説明

温度測定器、成膜装置、及び成膜基板製造方法

【課題】断熱性能が向上され、耐熱温度の向上が図られた温度測定器、それを備えた成膜装置、それを用いた成膜基板製造方法を提供すること。
【解決手段】温度検出部1からの信号を記録する記録部2を内側容器3に収容し、その内側容器3を外側容器4〜6に収容することで断熱する構成とする。外側容器4〜6を、板厚方向に所定間隔の隙間部を有する複数の壁体により構成し、板厚方向に隣接する壁体間の熱伝導を減らす。同様に、外側容器4と内側容器3との間に隙間部を形成すると共に、内側容器3と記録部2との間に隙間部を形成する構成とする。さらに、外側容器の壁体を、内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が小さい材質によって形成する。これにより、外側容器で受けた熱を、同一壁体内に伝熱し均一化することで、局所的な高温部の発生を抑える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、温度測定器、成膜装置、及び成膜基板製造方法に関するものである。
【背景技術】
【0002】
従来、例えば、真空チャンバ内で基板の処理などを行う成膜装置は、チャンバ内を加熱又は冷却すると共に、チャンバ内の温度を測定している。そのため、温度測定用のセンサがチャンバに固定されている。そして、成膜処理を行う真空チャンバ内は、高温環境であるため、センサ類を断熱材で保護する必要がある。
【0003】
真空環境における断熱技術としては、下記特許文献1に記載の多層断熱ブランケットが知られている。この特許文献1に記載の技術では、断熱性能の改善を目的として、例えば、金属が蒸着されたフィルムを積層することで、ふく射による伝熱を抑制している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2004−251369号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、成膜基板の製造工程において、品質管理の一貫として、基板の温度履歴を計測することが求められている。上記のチャンバに固定された温度センサでは、設置部近傍の温度しか計測することができないため、移動する基板の温度履歴を計測することは困難であった。また、成膜チャンバ内の温度は、高温環境となるため、断熱性能の向上が求められている。従来の断熱構造では、高温環境に耐えられず、センサに接続された記録部が壊れてしまい、温度履歴を計測することができないという問題があった。
【0006】
本発明は、上記の課題を解決するために成されたものであり、断熱性能が向上され、耐熱温度の向上が図られた温度測定器を提供することを目的とする。
【0007】
また、本発明は、上記の課題を解決するために成されたものであり、断熱性能が向上され、耐熱温度の向上が図られた温度測定器を備え、基板の温度履歴を測定することが可能な成膜装置を提供することを目的とする。
【0008】
また、本発明は、上記の課題を解決するために成されたものであり、基板の温度履歴を測定することが可能な成膜基板製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明による温度測定器は、温度に関する信号を記録する記録部が断熱容器内に収容された温度測定器であって、断熱容器は、記録部との間に隙間部を形成し記録部を収容する内側容器と、内側容器との間に隙間部を形成し、内側容器を収容する外側容器と、を備え、外側容器の壁体は、内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が小さい材質によって形成されていることを特徴としている。
【0010】
このような温度測定器は、温度検出部から出力された信号を記録する記録部が、内側容器に収容され、その内側容器は、外側容器に収容されることで断熱されている。具体的には、外側容器と内側容器との間に隙間部を有し、内側容器と記録部との間に隙間部を有する構成であるため、外側容器と記録部との間の熱伝導による伝熱を限りなく減らすことができる。温度測定器が真空環境で使用される場合には、対流熱伝達による伝熱を考慮する必要がないため、ほどんど、ふく射のみの伝熱とすることができる。さらに、温度測定器は、外側容器の壁体の材質が、内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が小さい材質によって形成されている。これにより、外側容器で受けた熱を、同一壁体において熱伝導により伝熱することで、同一壁体内の温度を均一化することができる。すなわち、外側容器において、局所的な高温部の発生を抑えて、熱を分散させることができる。また、内側容器を、外側容器と比較して熱容量が大きいものとすることが可能であるため、記録部に最も近い内側容器に対して、局所的な伝熱を回避すると共に、温度上昇を抑制することが可能となる。これらにより、断熱性能が向上され、耐熱温度の向上が図られた温度測定器を提供することができる。
【0011】
ここで、外側容器は、板厚方向に互いに離間して配置された複数の壁体を有することが好適である。外側容器は、板厚方向に所定間隔の隙間部を有する複数枚の壁体により構成されているため、板厚方向に隣接する壁体同士の熱伝導による伝熱を限りなく減らすことができる。温度測定器が真空環境で使用される場合には、対流熱伝達による伝熱を考慮する必要がないため、ほとんど、ふく射のみで伝熱されることになる。このような構成の外側容器によれば、断熱性能を一層向上させることができる。
