説明

反射防止フィルム、偏光板、および画像表示装置

【課題】反射率が低く、着色が少なく、層厚ムラに対する色味ムラが小さく、耐擦傷性に優れ、良好な帯電防止性能を有し、キズのてかりが少なく、耐光性に優れた反射防止フィルム、これを用いた偏光板並びに画像表示装置を提供する。
【解決手段】透明支持体と、層厚が200nm以下で、互いに屈折率の異なる2層以上の層からなる薄膜層とを有し、薄膜層は低屈折率層と低屈折率層より高屈折率の高屈折率層とを有し、高屈折率層は、その屈折率が1.65〜1.90で、5度入射の鏡面反射率の450〜650nmの波長での平均値が1%以下で、波長380〜780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味CIE1976L***色空間のa*、b*値が、−8≦a*≦8、−10≦b*≦10である反射防止フィルム

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反射防止フィルム、それを用いた偏光板、およびこれらを用いた画像表示装置に関する。更に詳細には、反射光の映り込みによる視認性の悪化が高いレベルで防止され、表示品位の低下が少なく、点欠陥やキズが目立ち難く、耐久性の良好な反射防止フィルムに関する。
【背景技術】
【0002】
反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような様々な画像表示装置において、外光の反射や像の映り込みによるコントラスト低下を防止するために、ディスプレイの表面に配置される。そのため、反射防止フィルムには高い反射防止性能の他に、高い透過率、高い物理強度(耐擦傷性など)、耐薬品性、耐候性(耐湿熱性、耐光性など)が要求される。
【0003】
このような反射防止フィルムは、少なくとも最表面に層厚200nm以下の薄膜層である低屈折率層を設け、その低屈折率層の光学干渉によって反射防止を行う。しかし、最も単純な構成である低屈折率層1層で反射防止を行う1層薄膜干渉型の場合は、反射率1%以下を満足し、かつ、ニュートラルな色味、高い耐擦傷性、耐薬品性、耐候性を有する実用的な低屈折率材料がない。これに対して反射率1%以下を達成するための、支持体と低屈折率層の間に高屈折率層を形成する2層薄膜干渉型、または、支持体と低屈折率層の間に中屈折率層、高屈折率層を順次形成する3層薄膜干渉型など、多層の光学干渉によって反射を防止する多層薄膜干渉型反射防止フィルムが知られている。特に広い波長範囲で反射を防止し、反射色を抑えながら、低反射率とするために、3層薄膜干渉型が望ましい。
【0004】
多層薄膜干渉型の反射防止フィルムに用いる薄膜層(高屈折率層、中屈折率層、低屈折率層など)としては、金属酸化物の透明薄膜層を積層させた多層膜が従来から広く用いられている。通常、金属酸化物の透明薄膜は、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法、スパッタリング法により形成することが行われてきた。
【0005】
しかし、蒸着やスパッタリングによる金属酸化物の透明薄膜の形成方法は生産性が低く大量生産に適しておらず、生産性が高い湿式成膜法、特に塗布方式により形成する方法が提案されている。
【0006】
反射防止フィルムを塗布方式で作製する場合、特定の屈折率を有する膜形成組成物を溶剤中に溶解あるいは分散して調整される塗布組成物を基材上に塗布、乾燥、必要に応じて硬化することで、単層または多層の薄膜層を形成することが可能である。単層の場合は、基材よりも低屈折率を有する層(低屈折率層)を光学層厚で設計波長の約1/4の層厚で形成すればよい。さらに低反射化が必要な場合には、基材と低屈折率を有する層との間に、基材よりも屈折率の高い層(高屈折率層)を形成すればよい。
【0007】
低屈折率層を形成するには、低い屈折率を有する物質として、フッ素含有素材や珪素含有素材を用いる提案が数多くなされている。
【0008】
高屈折率層を形成する際、高い屈折率を有する有機物質を使用すると、屈折率の上限が低く、且つ、可視域での色つきが起こりやすいといった問題がある。高屈折率層を形成するには、通常高い屈折率を有する無機微粒子をより微細に分散し、皮膜の中に導入する。高い屈折率を有する無機微粒子を微細な分散状態を保ったまま、より多く皮膜中に導入することで、より高い屈折率を有する透明な高屈折率層が形成される(例えば、特許文献1〜7参照)。
【特許文献1】特開平8−110401号公報
【特許文献2】特開平8−179123号公報
【特許文献3】特開平11−153703号公報
【特許文献4】特開2001−166104号公報
【特許文献5】特開2001−188104号公報
【特許文献6】特開2002−116323号公報
【特許文献7】特開2002−156508号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、多層薄膜干渉型反射防止フィルムは、前記の蒸着法やスパッタ法によって製造された場合には、前記のとおり生産性が低いことに加え、450nm〜650nmまでの波長領域での反射光の色味が赤紫色から青紫色に強く着色しており、反射光源が背後にある場合、表示品位を悪化させてしまう問題があった。
一方、塗布方式によって製造される場合は、薄膜層の僅かな層厚ムラによって色味が大きくシフトし、目視でムラとして検出されてしまう、低屈折率層の屈折率と硬度の両立ができず耐擦傷性が弱くなるなどの問題があった。
さらに、従来の高屈折率層では、低屈折率層の微小な欠陥(ハジキ、寄り)、キズなどが発生した時に反射が高くなり目立つという問題があり、また、高屈折率層への粒子の含有率を高くする必要があり、このことによって膜強度、耐久性が低下する場合があるという問題があった。
【0010】
本発明の目的は、点欠陥やキズが目立ち難く、耐久性の良好な反射防止フィルムを提供することにある。さらに、液晶ディスプレイに適用したときに、反射光の映り込みによる視認性の悪化が高いレベルで防止され、ディスプレイに向かう使用者の背面の蛍光灯等、輝度の高い光源がディスプレイ表面に映りこんだときにも赤紫色や青紫色に着色することがなく、表示品位の低下が少なく、かつ、点欠陥やキズが目立ち難く、耐久性の良好な反射防止フィルムを提供することにある。
本発明の更なる目的は、上記特性に優れた反射防止フィルムを備えた偏光板、及び画像表示装置を提供することにある。
【課題を解決するための手段】
【0011】
本発明者らは、上記課題を解消すべく鋭意検討した結果、高屈折率層の屈折率、鏡面反射及び色味を調節すると表示品位の低下を防止できることを知見し、更に検討してこれらを特定の範囲とすることにより上記目的を達成し得ることを見出し、本発明を完成するに至った。
すなわち、本発明の上記目的は、下記構成の反射防止フィルム、偏光板、及び画像表示装置によって達成される。
(1)透明支持体と、該透明支持体上に設けられた、層厚が200nm以下であり、互いに屈折率の異なる2層以上の薄膜層とを有する反射防止フィルムであって、上記反射防止フィルムは、薄膜層として、透明支持体の一方の面に位置する低屈折率層と該透明支持体の間に、該該低屈折率層より高屈折率の高屈折率層とを有し、上記高屈折率層は、その屈折率が1.65〜1.90であり、上記反射防止フィルムは、5度入射の鏡面反射率の450nmから650nmの波長での平均値が1%以下であり、波長380nmから780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味CIE1976L***色空間のa*、b*値が、それぞれ、−8≦a*≦8、−10≦b*≦10の範囲内にあることを特徴とする反射防止フィルム。
(2)上記透明支持体の屈折率が1.45〜1.55であり、低屈折率層の屈折率が1.30〜1.46、であることを特徴とする(1)に記載の反射防止フィルム。
(3)上記透明支持体と上記高屈折率層との間に、該高屈折率層より屈折率が低く且つ上記低屈折率層より屈折率が高い中屈折率層を有し、該透明支持体の屈折率が1.45〜1.55、該低屈折率層の屈折率が1.30〜1.46、該中屈折率層の屈折率が1.50〜1.80であることを特徴とする(1)又は(2)に記載の反射防止フィルム。
(4)設計波長λ(=500nm)に対して、上記中屈折率層が下式(I)を、上記高屈折率層が下式(II)を、上記低屈折率層が下式(III)をそれぞれ満足することを特徴とする(3)に記載の反射防止フィルム。
式(I) lλ/4×0.80<n11<lλ/4×1.00
式(II) mλ/4×0.75<n22<mλ/4×0.95
式(III) nλ/4×0.95<n33<nλ/4×1.05
(但し、式中、lは1であり、n1は中屈折率層の屈折率であり、そして、d1は中屈折率層の層厚(nm)であり、mは2であり、n2は高屈折率層の屈折率であり、そして、d2は高屈折率層の層厚(nm)であり、nは1であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の層厚(nm)である)
(5)反射防止フィルムの反射率と、低屈折率層を設けずに高屈折率層を最表層とした時との反射率の差が5〜8%であることを特徴とする(1)〜(4)のいずれかに記載の反射防止フィルム。
(6)上記薄膜層のうちの少なくとも1層が、膜形成性の溶質と1種類以上の溶媒とを含有する塗布組成物を塗布し、該溶媒を乾燥した後、加熱、電離放射線照射又は両手段の併用による硬化により形成されたものであることを特徴とする(1)〜(5)のいずれかに記載の反射防止フィルム。
(7)上記低屈折率層が、熱または電離放射線硬化性の含フッ素硬化性樹脂を含有する組成物を硬化させて形成された層であることを特徴とする(1)〜(6)のいずれかに記載の反射防止フィルム。
(8)上記低屈折率層が少なくとも1種の無機微粒子を含有することを特徴とする(1)〜(7)のいずれかに記載の反射防止フィルム。
(9)上記低屈折率層に含有される無機微粒子の少なくとも1種が中空粒子であり、該中空粒子の屈折率が1.17以上1.40以下であることを特徴とする(8)記載の反射防止フィルム。
(10)上記高屈折率層及び上記中屈折率層の少なくともいずれかの層は、Ti、Zr、In、Zn、Sn、及びSbから選ばれた少なくとも1種の金属の酸化物を含有してなる無機微粒子、アニオン性分散剤、3官能以上の重合性基を有する硬化性樹脂、溶媒および重合開始剤を含有する塗布組成物を塗布し、溶媒を乾燥させた後、加熱、電離放射線照射あるいは両手段の併用により硬化して形成されたものであることを特徴とする(3)〜(9)のいずれかに記載の反射防止フィルム。
(11)上記高屈折率層および上記中屈折率層の少なくともいずれかの層に含まれる無機微粒子が、平均粒径が20nm以上120nm以下である二酸化チタンを主成分としてなることを特徴とする(10)記載の反射防止フィルム。
(12) 上記薄膜層の少なくとも1層または上記透明支持体と該薄膜層のうち透明支持体の最も近くに位置する薄膜層との間に位置する層として、下記式(IV)を満たす抵抗値(SR)を有する導電性層を有することを特徴とする(1)〜(11)のいずれかに記載の反射防止フィルム。
式(IV) LogSR≦12
(13) 上記透明支持体と上記薄膜層のうち透明支持体の最も近くに位置する薄膜層との間に、層厚1μm〜10μmのハードコート層を有することを特徴とする(1)〜(12)のいずれかに記載の反射防止フィルム。
(14) 2枚の表面保護フィルムを偏光子の表面及び裏面に貼り合わせてなる偏光板であって、少なくとも表面及び裏面のいずれかの該表面保護フィルムとして(1)〜(13)のいずれかに記載の反射防止フィルムを用いたことを特徴とする偏光板。
(15) 上記偏光板の表面保護フィルムの表面及び裏面のいずれかの一面側のみを上記反射防止フィルムを用いた偏光板であって、該偏光板の反射防止フィルムを有する側とは他面側の表面保護フィルム及び他面側の表面保護フィルムと偏光子との間に位置するフィルムのうち少なくともいずれかのフィルムが光学補償フィルムであることを特徴とする(14)に記載の偏光板。
(16)(1)〜(13)のいずれかに記載の反射防止フィルムまたは(14)若しくは(15)に記載の偏光板のいずれかを少なくとも1枚有する画像表示装置。
(17)(14)または(15)に記載の偏光板を少なくとも1枚有するTN、STN、VA、IPS、またはOCBのモードの透過型、反射型、または半透過型の液晶表示装置。
【発明の効果】
【0012】
本発明の450nm〜650nmまでの平均反射率が低い反射防止フィルムは、液晶ディスプレイに適用したとき、反射光の映り込みによる視認性の悪化が高いレベルで防止される。
さらに、波長380nm〜780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味で評価した時に、CIE1976L***色空間のa*、b*値がそれぞれ−8≦a*≦8、−10≦b*≦10の範囲内とすることで、ディスプレイに向かう使用者の背面の蛍光灯等、輝度の高い光源がディスプレイ表面に映りこんだときにも赤紫色や青紫色に強く着色することがなく、表示品位の低下が少ないと同時に層厚ムラに対する色味ムラが小さい。
また高屈折率層の屈折率を1.90以下にすることで、点欠陥、キズが目立ち難い。
さらにまた、各薄膜層の層厚分布を小さくすることができ、色味ムラが小さい。また、耐擦傷性に優れるとともに、良好な帯電防止性能を示す。
これらのことから、本発明の反射防止フィルムは、種々のモードの液晶表示装置に用いる偏光板、有機ELに用いる偏光板とλ/4板を組み合わせた表面保護板、PETフィルムに適用した平面CRTあるいはPDP用表面保護板等、様々なディスプレイに用いることができる。
【発明を実施するための最良の形態】
【0013】
以下に本発明を詳細に説明する。
本発明の反射防止フィルムは、透明支持体と、該透明支持体上に設けられた、層厚が200nm以下であり、互いに屈折率の異なる2層以上の薄膜層とを有する反射防止フィルムである。
なお本明細書において、「薄膜層」とは、反射防止フィルムに有される層であり、層厚が200nm以下の層をいう。
また、「数値A」〜「数値B」という記載は、数値が物性値、特性値等を表す場合に、「数値A以上数値B以下」の意味を表す。「(メタ)アクリロイル」の記載は、「アクリロイルもしくはメタクリロイル、または両者」の意味を表す。「(メタ)アクリレート」、「(メタ)アクリル酸」、「(メタ)アクリルアミド」も同様である。
【0014】
[反射防止フィルムの構成]
本発明の実施の一形態として好適な反射防止フィルムの基本的な構成について図面を参照しながら説明する。
ここで、図1は、本発明の反射防止フィルムの好ましい一実施形態を模式的に示す断面図である。
図1に示す反射防止フィルムは、優れた反射防止性能を有する3層薄膜干渉型反射防止フィルムであり、透明支持体1と、該透明支持体1の一方の面に位置する低屈折率層5と、低屈折率層5と該透明支持体1の間に、低屈折率層より高屈折率の高屈折率層4とを薄膜層として有する。さらに、高屈折率層4と透明支持体1との間には薄膜層としての中屈折率層3が設けられている。また、該薄膜層及び透明支持体1の間にはハードコート層2が設けられている。
そして、本実施形態において、透明支持体1、中屈折率層3、高屈折率層4および低屈折率層5は、以下の関係を満足する屈折率を有する。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
なお、中屈折率層は設けなくても良く、この場合、2層薄膜干渉型反射防止フィルムの層構成となる。ハードコート層を設けなくてもよいが、ハードコート層を設けた方が鉛筆引掻き試験などの耐擦傷性面が強くなり、好ましい。透明支持体とハードコート層との間に導電性層を設けてもよく、中屈折率層または高屈折率層を、導電性を有する層としてもよい。中屈折率層または高屈折率層とは別に導電性層を有してもよい。
【0015】
