエーテル、ビニルアセタール/ブチラール、またはプレポリマー類あるいはこれらの混合物と、フッ素化モノマーとのポリマー類等を用いることができる。
以上のフッ素含有ポリマー、付加重合可能なエチレン性不飽和モノマー、及び、光開始剤からなる、光重合性組成物は、その透明性を維持しつ、大きな屈折率変調を有するため、高い透明性と、鮮明なホログラムの再生を必要とする、本発明のホログラムシートに好適である。
【0037】
また、透明な樹脂、すなわち、光重合性組成物としては、カチオン重合性化合物、ラジカル重合性化合物、特定波長の光に感光してラジカル重合性化合物を重合させる光ラジカル重合開始剤系、及び上記特定波長の光に対しては低感光性であり、別の波長の光に感光してカチオン重合性化合物を重合させる光カチオン重合開始剤系からなる感光性材料が用いられる。
この光重合性組成物は、光ラジカル重合開始剤系が感光するレーザー光等の光を照射し、次いで光カチオン重合開始剤系が感光する上記レーザー光等の光とは別の波長の光を照射することにより体積ホログラムが記録される。レーザー光等の光の照射(以下、第1露光)によってラジカル重合性化合物を重合させた後、カチオン重合性化合物は、その次に行う全面露光(以下、後露光)によって組成物中の光カチオン重合開始剤系を分解させて発生するブレンステッド酸あるいはルイス酸によってカチオン重合するものである。
カチオン重合性化合物としては、ラジカル重合性化合物の重合が比較的低粘度の組成物中で行なわれるように室温液状のものが用いられる。そのようなカチオン重合性化合物としてはジグリセロールポリグリシジルエーテル等が例示される。
ラジカル重合性化合物は、分子中に少なくとも1つのエチレン性不飽和二重結合を有するものが好ましい。また、ラジカル重合性化合物の平均屈折率は上記カチオン重合性化合物のそれよりも大きく、好ましくは0.02以上大きいとよく、小さいと屈折率変調が不十分となり好ましくない。ラジカル重合性化合物としては、アクリルアミド、メタクリルアミド等が例示される。
【0038】
光ラジカル重合開始剤系は、体積ホログラム作製のための第1露光によって活性ラジカルを生成し、その活性ラジカルがラジカル重合性化合物を重合させる開始剤系であればよく、また、一般に光を吸収する成分である増感剤と活性ラジカル発生化合物や酸発生化合物を組み合わせて用いてもよい。光ラジカル重合開始剤系における増感剤は可視レーザー光を吸収するために色素のような有色化合物が用いられる場合が多いが、無色透明体積ホログラムとする場合には、シアニン系色素が好ましい。
シアニン系色素は、一般に光によって分解しやすいため、後露光、または室内光や太陽光の下に数時間から数日放置することにより、体積ホログラム中の色素が分解されて可視域に吸収を持たなくなり、無色透明な体積ホログラムが得られる。
このような無色透明性は、本発明のホログラムシートに、接着剤層を付加して、ホログラムラベルとしたり、さらに、透明基材と、体積ホログラム形成層との間に剥離層を挿入してホログラム転写箔として、被貼着体や被転写体に、貼着または転写した際に、そのホログラムラベルやそのホログラム転写層を通して、被貼着体や被転写体上のデザインや顔写真を確認する際に好適である。
光カチオン重合開始剤系は、第1露光に対しては低感光性で、第1露光とは異なる波長の光を照射する後露光に感光してブレンステッド酸、あるいはルイス酸を発生し、カチオン重合性化合物を重合させるような開始剤系とするとよく、第1露光の間はカチオン重合性化合物を重合させないものが特に好ましい。
その体積ホログラム形成層の厚さは、10μm〜100μmとする。好適には、20μm〜50μmである。もちろん、この厚さは薄い方がコスト面や、透明性を確保するためには有利であるが、10μm未満では、十分な光選択性が得られず、また、鮮明なホログラム再生像を得ることが困難である。
しかし、100μmを超えると、コスト面で不利となるだけでなく、その熱変形によるホログラム再生像の歪みが顕著となり、また、その加工適性も劣化する。
【0039】
以上の方法は、樹脂を担持するための透明基材を介することなく、直接樹脂から形成することができるため、あらかじめ透明基材に樹脂をコーティングしておく工程を不要とすることも可能で、この場合には、コスト面及び、管理面において優れるものとなる。
本発明の方法、すなわち、透明基材上に、透明な樹脂をコーティングして、体積ホログラムを有する「体積ホログラム形成層」を設けた積層体とする方法においては、体積ホログラム形成層は、光重合性組成物の塗布液(例えば、固形分15〜25%)を、透明基材が、1枚毎のシート状であればバーコート、スピンコート、又はディッピング等により塗布形成され、また、透明基材がロール状の長尺の状態で塗布するのであれば、グラビアコート、ロールコート、ダイコート、又はコンマコート等により塗布する。体積ホログラム形成層は塗布液に合わせた乾燥ないし硬化の手段を用いて固化される。
その光重合性組成物としては、一例として、組成物全体に対してカチオン重合性化合物を10〜50%、ラジカル重合性化合物を40〜70%、光ラジカル重合開始剤系を1〜5%、及び、光カチオン重合開始剤系を1〜5%とするとよく、全量を100%となるように配合する。
光重合性組成物は、必須成分および任意成分をそのまま、もしくは必要に応じてメチルエチルケトン等のケトン系溶媒、酢酸エチル等のエステル系溶媒、トルエン、キシレンなどの芳香族系溶媒、メチルセロソルブ等のセロソルブ系溶媒、メタノール等のアルコール系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ジクロロメタン、クロロホルム等のハロゲン系溶媒と配合し、冷暗所にて、高速撹拌機を使用して混合することにより調製される。
【0040】
この光重合性組成物は、その透明性を維持しつ、鮮明な体積ホログラムを再生でき、且つ、高い破断強度、小さい破断伸度、さらには、高い鉛筆硬度を有するため、高い透明性と、引張り耐性や耐摩耗性等の強靭な物理特性などの高い信頼性を必要とする偽造防止用途に、好適である。
光重合性組成物そのものからなるシートや、フィルム、さらには、透明基材上にコーティングした光重合性組成物、すなわち、体積ホログラム形成層に、上記した方法を用いて体積ホログラムを形成することができる。
体積ホログラムは、物体光と参照光との光の干渉による干渉縞を上記したような、いわゆる、体積ホログラムの原理でホログラムを記録したものであり、例えば、フレネルホログラムなどのレーザー再生ホログラム、イメージホログラム及び白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などとすることができる。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。
ここで、本発明のホログラムシートを観察する者に、このホログラムシートが通常の「単なる体積ホログラム」であると思わせるためには、それらの観察者が自然光下で目視にて鑑賞可能な反射型体積ホログラム、すなわち、リップマンホログラムや、透過型体積ホログラムを、少なくとも1種類は、多重記録しておくことが必須である。
体積ホログラム形成層は、いわゆる「ホログラフィー露光装置」による所定の波長範囲のレーザー光等の光を使用し、ラジカル重合性化合物を重合させてその内部に干渉縞が記録される。この段階で、記録された干渉縞による回折光が得られ、体積ホログラムが形成されるが、体積ホログラム形成層として、カチオン重合性化合物、ラジカル重合性化合物、光ラジカル重合開始剤系、及び光カチオン重合開始剤系からなる感光性材料を用いた場合には、未反応のまま残っているカチオン重合性化合物を更に重合させるために、後露光として光カチオン重合開始剤系の感光する光(例えば波長200〜800nm)を全面照射して体積ホログラムを固定化するとよい。なお、後露光の前に体積ホログラム形成層を熱や赤外線で処理することで回折効率、回折光のピーク波長、半値巾などを変化させることもできる。
【0041】
体積ホログラムを形成した体積ホログラム形成層は、そのホログラムを形成したときに使用したレーザー等の光源波長(これが、上記した「参照光」や、「物体光」となる。)によって、その「層」の中に、フリンジ(干渉縞)を「屈折率の部分的な変化(屈折率変調)」という形で、「3次元的」に記録したもの(フリンジ全体が立体的構造となるという意味。)である。
このフリンジは、上記したホログラム形成時に使用した光源波長で照明したときにのみ、「干渉現象」を発生し、観察者の目に視認可能となる透過再生像(体積ホログラム再生像)を出現させる。
すなわち、このフリンジを、上記の波長以外の光で照明したときは、上記した「干渉現象」が発生せず、わずかな散乱現象が生じるのみで、その光はそのまま透過することになる。
さらには、エレクトロルミネッセンス素子層の発光においては、蛍光材料を発光させるための紫外線光源等の、観察者の目に対して悪影響を及ぼす可能性のある光源を使用する必要がなく、また、観察環境を暗くすることで、その発光により再生するホログラムをより鮮明に観察することができる。
これらの体積ホログラムを形成する際に用いられる光源としては、可視光波長領域にあるコヒーレントな光を発振(発光)するものであれば、いずれも用いることができるが、例えば、ガスレーザーとして、HeNeレーザーLGシリーズ(発振(発光)波長は、594nm、633nm、0.5mW〜30mW)、HeNeレーザーLHシリーズ(同、594nm、604nm、612nm、633nm、0.3mW〜4.0mW)、アルゴンレーザー(同、488nm、40mW)、HeCdレーザーIKシリーズ(同、442nm、20mW〜200mW)、窒素/色素レーザーGL−301、窒素/色素レーザーGL−302(同、360nm〜990nmから選択可能。)等、
固体レーザーとして、ルビーレーザー(同、694nm、パルスレーザー)、小型CWレーザー(Nd:YAG、Nd:YLF、Nd:YVO4レーザー)Direct(同、405nm、445nm、447nm、488nm、638nm、643nm、655nm、690nm)、小型CWレーザー(同)Crystal(同、473nm、523nm、532nm、555nm、561nm、593nm、657nm、660nm、671nm)、波長変換レーザーOptiシリーズ(同、488nm、589nm)、TOL90色素レーザー(同、420nm〜900nmから選択可能。)等、