【0012】
また、内側容器及び外側容器の壁体には、温度検出部と記録部とを電気的に接続する配線を通過させる貫通孔が設けられ、各壁体に設けられた貫通孔は、互いの軸心がずれて配置されていることが好ましい。これにより、外側容器と、内側容器とに設けられた貫通孔が、同一の軸線上に配置されることを防止することができ、外側容器の外部と、内側容器の内部とが、一連の貫通孔によって直接的に連通することが防止される。その結果、断熱性能の向上を図ることができる。
【0013】
また、内側容器は、銅によって形成され、外側容器は、ステンレス鋼によって形成されていることが好適である。このように外側容器の壁体をステンレス鋼によって構成し、内側容器を銅によって構成することで、外側容器の壁体内の温度を均一化することができる。また、内側容器を、外側容器と比較して熱容量が大きいものとすることができ、断熱性能を向上させることが可能となる。
【0014】
また、記録部は、セラミックからなるブロック体によって支持されていることが好ましい。これにより、熱伝導率が比較的低いセラミックを用いて、内側容器と記録部との間の隙間を確保して記録部を支持することが可能である。
【0015】
また、本発明の成膜装置は、基板に薄膜層を成膜する成膜装置であって、薄膜層を成膜するための成膜材料が設置され、基板上に薄膜層を成膜する成膜室と、基板を搬送する搬送手段と、基板の搬送に連動して移動可能であり、基板の温度に関する信号を記録する記録部が断熱容器内に収容された温度測定器と、を具備し、温度測定器の断熱容器は、温度検出部から出力された温度に関する信号を記録する記録部と、記録部との間に隙間部を形成し記録部を収容する内側容器と、板厚方向に互いに離間して配置された複数の壁体を有し、内側容器との間に隙間部を形成し、内側容器を収容する外側容器と、を備え、外側容器の壁体は、内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が低い材質から形成されていることを特徴としている。
【0016】
このような成膜装置は、基板の搬送に連動して移動可能とされ、基板の温度履歴を測定可能な温度測定器を備えている。この温度測定器は、温度検出部から出力された信号を記録する記録部が、内側容器に収容され、その内側容器は、外側容器に収容されることで断熱されている。具体的には、外側容器と内側容器との間に隙間部を有し、内側容器と記録部との間に隙間部を有する構成であるため、外側容器と記録部との間の熱伝導による伝熱を限りなく減らすことができる。温度測定器が真空環境で使用される場合には、対流熱伝達による伝熱を考慮する必要がないため、ほとんど、ふく射のみで伝熱されることになる。さらに、温度測定器は、外側容器の壁体の材質が、内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が小さい材質によって形成されている。これにより、外側容器で受けた熱を、同一壁体において熱伝導により伝熱することで、同一壁体内の温度を均一化することができる。すなわち、外側容器において、局所的な高温部の発生を抑えて、熱を分散させることができる。また、内側容器を、外側容器と比較して熱容量が大きいものとすることが可能であるため、記録部に最も近い内側容器に対して、局所的な伝熱を回避すると共に、温度上昇を抑制することが可能となる。これらにより、断熱性能が向上され、耐熱温度の向上が図られた温度測定器を備えた成膜装置を提供することができる。なお、温度測定器の移動は、基板を搬送する搬送手段によって行われる温度測定器の搬送でもよく、基板の搬送手段とは別に記録部を搬送させる専用の搬送手段によって行われる温度測定器の搬送でもよい。基板の搬送に連動して温度測定器を移動可能とは、温度測定器を基板と共に搬送可能な場合に限定されず、温度測定器と基板とを併走可能な場合も含まれるものである。
【0017】
ここで、外側容器は、板厚方向に互いに離間して配置された複数の壁体を有することが好適である。外側容器は、板厚方向に所定間隔の隙間部を有する複数枚の壁体により構成されているため、板厚方向に隣接する壁体同士の熱伝導による伝熱を限りなく減らすことができる。温度測定器が真空環境で使用される場合には、対流熱伝達による伝熱を考慮する必要がないため、ほとんど、ふく射のみで伝熱されることになる。このような構成の外側容器によれば、断熱性能を一層向上させることができる。
【0018】
また、内側容器及び外側容器の壁体には、温度検出部と記録部とを電気的に接続する配線を通過させる貫通孔が設けられ、各壁体に設けられた貫通孔は、互いの軸心がずれて配置されていることが好ましい。これにより、外側容器と、内側容器とに設けられた貫通孔が、同一の軸線上に配置されることを防止することができ、外側容器の外部と、内側容器の内部とが、一連の貫通孔によって直接的に連通することが防止される。その結果、断熱性能の向上を図ることができる。
【0019】
また、内側容器は、ステンレス鋼によって形成され、外側容器は、銅によって形成されていることが好適である。このように外側容器の壁体を銅によって構成し、内側容器をステンレス銅によって構成することで、外側容器の壁体内の温度を均一化することができる。また、内側容器を、外側容器と比較して熱容量が大きいものとすることができ、断熱性能を向上させることが可能となる。
【0020】