まず、本発明の特徴部分について説明すると、反射防止フィルムが有する薄膜層は、透明支持体の一方の面に位置する低屈折率層と、該低屈折率層と該透明支持体の間に有される、該低屈折率層より高屈折率の高屈折率層であり、さらに他の層を有してもよい。上記高屈折率層は、その屈折率が1.65〜1.90であり、5度入射の鏡面反射率の450nmから650nmの波長での平均値(以下、「鏡面反射率の平均値」という)が1%以下であり、波長380nmから780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味CIE1976L***色空間のa*、b*値が、それぞれ、−8≦a*≦8、−10≦b*≦10の範囲内、好ましくは−6≦a*≦6、−8≦b*≦8の範囲内にあること、より好ましくは−2≦a*≦6、−2≦b*≦8の範囲内にあることを特徴とする。
【0016】
本発明の反射防止フィルムを画像表示装置の表面に設置した場合、画像表示装置表面の外光の映り込みを著しく低減することができる。鏡面反射率の平均値を上述のように1%以下とすることにより、著しい映りこみ低減効果を得ることができ、望ましくは0.7%以下であり、さらに望ましくは0.5%以下で、0.4%以下が特に望ましい。
【0017】
高屈折率層の屈折率は、1.65〜1.90の範囲内であり、好ましくは1.70〜1.85である。本発明のような多層薄膜干渉型反射防止フィルムにおいては、一般には反射率を低下させるために、高屈折率層の屈折率を高くすることが望ましいとされている。しかし、発明者らが検証した結果、高屈折率の屈折率が高すぎると、各種点欠陥、キズが目立ちやすくなることが判明した。さらに、発明者が検証した結果、高屈折率の屈折率が高すぎると、各薄膜層の層厚分布に対する色味変化も大きく、ムラが目立ち易いことも判明した。本発明者らは、これらの問題点を解消するべく検討を重ねたところ、高屈折率層を上記の範囲内とすることで、鏡面反射率を前記の範囲とすることが可能であり、さらには、高屈折率層を上記の範囲内とすること、および波長380nmから780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味が、CIE1976L***色空間のa*、b*値がそれぞれ−8≦a*≦8、且つ、−10≦b*≦10の範囲内にすることで、上記問題点を解決することが可能であることを知見した。
また、高屈折率層の屈折率制御に際しては、後述するように二酸化チタンを主成分とする無機微粒子を用いることが好ましいが、二酸化チタンの光触媒作用のために、含有率が多くなりすぎると、耐光性が悪化するなどの問題が生じ、製造適性、耐久性などの面で問題となる場合があることが判明した。本発明者らは、高屈折率層の屈折率を上述の範囲内とする無機微粒子の含有率とすることで、図らずも、これらの製造適性、耐久性の面における問題も生じないことを知見した。
上記の、波長380nmから780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味の範囲は、反射色のニュートラリティーが優れていることも表している。すなわち、本発明の反射防止フィルムは、反射率、製造適性、耐久性のほかに、反射色のニュートラリティーが優れていることも同時に満たしていることを特徴とする。上記正反射光の色味の範囲は好ましくは−6≦a*≦6、且つ、−8≦b*≦8である。さらには、上記の色味変動範囲内で、各薄膜層のうちの任意の層の層厚が2.5%変動した時のa*の変化が|△a*|≦4、且つb*の変化が|△b*|≦5であるのが特に望ましい。
【0018】
鏡面反射率および色味の測定は、分光光度計“V−550”[日本分光(株)製]にアダプター“ARV−474”を装着して、380〜780nmの波長領域において、入射角θ(θ=5〜45°、5°間隔)における出射角−θの鏡面反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価することができる。さらに、測定された反射スペクトルから、CIE標準光源D65の各入射角の入射光に対する正反射光の色味を表すCIE1976L***色空間のL*値、a*値、b*値を算出し、反射光の色味を評価することができる。
【0019】
さらには、各薄膜層を以下の光学層厚の範囲とすることで、反射防止フィルムの反射率、製造適性、耐久性、反射色のニュートラリティーを一層優れたものとすることができる。
図1のような層構成では、特開昭59−50401号公報に記載されているように、中屈折率層が下記式(I’)、高屈折率層が下記式(II’)、低屈折率層が下記式(III’)をそれぞれ満足することが、反射防止性能をより向上できるため好ましい。
【0020】
式(I’) (hλ/4)×0.7<n11<(hλ/4)×1.3
式(II’) (iλ/4)×0.7<n22<(iλ/4)×1.3
式(III’) (jλ/4)×0.7<n33<(jλ/4)×1.3
(但し、式中、hは正の整数(一般に1、2または3)であり、n1は中屈折率層の屈折率であり、そして、d1は中屈折率層の層厚(nm)であり、iは正の整数(一般に1、2または3)であり、n2は高屈折率層の屈折率であり、そして、d2は高屈折率層の層厚(nm)であり、jは正の奇数(一般に1)であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の層厚(nm)である。ここでλは可視光線の波長(nm)であり、380〜680nmの範囲の値である。)
【0021】
さらに、中屈折率層が下記数式(I)、高屈折率層が下記数式(II)、低屈折率層が下記数式(III)をそれぞれ満足することが、特に好ましい。
ここで、λは500nmである。
式(I) lλ/4×0.80<n11<lλ/4×1.00
式(II) mλ/4×0.75<n22<mλ/4×0.95
式(III) nλ/4×0.95<n33<nλ/4×1.05
(但し、式中、lは1であり、n1は中屈折率層の屈折率であり、そして、d1は中屈折率層の層厚(nm)であり、mは2であり、n2は高屈折率層の屈折率であり、そして、d2は高屈折率層の層厚(nm)であり、nは1であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の層厚(nm)である)
【0022】
本発明の反射防止フィルムは、製造時の形態がフィルムをロール状に巻き取った形態をしているのが望ましい。その場合に、反射色の色味のニュートラリティーを得るためには、任意の1000m長の範囲の層厚の平均値d(平均値)、最小値d(最小値)、及び最大値d(最大値)をパラメーターとする下記式(V)で算出される層厚分布の値が、薄膜層の各層につき、7%以下であるのが好ましく、望ましくは5%以下、さらに望ましくは4%以下、3%以下が特に望ましい。
式(V) (最大値d−最小値d)×100/平均値d
【0023】
次に、本発明の反射防止フィルムを構成する各層について詳細に説明する。
[透明支持体]
本発明に用いる透明支持体の光透過率は、80%以上であることが好ましく、86%以上であることがさらに好ましい。透明支持体のヘイズは、2.0%以下であることが好ましく、1.0%以下であることがさらに好ましい。透明支持体の屈折率は、1.4〜1.7であることが好ましく、より好ましくは1.45〜1.55である。
このような性質を有する透明支持体としては、ガラス板よりもプラスチックフィルムの方が好ましい。プラスチックフィルムの材料の例には、セルロースエステル、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート、ポリエチレン−1,2−ジフェノキシエタン−4、4’−ジカルボキシレート、ポリブチレンテレフタレート)、ポリスチレン(例、シンジオタクチックポリスチレン)、ポリオレフィン(例、ポリプロピレン、ポリエチレン、ポリメチルペンテン)、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレートおよびポリエーテルケトンが含まれる。セルロースエステル、ポリカーボネート、ポリエチレンテレフタレートおよびポリエチレンナフタレートが好ましい。
特に、液晶表示装置に用いる場合、セルロースアシレートフィルムが好ましい。セルロースアシレートは、セルロースからエステル化してセルロースアシレートを作製できる。前述のセルロースがそのまま利用できる訳ではなく、リンター、ケナフ、パルプを精製して用いられる。
【0024】
本発明において、セルロースアシレートとはセルロースの脂肪酸エステルのことであるが、特に低級脂肪酸エステルが好ましい。
本発明で、低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味する。炭素原子数が2乃至4のセルロースアシレートが好ましい。セルロースアセテートが特に好ましい。セルロースアセテートプロピオネートやセルロースアセテートブチレートのような混合脂肪酸エステルを用いることも好ましい。
【0025】
セルロースアシレートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。又、セルロースアシレートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)で指標とされる分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0乃至5.0であることが好ましい。より好ましくは、1.0〜3.0であり、特に好ましくは1.0〜2.0である。
特に本発明においては、透明支持体として、酢化度が55.0乃至62.5%であるセルロースアシレートを使用することが好ましい。酢化度は、57.0乃至62.0%であることがさらに好ましく、59.0乃至61.5%が特に好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアシレート等の試験法)におけるアシル化度の測定および計算によって求められる。
【0026】
セルロースアシレートでは、セルロースの2位、3位、6位のヒドロキシルが均等に置換されるのではなく、6位の置換度が小さくなる傾向がある。本発明に用いるセルロースアシレートでは、セルロースの6位置換度が、2位、3位に比べて同程度または多いことが好ましい。
2位、3位、6位の置換度の合計に対する、6位の置換度の割合は、30乃至40%であることが好ましく、31乃至40%であることがさらに好ましく、32乃至40%であることが最も好ましい。
【0027】
透明支持体には、フィルムの機械的特性(膜の強度、カール、寸度安定性、滑り性等)、耐久性(耐湿熱性、耐候性等)等の特性を調整するために各種の添加剤を用いることが出来る。例えば、可塑剤(リン酸エステル類、フタル酸エステル類、ポリオールと脂肪酸とのエステル類等)、紫外線防止剤(例えば、ヒドロキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、シアノアクリレート系化合物等)、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン等)、微粒子(例えばSiO2、Al23、TiO2、BaSO4、CaCO3、MgCO3、タルク、カオリン等)、剥離剤、帯電防止剤、赤外吸収剤等が挙げられる。
これらの添加剤の詳細は、発明協会公開技法公技番号2001−1745号(2001年3月15日発行、発明協会),p.17−22に詳細に記載されている。
添加剤の使用量は、透明支持体全体の0.01〜20質量%であることが好ましく、0.05〜10質量%であることがさらに好ましい。
【0028】
透明支持体には、表面処埋を実施してもよい。表面処理の例には、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が含まれる。具体的には、例えば、発明協会公開技法公技番号2001−1745号(発行2001年3月15日)p.30−31に記載の内容、特開2001−9973号公報に記載の内容等が挙げられる。好ましくは、グロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理、更に好ましくはグロー放電処理と紫外線処理が挙げられる。
また、透明支持体の層厚は、30〜200μmとするのが好ましく、40〜150μmとするのが更に好ましい。
【0029】
[高屈折率層及び中屈折率層]
本発明の必須の薄膜層である高屈折率層の屈折率は、前記のように1.65〜1.90であり、1.70〜1.85であることが好ましい。本発明において任意の構成層である中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整される。中屈折率層の屈折率は、1.50〜1.80であることが好ましく、1.55〜1.70であることがさらに好ましい。
【0030】
上記中屈折率層は、上記高屈折率層と屈折率を異ならせた以外は同様に調整できるので、以下、特に高屈折率層について説明する。
上記高屈折率層は、Ti、Zr、In、Zn、Sn、及びSbから選ばれた少なくとも1種の金属の酸化物を含有してなる無機微粒子、アニオン性分散剤、3官能以上の重合性基を有する硬化性樹脂、溶媒および重合開始剤を含有する塗布組成物を塗布し、溶媒を乾燥させた後、加熱、電離放射線照射あるいは両手段の併用により硬化して形成されたものであるのが好ましい。硬化性樹脂や開始剤を用いる場合は、塗布後に熱および/または電離放射線による重合反応により硬化性樹脂を硬化させることで、耐傷性や密着性に優れる中屈折率層や高屈折率層が形成できる。
(無機微粒子)
上記無機微粒子としては、金属(例Ti、Zr、In、Zn、Sn、Sb、Al)の酸化物が好ましく、屈折率の観点から、二酸化チタンの微粒子が最も好ましい。ただし、導電性の観点からは、Sb、In、Snのうちの少なくとも1種類の金属の酸化物を主成分とする無機微粒子を用いることが好ましい。無機微粒子の量を変化させることで所定の屈折率に調整することができる。層中の無機微粒子の平均粒径は、二酸化チタンを主成分として用いた場合、20〜120nmであることが好ましく、さらに好ましくは30〜100nm、40〜90nmがさらに好ましい。この範囲内で、光活性の抑止ができ、ヘイズを抑え、分散安定性、表面の適度の凹凸による上層との密着性が良好となり、好ましい。
【0031】
上記二酸化チタンの微粒子としては、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有する二酸化チタンを主成分とする無機微粒子が特に好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明における二酸化チタンを主成分とする無機微粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。
二酸化チタンを主成分とする無機微粒子の一次粒子の質量平均径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。
【0032】
無機微粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。無機微粒子の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
二酸化チタンを主成分とする無機微粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。
【0033】
二酸化チタンを主成分とする無機微粒子に、Co(コバルト)、Al(アルミニウム)及びZr(ジルコニウム)から選ばれる少なくとも1つの元素を含有することで、二酸化チタンが有する光触媒活性を抑えることができ、本発明の高屈折率層および中屈折率層の耐候性を改良することができる。
特に、好ましい元素はCo(コバルト)である。また、2種類以上を併用することも好ましい。
【0034】
(分散剤)
無機微粒子の分散には、分散剤を用いるのが好ましく、該分散剤としては、アニオン性基を有するアニオン性分散剤が特に好ましい。
アニオン性基としては、カルボキシ基、スルホン酸基(及びスルホ基)、リン酸基(及びホスホノ基)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシ基、スルホン酸基、リン酸基及びその塩が好ましく、カルボキシ基及びリン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1個以上含有されていればよい。