半導体レーザーとして、SWL−7513H(同、633nm、660nm、8mW〜20mW)、FK LA−100(同、457nm、1W)、LDM(同、405nm、440nm、473nm、532nm、635nm、658nm、665nm、690nm、10mW〜200mW)等を用いることができる。
【0042】
さらに、エレクトロルミネッセンス素子層の発光により再生されるレリーフホログラム再生像をより鮮明にするためには、発光する放射光に、時間的若しくは空間的なコヒーレンス性に類する特性を付与することが好ましく、例えば、エレクトロルミネッセンス素子層の厚さを比較的薄いものとしたり(光の進行方向において、発光点となるエレクトロルミネッセンス素子層に含まれる蛍光体の位置を揃えるという意味。)、発光波長の幅を狭くすることが望ましい(干渉現象を生じない波長の光は、「広帯域光源」効果を除き、そのまま、ホログラム再生像にとってノイズもしくは迷光となるため。)。
エレクトロルミネッセンス素子層は、その電極の一方に金属薄膜層を設けると強い反射性を有するものとなるが、その電極をいずれも透明なものとすると、透明性を有するものとなる。もしくは、蛍光体表面の光散乱性により、「白色」と視認されることがあるため、通常の照明光の下では、単なる鏡面シート、透明なシート、もしくは、白色シートとして視認されることとなる。
本発明のホログラムシートにおいて、レリーフホログラム形成層、すなわち、レリーフホログラムの存在を秘匿し、その偽造防止性を高くするためには、エレクトロルミネッセンス素子層を透明性の高いものとすることが必要である。
すなわち、エレクトロルミネッセンス素子層の構成層である陽極、及び、陰極を透明導電性薄膜とし、発光層も透明性の高い材料を使用する。そして、エレクトロルミネッセンス素子層の最表面を、透明な樹脂材料で覆うことで、レリーフホログラムの存在を隠ぺいすることができる。
さらには、その透明な樹脂材料の最表面を起伏のない平面とし、これらの構成層の屈折率差を0.3以内、好ましくは、0.1以内とすることで、通常の照明光下だけでなく、簡易な半導体レーザー等の照明下においても、そのレリーフホログラムの存在を認識、乃至は、判別することを困難なものとすることができる。
【0043】
ここで、エレクトロルミネッセンス素子層の発光は、上記した、エレクトロルミネッセンス素子層からレリーフホログラム再生像を結像する方向へ向かう光とは別の角度にも、ほぼ全方位的に進む光も生じるが、これらの光は、単なる発散光であって、干渉現象の影響を受けないため、速やかに発散し、その距離の二乗に反比例して減衰し、観察者の目に届くときには、微弱な光となっている。
逆に、これらの光が、本発明のホログラムシートを観察する距離、すなわち、ホログラムシートの表面から30cm〜50cm程度離れた地点において、十分減衰している程度に、エレクトロルミネッセンス素子層の発光強度を設定することが好適である。
この場合には、1〜500cd(カンデラ)/m2とすることが好ましく、さらには、10〜200cd/m2とすることが最適である。
特に、体積ホログラムの記録領域、及び、ホログラムレリーフの形成領域を、100μm〜300μmの幅を有する帯状領域として、エレクトロルミネッセンス素子層を発光させて、いずれのホログラム再生像も消失するように設計するためには、体積ホログラム再生像の明るさと、レリーフホログラム再生像の明るさをほぼ同程度とする必要があり、この明るさの比は、それぞれのホログラム再生像自体のデザインにも依存するが、1/0.5〜1/1.5とすることが好適である。
そして、帯状領域の長さは、300μm以上あれば十分であるため、通常は、300μm〜5.0mmとする。
このようにして形成したホログラムシートは、そのエレクトロルミネッセンス素子層上に適宜な粘着層もしくは、接着層を設けて、「ラベル」とし、適宜な被貼着体に貼付して用いることもできる。
また、透明基材と反射型体積ホログラム形成層との間に適宜な剥離層を設け、さらに、エレクトロルミネッセンス素子層上に接着層を設けて「転写箔」とし、適宜な被転写体に転写して用いることも好適である。
さらには、本発明のホログラムシートの各層に適宜、所望のデザインの印刷等を施し、その意匠性や偽造防止性を高めることも好適である。
【発明の効果】
【0044】
本発明のホログラムシートによれば、
透明基材の一方の面に、体積ホログラム形成層、ホログラムレリーフが設けられたレリーフホログラム形成層、及び、そのホログラムレリーフに追従して設けられたエレクトロルミネッセンス素子層がこの順序で設けられているホログラムシートであって、体積ホログラムの記録領域と、ホログラムレリーフ形成領域が交互に設けられていることを特徴とするホログラムシートを提供することができ、いずれのホログラム再生像も鮮明に観察することが可能なホログラムシートを提供することができる。
さらには、各々の領域を300μm以下の幅の帯状として、交互に設けることによって、所定の電界の印加により、あたかもホログラム再生像が消失したように観察される、偽造防止性に優れるホログラムシートを提供することができる。
また、このようなホログラムシートはこれまでに存在しないため、新規な装飾性及び、これを応用する偽造防止性を提供することである。
【図面の簡単な説明】
【0045】
【図1】は、反射型体積ホログラムの記録方法及び、再生方法を示す図である。
【図2】は、ジャブロンスキー図である。
【図3】は、本発明の一実施例を示すホログラムシートAの断面図である。
【図4】は、本発明の一実施例を判定するプロセスである。
【図5】は、本発明の別の実施例を判定するプロセスである。
【発明を実施するための最良の形態】
【0046】
以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
(透明基材)本発明で使用される透明基材1は、厚みを薄くすることが可能であって、機械的強度や、ホログラムシートAを製造する際の加工に耐える耐溶剤性および耐熱性を有するものが好ましい。使用目的にもよるので、限定されるものではないが、フィルム状もしくはシート状のプラスチックが好ましい。(図3参照。)
例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリビニルアルコール、ポリスルホン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアリレート、トリアセチルセルロース(TAC)、ジアセチルセルロース、ポリエチレン/ビニルアルコール等の各種のプラスチックフィルムを例示することができる。
その中でも、エレクトロルミネッセンス素子層4形成時の熱処理に対する耐性や、エレクトロルミネッセンス素子層4の発光時の発熱や電界等に対する耐性を有するものが望ましい。さらには、発光層に含まれる蛍光体(発光体)の紫外線劣化を防止する紫外線吸収剤を含むものも好適である。
透明基材1の厚さは、通常5〜100μmであるが、体積ホログラム再生像や、レリーフホログラム再生像の視認性を配慮する場合には、5〜50μm、特に5〜25μmとすることが望ましい。
【0047】
(体積ホログラム形成層)上記した透明基材1の上に体積ホログラム形成層2及び3を設ける。(図3参照。)
ここで、体積ホログラム形成層2は、体積ホログラムが形成されていない領域である。
そして、体積ホログラム形成層3は、体積ホログラムが形成されている領域であって、それらの領域が交互に設けられている。
体積ホログラム形成層2及び3には、各種の透明な材料又は、透明なフィルムが用いられる。
すなわち、銀塩写真乳剤、重クロム酸ゼラチン、フォトレジスト、フォトポリマー材料、無機材料からなるフォトリフラクティブ材料、フォトクロミック材料等及び、それらの材料からなるフィルムを用い得る。
銀塩写真乳剤としては、高感度、高解像度が求められ、超微粒子銀塩や、金―カルコゲン増感や、還元増感を施した材料等が用い得る。
フォトレジストとしては、ポジ型フォトレジストとして、ノボラック−DNQ系、又は、化学増幅型フォトレジスト、ネガ型フォトレジストとして、光架橋型フォトレジスト、又は、光重合型フォトレジスト等を用いることができる。
銀塩写真乳剤、或いは、重クロム酸ゼラチンは、処理工程が多く煩雑であるが、固体光重合性材料、すなわち、フォトポリマー材料は、処理工程が1回のみであるため、好適である。
これは、1工程で、固体の光重合性フィルムから、安定な高解像度のホログラムを作成することができ、ホログラフ情報をもつコヒーレントな光源に対する1回の露光により、「屈折率変調を固定化した画像」が得られることを意味する。このようにして形成されたホログラムは、光に対するその後の均一な露光によっても破壊されることなく、むしろ定着されまたは強化される。
【0048】
フォトポリマー材料は、熱可塑性重合体結合剤、付加重合可能なエチレン系不飽和単量体、及び、不飽和単量体の重合を活性化する光開始剤からなる、屈折率変調を有する光重合性組成物を用いる。
熱可塑性重合体結合剤は、溶媒可溶性の熱可塑性重合体であり、単独で、又は、組合せて使用する。具体的には、
;アクリレート及びアルファーアルキルアクリレートエステル、例えば、ポリメタクリル酸メチル及びポリメタクリル酸エチル、
;ポリビニルエステル、例えば、ポリ酢酸ビニル、ポリ酢酸/アクリル酸ビニル、ポリ酢酸/メタクリル酸ビニル及び加水分解型ポリ酢酸ビニル;エチレン/酢酸ビニル共重合体、
;飽和及び不飽和ポリウレタン、
;ブタジェン及びイソプレン重合体及び共重合体、
;エポキシ化物、例えば、アクリレート又はメタクリレート基を有するエポキシ化物、
;ポリアミド、例えば、N−メトキシメチルポリヘキサメチレンアシツクアミド、
;セルロースエステル、例えば、セルロースアセテート、セルロースアセテートサクシネート及びセルロースアセテートブチレート、
;セルロースエーテル、例えば、メチルセルロース、並びにエチルセルロース;ポリカーボネート等、
並びに、
;ポリビニルアセタール、例えば、ポリビニルブチラール及びポリビニルホルマール等。
特に好適には、セルロースアセテートラクテート重合体、ポリメタクリル酸メチル、メタクリル酸メチル/メタクリル酸及びメタクリル酸メチル/アクリル酸共重合体を含むアクリル系重合体及びプレポリマー、メタクリル酸メチル/アクリル酸又はメタクリル酸(C2〜C4)アルキル/アクリル酸又はメタクリル酸の3元重合体、ポリ酢酸ビニル、ポリビニルアセタール、ポリビニルブチラール、ポリビニルホルマール等、並びに、それらの混合物である。