また、記録部は、セラミックからなるブロック体によって支持されていることが好ましい。これにより、熱伝導率が比較的低いセラミックを用いて、内側容器と記録部との間の隙間を確保して記録部を支持することが可能である。
【0021】
また、本発明の成膜基板製造方法は、基板上に薄膜層が成膜された成膜基板を製造する方法であって、薄膜層を成膜するための成膜材料が設置された成膜室内で、基板上に薄膜層を成膜する成膜工程と、基板を搬送する搬送工程と、基板の温度履歴を測定する温度測定器の記録部を断熱容器内に収容し、温度測定器を基板の搬送に連動して移動させながら温度履歴を測定する温度測定工程と、を備えることを特徴としている。
【0022】
このような成膜基板製造方法では、基板の搬送に連動させて、温度測定器を移動しながら基板の温度履歴を測定する温度測定工程を備える構成であるため、基板の温度履歴を計測することができる。なお、基板の搬送に連動して温度測定器を移動させるとは、温度測定器を基板と共に搬送させる場合に限定されず、温度測定器と基板とを併走させる場合も含まれるものである。
【発明の効果】
【0023】
本発明の温度測定器によれば、記録部を保護する内側容器及び外側容器を備え、これらの内側容器及び外側容器によって断熱性能の向上が図られているため、耐熱温度の向上を図り、高温環境での温度測定を可能とすることができる。
【0024】
本発明の成膜装置によれば、断熱性能が向上され、耐熱温度の向上が図られた温度測定器を備え、基板の温度履歴を測定することができる。
【0025】
本発明の成膜基板製造方法によれば、温度測定器を用いて、基板の温度履歴を測定することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の実施形態に係る温度測定器を示す断面図である。
【図2】本発明の実施形態に係る温度測定器が搭載された搬送トレイを示す平面図である。
【図3】本発明の実施形態に係る温度測定器が搭載された搬送トレイを示す側面図である。
【図4】本発明の実施形態に係る成膜装置を示す概略構成図である。
【発明を実施するための形態】
【0027】
本発明に係る温度測定器、成膜装置、及び成膜基板製造方法について図面を参照して説明する。なお、「上」、「下」等の方向を示す語は、図面に示される状態に基づいており、便宜的なものである。
【0028】
(温度測定器)
図1は、本発明の実施形態に係る温度測定器を示す断面図である。図1に示すように、本実施形態に係る温度測定器10は、温度検出部1、ロガー(記録部)2、第1容器(内側容器)3、第2容器(外側容器)4、第3容器(外側容器)5、第4容器(外側容器)6を備えている。そして、第1容器3、第2容器4、第3容器5、及び第4容器6が、本発明の断熱容器に相当する。
【0029】
温度検出部1は、温度を検出するものであり、温度に関する信号を出力可能な構成とされている。例えば、熱電対温度計を適用することが可能である。温度検出部1には、電気信号を伝達可能な配線1aが接続されている。配線1aは、温度検出部1とロガー2とを電気的に接続する。
【0030】
ロガー2は、温度検出部1から出力された信号を受信して記録するものである。ロガー2は、受信した信号を、所定の時間(例えば1秒)ごとに記録する。
【0031】
(第1容器:内側容器)
第1容器3は、ロガー2を収容する容器である。第1容器3は、例えば、箱型を成し、ロガー2を収容する容器本体31と、容器本体31の開口部を覆う蓋体32と、を備えている。容器本体31は、ロガー2を下方から覆う底板(壁体)31a、及びロガー2を側方(4方向)から覆う側板(壁体)31bによって構成されている。これらの底板31a及び側板31bは、隣接する壁体同士の縁部が例えば溶接等により接合されている。蓋体32は、ロガー2を上方から覆う天板(壁板)として機能するものである。蓋体32は、容器本体31に着脱可能な構成とされている。
【0032】
第1容器3を構成する各壁体(31a,31b,32)は、例えば、銅板によって形成されている。銅板の厚さは、例えば0.1mm程度とされている。
【0033】
そして、ロガー2は、セラミック製のブロック体(支持体)12によって、下方から支持されて、底板31a上に載置されている。ロガー2を支持する支持体の形状として、立方体、直方体、円柱体、円筒体、角筒体、板材などが挙げられる。ブロック体12の形状としては、ロガー2と、第1容器3との接触面を小さくするものが、好ましく、これにより、熱伝導による伝熱を減らすことができる。ブロック体12を構成する材料としては、耐熱性を有し熱伝導率が低いセラミックなどが挙げられる。
【0034】
また、ロガー2は、第1容器3を構成する各壁体(31a,31b,32)に対して、所定の隙間部を有するように配置されている。第1容器3の各壁体とロガー2との間の隙間部の大きさは、例えば1mm程度とされている。ロガー2は、平面視において、底板31aの中央に配置されている。また、第1容器3の壁体(例えば側板31b)には、板厚方向に貫通する貫通孔14が形成され、配線1aが挿通されている。
【0035】
(第2容器:外側容器)
第2容器4は、第1容器3を収容する容器である。第2容器4は、例えば、箱型を成し、第1容器3を収容する容器本体41と、容器本体41の開口部を覆う蓋体42と、を備えている。容器本体41は、第1容器3を下方から覆う底板(壁板)41a、及び第1容器3を側方(4方向)から覆う側板(壁板)41bによって構成されている。これらの底板41a及び側板41bは、隣接する壁体同士の縁部が例えば溶接等により接合されている。蓋体42は、第1容器3を上方から覆う天板(壁板)として機能するものである。蓋体42は、容器本体41に着脱可能な構成とされている。
