説明

発光素子用反射基板

【課題】より耐熱性が高く、耐光性にも優れ、光反射率の高い発光素子用反射基板を提供する。
【解決手段】バルブ金属基材上の少なくとも一部に無機反射層を備え、上記無機反射層が、ビッカース硬度(Hv)1GPa以上、赤外分光法により測定した波数3000cm−1と波数1900cm−1の吸光度の差(OH表面構造吸収係数)が0.40以上であることを特徴とする発光素子用反射基板。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光素子に用いられる光反射基板、より具体的には、発光ダイオード(以下、LEDという)等の発光素子に用いられる発光素子用反射基板およびその製造方法に関する。
【背景技術】
【0002】
特許文献1は、樹脂とシリカエアロゲルとの混合物で、樹脂が粉体塗料である塗料組成物、金属基板の表面に塗料組成物の塗膜を形成した照明器具用反射板が記載されている。粉体塗料は樹脂分100%の固形分であり、有機溶剤等を含まないので、疎水化処理をしたシリカエアロゲルが有機溶剤等の作用で収縮して白濁するようなことがなく、塗膜の光反射率が優れていると記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平11−29745号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、発光素子用光反射基板が、樹脂バインダーを含む場合には反射層自身の耐熱性が低く、耐光性も劣るので経年変化に耐えられないという問題がある。
本発明者は上記背景技術の問題点を検討し、より耐熱性が高く、耐光性にも優れ、光反射率の高い発光素子用反射基板を提供することを目的とする。
【課題を解決するための手段】
【0005】
発明者は、基板表面に、特定の無機反射層が存在し、この無機反射層が特定のOH基に由来する表面構造を有すると、光反射率が高く、その表面に設けられる封止樹脂層または金属配線層との密着性に優れ、このOH基に由来する表面構造は耐電圧への悪影響がなくむしろ耐電圧が向上することを知見して本発明を達成した。
【0006】
すなわち、本発明は、以下を提供する。
(1)バルブ金属基材上の少なくとも一部に無機反射層を備え、上記無機反射層が、ビッカース硬度(Hv)1GPa以上、赤外分光法により測定した波数3000cm−1と波数1900cm−1の吸光度の差で示されるOH表面構造吸収係数が0.40以上である発光素子用反射基板。
(2)上記バルブ金属基材と上記無機反射層との間にバルブ金属基材の陽極酸化皮膜層を有する(1)に記載の発光素子用反射基板。
(3)上記無機反射層が、リン酸アルミニウム、塩化アルミニウムおよびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤と、屈折率1.5以上1.8以下、平均粒子径0.1μm以上5μm以下の無機粒子とを含有する(1)または(2)に記載の発光素子用反射基板。
(4)上記無機粒子は、酸化物、水酸化物、および無機塩からなる群から選択される少なくとも一つである(1)〜(3)のいずれか1項に記載の発光素子用反射基板。
(5)上記無機粒子が硫酸バリウムおよび酸化アルミニウムからなる群から選択される少なくとも一つである(1)〜(4)のいずれか1項に記載の発光素子用反射基板。
(6)上記バルブ金属が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属である(1)〜(5)のいずれか1項に記載の発光素子用反射基板。
(7)上記バルブ金属基材の厚さが、0.1〜2mmである(1)〜(6)のいずれか1項に記載の発光素子用反射基板。
(8)上記バルブ金属が、アルミニウムである(1)〜(7)のいずれか1項に記載の発光素子用反射基板。
(9)上記発光素子用反射基板の引張強度が、30MPa以上100MPa以下である(1)〜(8)のいずれか1項に記載の発光素子用反射基板。
(10)上記無機粒子が、2種類以上である(1)〜(9)のいずれか1項に記載の発光素子用反射基板。
(11)バルブ金属基材表面に上の少なくとも一部に設けたビッカース硬度(Hv)1GPa以上の無機反射層を加熱水蒸気処理または親水化処理して、赤外分光法により測定した波数3000cm−1と波数1900cm−1の吸光度の差で示されるOH表面構造吸収係数が0.40以上である無機反射層を形成する、発光素子用反射基板の製造方法。
(12)上記無機反射層が、無機結着剤と無機粒子とを混合して前記バブル金属基材表面に塗布され、100℃〜300℃の温度で低温焼成される(11)に記載の発光素子用反射基板の製造方法。
(13)上記バルブ金属基材表面を陽極酸化処理した後に上記陽極酸化処理層上に無機反射層を形成する(11)または(12)に記載の発光素子用反射基板の製造方法。
(14)上記(11)〜(13)のいずれか1項に記載の工程を経た後、以下の(c)および(d)工程を任意の順序で行う、(11)〜(13)のいずれか1項に記載の発光素子用反射基板の製造方法:
(c)発光素子への電気信号伝送のための金属配線層を形成し、上記金属配線層をパターン化する工程;
(d)発光素子を実装する部分に相当する電極部に金属層を設ける工程。
(15)上記(1)〜(10)のいずれか1項に記載の発光素子用反射基板の上に青色発光素子を有し、その周りおよび/または上部に蛍光発光体を備える白色系発光ダイオード装置。
【発明の効果】
【0007】
本発明の発光素子用反射基板は、耐熱性が高く、耐光性に優れ、光反射率が高い。また、その表面に設けられる封止樹脂層および/または金属配線層との密着性に優れる。
【図面の簡単な説明】
【0008】
【図1】図1(A)は,本発明の発光素子用反射基板の好適な実施態様の一例を説明する拡大断面図であり、図1(B)は、本発明の別の好適な実施態様を説明する拡大断面図である。
【図2】本発明の発光素子用反射基板の好適な実施態様の一例を説明する概略断面図である。
【図3】本発明の発光素子用反射基板の別の実施態様を用いた発光装置を説明する断面図である。
【図4】評価に用いた配線パターンを説明する概略図である。
【図5】赤外分光法による吸光度の測定結果を示すチャートである。
【発明を実施するための形態】
【0009】
[発光素子用反射基板]
本発明の発光素子用反射基板は、バルブ金属基材表面の少なくとも一部に無機反射層を備える基板であり、上記無機反射層が、ビッカース硬度1GPa以上であり、かつ赤外分光光度計により測定した波数3000cm−1と波数1900cm−1の吸光度の差(以下、OH表面構造吸収係数ということがある)が0.40以上である発光素子用反射基板である。好ましくはビッカース硬度1GPa以上10GPa以下であり、OH表面構造吸収係数が、0.40以上0.8以下である。
次に、本発明の発光素子用反射基板について図1に示す好適例を用いて説明する。
【0010】
図1は、本発明の発光素子用反射基板の好適な実施態様の一例を示す概略図である。
図1(A)に示すように、本発明の発光素子用反射基板30は、バルブ金属基材1の少なくとも一部の表面にビッカース硬度1GPa以上であり、かつ赤外分光光度計により測定した波数3000cm−1と波数1900cm−1の吸光度の差(OH表面構造吸収係数)が0.40以上である無機反射層3を備える発光素子用反射基板である。
また、図1(B)に示すように、本発明の発光素子用反射基板30は、基板の耐電圧が良好となり、無機反射層と基板との密着性も良好となる理由からバルブ金属基材1の少なくとも一部の表面に陽極酸化皮膜層2等の絶縁層が設けられ、その上層にビッカース硬度1GPa以上であり、かつ赤外分光光度計により測定した波数3000cm−1と波数1900cm−1の吸光度の差(OH表面構造吸収係数)が0.40以上である無機反射層3を備える発光素子用反射基板であるのが好ましい。
【0011】
〔無機反射層〕
1)無機反射層は構成材料が無機成分であり、ビッカース硬度1GPa以上である。好ましくはビッカース硬度1GPa以上10GPa以下である。ビッカース硬度の試験法は、ダイヤモンド圧子を材料表面に押し込み、荷重を除いたあとに残ったへこみの対角線の長さd(mm)から表面積S(mm)を算出する。試験荷重F(N)を算出した表面積S(mm)で割った値の0.102倍の値がビッカース硬さ(Hv)であり、以下の式で求められる。
Hv=0.102(F/S)