無機微粒子の分散性をさらに改良する目的でアニオン性基は複数個が含有されていてもよい。平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。
【0035】
分散剤は、さらに架橋又は重合性官能基を含有することが好ましい。架橋又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。
本発明の高屈折率層に用いる二酸化チタンを主成分とする無機微粒子の分散に用いるとりわけ好ましい分散剤は、アニオン性基、及び架橋又は重合性官能基を有する分散剤である。
アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。分散剤のより好ましい質量平均分子量(Mw)は2000〜1000000であり、さらに好ましくは5000〜200000、特に好ましくは10000〜100000である。
【0036】
分散剤の無機微粒子に対する使用量は、無機微粒子100質量部に対して1〜50質量部の範囲が好ましく、5〜40質量部の範囲がより好ましく、5〜30質量部が最も好ましい。また、分散剤は2種類以上を併用してもよい。
【0037】
(硬化性樹脂)
硬化性樹脂としては、重合性化合物が好ましく、重合性化合物としては電離放射線硬化性の多官能モノマーや多官能オリゴマーが好ましく用いられる。これらの化合物中の官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
【0038】
光重合性官能基を有する光重合性多官能モノマーの具体例としては、
ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;
等を挙げることができる。
【0039】
さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。
【0040】
中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。多官能モノマーは、二種類以上を併用してもよい。
硬化性樹脂の使用量は、上述の各層の屈折率を満たす範囲で調整することができる。
【0041】
(重合開始剤)
重合開始剤としては、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。
光ラジカル重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーのベンゾイルベンゾエート、α−アミロキシムエステル、テトラメチルチウラムモノサルファイドおよびチオキサントン類等が挙げられる。
【0042】
市販の光ラジカル重合開始剤としては、日本化薬(株)製のカヤキュア(DETX-S,BP-100,BDMK,CTX,BMS,2-EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,500,907,369,1173,2959,4265,4263など)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等が挙げられる。
【0043】
特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(P.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)に記載されている。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が挙げられる。
【0044】
光重合開始剤は、硬化性樹脂100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI,EPA)などが挙げられる。
光重合反応は、高屈折率層の塗布および乾燥後、紫外線照射により行うことが好ましい。
また、高屈折率層には、[低屈折率層]において後述する一般式(I)で表されるオルガノシラン化合物及びその誘導体化合物のうち少なくともいずれかを含有させることもできる。
【0045】
高屈折率層には、前記の成分(無機微粒子、硬化性樹脂、重合開始剤、光増感剤など)以外に、界面活性剤、帯電防止剤、カップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、導電性の金属微粒子、などを添加することもできる。
【0046】
(溶媒)
上記溶媒としては、沸点が60〜170℃の液体を用いることが好ましい。具体的には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)等が挙げられる。中でもトルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが好ましく、特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
上記溶媒の使用量は、高屈折率層塗布組成物の固形分濃度が2〜30質量%となるように使用するのが好ましく、3〜20質量%となるように使用するのが更に好ましい。また、中屈折率層に関しては、塗布組成物の固形分濃度が1〜20質量%となるように使用するのが好ましく、2〜15質量%となるように使用するのが更に好ましい。
【0047】
(高(中)屈折率層の形成法)
高屈折率層および中屈折率層に用いる二酸化チタンを主成分とする無機微粒子は、分散物の状態で高屈折率層および中屈折率層の形成に使用することが好ましい。
無機微粒子の分散において、前記の分散剤の存在下で、上記溶媒中に分散することが好ましい。
【0048】
無機微粒子の分散は、分散機を用いて分散することができる。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。
無機微粒子は、分散媒体中でなるべく微細化されていることが好ましく、質量平均径は10〜120nmである。好ましくは20〜100nmであり、さらに好ましくは30〜90nm、特に好ましくは30〜80nmである。
無機微粒子を200nm以下に微細化することで透明性を損なわない高屈折率層および中屈折率層を形成できる。
【0049】
本発明に用いる高屈折率層および中屈折率層は、上記のようにして分散媒体中に無機微粒子を分散した分散液に、さらにマトリックス形成に必要なバインダー前駆体である硬化性樹脂(例えば、前述の電離放射線硬化性の多官能モノマーや多官能オリゴマーなど)、光重合開始剤等を加えて高屈折率層および中屈折率層形成用の塗布組成物とし、透明支持体上に高屈折率層および中屈折率層形成用の塗布組成物を塗布して、硬化性樹脂の架橋反応又は重合反応により硬化させて形成することが好ましい。
【0050】
さらに、高屈折率層および中屈折率層のバインダーを層の塗布と同時または塗布後に、分散剤と架橋反応又は重合反応させることが好ましい。
このようにして作製した高屈折率層および中屈折率層のバインダーは、例えば、上記の好ましい分散剤と電離放射線硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取りこまれた形となる。さらに高屈折率層および中屈折率層のバインダーは、アニオン性基が無機微粒子の分散状態を維持する機能を有し、架橋又は重合構造がバインダーに皮膜形成能を付与して、無機微粒子を含有する高屈折率層および中屈折率層の物理強度、耐薬品性、耐候性を改良する。
【0051】
高屈折率層の形成において、硬化性樹脂の架橋反応、又は、重合反応は、酸素濃度が10体積%以下の雰囲気で実施することが好ましい。
高屈折率層を酸素濃度が10体積%以下の雰囲気で形成することにより、高屈折率層の物理強度、耐薬品性、耐候性、更には、高屈折率層と高屈折率層と隣接する層との接着性を改良することができる。
好ましくは酸素濃度が6体積%以下の雰囲気で硬化性樹脂の架橋反応、又は、重合反応により形成することであり、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。
上記高屈折率層の厚みは、2層薄膜干渉型の場合は50〜200nmとするのが好ましく、60〜120nmとするのが更に好ましい。また、3層薄膜干渉型の場合は30〜200nmとするのが好ましく、75〜150nmとするのが更に好ましい。また、上記中屈折率層の厚みは、30〜200nmとするのが好ましく、40〜100nmとするのが更に好ましい。
【0052】
[低屈折率層]
本発明に好適に用いられる低屈折率層は、屈折率が1.30〜1.46であることが望ましく、更に望ましくは1.30〜1.44であり、1.35〜1.43であることが特に望ましい。上記範囲内とすることで反射率を抑え、膜強度を維持することができ、好ましい。低屈折率層中には無機微粒子が含有されるのが好ましく、無機微粒子のうちの少なくとも1種は中空粒子であることが好ましく、シリカを主成分とする中空粒子(以下、中空シリカ粒子)が特に好ましい。
低屈折率層の厚さは、50〜200nmであることが好ましく、70〜100nmであることがさらに好ましい。
低屈折率層のヘイズは、3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。
低屈折率層まで形成した反射防止フィルムの強度は、500g荷重の鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、反射防止フィルムの防汚性能を改良するために、表面の水に対する接触角が90゜以上であることが好ましい。更に好ましくは95゜以上であり、特に好ましくは100゜以上である。
【0053】
上記低屈折率層が、膜形成性の溶質と1種類以上の溶媒とを含有する塗布組成物を塗布し、該溶媒を乾燥した後、加熱、電離放射線照射又は両手段の併用による硬化により形成されたものであるのが好ましい。
上記溶質は、熱または電離放射線硬化性の含フッ素硬化性樹脂を含有する組成物であるのが好ましい。さらには、上記溶質は、少なくとも1種の無機微粒子を含有する組成物であるのが好ましい。
【0054】
(無機微粒子)
本発明の低屈折率層中に用いることのできる無機微粒子としては、中空粒子であることが好ましい。
中空粒子は屈折率が1.17〜1.40が好ましく、更に好ましくは1.17〜1.35、最も好ましくは1.17〜1.33である。以下、中空粒子として、中空シリカ粒子を例にとって記載する。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記式(VI)で表される空隙率xは、好ましくは10〜60%、更に好ましくは20〜60%、最も好ましくは30〜60%である。
式(VI) x=(4πa3/3)/(4πb3/3)×100
中空のシリカ粒子をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点から上記の範囲の屈折率の粒子が好ましい。
なお、これら中空シリカ粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定をおこなうことができる。
中空シリカの製造方法は、例えば特開2001−233611号公報や特開2002−79616号公報に記載されている。
【0055】
中空シリカの塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。この範囲内で、低屈折率化の効果や耐擦傷性の改良効果が良好で、低屈折率層表面に微細な凹凸ができることを防ぎ、黒の締まりなどの外観や積分反射率を良好に維持することができる。
中空シリカの平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
粒径を上記の範囲とすることで、空腔部の割合を充分に保ち、屈折率を充分に低下し、低屈折率層表面に微細な凹凸ができることを防ぎ、黒の締まりといった外観、積分反射率を良好に維持できる。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
【0056】
本発明においては、中空シリカと併用して空腔のないシリカ粒子を用いることができる。空腔のないシリカの好ましい粒子サイズは、5nm以上150nm以下、更に好ましくは10nm以上80nm以下、最も好ましくは15nm以上60nm以下である。
また、平均粒径が低屈折率層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することが好ましい。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
【0057】
中空粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、アクリロイル基またはメタクリロイル基を有するシランカップリング剤による処理が特に有効である。
【0058】
本発明の中空粒子の有機溶媒分散液は、中空粒子が下記一般式(I)で表されるオルガノシランの加水分解物およびその部分縮合物の少なくともいずれかにより分散性の改良処理がなされていることが好ましく、中空粒子の分散性の改良処理の際に、後述する酸触媒および金属キレート化合物のいずれか、あるいは両者が使用されることが好ましい。
上記分散性の改良処理は、オルガノシランと中空粒子と必要に応じて水とを、加水分解機能を有する触媒および縮合機能を有する金属キレート化合物の少なくともいずれかの存在下に、接触させることにより行われる。オルガノシランは、一部加水分解されていても良いし、部分縮合していても良い。オルガノシランは、加水分解に引き続いて部分縮合し、これが中空粒子の表面を修飾して、分散性が向上し、安定した中空粒子の分散液が得られる。
【0059】
(オルガノシラン化合物)
上記オルガノシラン化合物について詳細に説明する。上記オルガノシラン化合物は下記一般式(I)で表される。
一般式(I):(R10m−Si(X14-m
(式中、R10は置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。X1は水酸基または加水分解可能な基を表す。mは1〜3の整数を表す。)
【0060】
一般式(I)においてR10は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としてはメチル、エチル、プロピル、イソプロピル、ヘキシル、t−ブチル、sec−ブチル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
【0061】
1は、水酸基または加水分解可能な基を表す。加水分解可能な基としては、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、およびR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C25COO等が挙げられる)が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表す。R10もしくはX1が複数存在するとき、複数のR10もしくはX1は、それぞれ同じであっても異なっていても良い。mとして好ましくは1または2であり、特に好ましくは1である。
【0062】
10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、水酸基、メルカプト基、カルボキシ基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。なお、本明細書においては、水素原子を置換するものが単一の原子であっても、便宜上置換基として取り扱う。
10が複数ある場合は、少なくとも一つが、置換アルキル基もしくは置換アリール基であることが好ましく、中でも、下記一般式(II)で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。
【0063】
【化1】