【0036】
第2容器4を構成する各壁体(41a,41b,42)は、例えば、ステンレス鋼製の板材によって形成されている。ステンレス鋼製の板材の厚さは、例えば0.5mm程度とされている。
【0037】
そして、第1容器3は、セラミック製のブロック体(支持体)12によって、下方から支持されて、底板41a上に載置されている。第1容器3を支持する支持体の形状として、立方体、直方体、円柱体、円筒体、角筒体、板材などが挙げられる。ブロック体12の形状としては、第1容器3と、第2容器4との接触面を小さくするものが、好ましく、これにより、熱伝導による伝熱を減らすことができる。ブロック体12を構成する材料としては、耐熱性を有し熱伝導率が低いセラミックなどが挙げられる。
【0038】
また、第1容器3は、第2容器4を構成する各壁体(41a,41b,42)に対して、所定の隙間部を有するように配置されている。第2容器4の各壁体と第1容器3の各壁体との間の隙間部の大きさは、例えば1mm程度とされている。第1容器3は、平面視において、底板41aの中央に配置されている。また、第2容器4の壁体(例えば側板41b)には、板厚方向に貫通する貫通孔14が形成され、配線1aが挿通されている。
【0039】
(第3容器:外側容器)
第3容器5は、第2容器4を収容する容器である。第3容器5は、例えば、箱型を成し、第2容器4を収容する容器本体51と、容器本体51の開口部を覆う蓋体52と、を備えている。容器本体51は、第2容器4を下方から覆う底板(壁板)51a、及び第2容器4を側方(4方向)から覆う側板(壁板)51bによって構成されている。これらの底板51a及び側板51bは、隣接する壁体同士の縁部が例えば溶接等により接合されている。蓋体52は、第2容器5を上方から覆う天板(壁板)として機能するものである。蓋体52は、容器本体51に着脱可能な構成とされている。
【0040】
第3容器5を構成する各壁体(51a,51b,52)は、例えば、ステンレス鋼製の板材によって形成されている。ステンレス鋼製の板材の厚さは、例えば0.5mm程度とされている。
【0041】
そして、第2容器4は、セラミック製のブロック体(支持体)12によって、下方から支持されて、底板51a上に載置されている。第2容器4を支持する支持体の形状として、立方体、直方体、円柱体、円筒体、角筒体、板材などが挙げられる。ブロック体12の形状としては、第2容器4と、第3容器5との接触面を小さくするものが、好ましく、これにより、熱伝導による伝熱を減らすことができる。ブロック体12を構成する材料としては、耐熱性を有し熱伝導率が低いセラミックなどが挙げられる。
【0042】
また、第2容器4は、第3容器5構成する各壁体(51a,51b,52)に対して、所定の隙間部を有するように配置されている。第3容器5の各壁体と第2容器4の各壁体との間の隙間部の大きさは、例えば1mm程度とされている。第2容器4は、平面視において、底板51aの中央に配置されている。また、第3容器5の壁体(例えば側板51b)には、板厚方向に貫通する貫通孔14が形成され、配線1aが挿通されている。
【0043】
(第4容器:外側容器)
第4容器6は、第3容器5を収容する容器である。第4容器6は、例えば、箱型を成し、第3容器5を収容する容器本体61と、容器本体61の開口部を覆う蓋体62と、を備えている。容器本体61は、第3容器5を下方から覆う底板(壁板)61a、及び第3容器5を側方(4方向)から覆う側板(壁板)61bによって構成されている。これらの底板61a及び側板61bは、隣接する壁体同士の縁部が例えば溶接等により接合されている。蓋体62は、第3容器6を上方から覆う天板(壁板)として機能するものである。蓋体62は、容器本体61に着脱可能な構成とされている。
【0044】
第4容器6を構成する各壁体(61a,61b,62)は、例えば、ステンレス鋼製の板材によって形成されている。ステンレス鋼製の板材の厚さは、例えば0.5mm程度とされている。
【0045】
そして、第3容器5は、セラミック製のブロック体(支持体)12によって、下方から支持されて、底板61a上に載置されている。第3容器5を支持する支持体の形状として、立方体、直方体、円柱体、円筒体、角筒体、板材などが挙げられる。ブロック体12の形状としては、第3容器5と、第4容器6との接触面を小さくするものが、好ましく、これにより、熱伝導による伝熱を減らすことができる。ブロック体12を構成する材料としては、耐熱性を有し熱伝導率が低いセラミックなどが挙げられる。
【0046】
また、第3容器5は、第4容器6構成する各壁体(61a,61b,62)に対して、所定の隙間部を有するように配置されている。第4容器6の各壁体と第3容器5の各壁体との間の隙間部の大きさは、例えば1mm程度とされている。第3容器5は、平面視において、底板61aの中央に配置されている。また、第4容器6の壁体(例えば側板61b)には、板厚方向に貫通する貫通孔14が形成され、配線1aが挿通されている。なお、第4容器6の外形は、例えば、長さL30cm×幅W20cm×高さH15cm程度とすることができる。
【0047】
(作用)
本実施形態の温度測定器10を用いた温度測定について説明する。温度測定器10は、移動する測定対象と共に移動しながらの測定が可能である。温度検出部1は、測定対象部位(例えば、基板上)に配置されている。温度検出部1は、検出した温度に関する信号を出力する。ロガー2は、温度検出部1から出力された信号を受信して記録する。温度測定終了後、ロガー2によって記録された信号を解析することで、温度履歴を取得することができる。