2)無機反射層の表面を赤外分光光度計により測定した波数3000cm−1と波数1900cm−1の吸光度の差が0.40以上である。赤外分光法(infrared spectroscopy、略称IR)は、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光することでスペクトルを得て、対象物の特性を知る方法で、対象物の分子構造や状態を示す値であり、対象物の表面構造によっても、赤外スペクトルは微妙に変化する。これより、特定の物質の表面構造などについても知ることができる。
後に説明する実施例1および比較例3の無機反射層表面の赤外吸収スペクトルを測定した結果を図5に示す。
図5の結果が示すように、実施例1と比較例3との表面状態の差は、3000〜4000cm−1の波数範囲に示される。この波数範囲は、水などに起因するOH基の伸縮振動に対応する。実施例1と比較例3との3000〜4000cm−1の波数範囲に示される表面状態の差を表す指標として、本発明者は、以下のOH表面構造吸収係数を設定すると表面状態の差が示せることを発見した。
[OH表面構造吸収係数]=[波数3000cm−1の吸光度]‐[波数1900cm−1の吸光度]
例えば、実施例1と比較例3との図5に示す測定値から以下のOH表面構造吸収係数が得られる。
【0012】
【表1】

【0013】
参考例は、以下の条件で調整した。
参考例:粒子径 0.52μm 純度99.9% のアルミナ(AL-160SG-3)粉体を1g秤量し、ハンドプレス装置で荷重1tでプレスして直径20mmのタブレットに成形し、タブレットを1600℃、2時間焼結した。
本発明の無機反射層は、上記1)および2)の条件を満たしていて、構成材料が無機成分であれば、特に限定されない。有機成分を含まないことが好ましい。無機反射層は無機材料であるので、耐熱性、耐光性が高く、経年変化にも強い。
【0014】
無機反射層は、本発明の発光素子用反射基板において、バルブ金属基材上に設けられる。絶縁性がより良好となる理由から、上記金属基材上に絶縁層を有する基板であるのが好ましい。具体的には、バルブ金属基材1上の一部に陽極酸化皮膜層2と無機反射層3とを有していてもよく、陽極酸化皮膜層2だけの部分が存在してもよい。実装する素子の形や配線の位置によって陽極酸化皮膜層である絶縁層や、無機反射層の必要な位置が異なり、各種のデザインで配置される必要があるからである。
【0015】
本発明においては、上記無機反射層の厚さは、10μm以上であり、10〜60μmであるのが好ましく、20〜50μmであるのがより好ましい。
上記無機反射層の厚さが10μm以上であると、耐電圧が良好となる。また、上記無機反射層の厚さが60μm以下であると、可撓性が保持され、加工性、取扱性等が良好になる。
本発明に用いられるバルブ金属基材の板の厚みは、0.1〜2.0mmが好ましい。特にアルミニウム板の厚みは、0.1〜2.0mm程度であり、0.15〜1.5mmであるのが好ましく、0.2〜1.0mmであるのがより好ましい。この厚さは、ユーザーの希望等により適宜変更することができる。
バルブ金属基材に陽極酸化皮膜層を設ける場合は、陽極酸化皮膜層の厚さは1〜200μmであるのが好ましい。1μm未満であると耐電圧に乏しく耐電圧が低下し、一方、200μmを超えると製造に多大な電力が必要となり、経済的に不利となる。陽極酸化皮膜層の厚さは、10μm以上が好ましく、20μm以上がさらに好ましい。
【0016】
ここで、上記陽極酸化皮膜層、または無機反射層の膜厚の測定方法は、以下に示す通りである。
まず、陽極酸化皮膜層または無機反射層を設けた基板を折り曲げて作製した破断面を超高分解能走査型電子顕微鏡(例えば、S−4000、日立製作所社製)によって観察して撮影する。なお、観察倍率は、膜厚等により適宜調整して行う。具体的には、倍率100〜10000倍であるのが好ましい。また、観察範囲は、断面長として100μm以上の部分を観察するものとする。
【0017】
次いで、上記方法で得られた画像データ(写真)の多孔質部分について、観察範囲の中で最も厚くなる部分の膜厚を上記無機反射層の膜厚とする。
【0018】
<無機反射層の表面特性>
OH表面構造吸収係数と無機反射層の表面構造との関係を検証するために、上記でOH表面構造吸収係数を測定した実施例1、比較例3および実施例1で使用したアルミナ粒子のみを1600℃で2時間焼結して得られた表面(参考例)を100℃〜500℃での熱重量分析を行った。TGA Q500(ティー・エイ・インスツルメント・ジャパン株式会社製)を用い、昇温速度5℃/minで測定した。300℃における熱重量減少後の質量を初期値100%として規格化した値を下記表2に示す。表2の結果が示すように、OH基が多いと考えられる表面構造では、表面の水分を失うことによる熱重量分析での重量減少が大きいことが確認できた。
【0019】
【表2】

【0020】
<好適な無機反射層>
好適な無機反射層は、無機粒子と無機結着剤とを含有し、無機結着剤によって互いの一部が結着した多数の無機粒子からなる集合体で、表面が加熱水蒸気処理または親水化処理されている無機反射層である。以下に具体的に説明する。
(無機結着剤)
本発明では特定の無機粒子の結着剤(バインダー)として、リン酸アルミニウム、塩化アルミニウム、またはケイ酸ナトリウムを用いる。これらの2種以上の混合物を用いてもよい。
無機結着剤は、後に説明する無機粒子同士を低温焼成によって結合し無機反射層を構成する物質である。詳細には以下が例示できる。
(リン酸アルミニウム)
上記リン酸アルミニウムは、メタリン酸アルミニウム、オルトリン酸アルミニウム、ポリリン酸アルミニウムが例示できる。
(塩化アルミニウム)
上記塩化アルミニウムは、塩化アルミニウム、無水塩化アルミニウム、塩化アルミニウム6水和物、ポリ塩化アルミニウム(水酸化アルミニウムを塩酸に溶解させて生成する塩基性塩化アルミニウムの重合体)が例示できる。
(ケイ酸ナトリウム)
上記ケイ酸ナトリウムは、ケイ酸ソーダまたは水ガラスとも呼ばれるものであり、メタケイ酸のナトリウム塩であるNa2SiO3が一般的だが、その他に、Na4SiO4、Na2Si25、Na2Si49なども用いることができる。メタケイ酸のナトリウム塩は、二酸化ケイ素を炭酸ナトリウムまたは水酸化ナトリウムと融解して得ることができる。
【0021】
(無機結着剤前駆物質)
無機結着剤は無機結着剤前駆物質を水の存在下で反応させて得ることができる。
無機結着剤前駆物質には、リン酸、塩酸、硫酸等の無機酸、アルミニウム、および酸化アルミニウム、硫酸アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム等のアルミニウム化合物、およびこれらの混合物が挙げられる。反応物の中和が必要な場合は水酸化ナトリウム溶液を用いる。アルミニウム化合物はそれぞれの原料を無機結着剤前駆物質として反応させて製造してもよい。
無機結着剤前駆物質には、上記アルミニウム塩のうち、水酸化アルミニウムと塩化アルミニウムの両方を添加することが好ましく、塩化アルミニウムの量が水酸化アルミニウムの量に対して5質量%〜10質量%であることが好ましい。塩化アルミニウムは水酸化アルミニウムとリン酸との反応を触媒的に進行させる役割を有すると考えられ、上記範囲の量であることが好ましい。また、塩化アルミニウムと塩酸とを用いて、リン酸アルミニウム前駆物質を用いない場合は、無機結着剤であるポリ塩化アルミニウムが着色しないので光反射率が高い。
リン酸アルミニウムにかえてまたはリン酸アルミニウムと共に、リン酸塩化合物を用いてもよく、リン酸塩化合物としては、水に不溶性であれば、特に限定する必要はない。具体例としてリン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸バリウム、リン酸アルミニウム、リン酸ガリウム、リン酸ランタン、リン酸チタニウム、リン酸ジルコニウムを挙げることが出来る。リン酸アルミニウムが好ましく、他のリン酸塩と混合する場合は50質量%以上がリン酸アルミニウムであるのが好ましい。
ケイ酸ナトリウムを用いる場合は、水に溶かし加熱して水ガラスとして適切な粘度に調整して無機結着剤前駆物質として用いる。
これらの無機結着剤前駆物質は目的とする無機結着剤を生成するように任意の組合せで混合して用いることができる。
【0022】
(無機粒子)
本発明においては、上記無機粒子は特に限定されず、例えば、従来公知の金属酸化物、金属水酸化物、炭酸塩、硫酸塩などを用いることができ、中でも、金属酸化物を用いるのが好ましい。