【0064】
一般式(II)においてR1は、水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子または塩素原子を表す。上記アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。R1としては、水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
1は、単結合、エステル基、アミド基、エーテル基またはウレア基を表す。単結合、エステル基およびアミド基が好ましく、単結合およびエステル基が更に好ましく、エステル基が特に好ましい。
【0065】
1は、2価の連結鎖であり、具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミド)を有する置換もしくは無置換のアルキレン基、または内部に連結基を有する置換もしくは無置換のアリーレン基であり、なかでも、置換もしくは無置換の炭素数2〜10のアルキレン基、置換もしくは無置換の炭素数6〜20のアリーレン基、内部に連結基を有する炭素数3〜10のアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテル、あるいは、エステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテル、あるいは、エステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシ基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。
【0066】
nは0または1を表す。X1が複数存在するとき、複数のX1はそれぞれ同じであっても異なっていても良い。nとして好ましくは0である。
10は、一般式(I)のR10と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
1は、一般式(I)のX1と同義であり、ハロゲン、水酸基、無置換のアルコキシ基が好ましく、塩素、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
【0067】
一般式(I)の化合物は2種類以上を併用しても良い。以下に一般式(I)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0068】
【化2】

【0069】
【化3】

【0070】
これらの具体例の中で、(M−1)、(M−2)が特に好ましい。
本発明においては、一般式(I)で表されるオルガノシラン化合物の使用量は、特に制限はないが、中空粒子100質量部に対して1質量部〜300質量部とするのが好ましく、更に好ましくは3質量部〜100質量部、最も好ましくは5質量部〜50質量部である。後述する無機酸化物の表面の水酸基100モルあたりでは1〜300モルが好ましく、更に好ましくは5〜300モル、最も好ましくは10〜200モルである。オルガノシラン化合物の使用量が上記範囲であると、分散液の安定化効果が充分得られ、塗膜形成時に膜強度も高くなる。
【0071】
本発明においては、上記オルガノシランを加水分解物およびその部分縮合物の少なくともいずれかを中空粒子表面と作用させて中空粒子の分散性を改善することが好ましい。加水分解縮合反応は加水分解性基(X)1モルに対して0.3〜2.0モル、好ましくは0.5〜1.0モルの水を添加し、本発明に用いられる酸触媒または、金属キレート化合物の存在下、15〜100℃で、撹拌することにより行うことができる。
【0072】
(分散性改良処理の溶媒)
オルガノシランの加水分解物および部分縮合物の少なくとものいずれかによる分散性の改良処理は、無溶媒でも、溶媒中でも行うことができる。溶媒を用いる場合はこれらの濃度を適宜に定めることができる。溶媒としては成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒は、オルガノシラン加水分解物および部分縮合物の少なくともいずれかと触媒とを溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いられることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
【0073】
このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec −ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
【0074】
また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなどを、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を併用して使用することもできる。該処理における溶媒に対するオルガノシランの濃度は特に限定されるものではないが通常0.1質量%〜70質量%の範囲であり、好ましくは1質量%〜50質量%の範囲である。
本発明においては、アルコール系溶媒で中空粒子を分散した後に、分散性改良処理を行い、それに引き続いて分散溶媒を芳香族炭化水素溶媒やケトン系溶媒に置換することが好ましい。塗設時に併用する硬化性樹脂との親和性や分散物自身の安定性の向上の点から、ケトン系溶媒への置換が好ましい。
【0075】
(分散性の改良処理の触媒)
オルガノシランの加水分解物および部分縮合物の少なくとものいずれかによる分散性の改良処理は、触媒の存在下で行われることが好ましい。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;ジルコニウム、チタン、アルミニウム等を中心金属とするキレート化合物等が挙げられるが、中空粒子液の製造安定性や保存安定性の点から、本発明においては、酸触媒(無機酸類、有機酸類)およびキレート化合物が好ましい。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
【0076】
オルガノシランの加水分解性基がアルコキシドで、酸触媒が有機酸の場合には、有機酸のカルボキシ基やスルホ基がプロトンを供給するために、水の添加量を減らすことができ、オルガノシランのアルコキシド基1モルに対する水の添加量は、0〜2モルが好ましく、より好ましくは0〜1.5モル、さらに好ましくは、0〜1モル、特に好ましくは、0〜0.5モルである。アルコールを溶媒に用いた場合には、実質的に水を添加しない場合も好適である。
【0077】
酸触媒の使用量は、酸触媒が無機酸の場合には加水分解性基に対して0.01〜10モル%が好ましく、より好ましくは0.1〜5モル%であり、酸触媒が有機酸の場合には、水の添加量によって最適な使用量が異なるが、水を添加する場合には加水分解性基に対して0.01〜10モル%が好ましく、より好ましくは0.1〜5モル%であり、実質的に水を添加しない場合には、加水分解性基に対して1〜500モル%が好ましく、より好ましくは10〜200モル%であり、さらに好ましくは20〜200モル%であり、特に好ましくは50〜150モル%であり、とりわけ好ましくは50〜120モル%である。
処理は15〜100℃で撹拌することにより行われるがオルガノシランの反応性により調節されることが好ましい。
【0078】
(金属キレート化合物)
金属キレート化合物は、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す。)で表されるアルコールと、一般式R4COCH2COR5(式中、R4は炭素数1〜10のアルキル基を、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す。)で表される化合物とを配位子とした、Zr、TiまたはAlから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。
本発明に用いられる金属キレート化合物は、下記式
Zr(OR3p1(R4COCHCOR5p2
Ti(OR3q1(R4COCHCOR5q2、および
Al(OR3r1(R4COCHCOR5r2
で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR3およびR4は、同一または異なってもよく、炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R5は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1およびr2は、4あるいは6座配位となるように決定される整数を表す。
【0079】
これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;
ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;
ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
【0080】
上記金属キレート化合物は、縮合反応の速度および塗膜にした場合の膜強度の観点から、オルガノシラン100質量部に対し、好ましくは、0.01〜50質量部、より好ましくは、0.1〜50質量部、さらに好ましくは、0.5〜10質量部の割合で用いられる。
【0081】
(分散液の安定化添加剤)
本発明に用いられる分散液には、上記オルガノシランおよび酸触媒またはキレート化合物に加えて、一般式R4COCH2COR5で表されるβ−ジケトン化合物およびβ−ケトエステル化合物から選ばれる少なくとも1種の化合物を含有することが好ましく、本発明に用いられる分散液の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよびアルミニウム化合物から選ばれる少なくとも1種の化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシランと金属キレート成分の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。一般式R4COCH2COR5で表される化合物を構成するR4およびR5は、前記金属キレート化合物を構成する配位子のR4およびR5と同様である。
【0082】
一般式R4COCH2COR5で表されるβ−ジケトン化合物およびβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物およびβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明において一般式R4COCH2COR5で表されるβ−ジケトン化合物およびβ−ケトエステル化合物から選ばれる少なくとも1種の化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。この範囲において、得られる組成物の保存安定性が充分に発揮され好ましい。
【0083】
上記カップリング剤は、低屈折率層の無機微粒子の表面処理剤として低屈折率層塗布液調製以前にあらかじめ表面処理を施すために用いることが好ましい。さらに低屈折率層塗布液調製時に添加剤として添加して該層に含有させることが好ましい。このときには、前記の一般式R4COCH2COR5で表されるβ−ジケトン化合物およびβ−ケトエステル化合物から選ばれる少なくとも1種の化合物を含有することが好ましい。
無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
【0084】
(含フッ素硬化性樹脂)
上記含フッ素硬化性樹脂(以下、「含フッ素ポリマー」ともいう)としては、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。特に、本発明の低屈折率層は、含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位を必須の構成成分とする共重合体の硬化皮膜によって形成されるのが好ましい。低屈折率化と皮膜硬度の両立の観点から多官能(メタ)アクリレート等の硬化剤を併用することも好ましい。該含フッ素ポリマーと該多官能(メタ)アクリレートの混合比には特に制限はないが、乾燥後の被膜で両者が相分離を起こさない混合比にすることが望ましい。また、当然、どちらか一方だけを用いることもできる。多官能(メタ)アクリレートとしては、高屈折率層に記した光重合性多官能モノマーが具体例として挙げられる。
【0085】
以下に本発明の低屈性率層に用いられる好ましい含フッ素ポリマーの例を説明する。
含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学製)やM−2020(商品名、ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。本発明では共重合体のフッ素含率が20〜60質量%となるように含フッ素ビニルモノマーを導入することが好ましく、より好ましくは25〜55質量%の場合であり、特に好ましくは30〜50質量%の場合である。含フッ素ビニルモノマーの組成比は上記の範囲とすることで、屈折率を充分に低くするとともに、皮膜強度も維持することができる。
【0086】
上記低屈性率層に用いられる含フッ素ポリマーは架橋反応性基を有することが好ましい。架橋反応性付与のための構成単位としてはグリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシ基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。低屈折率層に用いられる含フッ素ポリマーとしての共重合体は、側鎖に(メタ)アクリロイル基を有する繰返し単位を必須の構成成分として有するのが好ましい。含フッ素ビニルモノマーから導かれる繰返し単位の種類によっても異なるが、一般に(メタ)アクリロイル基含有繰返し単位は5〜90質量%を占めることが好ましく、30〜70質量%を占めることがより好ましく、40〜60質量%を占めることが特に好ましい。これらの(メタ)アクリロイル基含有繰返し単位の組成比を高めれば皮膜強度は向上するが屈折率も高くなり、好ましい。
【0087】
本発明に有用な共重合体では上記含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位以外に、支持体への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜他のビニルモノマーを共重合することもできる。これらのビニルモノマーは目的に応じて複数を組み合わせてもよく、合計で共重合体中の0〜65mol%の範囲で導入されていることが好ましく、0〜40mol%の範囲であることがより好ましく、0〜30mol%の範囲であることが特に好ましい。
【0088】
併用可能なビニルモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−ヒドロキシエチル等)、スチレン誘導体(スチレン、p−ヒドロキシメチルスチレン、p−メトキシスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等)、アクリルアミド類(N,N−ジメチルアクリルアミド、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類(N,N−ジメチルメタクリルアミド)、アクリロニトリル等を挙げることができる。
【0089】
上記のポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。
【0090】
本発明に用いられる含フッ素ポリマーの好ましい形態として下記一般式IIIのものが挙げられる。
【0091】
【化4】

【0092】
一般式III中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N、Sから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*−(CH22−O−**, *−(CH22−NH−**,*−(CH24−O−**,*−(CH26−O−**,*−(CH22−O−(CH22−O−**,*−CONH−(CH23−O−**,*−CH2CH(OH)CH2−O−**,*−CH2CH2OCONH(CH23−O−**(*はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
【0093】
一般式III中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
【0094】
一般式III中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、支持体への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。
【0095】
好ましいビニルモノマーの例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。
【0096】
x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。但し、x+y+z=100である。好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。
【0097】
本発明に用いられる共重合体の特に好ましい形態として一般式IVが挙げられる。
【0098】


【化5】

【0099】
上記一般式IVにおいてX、x、yは一般式IIIと同じ意味を表し、好ましい範囲も同じである。
nは2≦n≦10の整数を表し、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を単位を表し、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
z1およびz2はそれぞれの繰返し単位のmol%を表し、0≦z1≦65、0≦z2≦65を満たす値を表す。但し、x+y+z1+z2=100である。それぞれ0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。
【0100】
一般式III又はIVで表される共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。
【0101】
以下に本発明で有用な共重合体の好ましい例を示すが本発明はこれらに限定されるものではない。
【0102】
【化6】