【0049】
さらに、ポリスチレン、ポリ(スチレン/アクリロニトリル)、ポリ(スチレン/メタクリル酸メチル)、並びに、ポリビニルペンデル、及び、それらの混合物を含むこともできる。
エチレン系不飽和単量体は、単一の単量体として、又は、組合せて使用することができる単量体として、スチレン、2−クロロスチレン、2−ブロモスチレン、メトキシスチレン、アクリル酸フェニル、アクリル酸p−クロロフェニル、アクリル酸2−フェニルエチル、アクリル酸2−フェノキシエチル、メタクリル酸2−フェノキシエチル、フェノールエトキシレートアクリレート、アクリル酸2−(p−クロロフェノキシ)エチル、アクリル酸ベンジル、アクリル酸2−(1−ナフチロキシ)エチル、又はジメタクリレート、2,2−ジ(p−ヒドロキシフェニル)プロパンジメタクリレート、ポリオキシエチル−2,2−ジ(p−ヒドロキシフェニル)プロパンジメタクリレート、ビスフェノール−Aジ(2−メタクリロキシエチル)エーテル、エトキシル化ヒスフェノール−Aジアクリレート、ビスフェノール−A−ジ(3−アクリロキシ−2−ヒドロキシプロピル)エーテル、ビスフェノール−A−ジ(2−アクリロキシエチル)エーテル、テトラクロロ−ビスフェノール−A−ジ(3−アクリロキシ−2−ヒドロキシプロピル)エーテル、テトラクロロ−ビスフェノール−A−ジ(2−メタクリロキシエチル)エーテル、テトラブロモ−ビスフェノール−A−ジ(3−メタクリロキシ−2−ヒドロキシプロピル)エーテル、テトラブロモ−ビスフェノール−A−ジ(2−メタクリロキシエチル)エーテル、ジフェノール酸−ジ(3−メタクリロキシ−2−ヒドロキシプロピル)エーテル、1,4−ベンゼン・フォールジメタクリレート、1,4−ジイソプロペニルベンゼン、ベンゾキノンモノメタクリレート、並びにアクリル酸2−〔β−(N−カルバジル)プロピオニロキシ〕エチル等、を用いることができる。
【0050】
この単量体が、置換又は非置換フェニル、フェノキシ、ナフチル、ナフトキシ、3つまでの芳香族環を有するヘテロ芳香族、塩素、臭素、よりなる群から選択される、1つ又はそれ以上の部分を含有する場合には、これらを含む光重合性組成物は、いわば「単量体配向型系」と称することができる。
この単量体配向型系に好適な単量体は、アクリル酸2−フェノキシエチル、メタクリル酸2−フェノキシエチル、アクリル酸フェノールエトキシレートアクリレート、アクリル酸2−(p−クロロフェノキシ)エチル、アクリル酸p−クロロフェニル、アクリル酸フェニル、アクリル酸2−フェニルエチル、ビスフェノール−A−ジ(2−アクリロキシエチル)エーテル、エトキシル化ヒスフェノール−Aジアクリレート、並びにアクリル酸2−(1−ナフチロキシ)エチル、である。
そして、エチレン系不飽和カルバゾール単量体;アクリル酸2−ナフチル;アクリル酸インタクロロフエ=ル;ビスフェノール−Aジアクリレート;アクリル酸2−(2−ブチロキシ)エチル; 並びに、N−フェニルマレイミドのような第2の固体単量体と混合して使用してもよい。
また、予め形成された重合体材料(プレポリマーを意味する。)が、置換又は非置換フェニル、フェノキシ、ナフチル、ナフトキシ、3つまでの芳香族環を有するヘテロ芳香族、塩素、臭素、よりなる群から選択される、1つ又はそれ以上の部分を含有する場合には、これらを含む光重合性組成物は、いわば「結合剤配向型系」と称することができる。
【0051】
この系に使用される単量体には、フェニル、フェノキシ、ナフチル、ナフチロキシ、3つまでの芳香族環を有するヘテロ芳香族、塩素及び臭素よりなる群からとられる部分を含まないものを使用する。
「結合剤配向型系」に好適な単量体は、付加重合することができ、100℃より高い沸点を有する液体、エチレン系不飽和化合物である。単一の単量体としてか又は他の単量体と組合せて使用することができるこの型の適当な単量体は、次のものを含む。
すなわち、アクリル酸一ブチル、アクリル酸シクロヘキシル、アクリル酸イソーホルニル、1,5−ベンタンジオールジアクリレート、N、N´−エチルアミノエチルアクリレート、エチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、ジエチレングリコールノアクリレート、ヘキサメチレングリコールジアクリレート、1,3−プロノぐンジオール・クアクリレート、デカメチレングリコールジアクリレー)、1,4−シクロヘキサンジオールジアクリレート、グリセロールジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、トリメタクリレート、ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、ポリオキシプロピルトリメチロールプロパンジアクリレート、ブチレングリコールジメタクリレート、1,3−プロパンジオールジメタクリレート、1,2,4−ブタントリオールトリメタクリレート、2,2,4−トリメチル−1,3−プロパンジオールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、トリメチロ−−ルプロJRントリメタクリレート、1,5−ベンタンジオールジメタクリレート、フマル酸ジアリル、アクリル酸パーフロロオクチル、メタクリル酸フロロオクチル、並びに1−ビニル−2−ピロリジノン等。
【0052】
上記のエチレン系不飽和単量体の外、少なくとも300の分子量を有する、1種又はそれ以上の遊離ラジカル開始型、連鎖生長性、付加重合可能、エチレン系不飽和化合物も含有することができる。
また、単量体は、2〜15の炭素原子のアルキレングリコール又は1〜10のエーテル結合のポリアルキレンエーテルグリコールから製造されるアルキレン又はポリアルキレングリコールジアクリレート、並びに、末端結合として存在する時、複数の付加重合可能なエチレン結合を有するものであってもよい。
さらに、デカンジオールジアクリレート、アクリル酸イソ−ボルニル、トリエチレングリフールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、アクリル酸エトキシエトキシエチル、エトキシル化トリメチロールプロノンのトリアクリレートエステル、等である。また、同じ型の第2の固体単量体、例えば、N−ビニルカプロラクタムと混合して使用してよい。
光開始剤として適当な、遊離ラジカル発生付加重合開始剤は、共役炭素環状環系中2つの環内炭素原子を有する化合物である置換又は非置換多核キノン、例えば、9,10−アンスラキノン、1−クロロアンスラキノン、2−クロロアンスラキノン、2−メチルアンスラキノン、2−エチルアンスラキノン、2−三級−ブチルアンスラキノン、オクタメチルアンスラキノン、1,4−ナフトキノン、9,10−フェナンスレンキノン、1,2−ベンズアンスラキノン、2,3−ベンズアンスラキノン、2−メチル−1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,4−ジメチルアンスラキノン、2,3−ジメチルアンスラキノン、2−フェニルアンスラキノン、2,3−ジメチルアンスラキノン、アンスラキノンアルファースルホン酸のナトリウム塩、3−クロロ−2−メチルアンスラキノン、7,8,9,10−テトラヒドロナフタセンキノン、を含む。
【0053】
また、ベンゾイン、ピパロイン、アシロインエーテル、例えば、ベンゾインメチル及びエチルエーテル;α−メチルベンゾイン、α−アリルベンゾイン、及び、α−フェニルベンゾインを含む、α−炭化水素置換芳香族アシロインを含んでもよい。
さらに好適な光開始剤には、2−(0−クロロフェニル)−4,5−ビス(m−メトキシフェニル)イミダゾール2量体;1,1′−ビイミダゾール、2,2′−ヒス(0−クロロフェニル)−4,4’、5,5’−テトラフェニルー:並びに、1H−イミダゾール、2,5−ビス(0−クロロフェニル)−4−3,4−・ジメトキシフェニル−2量体(そのおのおのは、典型的には水素ドナー、例えば、2−メルカプトベンズオキサゾールと共に使用される)を挙げることができる。
フォトポリマー材料としては、さらに、フッ素含有ポリマー、付加重合可能なエチレン性不飽和モノマー、及び、光開始剤からなり、画像化(光記録)されたとき、0.001よりも大きな屈折率変調を有する、光重合性組成物を用いることができる。これには、さらに、可塑剤を含めてもよい。
フッ素含有ポリマーとしては、テトラフルオロエチレンまたはへキサフルオロプロピレンのような、過フッ素化モノマーとビニルアセテートとから作られたポリマーを用いることができ、他のモノマーを含むこともできる。例えば、10〜20%のフッ素を含有しているものを使用する。
使用されるフッ素含有ポリマーは、フォトポリマーのその他の各成分と両立し得るフッ素含有ポリマーであり、塗布されたときに実質的に固体の透明な皮膜を作るものである。
フッ素は、フッ素含有ポリマーを構成する他のモノマーとフッ素含有モノマーとを共重合するか、または、フッ素含有ポリマーとの反応により導入し、フッ素含有ポリマーが、アルコール、または、酸置換基のような官能基を含むとき、フッ素を導入するためには縮合、アセタール化、ケタール化、またはエステル化反応などを使用する。
【0054】
フッ素含有ポリマーには、ビニルエステル、ビニルアルコール、ビニルエーテル、ビニルアセタール/ブチラール、またはプレポリマー類あるいはこれらの混合物と、フッ素化モノマーとのポリマー類を含む。例えば、フッ素含有ポリマーは、ビニルアセテートとフッ素化モノマーとのポリマーとすることができ、必要に応じ、このポリマーのアセテート置換基は、加水分解によりとり除き、フッ素化したポリ(ビニルアルコール)誘導体を得ることもできる。このフッ素化ポリ(ビニルアルコール)は、例えば、ブチルアルデヒドと縮合させ、フッ素化したポリ(ビニルブチラール)誘導体にすることができる。
フッ素化したポリ(ビニルホルマール)、ポリ(ビニルアセタール)など、または、これらの混合物も同じ方法で作ることができる。フッ素化モノマーは、テトラフルオロエチレン、および/または、へキサフルオロプロピレンのような、過フッ素化モノマーが好適であるが、ビニルフロライドまたはビニリデンフロライドのような、その他のモノマーも特定の用途のために選定することができる。