上記無機粒子としては、具体的には、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化チタン、酸化亜鉛、二酸化ケイ素、酸化ジルコニウムなどの金属酸化物;水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなどの水酸化物;炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウムなど)、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウムなどの炭酸塩;硫酸カルシウム、硫酸バリウムなどの硫酸塩;また、その他に、カルシウムカーボネート、方解石、大理石、石膏、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズなどが挙げられる。
この中でも、後述する無機結着剤との親和性が良好となる理由から、酸化アルミニウム、二酸化ケイ素、水酸化アルミニウム、硫酸バリウムが好ましい。酸化アルミニウムがさらに好ましい。
【0023】
好適な無機反射層に用いる無機粒子は、屈折率が、1.5以上1.8以下であり、好ましくは1.55以上1.75以下である。屈折率がこの範囲であると得られる無機反射層の反射率が高い。この理由は、空気との反射率の差異によるものであると考えられる。
無機粒子の平均粒子径は、好ましくは0.1μm以上5μm以下である。より好ましくは0.5〜2μmであり、さらに好ましくは0.5〜1.5μmである。平均粒子径がこの範囲の無機粒子を用いると、粒子間に適切な空隙を確保することができ、陽極酸化皮膜層との密着性も得ることができると考えられる。平均粒径が0.1μm未満であると反射率が劣り、粒径が6μm超であると陽極酸化皮膜層との密着性に劣る場合がある。ここで、平均粒子径は例えば、レーザー回折散乱法(レーザー回折/散乱式粒子径分布測定装置、Partica LA-910、堀場製作所社製など)を用いて測定された50%体積累積径(D50)をいう。
従来技術における1000℃以上などの高温焼結で無機粒子を結着させ、いわゆるセラミック層を製造する工程では、層中に特定の空隙を確保するためには高温焼結の進行の制御が必要である。これに対し本発明の好ましい無機反射層は低温での加熱乾燥により高温焼結を行なわないので原料としての無機粒子の平均粒子径が無機反射層の空隙率および表面硬度を決めるため反射率に影響する重要なファクターとなる。従来技術における1000℃以上などの高温焼結で無機粒子を結着させた、いわゆるセラミック層は、赤外分光法により測定した波数3000cm−1と波数1900cm−1の吸光度の差であるOH表面構造吸収係数が0.10未満である。
【0024】
上記無機粒子としては限定されないが例えば以下の無機粒子が例示できる。
酸化アルミニウム(アルミナ)(屈折率n=1.65〜1.76、以下、括弧内の数字は屈折率である)、水酸化アルミニウム(1.58〜1.65〜1.76)、水酸化カルシウム(1.57〜1.6)、炭酸カルシウム(1.58)、方解石(1.61)、カルシウムカーボネート(1.61)、軽質炭酸カルシウム(1.59)、重質炭酸カルシウム(1.56)、極微細炭酸カルシウム(1.57)、石膏(1.55)、硫酸カルシウム(1.59)、大理石(1.57)、硫酸バリウム(1.64)、炭酸バリウム(1.6)、酸化マグネシウム(1.72)、炭酸マグネシウム(1.52)、水酸化マグネシウム(1.58)、炭酸ストロンチウム(1.52)、カオリンクレー(1.56)、焼成クレー(1.62)、タルク(1.57)、セリサイト(1.57)、光学ガラス(1.51〜1.64)、ガラスビーズ(1.51)。用いる粒子の素材は上記の範囲の屈折率を満たせば良く、焼結という工程が無いため、酸化物に限らず各種の無機塩を用いる事が出来る。
【0025】
また、上記特性を満たすものであれば2種類以上の粒子または2種類以上の平均粒子径を有する粒子を混合して使用してもよい。異なる粒径の粒子や異なる素材のものを組み合わせることにより、膜強度の向上や、基板との密着強度の向上を図ることが出来る。
さらには塗布面の性状の改良で表面が滑らかになる効果も期待できる。
【0026】
更に、上記無機粒子の形状は特に限定はされず、例えば、球状、多面体状(例えば、20面体状、12面体状等)、立方体状、4面体状、表面に凹凸状ないし凸状の突起を複数有する形状(以下、「コンペイトウ形状」ともいう。)、板状、針状等いずれであってもよい。
これらのうち、断熱性に優れる理由から、球状、多面体状、立方体状、4面体状、コンペイトウ形状が好ましく、入手が容易で断熱性により優れる理由から、球状であるのがより好ましい。
【0027】
<無機反射層>
上記で例示する好適な無機反射層は、加熱乾燥後の単位面積当たりの質量で、20g/m〜500g/mとするのが好ましい。この範囲であると、空隙をその内部に残しているために光の透過が抑制され、反射率が高い。上記の特定の無機結着剤を用いる事で高温焼結を不要とし、より低コストで無機反射層を製造することが可能である。無機反射層は無機材料であり、経年変化にも強い。更に、反射層形成時に基板の陽極酸化皮膜と反応して、基板との密着性も担保する事が可能となる。
好適な無機反射層中の無機粒子の量と、リン酸アルミニウム、塩化アルミニウム、およびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤の量とは、無機粒子100質量部に対して無機結着剤5〜100質量部が好ましく、10〜50質量部がより好ましい。
好適な無機反射層には、上記無機粒子と無機結着剤以外に、他の化合物を含有してもよい。他の化合物としては、例えば、分散剤、反応促進剤等が挙げられ、また、これらと、上記無機粒子、無機結着剤前駆物質、無機粒子と無機結着剤との反応生成物等が挙げられる。
【0028】
<好適な無機反射層の製造方法>
以上で説明した好適な無機反射層の製造方法は、特に限定されないが、以下で説明するバインダー液として無機結着剤および/または無機結着剤前駆物質と無機粒子を混合して、この混合液を塗布膜厚が調整可能なコーターを用いて陽極酸化皮膜層上に所定量塗布し、その後100℃〜300℃で、10〜60分間、加熱処理(低温焼成)するのが好ましい。
塗布方法は特に限定されず、種々の方法を用いることができるが、例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアーナイフ塗布、ブレード塗布、ロール塗布等を挙げることができる。
反応式に従う化学量論組成比で無機結着剤前駆物質と無機粒子との水分散体を調整すると、反応が進むとともに液の粘度が急激に上昇する。このような現象を回避し安定的に無機反射層を形成させる目的で予め若干の水を添加しておくことが望ましい。また、陽極酸化皮膜層中にリン酸根が残存する事は基板の腐食や、LEDの封止材の劣化などをもたらす事があり望ましくない。よって化学量論比に対しリン酸以外成分の量を若干過剰に処方しておくことが望ましい。
加熱乾燥後の皮膜中にリン酸アルミニウム、塩化アルミニウム、またはケイ酸ナトリウムが生成していることは赤外分光光度計で皮膜表面を分析すれば容易に確認する事が出来る。
【0029】
また、無機反射層を異なる組成のバインダー液を2種類以上調整して陽極酸化皮膜上に順次塗布することにより2層以上とすることもできる。2層以上の無機反射層を組み合わせることにより、無機反射層強度の向上や、基板との密着強度の向上を図ることが出来る。さらには塗布面の性状の改良で表面が滑らかになる効果も期待できる。
無機反射層が2層以上である場合は、本発明では、最表面となる無機反射層が、ビッカース硬度1GPa以上、OH表面構造吸収係数が0.40以上であれば、他の無機反射層はこの要件以外の無機反射層を用いることもできる。好ましくは2層以上の各無機反射層がそれぞれビッカース硬度1GPa以上、10GPa以下、OH表面構造吸収係数が0.40以上0.80以下である。
【0030】
(低温焼成)
上記の低温焼成により、反応を進め無機粒子同士を反応により生成する無機結着剤により結着する。
低温焼成温度は100℃〜300℃であり、150℃〜300℃であるのが好ましく、180℃〜250℃である事がより好ましい。
100℃未満では水分の除去が適わず、300℃超ではアルミニウム基材の強度変化が起こるので望ましくない。また、無機結着剤前駆物質間の反応を進め、結着させるには150℃以上の温度が望ましく、さらに得られる無機結着剤に残存する吸着水を完全に除去するためには180℃以上であることが望ましい。250℃を超えた温度で長時間処理を行なうとバルブ金属基材の強度が変化するため、250℃以下で処理する事が望ましい。