【0103】
【化7】

【0104】
【化8】

【0105】
【化9】

【0106】
本発明に用いられる含フッ素硬化性樹脂としての共重合体の合成は、種々の重合方法、例えば溶液重合、沈澱重合、懸濁重合、沈殿重合、塊状重合、乳化重合によって水酸基含有重合体等の前駆体を合成した後、前記高分子反応によって(メタ)アクリロイル基を導入することにより行なうことができる。重合反応は回分式、半連続式、連続式等の公知の操作で行なうことができる。
【0107】
重合の開始方法はラジカル開始剤を用いる方法、光または放射線を照射する方法等がある。これらの重合方法、重合の開始方法は、例えば鶴田禎二「高分子合成方法」改定版(日刊工業新聞社刊、1971)や大津隆行、木下雅悦共著「高分子合成の実験法」化学同人、昭和47年刊、124〜154頁に記載されている。
【0108】
上記重合方法のうち、特にラジカル開始剤を用いた溶液重合法が好ましい。溶液重合法で用いられる溶剤は、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールのような種々の有機溶剤の単独あるいは2種以上の混合物でも良いし、水との混合溶媒としても良い。
【0109】
重合温度は生成するポリマーの分子量、開始剤の種類などと関連して設定する必要があり0℃以下から100℃以上まで可能であるが、50〜100℃の範囲で重合を行なうことが好ましい。
【0110】
反応圧力は、適宜選定可能であるが、通常は、0.098〜9.8MPa(1〜100kg/cm2)、特に、0.098〜2.94MPa(1〜30kg/cm2)程度が望ましい。反応時間は、5〜30時間程度である。
【0111】
得られたポリマーの再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
このようにして得られる含フッ素硬化性樹脂の使用量は、低屈折率層塗布組成物の全固形分中10〜98質量%とするのが好ましく、
30〜95質量%とするのが更に好ましい。特に無機微粒子を併用する場合は、30〜80質量%とするのが好ましく、40〜75質量%とするのが更に好ましい。
【0112】
(低屈折率層形成用塗布組成物)
低屈折率層形成用の塗布組成物は、通常、液の形態をとり、好ましくは前記共重合体を含有し、必要に応じて各種添加剤およびラジカル重合開始剤を適当な溶剤に溶解して作製される。この際固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1〜20質量%程度である。
【0113】
ラジカル重合開始剤としては熱の作用によりラジカルを発生するもの、あるいは光の作用によりラジカルを発生するもののいずれの形態も可能である。
【0114】
熱の作用によりラジカル重合を開始する化合物としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾ−ビス−イソブチロニトリル、2−アゾ−ビス−プロピオニトリル、2−アゾ−ビス−シクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
【0115】
光の作用によりラジカル重合を開始する化合物を使用する場合は、電離放射線の照射によって皮膜の硬化が行われる。
このような光ラジカル重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。これらの光ラジカル重合開始剤と併用して増感色素も好ましく用いることができる。
【0116】
熱または光の作用によってラジカル重合を開始する化合物の添加量としては、炭素−炭素二重結合の重合を開始できる量であれば良く、低屈折率層形成組成物中の全固形分に対して0.1〜15質量%が好ましく、より好ましくは0.5〜10質量%であり、特に好ましくは2〜5質量%の場合である。
【0117】
(溶媒)
低屈折率層用塗布液組成物に含まれる溶媒としては、含フッ素硬化性樹脂が沈殿を生じることなく、均一に溶解または分散されるものであれば特に制限はなく2種類以上の溶剤を併用することもできる。好ましい例としては、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エステル類(酢酸エチル、酢酸ブチル等)、エーテル類(テトラヒドロフラン、1,4−ジオキサン等)、アルコール類(メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、等)、芳香族炭化水素類(トルエン、キシレン等)、水などを挙げることができる。
【0118】
(低屈折率層形成用組成物に好適に含まれるその他の化合物)
また、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低屈折率層全固形分の0〜20質量%の範囲で添加されることが好ましく、より好ましくは0〜10質量%の範囲で添加される場合であり、特に好ましくは0〜5質量%の場合である。
【0119】
低屈折率層は、無機フィラー、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。特に、無機微粒子、シランカップリング剤、滑り剤を含有することが好ましい。
【0120】
シランカップリング剤としては、前記一般式(I)で表される化合物、及び、又は、その誘導体化合物を用いることができる。好ましいのは、水酸基、メルカプト基、カルボキシ基、エポキシ基、アルキル基、アルコキシシリル基、アシルオキシ基、アシルアミノ基を含有するシランカップリング剤であり、特に好ましいのはエポキシ基、重合性のアシルオキシ基((メタ)アクリロイル)、重合性のアシルアミノ基(アクリルアミノ、メタクリルアミノ)を含有するシランカップリング剤である。
【0121】
一般式(I)で表される化合物で特に好ましいのは、架橋又は重合性官能基として(メタ)アクリロイル基を有する化合物であり、例えば、3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシランなどが挙げられる。
【0122】
前記滑り剤としては、ジメチルシリコーンなどのシリコーン化合物等、及びポリシロキサンセグメントが導入された含フッ素化合物が好ましい。
【0123】
(低屈折率層の形成)
低屈折率層は、含フッ素硬化性樹脂、その他所望により含有される任意成分を溶解あるいは分散させた塗布組成物を塗布と同時、または塗布・乾燥後に電離放射線照射(例えば光照射、電子線ビーム照射等が挙げられる。)や加熱することによる架橋反応、又は、重合反応により硬化して、形成することが好ましい。
特に、低屈折率層が電離放射線硬化性の化合物の架橋反応、又は、重合反応により形成される場合、架橋反応、又は、重合反応は酸素濃度が10体積%以下の雰囲気で実施することが好ましい。酸素濃度が10体積%以下の雰囲気で形成することにより、物理強度、耐薬品性に優れた最外層を得ることができる。
好ましくは酸素濃度が6体積%以下であり、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。
【0124】
酸素濃度を10体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
【0125】
[導電性層]
本発明においては、反射防止フィルムが有する薄膜層の少なくとも1層が導電性層であってもよい。すなわち薄膜層の少なくともいずれかが、導電性層を兼ねてもよい。又は透明支持体の最も近くに位置する薄膜層との間に位置する層として導電性層を設けてもよい。反射防止フィルムが導電性層を有することがフィルム表面での静電気防止の点で好ましい。
導電性層を形成する方法は、例えば、導電性微粒子と反応性硬化樹脂を含む導電性塗布液を塗布する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の従来公知の方法を挙げることができる。導電性層は、透明支持体上に直接又は透明支持体との接着を強固にするプライマー層を介して形成することができる。反射防止フィルムの最表層から近い層として導電性層を設ける場合には、層の厚さが薄くても十分に帯電防止性を得ることができ、好ましい。本発明においては、薄膜層の少なくとも1層または透明支持体と該薄膜層のうち透明支持体の最も近くに位置する薄膜層の間に位置する層を導電性層として有することが好ましい。塗布方法は、特に限定されず、塗布液の特性や塗工量に応じて、例えば、ロールコート、グラビアコート、バーコート、押出しコート等の公知の方法より最適な方法を選択して行えばよい。
【0126】
導電性層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。
導電性層の表面抵抗は、下記式(IV)を満たす抵抗値(SR)を有することが好ましい。
式(IV) LogSR≦12
LogSRが、5〜12であることがより好ましく、5〜9であることがさらに好ましく、5〜8であることが最も好ましい。導電性層の表面抵抗(SR)は、四探針法、または円電極法により測定することができる。
導電性層は、実質的に透明であることが好ましい。具体的には、導電性層のヘイズが、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。波長550nmの光の透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが最も好ましい。
【0127】
(導電性層の導電性無機微粒子)
導電性層は、導電性微粒子と反応性硬化樹脂とを溶媒に溶解してなる塗布組成物を用いて形成することができる。この場合には、導電性無機微粒子は、金属の酸化物または窒化物から形成することが好ましい。金属の酸化物または窒化物の例には、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが含まれる。酸化錫および酸化インジウムが特に好ましい。導電性無機微粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が含まれる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子から選ばれる少なくともいずれかを添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。
【0128】
導電性層に用いる導電性無機微粒子の一次粒子の平均粒子径は、1〜150nmであることが好ましく、5〜100nmであることがさらに好ましく、5〜70nmであることが最も好ましい。形成される導電性層中の導電性無機微粒子の平均粒子径は、1〜200nmであり、5〜150nmであることが好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。導電性無機微粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。
【0129】
導電性無機微粒子を表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれる。シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
導電性無機微粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。
二種類以上の導電性無機微粒子を導電性層内で併用してもよい。
【0130】
導電性層中の導電性無機微粒子の割合は、全固形分中20〜90質量%であることが好ましく、25〜85質量%であることが更に好ましく、30〜80質量%であることが最も好ましい。
【0131】
導電性無機微粒子は、分散物の状態で導電性層の形成に使用する。導電性無機微粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。導電性無機微粒子は、分散機を用いて媒体中に分散できる。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。
【0132】
(導電性層のバインダー)
導電性層のバインダーとしては、高屈折率層に用いた硬化性樹脂、特に電離放射線硬化性の多官能モノマーや多官能オリゴマーが好ましく用いられるが、反応性硬化樹脂を反応させてなる、架橋しているポリマーをバインダーとして用いることもできる。架橋しているポリマーはアニオン性基を有するのが好ましい。
架橋しているアニオン性基を有するポリマーは、アニオン性基を有するポリマーの主鎖が架橋している構造を有する。アニオン性基は、導電性無機微粒子の分散状態を維持する機能を有する。架橋構造は、ポリマーに皮膜形成能を付与して、導電性層を強化する機能を有する。
【0133】
ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。
ポリオレフィン主鎖は、飽和炭化水素からなる。ポリオレフィン主鎖は、例えば、不飽和重合性基の付加重合反応により得られる。ポリエーテル主鎖は、エーテル結合(−O−)によって繰り返し単位が結合している。ポリエーテル主鎖は、例えば、エポキシ基の開環重合反応により得られる。ポリウレア主鎖は、ウレア結合(−NH−CO−NH−)によって、繰り返し単位が結合している。ポリウレア主鎖は、例えば、イソシアネート基とアミノ基との縮重合反応により得られる。ポリウレタン主鎖は、ウレタン結合(−NH−CO−O−)によって、繰り返し単位が結合している。ポリウレタン主鎖は、例えば、イソシアネート基と、水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリエステル主鎖は、エステル結合(−CO−O−)によって、繰り返し単位が結合している。ポリエステル主鎖は、例えば、カルボキシ基(酸ハライド基を含む)と水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリアミン主鎖は、イミノ結合(−NH−)によって、繰り返し単位が結合している。ポリアミン主鎖は、例えば、エチレンイミン基の開環重合反応により得られる。ポリアミド主鎖は、アミド結合(−NH−CO−)によって、繰り返し単位が結合している。ポリアミド主鎖は、例えば、イソシアネート基とカルボキシ基(酸ハライド基を含む)との反応により得られる。メラミン樹脂主鎖は、例えば、トリアジン基(例、メラミン)とアルデヒド(例、ホルムアルデヒド)との縮重合反応により得られる。なお、メラミン樹脂は、主鎖そのものが架橋構造を有する。
【0134】
アニオン性基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アニオン性基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)およびリン酸基(ホスホノ)などが挙げられ、スルホン酸基およびリン酸基が好ましい。
アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。
アニオン性基とポリマーの主鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。
【0135】
架橋構造は、二以上の主鎖を化学的に結合(好ましくは共有結合)する。架橋構造は、三以上の主鎖を共有結合することが好ましい。架橋構造は、−CO−、−O−、−S−、窒素原子、リン原子、脂肪族残基、芳香族残基およびこれらの組み合わせから選ばれる二価以上の基からなることが好ましい。
【0136】
架橋しているアニオン性基を有するポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることがさらに好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、二以上のアニオン性基を有していてもよい。コポリマー中の架橋構造を有する繰り返し単位の割合は、4〜98質量%であることが好ましく、6〜96質量%であることがさらに好ましく、8〜94質量%であることが最も好ましい。
【0137】
架橋しているアニオン性基を有するポリマーの繰り返し単位は、アニオン性基と架橋構造の双方を有していてもよい。また、その他の繰り返し単位(アニオン性基も架橋構造もない繰り返し単位)が含まれていてもよい。
その他の繰り返し単位としては、アミノ基または四級アンモニウム基を有する繰り返し単位およびベンゼン環を有する繰り返し単位が好ましい。アミノ基または四級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。なお、アミノ基、四級アンモニウム基およびベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
アミノ基または四級アンモニウム基を有する繰り返し単位では、アミノ基または四級アンモニウム基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アミノ基または四級アンモニウム基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。アミノ基または四級アンモニウム基は、二級アミノ基、三級アミノ基または四級アンモニウム基であることが好ましく、三級アミノ基または四級アンモニウム基であることがさらに好ましい。二級アミノ基、三級アミノ基または四級アンモニウム基の窒素原子に結合する基は、アルキル基であることが好ましく、炭素原子数が1〜12のアルキル基であることが好ましく、炭素原子数が1〜6のアルキル基であることがさらに好ましい。四級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または四級アンモニウム基とポリマーの主鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。架橋しているアニオン性基を有するポリマーが、アミノ基または四級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることがさらに好ましく、0.1〜28質量%であることが最も好ましい。