必要に応じ、他のモノマー類も存在させることができる。例えば、フォトポリマーの溶解性、接着性、柔軟性、または硬さなどのような、化学的、もしくは、物理的諸性質を調整するために、モノマー混合物中にエチルビニルエーテルを混在させることができる。このようなフォトポリマーは通常のフリーラジカル重合法を用いて製造される。
フッ素化したフッ素含有ポリマーは、また適切に置換されているポリマーと、フッ素化された化合物との反応により作ることもできる。ヒドロキシルまたはカルボキシル基のような、潜在的な反応位置をもったポリマーは、フッ素化された化合物との反応によりフッ素化されたフッ素含有ポリマーに変換することができる。例えば、フッ素化されたポリ(ビニルブチラール)は、2,2,3,3,4,4,4−ヘプタフルオロブチルアルデヒドと、ポリ(ビニルアルコール)の縮合により調製することができる。カルボキシル酸を含むポリマー類はフッ素化したアルコール類でエステル化することができ;ポリ(ビニルアルコール)、部分ケン化されたポリ(ビニルアセテート)、またはフッ素化されたモノマーとビニルアセテートとのポリマー類の部分ケン化またはケン化されたものなどのような、ヒドロキシル基含有のポリマー類は、フッ素化されたカルボキシル酸によりエステル化することができる。
【0055】
フルオロオレフィン類は標準的なグラフト化技術を用いて、適切に置換されているポリマー上にグラフト化することができる。ビニルエステル、少なくとも、1つのフッ素化されたモノマー、および、得られるポリマーの物理的性質を調整するための任意の他のモノマーとのポリマーが好ましい。
一般に、フッ素含有量が低下するとその効果も減少するから、フッ素含有ポリマーは少なくとも10%のフッ素を含有するようにされる。しかしながら、フッ素含有量が余りにも高すぎると、得られるフォトポリマーは不透明となる傾向があり、体積ホログラム形成層の調製のためには有用でない。さらには、窓用フィルムとして用いる場合に、再接着用の糊との接着性が著しく低下する。従って、好ましいフッ素含有ポリマーは、10〜20%のフッ素含有量を有している。
フッ素含有ポリマーのビニルエステル成分としては、ビニルアセテートが特に好ましいが、他のビニルエステルおよび類似の結果を与える構造的に関連した化合物も、これに加えて、またはビニルアセテートの代りに選定することができる。例えば、ビニルピバレート、ビニルプロピオネート、ビニルステアレート、ビニルアルコール、または、n−ブチルビニルエーテルなどを選ぶことができる。テトラフルオロエチレン、または、へキサフルオロプロピレンのような過フッ素化モノマー類は、フッ素化モノマー成分として特に有用であると認められているが、ビニルフルオライド、ビニリデンフルオライド、フルオロオレフィン類、フロロアルキルアクレリートおよびメタアクリレートなどのようなその他の化合物も、特定の用途のためには選ぶことができる。
【0056】
フッ素化されていない対応物よりも、フッ素化されているフッ素含有ポリマーを選ぶことは屈折率変調を劇的に増加させ、それでホログラムの回折効率も増加させる。
例えば、他のすべての成分を同じにして、ポリビニルアセテートによって達成されるのは約0.025〜0、031の範囲の値であるのに反して、ビニルアセテート/過フッ素化物モノマーのフォトポリマーの使用では0.040を超え、0.076の高い屈折率変調の値が達成される。
フッ素化フッ素含有ポリマーは、全フッ素含有ポリマーの1部分だけに選択することができる。この場合、フッ素含有ポリマーのフッ素化されていない対応物は、2つのフッ素含有ポリマーが互いに両立し、そして塗布用溶剤および他のフォトポリマー成分とも両立し、そしてフォトポリマーの透明性、機械的諸性質などを不当に犠牲としないならば、その他の成分として選択することができる。
フォトポリマーは、少なくとも1つのエチレン性不飽和モノマーを含み、これはフリーラジカルで開始される重合し得るもので、100℃以上の沸点を有し、塗布溶剤および選ばれたフッ素含有ポリマーと両立し得るものである。このモノマーは通常末端位置に不飽和性基を含んでいる。一般に液体のモノマーが選定されるが、固体のモノマーが実質的に固体のフォトポリマー組成物中で内部拡散し得るならば、固体のモノマーも1個または数個の液体モノマーと組み合わせて用いることができる。
【0057】
モノマーは、付加重合をすることができかつ100℃以上の沸点をもつ液体の、エチレン性不飽和化合物であり、これは3個までの芳香環;塩素;および臭素を含む、置換または未置換のフェニル、ビフェニル、フェノキシ、ナフチル、ナフチルオキシ、およびヘテロ芳香基、よりなる群から選ばれた1個または数個の部分を含んでいる。モノマーはこのような部分を少なくとも1つ含み、またモノマーが液体でとどまるならば、同一または異なるこのような部分を2個またはそれ以上含むことができる。低級アルキル、アルキオキシ、ヒドロキシ、フェニル、フェノキシ、カルボキシ、カルボニルイミド、シアノ、クロロ、ブロモまたはこれらの組み合わせのような置換基を、モノマーが液体モノマーにとどまり、かつ光重合性層中で拡散し得るならば存在させることができる。
代表的な液体モノマーには、2−フェノキシエチルアクリレート、2−フェノキシエチルメタアクリレート、フェノールエトキシレートモノアクリレート、2− (p−クロロフェノキシ)エチルアクリレート、p−クロロフェニルアクリレート、フェニルアクリレート、2−フェニルエチルアクリレ−1−、2− (1−ブチルオキシ)エチルアクリレート、0−ビフェニルメタアクリレート、0−フェニルアクリレート、およびこれらの混合物などが含まれる。
モノマーは、通常、液体であるが、エチレン性不飽和カルバゾールモノマーのような、1個または数個のエチレン性不飽和固体モノマーと混合して使用することもできる。
【0058】
カルバゾール部分の窒素原子に結合したビニル基を含んだ、エチレン性不飽和カルバゾールモノマーは代表的に固体である。このタイプの好適なモノマーには、N−ビニルカルバゾールと3、6−ジプロモー9−ビニルカルバゾールとが含まれる。特に好ましいエチレン性不飽和モノマーの混合物は、N−ビニルカルバゾールと液体モノマーの1個または数個、特に2−フェノキシエチルアクリレート、フェノールエトキシレートモノアクリレート、エトキシレートビスフェノール−Aジアクリレート、またはこれらの混合物などとの組み合わせからなるものである。
フォトポリマーを架橋化(光重合)するときは、組成物中に2個または数個の末端エチレン性不飽和基を含む、多官能性モノマーの少なくとも1つを5%まで加えることができる。この多官能性モノマーは、組成物の他の成分と両立し得るものでなければならず、また好ましくは液体である。多官能性モノマーには、ビスフェノール−Aのジ(2−アクリルオキシエチル)エーテル、エトキシレートビスフェノール−Aジアクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、およびその他が含まれる。エトキシレートビスフェノール−Aジアクリレートは、特に好ましい。
光開始剤系は、電離放射線により活性化されたときに、フリーラジカルを直接に与える1個または数個の化合物からなるものである。「電離放射線」は、モノマー材料の重合を開始するのに必要な、フリーラジカルを生成させるような活性な放射線を意味している。
【0059】
この系はまた複数の化合物から構成されることもでき、その1つは別の化合物、または増感剤が放射線により活性化された後に、フリーラジカルを生ずるものである。
有用な開始剤系は、種々の増感剤を含んでいてもよく、多数のフリーラジカル生成化合物を利用できる。特に色素を含むレドックス系、例えばローズベンガル/2−ジブチルアミノエタノールを用いることもできる。光還元性色素および還元剤、オギサジン、およびキノン系の各色素、色素−オウ酸塩コンブレックス、色素増感されたアジニウム塩、およびトリクロロメチルトリアジンなどを、光重合を開始させるために用いることができる。
好ましい光開始剤系は、可視光線用増感剤で増感され、連鎖移転剤または水素供与剤、およびこれらの混合物をもった、2,4,5−トリフェニルイミダゾリルダイマーである。 これには、2−(0−クロロフェニル)−4,5−ビス(m−メトキシフェニル)−イミダゾールダイマー;1,1’−ビイミダゾール、2,2’−ビス(0−クロロフェニル’)−4,4’5,5’−テトラフェニル;およびIH−イミダゾール、2,5−ビス(0−クロロフェニル)−4−(3,4−ジメトキシフェニル〕−タイマーなどが含まれ、それぞれ代表的に水素供与体とともに用いられる。
増感剤には、ビス(p−ジアルキルアミノベンジリジン)ケトン類、および、アリーリチンアリールケトン類が含まれる。
水素供与体の適当なものには、2−メルカプトベンズオキサゾール、2−メルカプトベンゾチアゾール、4−メチル−4H−1,2,4−1−リアゾール−3−チオール、およびその他が含まれる。
N−ビニルカルバゾールモノマーを含む組成物に対して好ましい、この他の水素供与体は、5−クロロ−2−メルカプトベンゾチアゾール;2−メルカプトベンゾチアゾール、 IH−1,2、4−メチル−4H−1,2,4−トリアゾール−3−チオール、1−ドデカンチオール、およびこれらの混合物などである。
【0060】
その他の成分として、フォトポリマー組成物に一般に添加されるその他の各成分はフォトポリマーの物理的特性を変えるだめのものである。このような成分には可塑剤、熱安定剤、光学的増白剤、紫外線安定剤、接着性変更剤、塗布助剤、および剥離剤などが含まれる。
可塑剤は、フォトポリマーの接着性、柔軟性、硬さ、およびその他の物理的緒特性を変えるために存在させられる。可塑剤には、トリエチレングリコール、トリエチレングリコールジアセテート、トリエチレングリコールジプロピオネート、トリエチレングリコールジカプリレート、トリエチレングリコールジメチルエーテル、ポリ(エチレングリコール)、ポリ(エチレングリコール)メチルエーテル、トリエチレングリコールビス(2−エチルヘキサノエート)、テトラエチレングリコールジヘプタノエート、ジエチルセパケート、ジブチルスベレート、トリス(2−エチルヘキシル)ホスフェート、イソゾロビルナフタレン、ジイソプロピルナフタレン、ポリ(プロピレングリコール)、トリ酪酸グリセリル、アジピン酸ジエチル、セバシン酸ジエチル、スペリン酸・ノブチル、燐酸トリブチル、燐酸トリス(2−エチルヘキシル)、などが含まれる。