焼成時間は10分〜60分であり、20分〜40分が更に好ましい。短時間では反応の進捗が不十分であり、長時間になると焼成温度との関係でバルブ金属基材、特にアルミニウム金属基材の強度変化をきたす。60分以上では製造コスト的にも望ましくない。この理由から、焼成時間は20分〜40分がもっとも好ましい。
このような低温での焼成処理によって得られる無機反射層の表面硬度は結着処理条件、用いる粒子サイズなどにより変化するが、高い硬度を得るには焼成温度とともに粒子サイズを選択する事が重要である。無機粒子の平均粒子径は、好ましくは0.1μm以上5μm以下である。この範囲の平均粒子径の粒子を上記範囲の温度で焼成すると得られる無機反射層の表面硬度が適切となる。
バインダー液は水分を含む液であるため、塗布後上記低温焼成処理の前に乾燥工程を入れてもよい。リン酸アルミニウム等の無機結着剤の生成反応や無機粒子の結着反応を起こさない100℃以下の温度で乾燥させる。
【0031】
<後処理>
本発明の無機反射層は構成する材料と製造方法の組合せにより、その表面が、OH表面構造吸収係数が0.40以上とすることができる。また、上記で例示する好適な無機反射層は、低温焼成処理後、その表面を後処理されるのが好ましい。好ましい後処理は、次の加熱水蒸気処理または親水化処理が例示されるが、これらのみには限定されず、これらと同等で上記好適な無機反射層の表面を、赤外分光法により測定にして得られるOH表面構造吸収係数が0.40以上とする処理である。
本発明の無機反射層は、本発明者の知見によれば、後処理をすることで、アルミナ水和物等またはリン酸アルミニウム等の水和物の存在により、本発明の発光素子用反射基板の熱伝導性、反射率を損なわずに耐電圧を向上させることができる。このことは予想できない顕著な効果であった。
【0032】
(加熱水蒸気処理)
本発明においては、好適な無機反射層は、上記低温焼成処理を施した後に、加熱水蒸気処理を施すのが好ましい。加熱水蒸気処理は、温度と圧力の条件から、沸騰水処理、熱水処理、蒸気処理、等を含む処理である。
使用される水は、イオン交換水、蒸留水、天然水、水道水等のいずれでも使用できるがイオン交換水、蒸留水が好ましい。またこれらの水に対し処理の促進、水中の金属イオンの封鎖剤として、有機溶媒、アミン化合物、有機酸、リンまたは硼素の酸素酸塩等を単独または二種類以上混合してもよい。また、使用される水は、リチウム、ナトリウムあるいはマグネシウムなどのアルカリ金属アルカリ土類金属のイオンを含んでも良い。
水蒸気を使用して連続的に表面処理することが好ましく、水蒸気処理する場合の温度は約80℃〜200℃で、好ましくは約90℃〜120℃である。処理時間は3秒〜30分で、好ましくは5秒〜10分である。水素イオン濃度は約2〜11が適切で、好ましくは約3〜10である。加圧水蒸気で処理する時の圧力は約1〜15kg/cm(絶対圧)が適切であり、好ましくは約1〜5kg/cmが好ましい。
工業的には、処理室内に設けられた水槽内の水の温度を加熱し、それによって処理室内の温度を80℃以上105℃以下にし、処理室内圧として常圧に対し−50〜300mmAqに保った状態の中を、加熱水蒸気処理が必要な無機反射層を通過させる方法を行ってもよい。
【0033】
(親水化処理)
本発明においては、好適な無機反射層は、上記低温焼成処理を施した後に、親水化処理を施すのが好ましい。
上記親水化処理の方法としては、具体的には、例えば、アルカリ金属ケイ酸塩の水溶液に浸漬させる方法等が挙げられる。
【0034】
ここで、アルカリ金属ケイ酸塩の水溶液を用いた親水化処理は、米国特許第2,714,066号明細書および米国特許第3,181,461号明細書に記載されている方法および手順に従って行うことができる。
【0035】
上記アルカリ金属ケイ酸塩としては、具体的には、例えば、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム等が挙げられる。
また、上記アルカリ金属ケイ酸塩の水溶液は、更に、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を含有してもよい。
【0036】
更に、上記アルカリ金属ケイ酸塩の水溶液は、更に、アルカリ土類金属塩または4族(第IVA族)金属塩を含有してもよい。
ここで、上記アルカリ土類金属塩としては、具体的には、例えば、硝酸カルシウム、硝酸ストロンチウム、硝酸マグネシウム、硝酸バリウム等の硝酸塩;硫酸塩;塩酸塩;リン酸塩;酢酸塩;シュウ酸塩;ホウ酸塩;等が挙げられる。
また、上記4族(第IVA族)金属塩としては、具体的には、例えば、四塩化チタン、三塩化チタン、フッ化チタンカリウム、シュウ酸チタンカリウム、硫酸チタン、四ヨウ化チタン、塩化酸化ジルコニウム、二酸化ジルコニウム、オキシ塩化ジルコニウム、四塩化ジルコニウム等が挙げられる。
これらのアルカリ土類金属塩および4族(第IVA族)金属塩は、一種単独で用いてもよく、2種以上を併用してもよい。
上記親水化処理は、上記アルカリ金属ケイ酸塩の水溶液を用いた場合、アルカリ金属ケイ酸塩の水溶液は、ケイ酸塩の成分である酸化ケイ素SiO2とアルカリ金属酸化物M2Oの比率(一般に〔SiO2〕/〔M2O〕のモル比で表す。)と濃度によって保護膜厚の調節が可能である。
ここで、Mとしては、特にナトリウム、カリウムが好適に用いられる。
また、モル比は、〔SiO2〕/〔M2O〕が0.1〜5.0が好ましく、0.5〜3.0がより好ましい。 更に、SiO2の含有量は、0.1〜20質量%が好ましく、0.5〜10質量%がより好ましい。
【0037】
また、上記アルカリ金属ケイ酸塩の水溶液の温度は、1〜70℃であるのが好ましく、2〜50℃であるのがより好ましく、3〜35℃であるのが更に好ましい。
また、上記アルカリ金属ケイ酸塩の水溶液を用いた場合の処理時間は、5秒〜90分であるのが好ましく、8秒〜60分であるのが好ましく、12秒〜30分であるのが更に好ましい。
【0038】
〔バルブ金属基材〕
バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。
バルブ金属の陽極酸化皮膜層は、電気抵抗率(1014Ω・cm程度)を有する耐熱性の高い絶縁被膜である。
これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化皮膜層であるのが好ましい。
バルブ金属基材は、単独の板で本発明の反射基板に用いてもよい。
バルブ金属基材は、必要な場合は鋼板等の他の金属板、ガラス板、セラミック板、樹脂製板等に積層して本発明の反射基板に設けられる。陽極酸化皮膜を形成し耐電圧を担保するためにはバブル金属基材は、厚さ10μm以上の板状の部分があればよい。他の板材とバルブ金属基材とを積層して用いる場合には、可撓性があり、耐熱性の高い鋼板や金属板との積層板が好ましい。
【0039】
(アルミニウム板)
本発明の反射基板の製造には、公知のアルミニウム板を用いることができる。本発明に用いられるアルミニウム板は、寸度的に安定なアルミニウムを主成分とする金属であり、アルミニウムまたはアルミニウム合金からなる。純アルミニウム板のほか、アルミニウムを主成分とし微量の異元素を含む合金板を用いることもできる。
【0040】
本明細書においては、上述したアルミニウムまたはアルミニウム合金からなる各種の基板をアルミニウム板と総称して用いる。上記アルミニウム合金に含まれてもよい異元素には、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等があり、合金中の異元素の含有量は10質量%以下である。
【0041】
このように本発明に用いられるアルミニウム板は、その組成が特定されるものではなく、アルミニウムの純度は特に問わないが、通常板材として用いられる1000系、3000系、5000系の合金を用いることができる。しかし発光素子用反射基板として用いる場合に耐電圧に優れる事が求められ、素材中の金属間化合物などの粒子を出来るだけ少なくする事が望ましい。熱処理条件で回避できない場合には、99.9%以上の高純度のアルミニウムを用いる事も有用である。
具体的には、アルミニウムハンドブック第4版(1990年、軽金属協会発行)に記載されている従来公知の素材、例えば、JIS A1050、JIS A1100、JIS A1070、Mnを含むJIS A3004、国際登録合金 3103A等のAl−Mn系アルミニウム板を適宜利用することができる。また、引張強度を増す目的で、これらのアルミニウム合金に0.1質量%以上のマグネシウムを添加したAl−Mg系合金、Al−Mn−Mg系合金(JIS A3005)を用いることもできる。更に、ZrやSiを含むAl−Zr系合金やAl−Si系合金を用いることもできる。更に、Al−Mg−Si系合金を用いることもできる。
