説明

高耐食性表面処理鋼板及びその製造方法

【課題】 優れた耐食性が得られるクロムフリーの表面処理鋼板を提供する。
【解決手段】 亜鉛系又はアルミ系めっき鋼板の表面に、(a)エポキシ基含有樹脂と、第1級及び/又は第2級アミン化合物と、活性水素を有するヒドラジン誘導体とを反応させて得られる変性エポキシ樹脂の水分散液、(b)ウレタン樹脂の水分散体、(c)シランカップリング剤、(d)リン酸及び/又はヘキサフルオロ金属酸を含有する表面処理組成物で形成された表面処理皮膜を有し、その上層に、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂とウレタン樹脂を含有する上層皮膜用塗料組成物で形成された上層皮膜を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に自動車用内外板に最適な高耐食性表面処理鋼板であって、その表面処理鋼板の製造時および表面処理皮膜中にクロムを全く含まない環境適応型表面処理鋼板及びその製造方法に関するものである。
【背景技術】
【0002】
家電製品用鋼板、建材用鋼板、自動車用鋼板には、従来から亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的でクロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が幅広く用いられている。このクロメート処理は耐食性に優れ且つ比較的簡単に行うことができる経済的な処理方法である。
【0003】
クロメート処理は公害規制物質である6価クロムを使用するものであるが、この6価クロムは処理工程においてクローズドシステムで処理され、完全に還元・回収されて自然界には放出されていないこと、また、有機皮膜によるシーリング作用によってクロメート皮膜中からのクロム溶出もほぼゼロにできることから、実質的には6価クロムによって環境や人体が汚染されることはない。しかしながら、最近の地球環境問題から、6価クロムを含めた重金属の使用を自主的に削減しようとする動きが高まりつつある。また、廃棄製品のシュレッダーダストを投棄した場合に環境を汚染しないようにするため、製品中にできるだけ重金属を含ませない若しくはこれを削減しようとする動きも始まっている。
【0004】
このようなことから、亜鉛系めっき鋼板の白錆の発生を防止するために、クロメート処理によらない処理技術、所謂クロムフリー技術が数多く提案されている。例えば、無機化合物、有機化合物、有機高分子材料、あるいはこれらを組み合わせた溶液を用い、浸漬、塗布、電解処理などの方法により薄膜を生成させる方法がある。
【0005】
具体的には、従来技術として、以下のような方法を挙げることができる。
(1)タンニン酸などの多価フェノールカルボン酸とシランカップリング剤を配合した処理液に浸漬しまたは処理液を塗布することにより皮膜を形成する方法(例えば、特許文献1、特許文献2など)
(2)有機樹脂にタンニン酸などの多価フェノールカルボン酸またはリン酸化合物を配合した処理液を用いて皮膜を形成する方法(例えば、特許文献3〜特許文献6など)
(3)有機樹脂とシランカップリング剤を配合した皮膜を塗布する方法(例えば、特許文献7〜特許文献13など)
【0006】
【特許文献1】特開平7−216268号公報
【特許文献2】特許第2968959号公報
【特許文献3】特開平8-325760号公報
【特許文献4】特開2000−34578号公報
【特許文献5】特開2000−199076号公報
【特許文献6】特開2000−248380号公報
【特許文献7】特開平11−106945号公報
【特許文献8】特開2000−319787号公報
【特許文献9】特開2000−248384号公報
【特許文献10】特開2000−178761号公報
【特許文献11】特開2000−199076号公報
【特許文献12】特開2000−281946号公報
【特許文献13】特開2000−14443号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
上記(1)の方法としては、多価フェノールカルボン酸とシランカップリング剤、さらには金属イオンを配合した水溶液で処理する方法があり、その一つとして特許文献1などに示される方法が挙げられる。しかし、この処理方法では良好な密着性は得られるものの、十分な耐食性が得られないという欠点がある。
上記(2)の方法としては、例えば、特許文献3に多価フェノールカルボン酸、有機樹脂および金属イオンを配合した処理液で処理を行う方法が開示されている。また、特許文献4には有機樹脂とリン酸化合物を添加した処理液に浸漬しまたは処理液を塗布した後、乾燥する方法が開示されている。しかし、これらの処理液によって形成される保護皮膜は耐食性の改善にはある程度は寄与するものの、クロメート処理を施した場合のような高度の耐食性は得ることができない。
【0008】