有用な熱安定剤には、ハイドロキノン、フェニドン、p−メトキシフェノール、アルキルおよびアリール置換されたハイドロキノンとキノン、t−ブチルカテコール、ピロガロール、ベータナフトール、塩化第一銅、2,6−ジーt−ブチル−p−クレゾール、フェノチアジン、レジン酸銅、ナフチルアミン、ピリジン、ニトロベンゼン、ジニトロベンゼン、フロラニール、およびクロルアニールなどが含まれる。ジニトロソダイマー類もまた有用である。
塗布助剤として、非イオン性界面活性剤を光重合性組成物に加えることができる。好ましい塗布助剤は、フッ素化された非イオン性活性剤である。
有用な光学増白剤は、7−(4’−クロロ−6′−ジエチルアミノ−1’,3’,5’−トリアジン−4′イル)アミノ3−フェニルクマリンである。さらに、紫外線吸収材料を適宜用いることができる。
【0061】
また、透明な樹脂、すなわち、光重合性組成物としては、カチオン重合性化合物、ラジカル重合性化合物、光ラジカル重合開始剤系、及び、カチオン重合性化合物を重合させる光カチオン重合開始剤系からなる感光性材料が用いられる。
カチオン重合性化合物としては、ラジカル重合性化合物の重合が終始比較的低粘度の組成物中で行なわれるように室温液状のものが用いられる。そのようなカチオン重合性化合物としてはジグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4−ビス(2,3−エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル等が用いられる。
ラジカル重合性化合物は、分子中に少なくとも1つのエチレン性不飽和二重結合を有するものが好ましい。また、ラジカル重合性化合物の平均屈折率は上記カチオン重合性化合物のそれよりも大きく、好ましくは0.02以上大きいとよく、小さいと屈折率変調が不十分となり好ましくない。ラジカル重合性化合物としては、例えばアクリルアミド、メタクリルアミド、スチレン、2−ブロモスチレン、フェニルアクリレート、2−フェノキシエチルアクリレート、2,3−ナフタレンジカルボン酸(アクリロキシエチル)モノエステル、メチルフェノキシエチルアクリレート、ノニルフェノキシエチルアクリレート、β−アクリロキシエチルハイドロゲンフタレート等が用いられる。
光ラジカル重合開始剤系は、体積ホログラム作製のための第1露光によって活性ラジカルを生成し、その活性ラジカルがラジカル重合性化合物を重合させる開始剤系であればよく、また、一般に光を吸収する成分である増感剤と活性ラジカル発生化合物や酸発生化合物を組み合わせて用いる。
【0062】
光ラジカル重合開始剤系における増感剤は可視レーザー光を吸収するために色素のような有色化合物が用いられる場合が多いが、無色透明な体積ホログラムとする場合にはシアニン系色素が好ましい。シアニン系色素は一般に光によって分解しやすいため、後露光、または室内光や太陽光の下に数時間から数日放置することにより体積ホログラム中の色素が分解されて可視域に吸収を持たなくなり、無色透明な体積ホログラムが得られる。
シアニン系色素の具体例としては、アンヒドロ−3,3'−ジカルボキシメチル−9−エチル−2,2'チアカルボシアニンベタイン、アンヒドロ−3−カルボキシメチル−3',9−ジエチル−2,2’チアカルボシアニンベタイン、3,3',9−トリエチル−2,2'−チアカルボシアニン・ヨウ素塩、3,9−ジエチル−3'−カルボキシメチル−2,2'−チアカルボシアニン・ヨウ素塩等が例示される。
シアニン系色素と組み合わせて用いてもよい活性ラジカル発生化合物としては、ジアリールヨードニウム類、あるいは2,4,6−置換−1,3,5−トリアジン類が挙げられる。高い感光性が必要なときは、ジアリールヨードニウム類の使用が特に好ましい。上記ジアリールヨードニウム類としては、ジフェニルヨードニウム、4,4'−ジクロロジフェニルヨードニウム、4,4'−ジメトキシジフェニルヨードニウム等が例示される。また、2,4,6−置換−1,3,5−トリアジン類としては、2−メチル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロロメチル)−1,3,5−トリアジン等が例示される。
光カチオン重合開始剤系は、第1露光に対しては低感光性で、第1露光とは異なる波長の光を照射する後露光に感光してブレンステッド酸、あるいはルイス酸を発生し、カチオン重合性化合物を重合させるような開始剤系とするとよく、第1露光の間はカチオン重合性化合物を重合させないものが特に好ましい。光カチオン重合開始剤系としては、例えばジアリールヨードニウム塩類、トリアリールスルホニウム塩類あるいは鉄アレン錯体類等を挙げることができる。ジアリールヨードニウム塩類で好ましいものとしては、光ラジカル重合開始剤系で示したヨードニウム類のテトラフルオロボレート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルセネート塩およびヘキサフルオロアンチモネート塩等が挙げられる。トリアリールスルホニウム塩類で好ましいものとしては、トリフェニルスルホニウム、4−ターシャリーブチルトリフェニルスルホニウム等が挙げられる。
【0063】
光重合性組成物には、必要に応じてバインダー樹脂、熱重合防止剤、シランカップリング剤、可塑剤、着色剤などを併用してよい。バインダー樹脂は、体積ホログラム形成前の組成物の成膜性、膜厚の均一性を改善する場合や、レーザー光等の光の照射による重合で形成された干渉縞を後露光までの間、安定に存在させるために使用される。バインダー樹脂は、カチオン重合性化合物やラジカル重合性組成物と相溶性のよいものであれば良く、その具体例としては塩素化ポリエチレン、ポリメチルメタクリレート、メチルメタクリレートと他の(メタ)アクリル酸アルキルエステルの共重合体、塩化ビニルとアクリロニトリルの共重合体、ポリ酢酸ビニルなどが挙げられる。バインダー樹脂は、その側鎖または主鎖にカチオン重合性基などの反応性を有していても良い。
その体積ホログラム形成層2及び3の厚さは、10μm〜100μmとする。好適には、20μm〜50μmとする。
透明基材1の上に、透明な樹脂をコーティングして、体積ホログラム形成層2及び3を設ける場合には、体積ホログラム形成層2及び3は、光重合性組成物の塗布液を、バーコート、スピンコート、又はディッピング等、または、グラビアコート、ロールコート、ダイコート、又はコンマコート等により塗布し、形成する。体積ホログラム形成層2及び3は、乾燥ないし硬化手段を用いて固化される。
その光重合性組成物としては、組成物全体に対してカチオン重合性化合物を10〜50%、ラジカル重合性化合物を40〜70%、光ラジカル重合開始剤系を1〜5%、及び、光カチオン重合開始剤系を1〜5%とし、全量を100%となるように配合する。
光重合性組成物は、必要に応じて、ケトン系溶媒、エステル系溶媒、芳香族系溶媒、セロソルブ系溶媒、アルコール系溶媒、エーテル系溶媒、ハロゲン系溶媒等と配合し、冷暗所にて、高速撹拌機で混合し調製する。
【0064】
上記の樹脂材料を用い、キャスティング法や、ダイコート法等を用いて、体積ホログラム形成層2及び3を透明基材1上に設けることもできる。
これらの体積ホログラム形成層2及び3に、適宜な光学系を用いて、体積ホログラムを記録する。(図2参照。)または、多重記録する。(図示せず。)
以下に、例示として、反射型体積ホログラムの記録方法を説明する。(マスキング処理は図示せず。)
まず、ホログラム画像として画像化される「物体」を準備する。
「物体」としては、彫刻や模型等の実在する、3次元物体(高名な作者のものであれば、その意匠性は非常に高いものとなる。)、もしくは、絵画やブランドデザイン等の2次元物体が用いられる。もしくは、「物体光」を与え得るものであって、空間変調器等のような電子的にセル変換が可能な光学素子を用いた光学系によって、記録用媒体面に投影されるような「光の像」であってもよい。
もちろん、あらかじめ作成した「ホログラム」からの「ホログラム再生像」(立体的な光の像となる。)を用いることもできる。
この「物体」を、所定の波長を選択した、ガスレーザー、固体レーザー、半導体レーザー、各種色素レーザー等のコヒーレント光を用いて照明し、図2中の(1)のような光学系を準備し、マスターホログラムを記録する。
もしくは、適宜なホログラム記録用のフォトレジストに、同様な光学系を準備し、マスターホログラムを記録し、現像処理する。
また、このマスターホログラムを図2中の(2)のような光学系を用いて、「物体」の体積ホログラムを、上記で使用した光源を再度用いて、反射型体積ホログラム形成層2及び3に反射型体積ホログラムとして記録することもできる。
この反射型体積ホログラムに、照明光として自然光5(または7)をあてると、手前側に反射型体積ホログラム再生像6(または8)を観察することができる。(図4参照。)
【0065】
反射型体積ホログラムに図1中の(1)または(2)で用いた参照光と同一の照明を行うと、その参照光が透過した方向からの観察により、反射型体積ホログラム形成層2及び3を通して、その向こう側に「物体」の像、すなわち、反射型体積ホログラム再生像を視認することができる。
以上の方法を用いる際、「物体」を2つ準備し、2つの光源(第1の波長、及び第2の波長を有する2つのレーザー光源)を用いて、それぞれ体積ホログラム形成に各々、角度を変えて記録して、2つの反射型体積ホログラムを多重記録することができる。
このときに用いる反射型体積ホログラム形成層2及び3は、例えば、2つの光源に感度を持つように、2種類の増感剤を含めたものとする。
また、反射型体積ホログラム形成層2及び3を単層として、その一つの層に多重記録するのみならず、反射型体積ホログラム形成層2及び3を多層として、それぞれの層に、それぞれのフォトポリマーを用い、それぞれの反射型体積ホログラムを記録することも、個々の反射型ホログラム再生像の鮮明度を高めるため好適である。
2つの反射型体積ホログラムを多重記録した場合には、2つの観察方向に、各々の「物体」像を見ることができる。(図示せず。)
ホログラムとしては、レーザー再生ホログラム、白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子、複合回折格子で構成されるホログラムや、マシンリーダブルホログラムなどを 適宜、記録することができる。
体積ホログラムは、上記のようにして記録した透明基材1/体積ホログラム形成層2及び3の積層体の体積ホログラム形成層2及び3上に、まだ体積ホログラムを記録していない同様の積層体の体積ホログラム形成層面を密着させて重ねたものに(インデックスマッチング液等をその間に挿入してもよい。)、適宜なレーザー光を照射する方法により、大量に複製することができる。(図示せず。)