【0042】
Al−Mg系合金、Al−Mn系合金、Al−Mn−Mg系合金、Al−Zr系合金、Al−Mg−Si系合金に関しては、国際公開WO2010/150810号の段落[0034]〜[0038]に記載の公報に記載されている。
【0043】
アルミニウム合金を板材に製造する方法、DC鋳造法、連続鋳造法、アルミニウム板の表面の結晶組織、アルミニウム板の金属間化合物については、国際公開WO2010/150810号の段落[0039]〜[0050]に記載されている。
【0044】
本発明においては、上記に示されるようなアルミニウム板をその最終圧延工程等において、積層圧延、転写等により凹凸を形成させて粗面化処理して用いることもできる。基板表面を予め粗面化処理しておけば、陽極酸化皮膜層を形成した後に、その上に形成される無機反射層と基板との密着性を向上させることができる。その他の粗面化処理方法は後に説明する。
【0045】
本発明に用いられるアルミニウム板は、アルミニウムウェブであってもよく、枚葉状シートであってもよい。
【0046】
〔発光素子用反射基板の製造方法〕
<1.粗面化処理>
本発明の反射基板を製造する際にアルカリ脱脂したアルミニウム板を直接陽極酸化処理して陽極酸化皮膜層を形成してもよい。また、アルミニウム表面を予め粗面化処理して、陽極酸化処理すれば、陽極酸化皮膜層とアルミニウム板との密着性を向上させることができる。粗面化処理は、アルミニウム板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法、アルミニウム板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法、アルミニウム板にアルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法、アルミニウム板にアルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法が挙げられるが、本発明はこれらに限定されない。これらの方法において、上記電気化学的粗面化処理の後、更に、アルカリエッチング処理および酸によるデスマット処理を施してもよい。
【0047】
中でも、他の処理(アルカリエッチング処理等)の条件にもよるが、大波構造、中波構造および小波構造が重畳した表面形状を形成させるには、機械的粗面化処理、硝酸を主体とする電解液を用いた電気化学的粗面化処理および塩酸を主体とする電解液を用いた電気化学的粗面化処理を順次施す方法が好適に挙げられる。また、大波構造および小波構造が重畳した表面形状を形成させるには、塩酸を主体とする電解液を用い、アノード反応にあずかる電気量の総和を大きくした電気化学的粗面化処理のみを施す方法が好適に挙げられる。
各粗面化処理の詳細については、国際公開WO2010/150810号の段落[0055]〜[0083]に記載されている。
【0048】
<2.スルーホール加工>
本発明の発光素子用反射基板においては、発光素子を実装するにあたり、適宜配線部を設けるためのスルーホール加工、並びに、最終製品を想定してのチップ化を行うためのルーティング加工(最終製品に個別化するための加工)を行うこともできる。スルーホール加工は、必要な個所への穴あけ加工であるが、加工されるスルーホールの形状については、配線が必要な複数の層の間の長さで、その断面は必要な配線をその中に入れて確保できる大きさ/形状であれば特に制限されないが、最終的なチップの大きさ、及び、確実な配線の形成を考えると、円形であることが好ましく、大きさは、0.01mmφ〜2mmφが好ましく、0.05mmφ〜1mmφがより好ましく、0.1mmφ〜0.8mmφが特に好ましい。
【0049】
(ルーティング加工)
ルーティング加工は、最終製品に個別化された発光素子用反射基板(以下チップという)の大きさに切り離す個別切り離し加工または、予めチップに切り離しやすい形状にする加工であり、パターン加工、チップ化ともいう。ルーティング加工には、ルーターと呼ばれる装置で基板の厚み方向に貫通した切込みを入れたり、ダイサーを用いて厚み方向に切断しない程度に切り込み(切り欠き)を入れるような加工を含む。
【0050】
<3.焼成処理>
前述のルーティング加工、スルーホール加工におけるアルミニウム板のJIS Z2241による引張試験(引張速度:2mm/分)における引っ張り強度(以下引張強度という。)は、100MPa以下のように軟質な基板であることは加工性が低下するため好ましくなく、本発明の発光素子用反射基板を製造するに当たってはルーティング加工、スルーホール加工等の機械加工後、アルミニウム板を軟質化するため焼成する事が望ましい。また、陽極酸化処理を施した後に焼成を施すとアルミと皮膜の間の熱膨張率差に起因するクラックなどが入る恐れがあり、望ましくない。よって機械加工後、陽極酸化処理前にアルミニウム板の強度を調整する焼成処理を行うことが望ましい。機械加工後、陽極酸化処理前の焼成処理は250℃〜400℃で、1分〜120分加熱処理するのが好ましい。陽極酸化処理後の焼成処理を行う場合は、焼成温度は200℃〜250℃で、60分〜300分加熱処理するのが好ましい。
【0051】
<4.陽極酸化処理>
以上のように表面処理され、加工されたアルミニウム板に、更に、陽極酸化処理を施すのが好ましい。陽極酸化処理により、アルミナからなる陽極酸化皮膜層がアルミニウム板の表面に形成され、多孔質、あるいは、非孔質の表面絶縁層が得られる。
【0052】
陽極酸化処理は、従来行われている方法で行うことができる。この場合、例えば、硫酸濃度50〜300g/Lで、アルミニウム濃度5質量%以下の水溶液中で、アルミニウム板を陽極として通電して陽極酸化皮膜層を形成させることができる。陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、マロン酸、クエン酸、酒石酸、ホウ酸、等を単独でまたは2種以上を組み合わせて用いることができる。
【0053】
陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1〜80質量%、液温5〜70℃、電流密度0.5〜60A/dm2、電圧1〜100V、電解時間15秒〜50分であるのが適当であり、所望の陽極酸化皮膜層量となるように調整される。
【0054】
硫酸を含有する電解液中で陽極酸化処理を行う場合には、アルミニウム板と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム板に直流を印加する場合においては、電流密度は、1〜60A/dm2であるのが好ましく、5〜40A/dm2であるのがより好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム板の一部に電流が集中していわゆる「焼け」が生じないように、陽極酸化処理の開始当初は、5〜10A/dm2の低電流密度で電流を流し、陽極酸化処理が進行するにつれ、30〜50A/dm2またはそれ以上に電流密度を増加させるのが好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム板への給電方式は液給電方式により行うのが好ましい。液給電方式は、コンダクタロールを用いない間接給電方式であり、電解液を介して給電する。
【0055】
陽極酸化皮膜層は、多孔質であっても無孔質であってもよい。多孔質である場合、その平均ポア径が5〜1000nm程度であり、平均ポア密度が1×106〜1×1010/mm2程度である。
【0056】
陽極酸化処理のその他の詳細については、国際公開WO2010/150810号の段落[0091]〜[0094]に記載されている。
【0057】
アルミニウムは熱伝導率が非常に高いので放熱性に優れる点で、他の金属に勝るだけでなく、表層に陽極酸化皮膜層を形成させることで耐電圧を付与する事も可能である。
予めLEDを実装する基板形状に加工したもの、例えば六角形、八角形状のものやスルーホールが形成されているものを陽極酸化処理して基板として用いてもよいし、陽極酸化処理し、前述の無機反射層を形成した後に加工してもよい。