【0138】
上記バインダーを、例えば特開2003−39586号公開公報に記載の以下の反応性有機珪素化合物と併用することもできる。反応性有機珪素化合物は、上記バインダーとしての電離放射線硬化型樹脂に対して10〜70質量%の範囲で使用される。反応性有機珪素化合物としては、前記一般式(I)で表されるオルガノシラン化合物が好ましく。特に一般式(II)で表されるオルガノシラン化合物が好ましく、これだけを樹脂成分として導電層を形成することが可能である。
上記導電性層の厚みは、30〜200nmとするのが好ましく、40〜180nmとするのが更に好ましい。
【0139】
[ハードコート層]
本発明においては、反射防止フィルムに物理強度を付与するために、透明支持体と薄膜層との間(薄膜層のうち透明支持体に最も近くに位置する層との間)にハードコート層を設けることが好ましい。特に、透明支持体と高屈折率層(または中屈折率層)の間に設けることが好ましい。また、ハードコート層の層厚は1〜10μmの範囲にあることが好ましい。
ハードコート層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。また、無機微粒子を含有することもできる。
【0140】
光重合性官能基を有する光重合性多官能モノマーの具体例としては、高屈折率層で例示したものが挙げられ、光重合開始剤、光増感剤を用いて重合することが好ましい。光重合反応は、ハードコート層の塗布および乾燥後、紫外線照射により行うことが好ましい。
ハードコート層は、脆性の付与のために質量平均分子量が500以上のオリゴマーまたはポリマー、あるいは両者を添加してもよい。
オリゴマー、ポリマーとしては、(メタ)アクリレート系、セルロース系、スチレン系の重合体や、ウレタンアクリレート、ポリエステルアクリレート等が挙げられる。好ましくは、側鎖に官能基を有するポリ(グリシジル(メタ)アクリレート)やポリ(アリル(メタ)アクリレート)等が挙げられる。
【0141】
ハードコート層中のオリゴマーおよびポリマーの合計量は、ハードコート層の全質量に対し5〜80質量%であることが好ましく、より好ましくは25〜70質量%、特に好ましくは35〜65質量%である。
【0142】
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層の形成において、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成される場合、架橋反応、又は、重合反応は酸素濃度が10体積%以下の雰囲気で実施することが好ましい。酸素濃度が10体積%以下の雰囲気で形成することにより、物理強度や耐薬品性に優れたハードコート層を形成することができ、好ましい。
好ましくは酸素濃度が6体積%以下の雰囲気で電離放射線硬化性化合物の架橋反応、又は、重合反応により形成することであり、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。
【0143】
酸素濃度を10体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
ハードコート層は、透明支持体の表面に、ハードコート層形成用の塗布組成物を塗布することで構築することが好ましい。
【0144】
塗布溶媒としては、高屈折率層で例示したケトン系溶剤であることが好ましい。ケトン系溶剤を用いることで、透明支持体(特に、トリアセチルセルロース支持体)の表面とハードコート層との接着性がさらに改良する。
特に好ましい塗布溶媒としては、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
塗布溶媒は、高屈折率層で例示したケトン系溶媒以外の溶媒を含んでいてもよい。
塗布溶媒には、ケトン系溶媒の含有量が塗布組成物に含まれる全溶媒の10質量%以上であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。
【0145】
[反射防止フィルムのその他の層]
反射防止フィルムには、以上に述べた以外の層を設けてもよい。例えば、接着層、シールド層、滑り層や光拡散性層、防眩性層を設けてもよい。シールド層は電磁波や赤外線を遮蔽するために設けられる。
【0146】
また、反射防止フィルムを液晶表示装置に適用する場合、平均粒径が0.1〜10μmの粒子を添加したアンダーコート層を有してもよいが、上記ハードコート層中に上記粒子を添加して光散乱性ハードコート層とすることが特に望ましい。このような層を設けることによって、視野角特性を改良することができ、好ましい。上記粒子の平均粒径は、好ましくは0.2〜5.0μm、更に好ましくは0.3〜4.0μm、特に好ましくは0.5〜3.5μmである。
【0147】
粒子の屈折率は1.35〜1.80であることが好ましく、より好ましくは1.40〜1.75、さらに好ましくは1.45〜1.75である。
【0148】
また、粒子の屈折率とアンダーコート層の粒子以外のバインダー成分の屈折率との屈折率の差が0.02以上であることが好ましい。より好ましくは、屈折率の差が0.03〜0.5、さらに好ましくは屈折率の差が0.05〜0.4、特に好ましくは屈折率の差が0.07〜0.3である。
アンダーコート層に添加する粒子としては、防眩性層を設けたときに防眩性層に添加されるマット粒子としての無機粒子と有機粒子が挙げられる。好ましくは、特開2002−55205号公報の[0018]に記載の粒子が挙げられる。
アンダーコート層は、ハードコート層と透明支持体の間に構築することが好ましい。また、アンダーコート層とハードコート層を兼ねることもできる。
アンダーコート層に平均粒径が0.1〜10μmの粒子を添加する場合、アンダーコート層のヘイズは、3〜60%であることが好ましい。より好ましくは、5〜50%であり、さらに好ましくは7〜45%、特に好ましくは10〜40%である。
【0149】
[反射防止フィルムの形成法等]
反射防止フィルムの各層は、ワイヤーバーコート法、グラビアコート、マイクログラビア法やダイコート法等の塗布方式により形成することができる。ウエット塗布量を最小化することで乾燥ムラをなくす観点でマイクログラビア法、グラビア法およびダイコート法が好ましい。本発明の反射防止フィルムの複数の層のうちの少なくとも2層を、1回の支持体フィルムの送り出し、各々の該光学薄膜の形成、フィルムの巻取り、の工程で形成するのが、生産コストの観点で好ましく、反射防止層が3層構成の場合には、3層を1回の工程で形成するのがより好ましい。このような製造方法は、塗布機の支持体フィルムの送り出しから巻取りまでの間に、塗布ステーションと乾燥、硬化ゾーンのセットを複数個、好ましくは光学薄膜の数と同じ数以上、縦列して設けることによって達成される。
【0150】
図2に装置構成の一例を示す。図2に示す装置は、ロールフィルムの送り出し(101)から巻取り(112)までの一工程中に、第一の塗布ステーション(102)、第一の乾燥ゾーン(103)、第一のUV照射機(104)、第二の塗布ステーション(105)、第二の乾燥ゾーン(106)、第二のUV照射機(107)、第三の塗布ステーション(108)、第三の乾燥ゾーン(109)、第三のUV照射機(110)、後加熱ゾーン(111)を含んだ例であり、例えば中屈折率層、高屈折率層、低屈折率層の3層、ハードコート層、高屈折率層、低屈折率層の3層等、一工程で3層までの機能層を形成することができる。必要に応じて、塗布ステーションの数を2つに減らした装置構成として中屈折率層と高屈折率層の2層だけを一工程で形成し、面状、層厚等をチェックした結果をフィードバックして得率を向上させたり、4つに増やした装置構成として、ハードコート層、中屈折率層、高屈折率層、低屈折率層を一工程で形成して塗布コストを大幅に低減する、といった製造方法とすることも、別の好ましい形態として挙げられる。また、UV硬化性樹脂だけで層を構成し、後加熱ゾーンを省略することもコスト、設置場所の観点からは望ましい。
【0151】
[偏光板用保護フィルム]
反射防止フィルムを偏光膜の表面保護フィルム(偏光板用保護フィルム)として用いる場合、薄膜層を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面を親水化することで、ポリビニルアルコールを主成分とする偏光膜との接着性を改良することができる。
【0152】
反射防止フィルムを偏光膜の表面保護フィルム(偏光板用保護フィルム)として用いる場合、透明支持体としては、トリアセチルセルロースフィルムを用いることが特に好ましい。
本発明における偏光板用保護フィルムを作製する手法としては、(1)予め鹸化処理した透明支持体の一方の面に上記の反射防止フィルムを構成する各層(例、高屈折率層、低屈折率層、好適にはハードコート層など、すなわち反射防止フィルムのうち、透明支持体を除いた層。以下「反射防止層」ともいう。)を塗設する手法、(2)透明支持体の一方の面に反射防止層を塗設した後、偏光膜と貼り合わせる側または両面を鹸化処理する手法、(3)透明支持体の一方の面に反射防止層の一部を塗設した後、偏光膜と貼り合わせる側または両面を鹸化処理した後に残りの層を塗設する手法、の3手法があげられるが、(1)は反射防止層を塗設するべき面まで親水化され、透明支持体と反射防止層との密着性の確保が困難となるため、(2)の手法が特に好ましい。
【0153】
(鹸化処理)
上記鹸化処理方法としては、下記の2つの方法が挙げられる。
(1)浸漬法
アルカリ液の中に反射防止フィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/lであり、特に好ましくは1〜2mol/lである。好ましいアルカリ液の液温は30〜70℃、特に好ましくは40〜60℃である。
上記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、反射防止フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
【0154】
鹸化処理することにより、透明支持体の反射防止層を有する表面と反対の表面が親水化される。偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。
鹸化処理は、高屈折率層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、浸漬法では同時に高屈折率層を有する表面までアルカリによるダメージを受けるため、必要最小限の反応条件とすることが重要となる。アルカリによる反射防止層の受けるダメージの指標として、反射防止層を有する側とは反対側の透明支持体の表面、すなわち反射防止フィルムの貼り合わせ面の、水に対する接触角を用いた場合、特に支持体がトリアセチルセルロースであれば、20度〜50度、好ましくは30度〜50度、より好ましくは40度〜50度とするのが好ましい。この範囲とすることで、偏光膜との接着性が充分に維持され、反射防止フィルムへのダメージが少なく、物理強度、耐光性を充分に維持でき、好ましい。また、アルカリ液によって、反射防止層に腐食、溶解、剥離など様々な悪影響が起こることを防ぐためには、反射防止層側をラミネートフィルムで保護してダメージを防ぐ鹸化法が好ましく用いられる。本方式を用いる反射防止層の種類に特に限定は無いが、反射防止層を蒸着膜やゾルーゲル膜で形成した際には、本様式が特に好ましい。
【0155】
(2)アルカリ液塗布法
上述の浸漬法における反射防止フィルムへのダメージを回避する手段として、適切な条件でアルカリ液を反射防止フィルムを有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、この時、反射防止フィルムの貼り合わせ面の水に対する接触角が、10〜50度となるように鹸化処理を行なうことが好ましい。また、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。本方式を用いる反射防止層の種類に特に限定は無いが、蒸着膜やゾル−ゲル膜で形成した際には、アルカリ液によって、これらの層が腐食、溶解、剥離など様々な悪影響が起こるのを防ぐことができ、特に好ましい。
【0156】
上記(1)、(2)のどちらの方法においても、ロール状の透明支持体から巻き出して反射防止層を形成後に行うことができるため、前述の反射防止フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。
【0157】
[偏光板]
本発明の偏光板は、2枚の表面保護フィルムを偏光子の表面及び裏面に貼り合わせてなる偏光板であって、少なくとも表面及び裏面のいずれかの該表面保護フィルムとして上述の本発明の反射防止フィルムを用いたことを特徴とする。
本発明の偏光板の好ましい実施形態の一例を図3に示す。図3に示す偏光板は、偏光膜の保護フィルム(偏光板用保護フィルム)の少なくとも一方に、本発明の反射防止フィルムを有する。図3は、反射防止フィルム(10)の透明支持体(1)がポリビニルアルコールからなる接着剤層(6)を介して偏光膜(7)に接着しており、もう一方の偏光膜の保護フィルム(8)が接着剤層(6)を介して偏光膜(7)の反射防止フィルムが接着している主面と反対側の主面と接着している。もう一方の保護フィルム(8)の偏光膜と接着している主面と反対側の面主面には粘着剤層(9)を有している。
本発明の反射防止フィルムを偏光板用保護フィルムとして用いることにより、物理強度、耐光性に優れた反射防止機能を有する偏光板が作製でき、大幅なコスト削減、表示装置の薄手化が可能となる。
【0158】
また、本発明の偏光板は、光学補償機能を有することもできる。その場合、2枚の表面保護フィルムの表面及び裏面のいずれかの一面側のみを上記反射防止フィルムを用いて形成されており、該偏光板の反射防止フィルムを有する側とは他面側の表面保護フィルムが光学補償フィルムであることが好ましいが、図3に示す偏光板の粘着剤層9側に光学補償フィルムを添付して用いてもよい。
本発明の反射防止フィルムを偏光板用保護フィルムの一方に、光学異方性のある光学補償フィルムを偏光膜の保護フィルムのもう一方に用いた偏光板を作製することにより、さらに、液晶表示装置の明室でのコントラスト、上下左右の視野角を改善することができる。
【0159】
[光学補償フィルム]
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点での一例としては、特開2001−100042号公報に記載されている光学補償フィルムが好ましい。
光学補償フィルムを偏光膜の保護フィルムとして用いる場合、偏光膜と貼り合わせる側の表面が鹸化処理されていることが好ましく、前記の鹸化処理に従って実施することが好ましい。
【0160】
[画像表示装置]
本発明の画像表示装置は、上述の本発明の反射防止フィルムまたは本発明の偏光板のいずれかを少なくとも1枚有する。
本発明の反射防止フィルムおよび偏光板は、液晶表示装置(LCD)、エレクトロルミネッセンスディスプレイ(ELD)などに好ましく適用できる。
図1に示すような本発明の反射防止フィルム、図3に示すような本発明の偏光板を、液晶表示装置の液晶セルのガラスに直接または他の層を介して接着して用いることができる。
本発明の偏光板は、ツイステッドネマチック(TN)、スーパーツイステッドネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。
また、透過型または半透過型の液晶表示装置に用いる場合には、市販の輝度向上フィルム(偏光選択層を有する偏光分離フィルム、例えば住友3M(株)製のD−BEFなど)と併せて用いることにより、さらに視認性の高い表示装置を得ることができる。
また、λ/4板と組み合わせることで、反射型液晶用の偏光板や、有機ELディスプレイ用表面保護板として表面および内部からの反射光を低減するのに用いることができる。
【実施例】
【0161】
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれによっていささかも限定して解釈されるものではない。
【0162】
<実施例1>
〔反射防止フィルムの作製〕
下記に示す通りに、各層形成用の塗布液を調整し各層を形成して、反射防止フィルムNo.1〜8を作製した。
【0163】
(ハードコート層用塗布液の調製)
下記組成物をミキシングタンクに投入し、攪拌してハードコート層塗布液とした。
トリメチロールプロパントリアクリレート(ビスコート#295(大阪有機化学(株)製)750.0質量部に、質量平均分子量15000のポリ(グリシジルメタクリレート)270.0質量部、メチルエチルケトン730.0質量部、シクロヘキサノン500.0質量部及び光重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)50.0質量部を添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層用の塗布液を調製した。
【0164】
(二酸化チタン微粒子分散液の調製)
二酸化チタン微粒子としては、コバルトを含有し、かつ水酸化アルミニウムと水酸化ジルコニウムを用いて表面処理を施した二酸化チタン微粒子(MPT−129C、石原産業(株)製、TiO2:Co34:Al23:ZrO2=90.5:3.0:4.0:0.5質量比)を使用した。
この粒子257.7質量部に、下記分散剤41.1質量部、およびシクロヘキサノン701.6質量部を添加してダイノミルにより分散し、質量平均径69nmの二酸化チタン分散液を調製した。
分散剤
【0165】
【化10】