【0066】
(ホログラムレリーフが設けられたレリーフホログラム形成層)
上記した体積ホログラム形成層2及び3の上に、レリーフホログラム形成層4を設ける。
このレリーフホログラム形成層4上には、ホログラムレリーフのある領域5と、ホログラムレリーフのない平面領域がある。
このホログラムレリーフのない平面領域や、ホログラムレリーフを撮影・現像方式で形成する際に、所定のパターンでマスキング処理するか、一旦、全面にホログラムレリーフを形成した後、所定の領域を平板プレス等により平坦化することにより得られる。
このレリーフホログラム形成層4を構成するための透明な樹脂材料としては、各種の熱可塑性樹脂、熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができる。(図3参照。)
熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等が挙げられる。
これらの熱可塑性樹脂および熱硬化性樹脂は、1種もしくは2種以上を使用することができる。これらの樹脂の1種もしくは2種以上は、各種イソシアネート樹脂を用いて架橋させてもよいし、あるいは、各種の硬化触媒、例えば、ナフテン酸コバルト、もしくはナフテン酸亜鉛等の金属石鹸を配合するか、または、熱もしくは紫外線で重合を開始させるためのベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、もしくはジフェニルスルフィド等を配合しても良い。
また、電離放射線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等を挙げることができ、このような電離放射線硬化性樹脂に架橋構造を導入するか、もしくは粘度を調整する目的で、単官能モノマーもしくは多官能モノマー、またはオリゴマー等を配合して用いてもよい。
上記の樹脂材料を用いてレリーフホログラム形成層4を形成するには、感光性樹脂材料にホログラムの干渉露光を行なって現像することによって直接的に形成することもできるが、予め作成したレリーフホログラムもしくはその複製物、またはそれらのメッキ型等を複製用型として用い、その型面を上記の樹脂材料の層に押し付けることにより、賦型を行なうのがよい。
【0067】
熱硬化性樹脂や電離放射線硬化性樹脂を用いる場合には、型面に未硬化の樹脂を密着させたまま、加熱もしくは電離放射線照射により、硬化を行わせ、硬化後に剥離することによって、硬化した透明な樹脂材料からなる層の片面にレリーフホログラムの微細凹凸を形成することができる。なお、同様な方法によりパターン状に形成して模様状とした回折格子を有する回折格子形成層も光回折構造として使用できる。
レリーフホログラム形成層4の厚さは、1μm〜30μm、特には、3μm〜10μmとする。
この厚さが、1μm未満では、「ホログラムレリーフ5形状」を形成し難く、30μmを超えると、ホログラムシートの処理工程や使用環境等による、レリーフホログラム形成層4の熱膨張や、熱変形による「レホログラムリーフ5形状」の劣化が起こり易くなる。そして、レリーフホログラム形成層4の厚さが、3μm〜10μmであると、その処理工程中や使用の際の取扱い適性に優れる上、その均一性を向上させることができる。
レリーフホログラムは物体光と参照光との光の干渉による干渉縞を凹凸のレリーフ形状で記録されたもので、例えば、フレネルホログラムなどのレーザ再生ホログラム、及びレインボーホログラムなどの白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などがある。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。(レリーフホログラム形成プロセスは図示せず。)
【0068】
レリーフホログラム形成層4のホログラムレリーフ5形状は、微細な凹凸を精密に作成するため、光学的な方法だけでなく、電子線描画装置を用いて、精密に設計されたレリーフ構造を作り出し、より精密で複雑な再生光を作り出すものであってもよい。このレリーフ形状は、ホログラムを再現もしくは再生する光もしくは光源の波長(域)と、再現もしくは再生する方向、及び強度によってその凹凸のピッチや、深さ、もしくは特定の周期的形状が設計される。
また、カラーホログラム画像を、回折格子線からなる回折格子画素(同一の回折格子線からなる単一回折格子エリアの最小単位。これら画素から回折光としてでてくる光の集合が一つのカラーホログラム画像を形成する。このようなホログラムレリーフ5は、ホログラム画像に対応した回折格子群を含む例である。)に要素分解し、所定の画素のサイズ、格子線ピッチ、格子線角度をその各要素に割り当てて再現するという画像処理方法を用いて形成することも可能である。
凹凸のピッチ(周期)は再現もしくは再生角度に依存するが、通常0.1μm〜数μmであり、凹凸の深さは、再現もしくは再生強度に大きな影響を与える要素であるが、通常0.01μm〜0.5μmである。
単一回折格子のように、全く同一形状の凹凸の繰り返しであるものは、隣り合う凹凸が同じ形状であればある程、反射する光の干渉度合いが増しその強度が強くなり、最大値へと収束する。回折方向のぶれも最小となる。立体像のように、画像の個々の点が焦点に収束するものは、その焦点への収束精度が向上し、再現もしくは再生画像が鮮明となる。
ホログラムレリーフ5形状を賦形(複製ともいう。)する方法は、回折格子や干渉縞が凹凸の形で記録された原版をプレス型(スタンパとも呼ばれる。)として用い、上記レリーフホログラム形成層4上に、前記原版を重ねて加熱ロールなどの適宜手段により、両者を加熱圧着することにより、原版の凹凸模様を複製することができる。形成するホログラムパターンは単独でも、複数でもよい。
【0069】
上記の極微細な形状を精密に再現するため、また、複製時の体積ホログラム形成層2及び3へのダメージを抑制するため、さらには、複製後の熱収縮などの歪みや変形を最小とするため、原版は金属を使用し、低温・高圧下で複製を行う。
原版は、Niなどの硬度の高い金属を用いる。光学的撮影もしくは、電子線描画などにより形成したガラスマスターなどの表面にCr、Ni薄膜層を真空蒸着法、スパッタリングなどにより5〜50nm形成後、Niなどを電着法(電気めっき、無電解めっき、さらには複合めっきなど)により50〜1000μm形成した後、金属を剥離することで作ることができる。
複製方式は、平板式もしくは、回転式を用い、線圧0.1トン/m〜10トン/m、複製温度は、50℃〜150℃とする。(複製プロセスは図示せず。)
そして、上記した、ホログラムレリーフ5形状を賦形(複製)する方法を用いて、あらかじめ、透明基材1/体積ホログラム形成層2及び3の積層体上に、「均一な厚さの透明な層」(図示せず。この「透明な層」が本発明のホログラムシートAのレリーフホログラム形成層4となる。)を形成し、その透明な層の上に、「均一な厚さのエレクトロルミネッセンス素子層」(図示せず。このエレクトロルミネッセンス素子層が本発明のホログラムシートAのエレクトロルミネッセンス素子層4となる。)を形成したものの、その均一な厚さのエレクトロルミネッセンス素子層上から、上記した原版を重ねて加熱ロールなどの適宜手段により、加熱、加圧することにより、原版の凹凸模様を、「均一な厚さの透明な層」に設けてレリーフホログラム形成層4とし、「均一な厚さのエレクトロルミネッセンス素子層」に設けてエレクトロルミネッセンス素子層4とすることも好適である。
【0070】
(エレクトロルミネッセンス素子層)
エレクトロルミネッセンス素子層6は、レリーフホログラム形成層4のホログラムレリーフ5上に、構成する層を順次設けていくことで、形成される。(図3参照。エレクトロルミネッセンス素子層6を一つの「一体となった層」として表し、エレクトロルミネッセンス素子層6を構成する各層(個々の層)については図示せず。)
有機エレクトロルミネッセンス素子、又は無機エレクトロルミネッセンス素子のいずれにしても、まず電極である、陽極若しくは陰極から形成する。以下では、陽極から形成する例について説明する。この方法と同様にして陰極から設けていくことは容易に推察できる。
陽極の材料としては、例えば、ITO薄膜(インジウム・スズ酸化物薄膜)、酸化インジウム、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸化錫、フッ素ドープ酸化錫、酸化亜鉛等の透明導電性材料、ポリアニリン、ポリピロール、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体等の導電性高分子等、を使用して形成することができる。
陽極の形成形成方法は、スパッタリング法、真空蒸着法、化学蒸着法(CVD法)、スピンコート法、キャスト法を用いたゾルゲル法、スプレイパイロリシス法、イオンプレーティング法等の方法、さらには、所望の組成の塗布液を塗布して形成する方法等を採用することができる。
特に、電子ビーム加熱真空蒸着法や、高周波マグネトロンスパッタリング法を採ることが好ましい。具体的には、真空度1×10-7〜1×10-3Pa、成膜速度0.1〜50nm/秒、基材温度−10〜100℃の条件で成膜する。
陽極の代表的なものは、透明導電性薄膜である、ITO薄膜であり、ホログラムレリーフ5上に、電子線加熱真空蒸着法により、例えば300nm程度形成する。
透明導電性薄膜の導電性は、その表面抵抗値で管理しており、0.1Ω/□以下となるよう、インジウムと錫の加熱速度や、導入する酸素ガスの量を制御する。
【0071】
ホログラムレリーフ5は、その凹凸深さが0.01μmと微細であり、しかも、その微妙に変化する曲線の変化そのものが、ホログラム再生情報を含んでいる為、この薄膜形成による加熱や、金属粒子の衝突等の衝撃によって、その曲線に変化を生じないよう、ホログラム形成層及び透明基材を十分冷却し、高速で処理する。従って、膜厚さを薄く形成する。
透明導電性薄膜の膜厚さ制御を十分行い、膜厚さばらつきが、数%以内にとどめ(300nmの数%→10nmレベル)、透明導電性薄膜の表面(レリーフと接着している面とは反対の面)が、ホログラム形成面とほぼ同一の形となるようにする。