陽極酸化皮膜層の厚さは1〜200μmであるのが好ましい。1μm未満であると絶縁性に乏しく耐電圧が低下し、一方、200μmを超えると製造に多大な電力が必要となり、経済的に不利となる。陽極酸化皮膜層の厚さは、10μm以上が好ましく、20μm以上がさらに好ましい。
【0058】
<5.無機反射層の形成>
さらに、予めチップまたは複数のチップを含むパーツに分解できるような加工を施した基板に、各種の印刷手法例えばスクリーン印刷等によって光反射が必要な部分にのみ、前述の無機反射層を形成してもよい。この方法で無機反射層を形成すれば、無機反射層に用いる原料を節約できる。
【0059】
(発光素子用反射基板)
以上で説明した本発明の無機反射層を有する発光素子用反射基板は、他の金属板を芯材等の補強用に用いない場合でバルブ金属基材としてバルブ金属板を単独で用いる場合は、強度はJIS Z2241による引張試験(引張速度:2mm/分)における引っ張り強度(以下引張強度という。)が、100MPa以下であるのが好ましく、30〜90Mpaであるのがより好ましい。さらに好ましくは、40〜80MPaである。この範囲未満では発光素子用反射基板としての強度が十分ではなく、この範囲超では、基板を加工して発光装置とする場合の取扱性が悪い。
【0060】
(金属配線層)
本発明の発光素子用反射基板は、さらに金属配線層を形成してもよい。金属配線層は発光素子が実装される陽極酸化皮膜層と無機反射層との上に設けられてもよいし、発光素子が実装される陽極酸化皮膜層とは反対側の裏面側に設けられて発光素子実装面とはスルーホールを介して電気的に接続されてもよい。
本発明の無機反射層は、その上に設けられる金属配線層との密着性が高い。この理由は、本発明の無機反射層では、赤外分光法により測定したOH表面構造吸収係数が0.40以上であるのでその表面には水酸化物、水和物が存在すると考えられ、金属配線層を製造するインクとの濡れ性が高く、得られる金属配線層の無機反射層との密着性が高いと考えられる。
【0061】
上記金属配線層の材料は、電気を通す素材(以下、「金属素材」ともいう。)であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で使用してもよく2種以上を併用してもよい。これらのうち、電気抵抗が低い理由からCuを用いるのが好ましい。なお、Cuによる配線層の表層には、ワイヤボンディングの容易性を高める観点から、Au層やNi/Au層を設けていてもよい。
また、上記金属配線層は、これらの材料を用いた多層構造であってもよく、例えば、最下層からAg層、Ni層およびAu層をこの順で設ける態様が好適に挙げられる。
【0062】
また、上記金属配線層の厚さは、目的や用途に応じて所望の厚さとすればよいが、導通信頼性およびパッケージのコンパクト性の観点から、0.5〜1000μmが好ましく、1〜500μmがより好ましく、5〜250μmが特に好ましい。
【0063】
<6.金属配線層の形成>
上記金属配線層の形成方法としては、例えば、上記金属素材および液体成分(例えば、溶媒、樹脂成分など)を含有する金属インクをインクジェット印刷法、スクリーン印刷法等により上記受容層上にパターン印刷する方法等が挙げられる。
このような形成方法により、凹凸のある無機反射層の表面に多くの工程を必要とせずに簡易にパターンを有する金属配線層を形成することができる。
【0064】
また、その他の上記金属配線層の形成方法としては、例えば、電解めっき処理、無電解めっき処理、置換めっき処理などの種々めっき処理の他、スパッタリング処理、蒸着処理、金属箔の真空貼付処理、接着層を設けての接着処理等が挙げられる。
【0065】
このようにして形成される金属配線層は、発光素子実装の設計に応じ、公知の方法でパターン形成される。また、実際に発光素子が実装される箇所には、再度金属層(半田も含む)を設け、熱圧着や、フリップチップ、ワイヤボンディング等で、接続しやすいように適宜加工することができる。
好適な金属層としては、半田、または、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等の金属素材が好ましく、加熱により発光素子を実装する場合は、半田、または、Niを介してのAu、Agを設ける方法が接続信頼性の観点から好ましい。
この際、反射層が硬度の低いものであると、電極にワイヤをこすり付けて接続するワイヤボンディングを行う際にワイヤがうまく溶融せず接続不良となりやすい。本発明の無機反射層を用いると表面硬度が1GPa以上であり接続不良は発生しなかった。
【0066】
金属配線層の形成方法として金属インクを用いてインクジェット印刷法またはスクリーン印刷法により無機反射層上にパターンを形成すれば、凹凸のある表面に多くの工程を必要とせずに簡易にパターンを有する金属配線層を形成することができ、無機反射層の凹凸によるアンカー効果が高いので金属配線層と無機反射層との密着性にも優れる。無電解メッキなどを組み合わせれば上記金属配線層上に再度金属層(半田も含む)を設け、熱圧着や、フリップチップ、ワイヤボンディング等で、配線間や、電極との接続がしやすいように適宜金属配線層を加工することができる。
【0067】
〔白色系発光装置〕
図3は、本発明の白色系発光装置の一構成例を示した概略図である。
図3の例は上記バルブ金属基板が窪みを持つ形状であり、上記陽極酸化皮膜層2および無機反射層3が窪み13を持つ形状のバルブ金属基板11の表面に設けられている。発光素子110は、無機反射層3上の窪み13の部分に実装され、バルブ金属基板11の陽極酸化皮膜層2を介して発光素子110の実装される面と反対側の面には放熱のためのヒートシンク18が設けられている。
図3に示す白色系発光装置100において、外部接続用の電極を有する発光素子用反射基板30に、発光素子110であるLED素子が実装され、電極とはワイヤボンディング19で電気的に接続されている。発光素子110は、蛍光体(蛍光粒子)150を含む樹脂材料160により封止されている。白色系発光装置100では、LED素子からの発光と、蛍光体150からの励起光との混色によって所望の波長光を得ることができる。白色系発光装置として用いられる場合、LED素子として青色発光のLED素子を使用し、YAG(イットリウムアルミニウムガーネット)などの蛍光体(蛍光粒子)150を含んだ樹脂で封止し、LED素子からの青色発光と、蛍光体(蛍光粒子)150からの黄色領域の励起光との混色によって、擬似白色光が発光面側に発光される。
LED素子は、発光層として、GaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlN、InN、AlInGaP、InGaN、GaN、AlInGaN等の半導体を用いたものを用いることができる。半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。半導体の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。
【0068】
本発明の白色系発光装置100は、反射基板30として、バルブ金属基材11上に膜強度と基板への密着性に優れる、陽極酸化皮膜層2と無機反射層3とが設けられていて、反射層の光反射率も高い。
本発明の無機反射層は、その上に設けられる蛍光体を含んだ樹脂層との密着性が高い。この理由は、本発明の無機反射層では、赤外分光法により測定したOH表面構造吸収係数が0.40以上であるあるのでその表面には水酸化物、水和物が存在すると考えられ、樹脂層との密着性が高いと考えられる。
LED素子の使用範囲が室内外の照明、自動車ヘッドライト、ディスプレイ装置のバックライトユニットなど様々な分野に拡がることにより、高温焼結をすることなく、高光反射特性を有する本発明の発光素子用反射基板は有用である。
【実施例1】
【0069】
以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
【0070】
(実施例1〜23および比較例1〜9)
<1.基無機反射層塗布液の作成>
表3、4に示す結着剤と水を混合し攪拌、混合して無機反射層用バインダー液を作成した。
始めにバインダー液の処方を説明する。
<バインダー液(リン酸アルミニウム)>
表3、4の結着剤種類に、リン酸アルミニウムと記載するバインダー液は以下である。
リン酸85% (和光純薬製) 48g
水酸化アルミニウム(和光純薬製) 11g
水 41g
計 100g
【0071】
<バインダー液(塩化アルミニウム)>
表3、4の結着剤種類に、塩化アルミニウムと記載するバインダー液は以下である。
塩酸35% (和光純薬製) 31.7g
水酸化アルミニウム 7.4g