【0048】
次に、高温真空環境での使用について説明する。本実施形態に係る温度測定器10は、例えば600℃以上の高温環境において、温度測定が可能な構成とされている。図1では、温度測定器10が図示右側へ移動し、上下方向から加熱されている状態を示している。加熱源からの熱は、ふく射によって伝熱され、第4容器6の蓋体62及び底板61aが加熱される。蓋体62及び底板61aに伝達された熱は、熱伝導によって、側板61bに伝達される。第4容器6を構成する各壁体(61a,61b,62)は、略同一の温度となる。
【0049】
第4容器6を構成する壁体(61a,61b,62)に伝達された熱は、ふく射によって、第3容器5を構成する壁体(51a,51b,52)に伝達される。第3容器5を構成する各壁体は略同一の温度となる。第3容器5を構成する壁体に伝達された熱は、ふく射によって、第2容器4を構成する壁体(41a,41b,42)に伝達される。第3容器5を構成する各壁体は略同一の温度となる。また、第2容器4を構成する壁体に伝達された熱は、ふく射によって、第1容器3を構成する壁体(31a,31b,32)に伝達される。第1容器3を構成する各壁体は略同一の温度となり、第1容器3内の温度は、30℃〜40℃程度に維持される。
【0050】
このような本実施形態に係る温度測定器10によれば、ロガー2が断熱容器によって保護され、断熱容器内が高温環境となることが防止されるため、ロガー2に測定結果に関する信号を記録することで、温度履歴に関する情報を取得することができる。断熱容器は、内側容器及び外側容器を備え、外側容器は、第2容器、第3容器、及び第4容器によって、板厚方向に所定間隔の隙間部を有する複数間の壁体により構成されているため、板厚方向に隣接する壁体同士の熱伝導による伝熱を限りなく減らすことができる。温度測定器10が真空環境で使用される場合には、対流熱伝達による伝熱を考慮する必要がないため、ほとんど、ふく射のみで伝熱されることになる。
【0051】
温度測定器10では、第2容器4と第1容器3との間に隙間部が形成されると共に、第1容器3とロガー2との間に隙間部が形成される構成であるため、熱伝導による伝熱を限りなく減らすことが可能となり、ほどんど、ふく射のみの伝熱とすることができる。
【0052】
さらに、温度測定器10は、外側容器4〜6の壁体が、第1容器3の材質(銅)と比較して、熱伝導率が高く、かつ、熱容量が小さい材質(ステンレス:SUS304)によって形成されている。これにより、第4容器6で受けた熱を、同一容器の壁体において熱伝導により伝熱することで、同一容器の壁体の温度を均一化することができる。すなわち、第4容器6において、局所的な高温部の発生を抑えて、熱を分散させることができる。同様に、第3容器5において、壁体の温度を均一化することができ、第2容器4において、壁体の温度を均一化することができる。
【0053】
また、内側の第1容器3は、外側の容器4〜6と比較して熱容量が大きいため、ロガー2に最も近い第1容器3に対して、局所的な伝熱を回避すると共に温度上昇を抑制することが可能となる。これらにより、断熱性能が向上され、耐熱温度の向上が図られた温度測定器が実現されている。
【0054】
また、温度測定器10は、容器3〜6の壁体31b,41b,51b,61bに、温度検出部1とロガー2とを電気的に接続する配線1aを通過させる貫通孔14が設けられ、各壁体31b,41b,51b,61bに設けられた貫通孔14は、互いの軸心がずれて配置されている構成である。そのため、各容器3〜6に設けられた貫通孔14が、同一の軸線上に配置されることが防止され、外側の容器4〜6と内側の第1容器3とが、一連の貫通孔によって直線的に連通することが防止される。その結果、断熱性能の向上が図られている。
【0055】
(温度測定器を備えた搬送トレイ)
図2は、本発明の実施形態に係る温度測定器が搭載された搬送トレイを示す平面図、図3は、本発明の実施形態に係る温度測定器が搭載された搬送トレイを示す側面図である。図2及び図3に示すように、温度測定器10は、例えば、基板搬送トレイ80に設置されて使用される。
【0056】
搬送トレイ80は、矩形の板材から形成され、基板81を載置し搬送する。搬送トレイ80には、板厚方向に貫通する開口部80aが形成されている。搬送トレイ80には、搬送トレイ80の長さに対して2/3程度の長さ(搬送方向の長さ)の基板81が、配置されている。すなわち、搬送トレイ80の開口部80aの2/3程度の領域が、基板81に覆われ、残りの領域が、温度測定器10を配置する領域として利用可能な構成である。なお、温度測定器10は、搬送トレイ80の中央部に配置されていてもよく、長手方向の一端側に配置されていてもよい。
【0057】
搬送トレイ80の開口部80aには、温度測定器10を支持するための支持部材82が設けられている。図2では、搬送トレイ80の幅方向に延在する棒状の支持部材82が複数設けられている。このような搬送トレイ80は、搬送手段91によって搬送されて、基板の温度履歴の測定に利用される。
【0058】
(成膜装置)
図4は、本発明の実施形態に係る成膜装置を示す概略構成図である。図4に示す成膜装置100は、基板に対して成膜等の処理を施すためのものである。成膜装置100は、例えば、RPD(Reactive Plasma Deposition)法を用いて、イオン化された蒸発材料を、基板上に蒸着することで成膜する装置である。