体積ホログラム形成層2や、レリーフホログラム形成層4へのダメージをさらに軽減するために、CVD法(化学蒸着法)等を用いることもできる。CVD法の場合は、レリーフホログラム形成層4へのダメージはほとんど無いが、薄膜形成後の加熱処理等付加的な処理を要し、薄膜の表面性もホログラムレリーフ5のレリーフ形状としてはやや粗いものとなる。
次に、形成する層は、無機エレクトロルミネッセンス素子の場合には、最も単純な構成としては、この透明導電性薄膜上に、絶縁層を設ける。
絶縁層として用いられる材料は、具体的には、Y23、Al23、Ta25、SiO2、Si34等の非晶質酸化物、BaTiO3、PbTiO3等の強誘電体、SiNx、SiOF、SiOC、Pb(Zr,Ti)O3、(Pb、La)(Zr,Ti)O3、Bi4Ti3O12、さらにはぺロブスカイト型強誘電体、タングステン・ブロンズ型強誘電体、ビスマス層状構造強誘電体等を挙げることができる。
さらに、π電子系の酸−塩基二成分型有機物を利用した有機強誘電体、例えば、クロラニク酸、ブロマニル酸等のような強い酸性度(H+(プロトン)の供与能)の水酸基を有するジヒドロキシ−p−ベンゾキノン類、あるいは、クロラニル酸を酸として、ベンゼン環にプロトン受容基の窒素原子を組み入れたフェナジン(Phz)を塩基として作用させ、1:1の分子化合物としたもの等、さらに、分子間で水素結合を形成して一次元のネットワークを形成したこれらの集合構造分子も使用することもできる。
【0072】
その形成方法は、スパッタリング法、真空蒸着法、化学蒸着法(CVD法)、スピンコート法、キャスト法を用いたゾルゲル法、スプレイパイロリシス法、イオンプレーティング法等の方法、さらには、所望の組成の塗布液を塗布して形成する方法等を採用することができる。
絶縁層である誘電体膜として、代表的には、BaTiO3薄膜を、スパッタリング(Arガス使用)法を用いて、例えば500nmの厚さで形成する。この場合には、レリーフホログラム形成層4上に、既に、金属酸化物薄膜が形成されているため、そのレリーフの耐熱性は比較的高く、比較的容易に薄膜形成を行うことができる。
この層は、絶縁性を確保するためには、厚い方が望ましい(〜2μm)が、ホログラム形成層のホログラムレリーフ5面の形状を維持するためには、やはり、均一厚さ、及び、その表面性の滑らかさを確保する必要があるため、100nm〜500nmとすることが好適である。
ここで、絶縁層を透明導電性薄膜上の隅々まで形成すると、陽極端子を設けることができないため、マスキング法により、透明導電性薄膜上の一部を、そのホログラムの大きさとのバランスを考慮して、例えば、50mm×40mmサイズのホログラムの場合には、2mm×4mmサイズのマスキングを施して、絶縁層を形成する。
さらにその上に、無機エレクトロルミネッセンス素子用の発光層を設ける。
発光層は、所望の発光色の発光蛍光体を用いて形成されたものであり、例えば、赤色発光蛍光体として、ZnS、Mn/CdSe等、緑色発光蛍光体として、ZnS:TbOF、ZnS:Tb等、青色発光蛍光体としては、SrS:Ce、(SrS:Ce/ZnS)n、CaGa24:Ce、Sr2Ga25:Ceを挙げることができる。また、白色発光蛍光体として、SrS:Ce/ZnS:Mn等が挙げられ、これらの蛍光体を適宜選択して、用いることができる。
発光層としては、代表的には、母体にZnSを用い、発光中心にMnを添加したものを、スパッタリング(Arガス使用)法を用いて、例えば1μm厚さで形成する。
この発光層が、ホログラムレリーフ5の位相情報を含んで発光するものであるため、この層の両表面(両界面)は、レリーフホログラム形成層4のレリーフ形状を忠実に再現していなければならない。
【0073】
そのために、上記した各層の厚さの均一性、界面の滑らかさを確保できる成膜方法を採用する。
発光層形成時にも、上記した位置に同様のマスキング処理を施す。
この上に設ける陰極は、陽極と同様の材料を用い、陽極と同様の手法を用いて形成することができる。
陰極の発光層と接している面は、発光層のレリーフ形状に追従しており、発光層の形状そのものを再現できる。そして、その反対の面も、そのレリーフ形状に追従しており、発光層の形状そのものを再現できる。
以上の様にして、透明基材1/体積ホログラム形成層2の積層体上に、レリーフホログラム形成層3、そして、無機エレクトロルミネッセンス素子からなる、エレクトロルミネッセンス素子層6を、そのホログラムレリーフ5面に接して、追従するように設けることができ、本発明のホログラムシートAを形成することができる。(図3参照。)
このホログラムシートAの陽極と、陰極の間に、電圧100V、周波数100〜1000Hzの交流電圧を印加11すると、自然光7または9下において、体積ホログラム再生像8または10が視認されることに加えて、エレクトロルミネッセンス素子層6において発光が生じ、陽極側では、レリーフホログラム形成層4、体積ホログラム形成層2または3、及び、透明基材1を通して、レリーフホログラム再生像12を視認することができる。(図4参照。)
また、体積ホログラムの記録領域、及び、ホログラムレリーフの形成領域を、100μm〜300μmの幅を有する帯状領域とすることで、このホログラムシートAの陽極と、陰極の間に、電圧100V、周波数100〜1000Hzの交流電圧を印加16すると、自然光13下において、体積ホログラム再生像14が視認されていたものが、エレクトロルミネッセンス素子層6において発光が生じ、二つのホログラム再生像が互いに干渉し合って、何らのホログラム再生像をも再生せず、あたかも、ホログラム再生像が消失17したように観察される。(図5参照。)
次に、有機エレクトロルミネッセンス素子について説明すると、上記した、透明導電性薄膜層の上に、発光層となる有機薄膜を形成し、陰極で挟んだものが最も単純な有機エレクトロルミネッセンス素子からなるエレクトロルミネッセンス素子層6となる。
発光層は、主材料(ホスト材料)と不純物材料(ドーパント材料)との2成分系であり、発光する不純物材料は、0.1〜1%添加で主材料中に均一に分散されている。
有機薄膜の電子移動度は、高速応答を目的とするものではないため、比較的小さいものでも用いることができ、1×10-6cm2 /V・s以上の値とするのが好ましい。
【0074】
発光層である有機薄膜に、低分子系を用いる場合には、
発光層材料として、ZnPBO(ビス[2−(2−ベンゾキサゾリル)フェノラト]亜鉛)と、ドーピング色素材料として、Coumarin6(3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)コーマリンを用いて、CVD法を用いて、50nm厚さに形成する。
発光層である有機薄膜に、高分子系を用いる場合には、
発光層材料として、PPV(ポリパラフェニレンビニレン)系、正孔層材料として、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)+PSS(ポリスチレンスルホン酸:ドーパント)共重合体を、コーティング方式により、固形分を0.5%として、乾燥後の厚さ100nmとする。
また、有機薄膜に、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤や、スチリルベンゼン系化合物、8−キノリノール誘導体を配位子とする金属錯体を併用することも好ましい。また、ジスチリルアリーレン骨格、例えば4,4’一ビス(2,2−ジフェニルビニル)ビフェニル等をホストとし、それに青色から赤色までの強い蛍光色素、例えばクマリン系あるいはホストと同様の蛍光色素をドープしたものを併用することも好適である。
形成方法としては、真空蒸着法、スピンコート法、キャスト法、LB(ラングミュア・ブロジェット)法、スパッタリング法等の方法を採用することができる。例えば、真空蒸着法により形成する場合は、真空度1×10-7〜1×10-3Pa、成膜速度0.1〜50nm/秒、基板温度−10〜100℃の条件を採ることが好ましい。
また、結着剤として機能する適宜な樹脂と有機薄膜用の材料とを所定の溶剤に溶かして溶液状態とした後、これをスピンコート法等により薄膜化することによっても、有機薄膜を形成することができる。なお、有機薄膜は、形成方法や形成条件を適宜選択し、気相状態の材料化合物から沈着されて形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化されて形成された膜である分子堆積膜とすることが好ましい。
【0075】
これらの上に、陰極層として、同様に、透明導電性薄膜等を用いる。
有機エレクトロルミネッセンス素子においても、無機エレクトロルミネッセンス素子と同様に、陽極端子を露出させる方法を取り、でき、本発明のホログラムシートAを形成することができる。(図3参照。陽極端子は図示せず。)
このホログラムシートAの陽極と、陰極の間に、電圧10Vの直流電圧を印加11すると、自然光7または9下において、体積ホログラム再生像8または10が視認されることに加えて、エレクトロルミネッセンス素子層6において発光が生じ、(陽極側より)レリーフホログラム形成層4、体積ホログラム形成層2または3、及び、透明基材1を通して、レリーフホログラム再生像12を視認することができる。(図4参照。)
また、体積ホログラムの記録領域、及び、ホログラムレリーフの形成領域を、100μm〜300μmの幅を有する帯状領域とすることで、このホログラムシートAの陽極と、陰極の間に、電圧10Vの直流電圧を印加16すると、自然光13下において、体積ホログラム再生像14が視認されていたものが、エレクトロルミネッセンス素子層6において発光が生じ、二つのホログラム再生像が互いに干渉し合って、何らのホログラム再生像をも再生せず、あたかも、ホログラム再生像が消失17したように観察される。(図5参照。)
そして、これらの現象から、ホログラムシートAが真正なものであることを判定することができることとなる。
【0076】
(実施例1)
膜厚20μmのフォトポリマー(体積ホログラム形成層2または3となる。)が積層され、その上に保護フィルムとして、厚さ23μmポリエチレンテレフタレートフイルムが積層されたフォトポリマー(デュポン社製「HRF705」)を用い、体積ホログラムとして、アルゴンレーザー(発光波長488nm)を光源とし、図2の(1)及び(2)光学系を用い、さらに、2.0mm×3.0mmサイズの長方形を単位形状とする市松模様状にマスキング処理を施して(図2の(2)において、単位形状を交互に遮蔽した遮蔽版を記録材料の両面に接するように重ねて撮影する。図示せず。)、30mm×50mmサイズの「絵画モチーフ」を反射型体積ホログラムとし、その結像位置を、記録面から2mmの位置として撮影した。