水 60.9g
計 100g
<バインダー液(ケイ酸ナトリウム)>
表3、4の結着剤種類に、ケイ酸ナトリウムと記載するバインダー液は以下である。
ケイ酸ナトリウム(3号ケイ酸ソーダ:富士化学株式会社製) 80g
水 20g
計 100g
<バインダー液(リン酸アルミ/塩化アルミ)>
表3、4の結着剤種類に、リン酸アルミ/塩化アルミと記載するバインダー液は以下である。
リン酸85% (和光純薬製) 48g
水酸化アルミニウム(和光純薬製) 11g
塩化アルミニウム(和光純薬製) 0.8g
水 40.2g
計 100g
<バインダー液(エポキシ樹脂)、(PDMS)>
表3、4の結着剤種類に、エポキシ樹脂、PDMSとそれぞれ記載するバインダー液は以下である。
バインダー液(エポキシ樹脂)は、エポキシ樹脂(新日鐵化学社製BPA型エポキシ樹脂YD−128)を用い、バインダー液(PDMS)は、ポリジメチルシロキサン:和光純薬製を用いた。
【0072】
上記バインダー液100g中に対し、表3,4に示す以下の無機粒子をそれぞれ100gの比率で加え、無機反射層用塗布液を準備した。
1)アルミナ
用いたアルミナ粒子を以下に記載する。表3,4に屈折率、平均粒子径、種類、組成を記載する。
昭和電工株式会社製 AL-160SG−3 平均粒子径0.52μm 純度99.9%を用い、平均粒子径の小さいものについてはボールミルを用いて、ジルコニアビーズとともに粉砕を行い粒径測定装置を用いて所望の平均粒子径になったものを取り出して使用した。
1−1)粉砕せず、AL-160SG-3をそのまま使用した。
1−2)昭和電工株式会社製 A42-2 平均粒子径4.7μm 純度99.57%を用いた。
1−3)昭和電工株式会社製 CB−P10 平均粒子径10μm 純度99.64%、および平均粒子径8μm 純度99.64%を用いた。
1−4)シーアイ化成社製NanoTekアルミナパウダー(平均粒子径0.03μm)を用いた。
2)水酸化カルシウム、宇部マテリアルズ株式会社製、CSH,純度99.99%、平均粒子径1μmを用いた。
3)硫酸バリウム
用いた硫酸バリウム粒子を以下に記載する。
3−1)東新化成株式会社製 B−30、純度94%、平均粒子径 0.3μmを用いた。
3−2)竹原化学工業株式会社製 W‐1、平均粒子径1.5μmを用いた。
異なる2種の無機粒子の混合物は、表に示す平均粒子径の混合物を用いた。混合比率は、平均粒子径0.01μm粒子を全粒子質量中20質量%とした。
【0073】
<2.基板の準備>
基板はアルミニウム板(厚み0.2mm、0.8mm、1.5mm、4mm 1050材、日本軽金属株式会社製)を用い、以下の処理を行って基板A〜Cをそれぞれ準備した。
基板A・・・上記アルミニウム板にアルカリ脱脂処理とデスマット処理を実施した。表3、4に金属種Al、陽極酸化皮膜、無と記載する。
基板B・・・上記アルミニウム板にアルカリ脱脂処理と陽極酸化処理とを行った。表3、4に金属種Al、陽極酸化皮膜、有と記載する。
基板C・・・上記アルミニウム板にアルカリ脱脂処理と粗面化処理と陽極酸化処理とを行った。表3、4に金属種Al(粗面化)、陽極酸化皮膜、有と記載する。
基板Ti・・・実施例15は、金属種チタン板(添川理化学社製)、板厚0.8mmを用い、厚さ20μmの陽極酸化皮膜を作成した。表3、4に金属種Ti、陽極酸化皮膜、有と記載する。
【0074】
(1)基板Aの処理条件
a.アルカリ水溶液中での脱脂処理
アルミニウム板に、水酸化ナトリウム濃度27質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液をスプレー管から20秒間吹き付けた。その後、ニップローラで液切りし、更に、後述する水洗処理を行った後、ニップローラで液切りした。
水洗処理は、自由落下カーテン状の液膜により水洗処理する装置を用いて水洗し、更に、扇状に噴射水が広がるスプレーチップを80mm間隔で有する構造を有するスプレー管を用いて5秒間水洗処理した。
b.酸性水溶液中でのデスマット処理
上記脱脂処理の後、デスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸1質量%水溶液を用い、液温35℃でスプレー管から5秒間吹き付けて行った。その後、ニップローラで液切りし、引き続き上述した装置を用いて水洗した。
【0075】
(2)基板Bの処理条件
基板Aと同様に作成した基板を陽極とし、陽極酸化処理装置を用いて陽極酸化処理を行った。電解液としては、70g/L硫酸水溶液に硫酸アルミニウムを溶解させてアルミニウムイオン濃度を5g/Lとした電解液(温度20℃)を用いた。陽極酸化処理は、アルミニウム板がアノード反応する間の電圧を25Vとなるように定電圧で電解を行なった。最終的な陽極酸化皮膜層厚みが20μmとなるようにした。
その後、ニップローラで液切りし、更に、上記の水洗処理に用いたのと同様の構造のスプレー管を用いて水洗処理を行った後、ニップローラで液切りした。
【0076】
(3)基板Cの処理条件
基板Aと同様に作成した基板を下記条件にて粗面化処理を施した後、陽極酸化処理装置を用いて基板Bと同一条件にて陽極酸化処理を行った。
a.粗面化処理方法
硝酸濃度1質量%、アルミニウムイオン濃度5g/L、および液温60℃の電解液を用いて、電気化学的粗面化処理を行った。アルミニウムイオン濃度は硝酸アルミニウムを加えて調整した。また、アンモニウムイオン濃度は70mg/Lであった。
IGBT(絶縁ゲートバイポーラトランジスタ)素子を用いたPWM(Pulse Width Modulation)制御によって電流制御する、任意波形の交流電流を発生する電源を用いてカーボン製の対極を用いサンプルと対極に交流を負荷して電気化学的な粗面化処理を行った。
交流電流は台形波を用い、周波数は60Hz、電流値がゼロからピークに達するまでの時間TP、0.1secであり、正負の電流比は0.5になるように設定した。サンプルに流れる正電流電気量が200C/dmとなるように調整した。
その後、ニップローラで液切りし、更に、上記の水洗処理に用いたのと同様の構造のスプレー管を用いて水洗処理を行った後、ニップローラで液切りした。
上記電解処理の後、アルミニウム板に、水酸化ナトリウム濃度27質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液をスプレー管から20秒間吹き付けた。
その後、ニップローラで液切りし、更に、後述する水洗処理を行った後、ニップローラで液切りした。水洗処理は、自由落下カーテン状の液膜により水洗処理する装置を用いて水洗し、更に、扇状に噴射水が広がるスプレーチップを80mm間隔で備える構造を有するスプレー管を用いて5秒間水洗処理した。更に上記脱脂処理の後、デスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸1質量%水溶液を用い、液温35℃でスプレー管から5秒間吹き付けて行った。その後、ニップローラで液切りした。この処理の後、基板Bと同じ条件で陽極酸化処理を施した。
【0077】
<3.基板への反射層の形成>
調整した塗布液を、塗布膜厚を調整可能なコーターにより、基板上に塗布した。その後、表3,4に記載の温度に昇温したオーブン内に入れ、5分間加熱乾燥した。乾燥後の無機反射層の量は、実施例、比較例とも20g/m2〜500g/m2の範囲であった。
比較例5,6は、エポキシ樹脂、PDMSをそれぞれ用いて表4に記載の無機粒子を陽極酸化皮膜層に塗布し、乾燥した。比較例7は無機反射層を形成しなかった。
表4中部材を用いないもの、測定できなかったもの、または処理しなかった場合は「−」を記載する。
【0078】
<4.後処理>
上記で得られた反射層付基板に以下の表5,6に示す後処理を行った。
(1)加熱水蒸気処理
反射層付基板を110℃の水蒸気で1分間処理した。
(2)親水化処理
反射層付基板を2.5質量%ケイ酸ソーダ液中に浸漬し、180℃、5分乾燥させて親水化処理した。
【0079】
<5.評価方法>
得られた反射層付基板を以下の条件で評価し結果を表3〜6に示す。
(1)OH表面構造吸収係数
フーリエ変換型赤外分光(FT-IR)を用い吸光度(FT−IR)を測定し、波数3000cm−1と波数1900cm−1の吸光度の差をOH表面構造吸収係数として算出した。島津製作所製FT-IR 8400S に、反射測定が可能なオプションパーツ(Thermo Spectra-Tech社製 Foundation Siries 0070-154)を装備し、基板表面にIR光を当て反射光との差分から吸光度を測定した。