【0166】
(中屈折率層用塗布液Aの調製)
上記の二酸化チタン分散液99.0質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA)68.2質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)3.7質量部、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.2質量部、メチルエチルケトン279.7質量部およびシクロヘキサノン1049.1質量部を添加して攪拌した。十分に攪拌ののち、孔径0.4μmのポリプロピレン製フィルターで濾過して中屈折率層用塗布液Aを調製した。
【0167】
(中屈折率層用塗布液Bの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA)95.8質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)5.2質量部、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.7質量部、メチルエチルケトン279.7質量部およびシクロヘキサノン1118.6質量部を添加して攪拌した。十分に攪拌ののち、孔径0.4μmのポリプロピレン製フィルターで濾過して中屈折率層用塗布液Bを調製した。
【0168】
表1に示す各サンプルの屈折率となるように、中屈折率用塗布液Aと中屈折率用塗布液Bとを適量混合し、各サンプル用の中屈折率塗布液を作製した。
【0169】
(高屈折率層用塗布液Aの調製)
上記の二酸化チタン分散液469.9質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)40.1質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)3.4質量部、光増感剤(カヤキュア−DETX、日本化薬(株)製)1.1質量部、メチルエチルケトン526.0質量部、およびシクロヘキサノン459.8質量部を添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過して高屈折率層用塗布液Aを調製した。
【0170】
(高屈折率層用塗布液Bの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)166.2質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)14.1質量部、光増感剤(カヤキュア−DETX、日本化薬(株)製)4.6質量部、メチルエチルケトン526.0質量部、およびシクロヘキサノン789.5質量部を添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過して高屈折率層用塗布液Bを調製した。
【0171】
表1に示す各サンプルの屈折率となるように、高屈折率層用塗布液Aと高屈折率用塗布液Bとを適量混合し、各サンプル用の高屈折率層用塗布液を作製した。
【0172】
(低屈折率層用塗布液の調製)
(パーフルオロオレフィン共重合体(1)の合成)
【0173】
【化11】

【0174】
内容量100mlのステンレス製撹拌機付オートクレーブに酢酸エチル40ml、ヒドロキシエチルビニルエーテル14.7gおよび過酸化ジラウロイル0.55gを仕込み、系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は、0.53MPa(5.4kg/cm2)であった。該温度を保持し8時間反応を続け、圧力が0.31MPa(3.2kg/cm2)に達した時点で加熱をやめ放冷した。室温まで内温が下がった時点で未反応のモノマーを追い出し、オートクレーブを開放して反応液を取り出した。得られた反応液を大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解してヘキサンから2回再沈殿を行うことによって残存モノマーを完全に除去した。乾燥後ポリマー28gを得た。次に該ポリマーの20gをN,N−ジメチルアセトアミド100mlに溶解、氷冷下アクリル酸クロライド11.4gを滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加え水洗、有機層を抽出後濃縮し、得られたポリマーをヘキサンで再沈殿させることによりパーフルオロオレフィン共重合体(1)を19g得た。得られたポリマーの屈折率は1.422であった。
【0175】
(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート(商品名:ケロープEP−12、ホープ製薬(株)製)3部を加え混合したのち、イオン交換水31部を加え、61℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1620であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
【0176】
(中空シリカ分散液の調製)
中空シリカ微粒子ゾル(イソプロピルアルコールシリカゾル、触媒化成工業(株)製CS60−IPA、平均粒子径60nm、シェル厚み10nm、シリカ濃度20%、シリカ粒子の屈折率1.31)500部に、アクリロイルオキシプロピルトリメトキシシラン30.5部、およびジイソプロポキシアルミニウムエチルアセテート1.51部加え混合した後に、イオン交換水9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加し、分散液を得た。その後、シリカの含率がほぼ一定になるようにシクロヘキサノンを添加しながら、圧力30Torrで減圧蒸留による溶媒置換を行い、最後に濃度調整により固形分濃度18.2%の分散液を得た。得られた分散液のIPA残存量をガスクロマトグラフィーで分析したところ0.5%以下であった。
【0177】
得られた中空シリカ分散液やゾル液を用いて、下記組成の組成物を混合し、得られた溶液を攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液A〜Eを調製した。
(低屈折率層用塗布液Aの組成)
DPHA 1.6g
P−1 6.3g
中空シリカ分散液(18.2%) 35.9g
RMS−033 0.5g
イルガキュア907 0.3g
ゾル液a 7.4g
MEK 288.0g
シクロヘキサノン 10.0g
【0178】
(低屈折率層用塗布液Bの組成)
DPHA 1.5g
P−1 5.6g
中空シリカ分散液(18.2%) 42.3g
RMS−033 0.5g
イルガキュア907 0.3g
ゾル液a 8.5g
MEK 281.3g
シクロヘキサノン 10.0g
【0179】
(低屈折率層用塗布液Cの組成)
DPHA 5.5g
P−1 2.3g
中空シリカ分散液(18.2%) 35.9g
RMS−033 0.5g
イルガキュア907 0.3g
ゾル液a 7.3g
MEK 288.1g
シクロヘキサノン 10.0g
【0180】
(低屈折率層用塗布液Dの組成)
DPHA 10.2g
MEK−ST−L(30%) 14.5g
RMS−033 0.6g
イルガキュア907 0.5g
ゾル液a 4.8g
MEK 309.4g
シクロヘキサノン 10.0g
【0181】
(低屈折率層用塗布液Eの組成)
P−1 14.4g
RMS−033 0.6g
イルガキュア907 0.7g
MEK 324.3g
シクロヘキサノン 10.0g
【0182】
それぞれ使用した化合物を以下に示す。
・P−1:パーフルオロオレフィン共重合体(1)
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(日本化薬(株)製)
・中空シリカ分散液:前記アクリロイルオキシプロピルトリメトキシシランで表面修飾した中空シリカゾル、固形分濃度18.2%。
・MEK:メチルエチルケトン
・MEK−ST−L:シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)
・RMS−033:反応性シリコーン(Gelest(株)製)
・イルガキュア907:光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製)
【0183】
(ハードコートAの作製)
層厚80μmの透明支持体としてのトリアセチルセルロースフィルム(TD80UF、富士写真フイルム(株)製、屈折率1.48)上に、前記組成のハードコート層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量300mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ8μmのハードコート層を形成した。
【0184】
(ハードコートBの作製)
層厚80μmの透明支持体としてのトリアセチルセルロースフィルム(TD80UF、富士写真フイルム(株)製、屈折率1.48)上に、日本ペルノックス(株)製のペルトロンC−4456−S7((固形分45%)ATO分散ハードコート剤、商品名)を塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して、厚み1μmの導電性層を形成した。その上に上記ハードコート層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量300mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ8μmのハードコート層を形成した。
【0185】
以上のハードコートAまたはBの上に、それぞれ所望の屈折率となるように調整した、中屈折率層用塗布液、高屈折率層用塗布液、低屈折率層用塗布液を図2に示す3つの塗布ステーションを有するグラビアコーターを用いて連続して塗布した。
【0186】
中屈折率層の乾燥条件は90℃、30秒とし、紫外線硬化条件は酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら180W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量400mJ/cm2の照射量とした。
硬化後の中屈折率層における屈折率、層厚は表1に示す通りに変化させた。
【0187】
高屈折率層の乾燥条件は90℃、30秒とし、紫外線硬化条件は酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度600mW/cm2、照射量400mJ/cm2の照射量とした。
硬化後の高屈折率層における屈折率、層厚は表1に示す通りに変化させた。
【0188】
低屈折率層の乾燥条件は90℃、30秒とし、紫外線硬化条件は酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度600mW/cm2、照射量600mJ/cm2の照射量とした。
【0189】
以上の方法で作製した反射防止フィルム1〜9の塗布液、屈折率、層厚を表1に示す。反射防止フィルム試料No.1〜3および7は本発明試料であり、その他は比較試料である。
【0190】
【表1】