【0059】
成膜装置100は、ロードロックチャンバ121、バッファチャンバ122、成膜チャンバ(成膜室)123、バッファチャンバ124、ロードロックチャンバ125を備えている。これらのチャンバ121〜125は、この順に並んで配置されている。全てのチャンバ121〜125が真空容器にて構成され、チャンバ121〜125の出入口には、開閉ゲート131〜136が設けられている。成膜装置100には、基板を搬送するための搬送装置91(図3参照)が設けられている。搬送装置91は例えば公知のローラー91aとこのローラー91aを回転させる駆動機構(図示せず)から構成されている。そして、基板は、搬送装置91によって搬送され、チャンバ121〜125内を順次通過する。また、成膜装置100では、基板を載置すると共に、基板の温度を測定可能な温度測定器10を載置する搬送トレイ80が搬送され、基板の温度測定の計測が可能である。
【0060】
ロードロックチャンバ121は、入口側に設けられた開閉ゲート131を開放することで、大気開放され、処理される基板が導入されるチャンバである。ロードロックチャンバ121の出口側は、開閉ゲート132を介して、バッファチャンバ122の入口側に接続されている。また、ロードロックチャンバ121には、基板を加熱するためのヒータ92が設けられている。このヒータ92は、基板の上下両面を加熱すべく、上下方向の両側に各々設置されている。ロードロックチャンバ121では、基板温度が例えば200℃程度になるように加熱される。
【0061】
バッファチャンバ122は、入口側に設けられた開閉ゲート132を開放することで、ロードロックチャンバ121と連通され、ロードロックチャンバ121を通過した基板が導入される圧力調整用チャンバである。バッファチャンバ122の出口側は、開閉ゲート133を介して、成膜チャンバ123の入口側に接続されている。また、バッファチャンバ122には、基板を加熱するためのヒータ92が設けられている。このヒータ92は、基板の上下両面を加熱すべく、上下方向の両側に各々設置されている。バッファチャンバ122では、基板温度が例えば400℃程度になるように加熱される。
【0062】
成膜チャンバ123は、入口側に設けられた開閉ゲート133を開放することで、バッファチャンバ122と連通され、バッファチャンバ22を通過した基板が導入され、基板に薄膜層を成膜する処理チャンバである。成膜チャンバ123の出口側は、開閉ゲート134を介して、バッファチャンバ124の入口側に接続されている。成膜チャンバ123内には、薄膜層を成膜するための成膜材料(図示せず)が設置されている。また、成膜チャンバ123には、基板を加熱するためのヒータ92が設けられている。このヒータ92は、基板の上下両面を加熱すべく、上下方向の両側に各々設置されている。成膜チャンバ123では、基板温度が例えば600℃程度に維持されている。
【0063】
バッファチャンバ124は、入口側に設けられた開閉ゲート134を開放することで、成膜チャンバ123と連通され、成膜チャンバ123によって成膜された基板が導入される圧力調整用チャンバである。バッファチャンバ124の出口側は、開閉ゲート135を介して、ロードロックチャンバ125の入口側に接続されている。また、バッファチャンバ124には、基板を冷却するための冷却板(不図示)が設けられている。この冷却板は、基板の上下両面を冷却すべく、上下方向の両側に各々設置されている。バッファチャンバ124では、基板温度が例えば400℃程度になるように冷却される。
【0064】
ロードロックチャンバ125は、入口側に設けられた開閉ゲート35を開放することで、バッファチャンバ124と連通され、バッファチャンバ124を通過した基板が導入されるチャンバである。ロードロックチャンバ125の出口側には、開閉ゲート36が設けられ、開閉ゲート36を開放することで、ロードロックチャンバ125が大気開放される。また、ロードロックチャンバ125には、基板を冷却するための冷却板(不図示)が設けられている。この冷却板は、基板の上下両面を冷却すべく、上下方向の両側に各々設置されている。ロードロックチャンバ125では、基板温度が例えば200℃程度になるように冷却される。
【0065】
成膜装置100は、チャンバ121〜125内の圧力を調整するチャンバ圧力調整装置(不図示)を備えている。成膜装置100では、成膜チャンバ123が最も低い圧力(例えば真空状態)に維持される。すなわち、成膜チャンバ123に隣接するバッファチャンバ122,124の圧力は、成膜チャンバ123の圧力を基準として調節され、バッファチャンバ122,124に隣接するロードロックチャンバ121,125の圧力は、バッファチャンバ122,124の圧力を基準として調節される。
【0066】
本実施形態の成膜装置100では、基板ともに、温度測定器10を搬送トレイ80に搭載し、この搬送トレイ80を、搬送手段を用いて搬送することができる。温度測定器10のロガー2は、断熱容器によって保護されて断熱される構成であるため、例えば660℃の高温真空環境において、第1容器3内の温度を30℃〜40℃程度に維持することができる。その結果、ロガー2の破損を防止し、基板の温度履歴を測定することが可能である。
【0067】
(成膜基板の製造方法)