すなわち、反射型体積ホログラムを記録した領域が、体積ホログラム形成層3となり、記録していない領域が、体積ホログラム形成層2となる。
この時、露光強度4.0mWにて、記録角度(図2(2)の参照光の角度。)を体積ホログラム形成層2に対して、(そのシート面の垂線方向に対し)20度とし、70mJ/cm2の露光量となるように照射した後、高圧水銀灯を用いて500mJ/cm2の紫外線を照射し、更に120℃で120分間加熱処理し、その体積ホログラム形成層2または3側を、厚さ50μmで、40mm×60mmの大きさのポリエチレンテレフタレートフイルムシート(PETフィルムともいう。)である、透明基材1に貼り合わせ、その後、上記保護フィルムを剥離して、「透明基材1/体積ホログラム形成層2または3」の積層体を作製した。(図3参照。図4においては、この「絵画モチーフ」を便宜的に「ホロ」(8または10)と表示した。)
このとき、回折効率は、50%とした。
その体積ホログラム形成層2または3上に、メラミン樹脂組成物を塗布し、ホログラム画像位置検知パターン付きのレリーフホログラム(「H」の文字画像:図4参照)の複製用型の型面(上記と同様に、2.0mm×3.0mmサイズの長方形を単位形状とする市松模様状に飛び飛びにホログラムレリーフ5が形成されている。)を、体積ホログラム形成層2の位置とホログラムレリーフ5の位置が対応し、体積ホログラム形成層3の位置と「ホログラム形成層4の平面領域の位置」が対応するように位置合わせし、接触させたまま加熱硬化させることにより、ホログラムレリーフ5の形成を行ない、厚さ3μmのレリーフホログラム形成層4を得た。(図3参照。)
PETフィルム及びメラミン樹脂の絶縁破壊強さは、それぞれ50MV/m、20MV/mであった。
【0077】
このホログラム形成層4上に、そのホログラムレリーフ5形成領域及び、平面領域を覆うように、追従して、陽極としてのITO薄膜を電子線加熱真空蒸着法により、300nm厚さで形成した。(図示せず。)ITO薄膜の表面抵抗値は、0.1Ω/□であった。
その上に、絶縁層である誘電体膜として、BaTiO3を、陽極端子を残すため、ホログラム画像の右端下に3mm×3mmの領域で、マスキング処理を施して、スパッタリング(Arガス使用)法を用いて、0.7μmの厚さで形成した。(図示せず。)
その上に、発光層として、母体にZnSを用い、発光中心にMnを添加したものを、スパッタリング(Arガス使用)法を用いて、1μm厚さで形成した。ターゲットには、硫化マンガン(MnS)を0.5mol%添加した硫化亜鉛(ZnS)を用い、ターゲットガスには、高純度のアルゴンガスを用いた。この時、陽極端子を残すため、ホログラム画像の右端下に3mm×3mmの領域で、マスキング処理を行った。(図示せず。)
この発光層上に、陰極層としてのITO薄膜を、同様の位置のマスキング処理を施して、電子線加熱真空蒸着法により、厚さ500nmで形成した。
この陽極層、絶縁層、発光層、陰極層及びの4層により、エレクトロルミネッセンス素子層4(無機エレクトロルミネッセンス素子層)が構成され、このエレクトロルミネッセンス素子層4が上記のホログラムレリーフ5形成領域及び、平面領域に接して追従するように形成されることにより、本発明のホログラムシートAが作製された。(図3参照。)
このホログラムシートAを、図4のように、自然光照明光7下に置くと、鮮明な反射型体積ホログラム再生像「絵画モチーフ」8を視認できた。(図4参照。図4においては、この「絵画モチーフ」を便宜的に「ホロ」と表示した。)
そして、このホログラムシートAの陽極端子部分と、陰極端子部分との間に、100V・100Hzの交流電圧を印加11したところ、緑色の発光が生じ、この発光色によるレリーフホログラム再生像「H」12、及び、自然光照明光9による反射型体積ホログラム再生像「絵画モチーフ」10を得た。(図4参照。図4においては、この「絵画モチーフ」を便宜的に「ホロ」と表示した。)
このホログラムシートAに適宜な粘着剤を、その陽極端子部分、さらには、陰極層としてのITO薄膜層の一部分(陽極端子領域とは異なる、3mm角の領域。陰極端子となる。)を残して塗付して、35mm×55mmサイズに切り出し、パスポートに貼付して、暗い環境にて、その陽極端子部分と、陰極端子部分との間に、100V・100Hzの交流電圧を印加したところ、緑色の発光によるレリーフホログラム再生像が生じ、このパスポートが真正なものであると確認することができた。(図示せず。)
【0078】
(実施例2)
レリーフホログラム形成層4上の陽極を100nm厚さで形成し、その上の絶縁層を、300nmの厚さで形成し、その上の発光層を、500nm厚さで形成し、さらに、その上の陰極を、厚さ100nmで形成した以外は、実施例1と同様にして、実施例2のホログラムシートAを得た。(図3参照。)
実施例1と同様に評価したところ、発光時のレリーフホログラム再生像12の鮮明度が向上し、判定がより確実にできると思われたこと以外は、実施例1と同様の良好な結果を得た。(図3参照。)
(実施例3)
アルゴンレーザーの発振波長を514.5nmとして、反射型体積ホログラム(「絵画モチーフ2」)を、200μm×1.0mmサイズの帯状の市松模様状にマスキング処理を施して、体積ホログラム形成層3及び2を記録した。(図3参照。)
このときの回折効率は、30%とした。
さらに、ホログラムレリーフ5の位置も体積ホログラム形成層2と対応する位置とした。
そして、陽極として、ITO薄膜を、電子線加熱真空蒸着法により、300nm厚さで形成し、その上に、正孔輸送材料として、TPAC(1,1−ビス[4-[N,N―ジ(p−トリル)アミノ]フェニル]シクロヘキサン)を厚さ100nmで、発光層として、発光材料であるZnPBO(ビス[2−(2−ベンゾキサゾリル)フェノラト]亜鉛)及びドーピング色素材料として、Coumarin6(3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)コーマリン)を3%混入させ、厚さ200nmで、そして、電子輸送材料として、BND(2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール)を厚さ100nmで、真空蒸着法により、実施例1と同様のマスキング処理を施して、形成した。
その上に、陰極として、ITO薄膜を、同様の位置のマスキング処理を施して、電子線加熱真空蒸着法により、厚さ300nmで形成した。
以上により、陽極、正孔輸送層、発光層、電子輸送層、及び陰極からなるエレクトロルミネッセンス素子層6(有機エレクトロルミネッセンス素子層)、及び、体積ホログラム形成層2及び3を形成したこと以外は、実施例1と同様にして、実施例3のホログラムシートAを作製した。(図3参照。)
このホログラムシートAを、自然光照明光13下に置くと、鮮明な反射型体積ホログラム再生像「絵画モチーフ」14を視認できたものの、このホログラムシートAの陽極端子部分と、陰極端子部分との間に、6Vの直流電圧を印加16して発光(中心発光波長520nm)させたところ、自然光照明光15下において、ホログラム再生像が消失している状態17となり、このホログラムシートAの真正性を確実に判定できることができた。(図5参照。)
(比較例)
【0079】
エレクトロルミネッセンス素子層を形成せず、ホログラムシートを形成し、比較例とした。
実施例1と同様に観察したところ、目視にて反射型体積ホログラム再生像を確認することができたが、所定の電界を印加しても、何らの変化もなく、このホログラムシートが偽物であると判断することができた。
また、レリーフホログラム形成層に設けたホログラムレリーフが粘着剤で埋まり、蛍光灯照明下では、レリーフホログラム再生像を視認することができなかった。

【符号の説明】
【0080】
A ホログラムシート
1 透明基材
2 体積ホログラム形成層(体積ホログラムを記録していない領域)
3 体積ホログラム形成層(体積ホログラムを記録している領域)
4 レリーフホログラム形成層
5 レリーフホログラム形成層(ホログラムレリーフのある領域)
6 エレクトロルミネッセンス素子層
7 自然光(体積ホログラムの照明光)
6 体積ホログラム再生像(反射型体積ホログラムの場合。)
7 自然光(体積ホログラムの照明光)
8 体積ホログラム再生像(反射型体積ホログラムの場合。)
9 自然光(体積ホログラムの照明光)
10 体積ホログラム再生像(反射型体積ホログラムの場合。)
11 所定の電界の印加
12 エレクトロルミネッセンス素子層の発光によるレリーフホログラム再生像
13 自然光(体積ホログラムの照明光)
14 体積ホログラム再生像(反射型体積ホログラムの場合。)
15 自然光
16 所定の電界の印加
17 ホログラム再生像が消失している状態

【特許請求の範囲】
【請求項1】
透明基材の一方の面に、体積ホログラム形成層、ホログラムレリーフが設けられたレリーフホログラム形成層、及び、前記レリーフホログラム形成層の前記ホログラムレリーフに追従して設けられたエレクトロルミネッセンス素子層がこの順序で設けられているホログラムシートであって、
前記体積ホログラム形成層に記録された体積ホログラムの記録領域と、前記ホログラムレリーフの形成領域が交互に設けられていることを特徴とするホログラムシート。
【請求項2】
前記体積ホログラムの記録領域、及び、前記ホログラムレリーフの形成領域が、100μm〜300μmの幅を有する帯状領域であることを特徴とする請求項1に記載のホログラムシート。

【請求項3】
前記エレクトロルミネッセンス素子層の厚さが、0.01μm〜2.0μmであることを特徴とする請求項1または2に記載のホログラムシート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−37029(P2013−37029A)
【公開日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2011−170265(P2011−170265)
【出願日】平成23年8月3日(2011.8.3)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】