(2)硬度、強度
基材上に無機反射層を有する発光素子用反射基板のビッカース硬度は、ビッカース硬さ試験機(形式AVK−CO、株式会社ミツトヨ製)で測定した。引張強度は、JIS Z2241に準ずる引張試験(引張速度:2mm/分)で測定した。結果を表5,6に示す。
【0080】
(3)基板と無機反射層との密着性
押し切りカッターで30mm四角形状に切断し、剥れなかった基板については高さ3mからコンクリートの地面に落下させ、以下の評価とした。結果を下記表5,6に示す。
AA:剥離しない
A:一部剥離した
B:剥離部分がかなり見られた
C:剥離した
D:押し切りカッターで切断した際に剥れてしまったもの。
【0081】
(4)耐電圧
耐電圧は、絶縁抵抗試験機(TOS9200、キクスイ社製)を用い、耐電圧(DC)を測定し評価した。
具体的には、作製した反射基板を金属製の基材(アルミニウム板)に載せ、無機反射層側にプローブを押し当てて測定し、耐電圧を測定した。
【0082】
(5)反射率
作製した基板について、反射濃度計(CM2600D、コニカミノルタ社製)を用いて、400〜700nmの全反射率(SPINモードの全平均)を測定した。
【0083】
(6)熱伝導率
得られた絶縁基板について、アルバック理工社製TC−9000/レーザーフラッシュ型熱拡散率測定装置を用い、t1/2法に従い熱伝導率を計測した。結果を表5、6に示す。
【0084】
〔金属配線層の作製〕
得られた反射基板の表面にインクジェット装置(DMP−2831、富士フイルム社製)を用いて銀ナノ粒子インク(XA−436、藤倉化学社製)の希釈液を図4に示す金属配線層20のパターンで打滴することでAg配線(配線幅:100μm)を形成させた。
次いで、ニッケルを含むめっき液でめっきし、Ag−Ni配線を形成させた。
最後に、金を含むめっき液でめっきし、Ag−Ni−金配線を形成させた。なお、各層の厚みは、Ag(20μm),Ni(4μm),Au(0.4μm)であった。
次いで、実施例、比較例の反射基板30の表面に発光素子(LED)10を実装し、金属配線層20とワイヤボンディングで電気的に接続した。
【0085】
(7)配線と無機反射層との密着性
作製した各配線基板について、配線密着性を以下の基準で評価した。
A:350℃に加熱した半田ごてを配線部分に1分間押し付け、こてを離したときに配線の剥がれがないもの
B:350℃に加熱した半田ごてを配線部分に1分間押し付け、こてを離したときに配線に線状のキズが見られたもの
C:350℃に加熱した半田ごてを配線部分に1分間押し付け、こてを離したときに配線の剥がれあるいは「浮き」が発生したもの
【0086】
【表3】

【0087】
【表4】

【0088】
【表5】

【0089】
【表6】

【0090】
〔実施例、比較例の評価〕
実施例1〜22は、OH基表面構造吸収係数が高く、耐電圧、熱伝導性に優れ、基板と無機反射層との密着性に優れ、配線と無機反射層との密着性にも優れている。
実施例2は、アルミニウム基板が粗面化され、陽極酸化処理されているので基板と無機反射層との密着性にとくに優れている。
実施例1,2、5〜12、14〜22の基板は陽極酸化処理皮膜を有するので基板と無機反射層との密着性に優れている。
比較例1は、無機反射層の硬度が低く、加工時の取扱性に劣る。加熱水蒸気処理され、OH基表面構造吸収係数が高く、耐電圧、熱伝導性はよいが、無機反射層の無機粒子の平均粒子径が大きいので配線と無機反射層との密着性に劣る。
比較例2は、無機反射層の後処理がされず、OH基表面構造吸収係数が低く、基板と無機反射層との密着性に劣り、配線と無機反射層との密着性にも劣っている。
比較例3、4は、無機反射層の焼成温度が高いので、OH基表面構造吸収係数が低く、アルミ基板の熱膨張に無機反射層が追従できずクラックが入り耐電圧が低下する。基板と無機反射層との密着性に劣る。
比較例5,6は、アルミナ粒子を結着するのに樹脂バインダーを使用しているので、耐熱性に劣り、耐光性にも劣り、経時劣化する。また、配線と反射層との密着性に劣る。
比較例7は、バルブ金属上に陽極酸化皮膜層のみがあり、無機反射層がないが、加熱水蒸気処理され、OH基表面構造吸収係数が高く、耐電圧、熱伝導性はよいが、反射率に劣る。
【符号の説明】
【0091】
1、11 バルブ金属基材
2 陽極酸化皮膜層
3 無機反射層
4 無機粒子
5 無機結着剤
6 微小空隙
10 発光素子(LED)
13 窪み
18 ヒートシンク
19 ワイヤボンディング
20 金属配線層
30 発光素子用反射基板(反射基板)
100 白色系発光ダイオード装置
110 発光素子
150 蛍光体
160 樹脂材料

【特許請求の範囲】
【請求項1】
バルブ金属基材上の少なくとも一部に無機反射層を備え、前記無機反射層が、ビッカース硬度(Hv)1GPa以上、赤外分光法により測定した波数3000cm−1と波数1900cm−1の吸光度の差で示されるOH表面構造吸収係数が0.40以上であることを特徴とする発光素子用反射基板。
【請求項2】
前記バルブ金属基材と上記無機反射層との間にバルブ金属基材の陽極酸化皮膜層を有する請求項1に記載の発光素子用反射基板。
【請求項3】
前記無機反射層が、リン酸アルミニウム、塩化アルミニウムおよびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤と、屈折率1.5以上1.8以下、平均粒子径0.1μm以上5μm以下の無機粒子とを含有する請求項1または2に記載の発光素子用反射基板。
【請求項4】
前記無機粒子は、酸化物、水酸化物、および無機塩からなる群から選択される少なくとも一つである請求項1〜3のいずれか1項に記載の発光素子用反射基板。
【請求項5】
前記無機粒子が硫酸バリウムおよび酸化アルミニウムからなる群から選択される少なくとも一つである請求項4のいずれか1項に記載の発光素子用反射基板。
【請求項6】
前記バルブ金属が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属である請求項1〜5のいずれか1項に記載の発光素子用反射基板。
【請求項7】
前記バルブ金属基材の厚さが、0.1〜2mmである請求項1〜6のいずれか1項に記載の発光素子用反射基板。
【請求項8】
前記バルブ金属が、アルミニウムである請求項1〜7のいずれか1項に記載の発光素子用反射基板。
【請求項9】
前記発光素子用反射基板の引張強度が、30MPa以上100MPa以下である請求項1〜8のいずれか1項に記載の発光素子用反射基板。
【請求項10】
前記無機粒子が、2種類以上である請求項1〜9のいずれか1項に記載の発光素子用反射基板。
【請求項11】
バルブ金属基材表面に上の少なくとも一部に設けたビッカース硬度(Hv)1GPa以上の無機反射層を加熱水蒸気処理または親水化処理して、赤外分光法により測定した波数3000cm−1と波数1900cm−1の吸光度の差で示されるOH表面構造吸収係数が0.40以上である無機反射層を形成する、発光素子用反射基板の製造方法。
【請求項12】
前記無機反射層が、無機結着剤と無機粒子とを混合して前記バブル金属基材表面に塗布され、100℃〜300℃の温度で低温焼成される請求項11に記載の発光素子用反射基板の製造方法。
【請求項13】
前記バルブ金属基材表面を陽極酸化処理した後に前記陽極酸化処理層上に無機反射層を形成する請求項11または12に記載の発光素子用反射基板の製造方法。
【請求項14】
請求項11〜13のいずれか1項に記載の工程を経た後、以下の(c)および(d)工程を任意の順序で行う、請求項11〜13のいずれか1項に記載の発光素子用反射基板の製造方法:
(c)発光素子への電気信号伝送のための金属配線層を形成し、上記金属配線層をパターン化する工程;
(d)発光素子を実装する部分に相当する電極部に金属層を設ける工程。
【請求項15】
請求項1〜10のいずれか1項に記載の発光素子用反射基板の上に青色発光素子を有し、その周りおよび/または上部に蛍光発光体を備える白色系発光ダイオード装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−83002(P2013−83002A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2012−219485(P2012−219485)
【出願日】平成24年10月1日(2012.10.1)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】