次に、本発明の実施形態に係る成膜基板の製造方法について説明する。本実施形態では、図4に示す成膜装置100を用いた成膜基板の製造方法について説明する。この製造方法は、加熱工程(搬送工程)、成膜工程、冷却工程(搬送工程)、及び温度測定工程を備えている。
【0068】
(予熱工程、搬送工程)
まず、基板は、搬送トレイに載置されて搬送されて、ロードロックチャンバ121内に導入される。ロードロックチャンバ121内は、開閉ゲート131,132が閉じられて密閉状態とされ、所定の圧力まで減圧される。また、ロードロックチャンバ122内は、ヒータ92によって加熱されて、基板が加熱される。基板は、ロードロックチャンバ121内を搬送され、隣接するバッファチャンバ122内に導入される。バッファチャンバ122内は、開閉ゲート132,133が閉じられて密閉状態とされ、所定の圧力(真空状態)まで減圧される。また、バッファチャンバ122内は、ヒータ92によって加熱されて、基板が加熱される。基板は、成膜に適した温度まで加熱される。基板は、バッファチャンバ122内を搬送され、隣接する成膜チャンバ123内に導入される。
【0069】
(成膜工程)
成膜チャンバ123内は、基板が導入される前に、真空状態とされている。基板が成膜チャンバ123内に導入されると、開閉ゲート133,134が閉じられて密閉状態とされる。また、成膜チャンバ123内は、ヒータ91によって加熱されて、基板温度が維持されて状態となる。そして、基板上に成膜処理が行われ、基板上に金属膜が成膜される。
【0070】
(冷却工程、搬送工程)
基板は、成膜チャンバ123内を搬送され、隣接するバッファチャンバ124内に導入される。バッファチャンバ124内は、開閉ゲート134,135が閉じられて密閉状態とされ、真空状態から所定の圧力まで、加圧される。また、バッファチャンバ124内は、冷却板によって冷却されて、基板が冷却される。基板は、バッファチャンバ124内を搬送され、隣接するロードロックチャンバ125内に導入される。ロードロックチャンバ125内は、開閉ゲート135,136が閉じられて密閉状態とされ、大気圧まで加圧される。また、ロードロックチャンバ125内は、冷却板によって冷却されて、基板が冷却される。
【0071】
(温度測定工程)
温度測定工程では、まず、基板の温度履歴を測定する温度測定器10のロガー2を断熱容器(容器3〜6)内に収容する。温度測定器10は、基板と共に搬送トレイ80に搭載される。基板の所定の位置に、温度測定器10の温度検出部1が配置される。温度測定工程では、温度測定用の搬送トレイ80に搭載された基板に対して、上記の予熱(搬送)工程、成膜工程、冷却(搬送)工程を実行する。ロガー2は、上記の一連の工程において、温度検出部1によって検出された温度に関する情報を記録する。
【0072】
本実施形態の成膜基板製造方法によれば、基板と共に温度測定器10を搬送しながら、基板の温度履歴を測定する温度測定工程を有するため、基板の温度履歴を計測することができる。また、ロガー2が、断熱性能が向上された断熱容器内に収容されているため、ロガー2が高温環境において損傷するおそれがない。また、本実施形態の成膜基板製造方法では、温度測定工程を備え、基板の温度履歴に関する情報を取得することができるため、取得された温度履歴に関する情報に基づいて、温度管理を調整することができる。その結果、成膜基板の品質向上を図ることができる。
【0073】
以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態では、内側容器3の材質をステンレス鋼としているが、その他の材質でもよい。内側容器3の材質としては、例えば、チタン合金、タングステンなどを使用してもよい。また、複数の内側容器を備える構成としてもよい。複数の内側容器3は、同一の材質により構成されていてもよく、容器ごとに異なる材質によって構成されていてもよい。熱伝導率が低く、かつ、熱容量が大きい材質ほど、ロガー2側に配置されることが好ましい。
【0074】
また、上記実施形態では、外側容器4〜6の材質を銅としているが、その他の材質でもよい。外側容器4〜6の材質としては、例えば、アルミニウム合金などを使用してもよい。また、複数の外側容器4〜6は、全て同一の材質によって構成されていてもよく、容器ごとに異なる材質によって構成されていてもよい。熱伝導率が高く、かつ、熱容量が小さい材質ほど、外側に配置されることが好ましい。上記実施形態の外側容器は、第2容器4、第3容器5、及び第4容器6によって構成されているが、外側容器は、1つの容器によって構成されていてもよく、4つ以上の容器によって構成されていてもよい。また、外側容器は、板厚方向(内外方向)に複数の壁体を有する一つの容器によって構成されていてもよい。
【0075】
また、温度測定器10の断熱容器の熱容量としては、例えば、1000J/K以上であることが好ましい。また、温度測定器10の断熱容器の熱伝導率としては、例えば、200W/m/K以上であることが好ましい。
【0076】
また、上記実施形態では、配線を挿通させるための貫通孔が、壁体ごとに異なる軸心となるように、ずれた位置に形成されているが、複数の貫通孔が同一軸線上配置されている構成でもよい。また、貫通孔は、底板や蓋体(天板)に形成されていてもよい。なお、貫通孔が側板に形成されている場合には、蓋を取り外すことで、配線の位置を上方から容易に観察することができる。また、容器の壁体にその他の貫通孔が形成されていてもよい。
【0077】
また、上記の容器では、天板部分が、蓋体として、利用されているが、その他の側板、底板などを、着脱可能な蓋体として利用してもよい。
【0078】