【0191】
(反射防止フィルムの評価)
以下の方法により反射防止フィルムの諸特性の評価を行った。結果を表2に示す。
(1)鏡面反射率及び色味
分光光度計V−550(日本分光(株)製)にアダプターARV−474を装着して、380〜780nmの波長領域において、入射角5°における出射角5度の鏡面反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価した。さらに、測定された反射スペクトルから、CIE標準光源D65の5度入射光に対する正反射光の色味を表わすCIE1976L***色空間のL*値、a*値、b*値を算出し、反射光の色味を評価した。
【0192】
(2)反射率差
また、各試料について、低屈折率層を設けないフィルムを作成し、(1)と同じ方法で、鏡面反射率を測定し、(1)の鏡面反射率との差を算出した。
【0193】
(3)表面抵抗値測定
全てのサンプルについて25℃、60%RH条件下に試料を2時間置いた後に同条件下で表面抵抗値(SR)を円電極法で測定した。表2には、表面抵抗値の対数(logSR)で示した。
【0194】
(4)指紋付着性評価
表面の耐汚染性の指標として、サンプル表面に指紋を付着させてから、それをクリーニングクロスで拭き取ったときの状態を観察して、以下のように指紋付着性を評価した。
○:指紋が完全に拭き取れる
△:指紋がやや見える
×:指紋がほとんど拭き取れない
【0195】
(5)鉛筆硬度評価
耐傷性の指標としてJIS K 5400に記載の鉛筆硬度評価を行った。反射防止フィルムを温度25℃、60%RHで2時間調湿した後、JIS S 6006に規定する3Hの試験用鉛筆を用いて、1kgの荷重で行い、下記のように評価した。
○:n=5の評価において傷が全く認められない
△:n=5の評価において傷が1または2つ
×:n=5の評価において傷が3つ以上
【0196】
(6)ゴミ付き性評価
反射防止フィルムの透明支持体側をCRT表面に張り付け、0.5μm以上のホコリおよびティッシュペーパー屑を、1ft3(立方フィート)当たり100〜200万個有する部屋で24時間使用した。反射防止フィルム100cm2当たり、付着したホコリとティッシュペーパー屑の数を測定し、それぞれの結果の平均値が20個未満の場合をA、20〜49個の場合をB、50〜199個の場合をC、200個以上の場合をDとして評価した。
【0197】
(7)スチールウール耐傷性評価
ラビングテスターを用いて、以下の条件でこすりテストをおこなった。
評価環境条件:25℃、60%RH
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)にスチールウール(日本スチールウール(株)製、ゲレードNo.0000)を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:500g/cm2、先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
◎:非常に注意深く見ても、全く傷が見えない。
○:非常に注意深く見ると僅かに弱い傷が見える。
○△:弱い傷が見える。
△:中程度の傷が見える。
△×〜×:一目見ただけで分かる傷がある。
【0198】
(8)キズのてかり
上記スチールウール耐傷性評価で発生したキズのてかり(光沢)具合を以下の基準で評価した。
◎:光沢がない
○:僅かに弱い光沢がある。
△:弱い光沢がある。
×:光沢がある。
【0199】
(9)密着性評価
反射防止フィルムの低屈折率層を有する側の表面にカッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて合計100個の正方形の升目を刻み、日東電工(株)製のポリエステル粘着テープ(NO.31B)を圧着して密着試験を同じ場所で繰り返し3回行った。剥がれの有無を目視で観察し、下記の4段階評価を行った。
◎:100個の升目中に剥がれが全く認められなかったもの
○:100個の升目中に剥がれが認められたものが2升以内のもの
△:100個の升目中に剥がれが認められたものが3〜10升のもの
×:100個の升目中に剥がれが認められたものが10升を超えたもの
【0200】
(10)耐光性
耐光性の評価
サンシャインウエザーメーター(S−80、スガ試験機(株)製)を用いて、サンシャインカーボンアーク灯、相対湿度60%、200時間の露光後の各反射防止フィルムを温度25℃、相対湿度60%の条件で2時間調湿した。
各反射防止フィルムの高屈折率層を有する側の表面において、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて合計100個の正方形の升目を刻み、日東電工(株)製のポリエステル粘着テープ(NO.31B)における密着試験を同じ場所で繰り返し3回行った。剥がれの有無を目視で観察し、下記の4段階評価を行った。
◎:100升において剥がれが全く認められなかったもの
○:100升において剥がれが全く認められなかったものの、顕微鏡観察において、キズ端部に微小な剥離が観察されたもの
△:100升において剥がれが認められたものが10升以内のもの
×:100升において剥がれが認められたものが10升をこえたもの
【0201】
【表2】

【0202】
表2に示される通り、本発明の試料No.1〜3および7において、反射率が低く、反射の色味がニュートラルで、キズのてかり、耐光性などの諸特性に優れる反射防止フィルムが得られた。
【0203】
[実施例2]
実施例1で作成した9枚の反射防止フィルムを、それぞれ、2.0mol/L、55℃のNaOH水溶液中に2分間浸漬してフィルムの裏面のトリアセチルセルロース面を鹸化処理した。80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フィルム(株)製)を同条件で鹸化処理した。ポリビニルアルコールにヨウ素を吸着させ、延伸して偏光子を作成した。この偏光子の片面に、鹸化処理後の反射防止フィルム、反対側の片面に鹸化処理後のとりアセチルセルロースフィルムを接着、保護して偏光板をそれぞれ作成した。このようにして作成した偏光板を、反射防止フィルム側が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えて評価した結果を表3に示す。
【0204】
【表3】

【0205】
なお、試料No.10は反射防止フィルムの代わりに、表面に反射防止フィルムの形成されていないTD80UAを用いた。映り込み及び色味評価は明室で、<黒表示したディスプレイに>白い服を映りこませ、下記の基準で判定した。
(映り込み評価基準)
○:気にならないもしくはじっくり見て気になる
△:少し気になる
×:気になる
(色味評価基準)
○:気にならない
△:少し気になる
×:気になる
(キズのてかり評価基準)
上述のキズのてかりと同じ評価法、評価基準でキズのてかりを評価した。
【0206】
表3に示す通り、本発明の試料No.1〜3および7において、背景の映りこみが極めて少なく、反射の色味が気にならなく、キズのてかりが目立たない表示品位の非常に高い画像表示装置が得られた。
【0207】
[実施例3]
視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムに光学補償層を有する視野角拡大フィルム(ワイドビューフィルムSA−12B、富士写真フィルム(株)製)を用いた以外は、実施例2と同様に液晶表示装置を作成した。本発明の試料No.1〜3および7において、背景の映りこみが極めて少なく、反射の色味が気にならず、明室でのコントラストに優れ、且つ、上下左右の視野角が非常に広く、極めて視認性に優れ、反射の色味が気にならない表示品位の高い液晶表示装置が得られた。
【0208】
[実施例4]
実施例1で作成した反射防止フィルムを有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、本発明の試料No.1〜3および7において、ガラス表面での反射が抑えられ、視認性の高い、反射の色味が気にならない表示装置が得られえた。
【0209】
[実施例5]
実施例2で作成した片面反射防止フィルム付き偏光板の反射防止フィルムを有している側の反対面にλ/4板を張り合わせ、有機EL表示装置の表面のガラス板に貼り付けたところ、本発明の試料No.1〜3および7において、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い、反射の色味が気にならない表示装置が得られた。
【0210】
[実施例6]
片面下塗り層を有し、厚み188μmのポリエチレンテレフタレートフィルム(コスモシャインA4100、帝人(株)製、屈折率:1.65)の下塗り面に実施例1の反射防止フィルムNo.1と同じ方法で、ハードコート/中屈折率層/高屈折率層/低屈折率層を形成し、実施例1と同様の評価を行った。反射光の色味が著しく低減され、また、鉛筆高度が非常に高く、フラットCRT、およびPDPの最表面に貼り付けたところ、低反射、反射光の色味低減、および高い膜硬度を同時に満足した表示装置が得られた。
【図面の簡単な説明】
【0211】
【図1】本発明の3層薄膜干渉型の反射防止フィルムの代表的な層構成を模式的に示す断面図である。
【図2】本発明の反射防止フィルムを製造するための装置の構成の一例を示す模式図である。
【図3】本発明の偏光板を模式的に示す断面図である。
【符号の説明】
【0212】
1 透明支持体
2 ハードコート層
3 中屈折率層
4 高屈折率層
5 低屈折率層
6 接着剤層
7 偏光膜
8 反対側の表面保護フィルム
9 粘着剤層
10 反射防止フィルム
101 ロールフィルムの送り出し
102 第一の塗布ステーション
103 第一の乾燥ゾーン
104 第一のUV照射機
105 第二の塗布ステーション
106 第二の乾燥ゾーン
107 第二のUV照射機
108 第三の塗布ステーション
109 第三の乾燥ゾーン
110 第三のUV照射機
111 後乾燥ゾーン
112 ロールフィルムの巻取り

【特許請求の範囲】
【請求項1】
透明支持体と、該透明支持体上に設けられた、層厚が200nm以下であり、互いに屈折率の異なる2層以上の薄膜層とを有する反射防止フィルムであって、
上記反射防止フィルムは、薄膜層として、透明支持体の一方の面に位置する低屈折率層と、該低屈折率層と該透明支持体の間に、該低屈折率層より高屈折率の高屈折率層とを有し、
上記高屈折率層は、その屈折率が1.65〜1.90であり、
上記反射防止フィルムは、5度入射の鏡面反射率の450nmから650nmの波長での平均値が1%以下であり、波長380nmから780nmの領域におけるCIE標準光源D65の5度入射光に対する正反射光の色味CIE1976L***色空間のa*、b*値が、それぞれ、−8≦a*≦8、−10≦b*≦10の範囲内にあることを特徴とする反射防止フィルム。
【請求項2】
上記透明支持体の屈折率が1.45〜1.55であり、低屈折率層の屈折率が1.30〜1.46、であることを特徴とする請求項1に記載の反射防止フィルム。
【請求項3】
上記透明支持体と上記高屈折率層との間に、該高屈折率層より屈折率が低く且つ上記低屈折率層より屈折率が高い中屈折率層を有し、該透明支持体の屈折率が1.45〜1.55、該低屈折率層の屈折率が1.30〜1.46、該中屈折率層の屈折率が1.50〜1.80であることを特徴とする請求項1又は2に記載の反射防止フィルム。
【請求項4】
設計波長λ(=500nm)に対して、上記中屈折率層が下式(I)を、上記高屈折率層が下式(II)を、上記低屈折率層が下式(III)をそれぞれ満足することを特徴とする請求項3に記載の反射防止フィルム。
式(I) lλ/4×0.80<n11<lλ/4×1.00
式(II) mλ/4×0.75<n22<mλ/4×0.95
式(III) nλ/4×0.95<n33<nλ/4×1.05
(但し、式中、lは1であり、n1は中屈折率層の屈折率であり、そして、d1は中屈折率層の層厚(nm)であり、mは2であり、n2は高屈折率層の屈折率であり、そして、d2は高屈折率層の層厚(nm)であり、nは1であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の層厚(nm)である)
【請求項5】
反射防止フィルムの反射率と、低屈折率層を設けずに高屈折率層を最表層とした時との反射率の差が5〜8%であることを特徴とする請求項1〜4のいずれかに記載の反射防止フィルム。
【請求項6】
上記薄膜層のうちの少なくとも1層が、膜形成性の溶質と1種類以上の溶媒とを含有する塗布組成物を塗布し、該溶媒を乾燥した後、加熱、電離放射線照射又は両手段の併用による硬化により形成されたものであることを特徴とする請求項1〜5のいずれかに記載の反射防止フィルム。
【請求項7】
上記低屈折率層が、熱または電離放射線硬化性の含フッ素硬化性樹脂を含有する組成物を硬化させて形成された層であることを特徴とする請求項1〜6のいずれかに記載の反射防止フィルム。
【請求項8】
上記低屈折率層が少なくとも1種の無機微粒子を含有することを特徴とする請求項1〜7のいずれかに記載の反射防止フィルム。
【請求項9】
上記低屈折率層に含有される無機微粒子の少なくとも1種が中空粒子であり、該中空粒子の屈折率が1.17以上1.40以下であることを特徴とする請求項8記載の反射防止フィルム。
【請求項10】
上記高屈折率層及び上記中屈折率層の少なくともいずれかの層は、Ti、Zr、In、Zn、Sn、及びSbから選ばれた少なくとも1種の金属の酸化物を含有してなる無機微粒子、アニオン性分散剤、3官能以上の重合性基を有する硬化性樹脂、溶媒および重合開始剤を含有する塗布組成物を塗布し、溶媒を乾燥させた後、加熱、電離放射線照射あるいは両手段の併用により硬化して形成されたものであることを特徴とする請求項3〜9のいずれかに記載の反射防止フィルム。
【請求項11】
上記高屈折率層および上記中屈折率層の少なくともいずれかの層に含まれる無機微粒子が、平均粒径が20nm以上120nm以下である二酸化チタンを主成分としてなることを特徴とする請求項10記載の反射防止フィルム。
【請求項12】
上記薄膜層の少なくとも1層または上記透明支持体と該薄膜層のうち透明支持体の最も近くに位置する薄膜層との間に位置する層として、下記式(IV)を満たす抵抗値(SR)を有する導電性層を有することを特徴とする請求項1〜11のいずれかに記載の反射防止フィルム。
式(IV) LogSR≦12
【請求項13】
上記透明支持体と上記薄膜層のうち透明支持体の最も近くに位置する薄膜層との間に、層厚1μm〜10μmのハードコート層を有することを特徴とする請求項1〜12のいずれかに記載の反射防止フィルム。
【請求項14】
2枚の表面保護フィルムを偏光子の表面及び裏面に貼り合わせてなる偏光板であって、少なくとも表面及び裏面のいずれかの該表面保護フィルムとして請求項1〜13のいずれかに記載の反射防止フィルムを用いたことを特徴とする偏光板。
【請求項15】
上記偏光板の表面保護フィルムの表面及び裏面のいずれかの一面側のみを上記反射防止フィルムを用いた偏光板であって、該偏光板の反射防止フィルムを有する側とは他面側の表面保護フィルム及び他面側の表面保護フィルムと偏光子との間に位置するフィルムのうち少なくともいずれかのフィルムが光学補償フィルムであることを特徴とする請求項14に記載の偏光板。
【請求項16】
請求項1〜13のいずれかに記載の反射防止フィルムまたは請求項14若しくは15に記載の偏光板のいずれかを少なくとも1枚有する画像表示装置。
【請求項17】
請求項14または15に記載の偏光板を少なくとも1枚有するTN、STN、VA、IPS、またはOCBのモードの透過型、反射型、または半透過型の液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−17870(P2006−17870A)
【公開日】平成18年1月19日(2006.1.19)
【国際特許分類】
【出願番号】特願2004−193595(P2004−193595)
【出願日】平成16年6月30日(2004.6.30)
【出願人】(000005201)富士写真フイルム株式会社 (7,609)
【Fターム(参考)】