また、上記実施形態では、温度測定器10を成膜装置100に適用する場合について、説明しているが、成膜装置以外の処理装置における温度測定に、温度測定器10を適用してもよい。また、温度測定器10を搬送しないで使用してもよい。また、成膜装置は、RFD法を用いたものに限定されず、その他の成膜装置でもよい。成膜装置及び基板製造方法としては、イオンプレーティング法、スパッタリング法、物理的または化学的蒸着法を用いるものがある。
【0079】
また、上記実施形態では、基板81を搬送する搬送トレイ80に温度測定器10を載置して搬送する場合について説明しているが、温度測定器10は基板81を搬送する搬送トレイ80に載置されて搬送されるものに限定されず、例えば温度測定器10を搬送するための専用の搬送機構によって搬送されるものでもよい。
【0080】
また基板製造方法は、成膜工程、搬送工程、温度測定工程以外の工程を備えるものでもよい。
【符号の説明】
【0081】
10…温度測定器、1…温度検出部、12…ブロック体(支持体)、2…ロガー(記録部)、3…第1容器(内側容器)、31…容器本体、31a…底板(壁体)、31b…側板(壁体)、32…蓋体(壁体)、4…第2容器(外側容器)、41…容器本体、41a…底板(壁体)、41b…側板(壁体)、42…蓋体(壁体)、5…第3容器(外側容器)、51…容器本体、51a…底板(壁体)、51b…側板(壁体)、52…蓋体(壁体)、6…第4容器(外側容器)、61…容器本体、61a…底板(壁体)、61b…側板(壁体)、62…蓋体(壁体)、80…搬送トレイ、81…基板、82…支持バー、91…搬送手段、92…ヒータ、100…成膜装置。

【特許請求の範囲】
【請求項1】
温度に関する信号を記録する記録部が断熱容器内に収容された温度測定器であって、
前記断熱容器は、
前記記録部との間に隙間部を形成し前記記録部を収容する内側容器と、
前記内側容器との間に隙間部を形成し、前記内側容器を収容する外側容器と、を備え、
前記外側容器の壁体は、前記内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が小さい材質によって形成されていることを特徴とする温度測定器。
【請求項2】
前記外側容器は、板厚方向に互いに離間して配置された複数の壁体を有することを特徴とする請求項1記載の温度測定器。
【請求項3】
前記内側容器及び前記外側容器の壁体には、前記温度検出部と前記記録部とを電気的に接続する配線を通過させる貫通孔が設けられ、
各壁体に設けられた前記貫通孔は、互いの軸心がずれて配置されていることを特徴とする請求項1又は2に記載の温度測定器。
【請求項4】
前記内側容器は、ステンレス鋼によって形成され、前記外側容器は、銅によって形成されていることを特徴とする請求項1〜3の何れか一項に記載の温度測定器。
【請求項5】
前記記録部は、セラミックからなるブロック体によって支持されていることを特徴とする請求項1〜4の何れか一項に記載の温度測定器。
【請求項6】
基板に薄膜層を成膜する成膜装置であって、
前記薄膜層を成膜するための成膜材料が設置され、前記基板上に前記薄膜層を成膜する成膜室と、
前記基板を搬送する搬送手段と、
前記基板の搬送に連動して移動可能であり、前記基板の温度に関する信号を記録する記録部が断熱容器内に収容された温度測定器と、を具備し、
前記温度測定器の断熱容器は、
温度検出部から出力された温度に関する信号を記録する記録部と、
前記記録部との間に隙間部を形成し前記記録部を収容する内側容器と、
前記内側容器との間に隙間部を形成し、前記内側容器を収容する外側容器と、を備え、
前記外側容器の壁体は、前記内側容器の材質と比較して、熱伝導率が高く、かつ、熱容量が低い材質から形成されていることを特徴とする成膜装置。
【請求項7】
前記外側容器は、板厚方向に互いに離間して配置された複数の壁体を有することを特徴とする請求項6記載の成膜装置。
【請求項8】
前記内側容器及び前記外側容器の壁体には、前記温度検出部と前記記録部とを電気的に接続する配線が通過する貫通孔が設けられ、
各壁体に設けられた前記貫通孔は、互いの軸心がずれていることを特徴とする請求項6又は7に記載の成膜装置。
【請求項9】
前記内側容器は、銅によって形成され、前記外側容器は、ステンレス鋼によって形成されていることを特徴とする請求項6〜8の何れか一項に記載の成膜装置。
【請求項10】
前記記録部は、セラミックからなるブロック体によって支持されていることを特徴とする請求項6〜9の何れか一項に記載の成膜装置。
【請求項11】
基板上に薄膜層が成膜された成膜基板を製造する方法であって、
前記薄膜層を成膜するための成膜材料が設置された成膜室内で、前記基板上に前記薄膜層を成膜する成膜工程と、
前記基板を搬送する搬送工程と、
前記基板の温度履歴を測定する温度測定器の記録部を断熱容器内に収容し、前記温度測定器を前記基板の搬送に連動して移動させながら前記温度履歴を測定する温度測定工程と、を備えることを特徴とする成膜基板製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−163525(P2012−163525A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2011−26052(P2011−26052)
【出願日】平成23年2月9日(2011.2.9)
【出願人】(000002107)住友重機械工業株式会社 (2,241)
【Fターム(参考)】