また、上記(3)の方法としては、例えば、特許文献8や特許文献9に有機樹脂とシランカップリング剤、さらにはチオカルボニル化合物、リン酸化合物、バナジウム化合物を含む皮膜を有するものが開示されているが、有機樹脂がポリウレタンやアクリルオレフィン樹脂であることなどから耐食性は十分ではない。また、特許文献11には酸変性エポキシ樹脂による皮膜を有するものが、特許文献10には水酸基・カルボキシル基・グリシジル基・リン酸基含有モノマーを共重合成分として含有する樹脂にシランカップリング剤、リン酸化合物を配合した皮膜を有するものが、それぞれ開示されているが、これらについても耐食性は十分ではない。特許文献7にはポリビニルフェノール誘導体とシランカップリング剤、リン酸などのエッチング剤を配合した皮膜を有するものが開示されているが、これも十分な耐食性は得られない。特許文献12には有機樹脂にエッチング剤を配合した皮膜を有するものが、特許文献13には有機樹脂にシランカップリング剤を配合した皮膜を有するものが、それぞれ開示されているが、具体的な記載が無く耐食性も不十分である。
したがって本発明の目的は、このような従来技術の課題を解決し、皮膜中にクロムを含まず、しかも優れた耐食性が得られる表面処理鋼板を提供することにある。
【課題を解決するための手段】
【0009】
以下、本発明者らによる知見とこの知見に基づく本発明が狙いとする防食機構について説明する。
表面処理皮膜を形成した亜鉛系めっき鋼板の腐食は以下の過程で進むと考えられる。
(1)表面処理皮膜中に腐食因子(酸素、水、塩素イオンなど)が浸入し、これらがめっき皮膜/表面処理皮膜界面に拡散する。
(2)めっき皮膜/表面処理皮膜界面において、以下のような酸化還元反応により亜鉛が溶解する。
カソード反応:2HO+O+4e→4OH
アノード反応:2Zn→2Zn2++4e
【0010】
したがって、亜鉛系めっき鋼板の耐食性向上には、上記(1)、(2)の両方の反応の進行を抑制することが不可欠であり、そのためには、
(a)腐食因子の拡散障壁となる高度なバリア層(主として上記カソード反応を抑制する作用をする)
(b)めっき皮膜表層を不活性化するめっき金属との反応層(主として上記アノード反応を抑制する作用をする)
を有する皮膜構成とすること、さらに好ましくは、上記反応層に欠損が生じた場合に自己補修作用が働くような皮膜構成とすることが最も効果的である。
【0011】
検討の結果、このような皮膜構成を、従来技術のようにバリア層形成成分と反応層形成成分とを個別にコーティングすることにより形成した二層皮膜ではなく、1回のコーティングにより形成した単層皮膜内に実現させること、具体的には、皮膜上部に上記(a)のバリア層を、皮膜下部に上記(b)の反応層をそれぞれ構成させること、さらに好ましくは皮膜内に自己補修作用を生じさせる物質を析出させることにより、これらの相乗効果によって耐食性向上効果が得られることが判った。このような単層皮膜を擬似二層皮膜と定義すると、この擬似二層皮膜を構成するバリア層と反応層との間には、従来型の2回コーティングにより形成された二層皮膜間のような明確な界面は存在しない。むしろ両者を傾斜組成化することにより、従来型の単層コーティングでは得られない高度の耐食性向上効果を発揮できるものと考えられる。
【0012】
上記のような擬似二層皮膜は、エポキシ基含有樹脂と第1級アミン化合物および/または第2級アミン化合物と活性水素を有するヒドラジン誘導体とを反応させて得られた変性エポキシ樹脂の水分散性液に、シランカップリング剤と特定の酸成分(リン酸、ヘキサフルオロ金属酸)を配合した表面処理組成物を亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に塗布し、乾燥させることにより得ることができる。
シランカップリング剤はこれまでにも無機化合物と有機化合物との密着性を向上させる作用を有することが知られており、めっき金属と水分散性樹脂との密着性を高めることが可能である。このようなシランカップリング剤の既知の作用効果に対して、上記の特定の表面処理組成物を用いた場合には、表面処理組成物に含まれる酸成分がめっき皮膜表面をエッチングによって活性化し、シランカップリング剤がこの活性化されためっき金属と皮膜形成樹脂の両方と化学結合することで、めっき金属と皮膜形成樹脂との極めて優れた密着性が得られるものと考えられる。つまり、表面処理組成物中にシランカップリング剤と特定の酸成分とを複合添加することにより、シランカップリング剤を単独添加した場合に比べ、めっき金属と皮膜形成樹脂との密着性が格段に高められ、この結果、めっき金属の腐食の進行が効果的に抑制され、特に優れた耐食性が得られるものと考えられる。
【0013】
上述した皮膜構成の擬似二層皮膜が形成されるメカニズムは必ずしも明らかではないが、表面処理組成物中の酸成分とめっき皮膜表面との反応が皮膜形成に関与している可能性がある。また一方において、シランカップリング剤が関与した以下のような作用も考えられる。すなわち、水溶液中で加水分解したシランップリング剤がシラノール基(Si−OH)を有しているため、酸成分により活性化されためっき金属表面に対するシランップリング剤の水素結合的な吸着作用が促進され、めっき金属表面にシランップリング剤が濃化し、その後、乾燥することにより脱水縮合反応が起きて強固な化学結合となり、これにより皮膜下部の上記(b)の反応層(すなわち、めっき皮膜表層を不活性化するめっき金属との反応層)が形成されるとともに、皮膜上部に濃化した水分散性樹脂により上記(a)のバリア層(すなわち、腐食因子の拡散障壁となる高度のバリア層)が形成される、というメカニズムによる可能性もある。また、以上述べたような作用が複合的に生じている可能性もある。また、以上のような皮膜の形成過程において、溶解した亜鉛などのめっき金属と酸成分との反応生成物(化合物)が皮膜中に析出するものと考えられる。
【0014】
このような擬似二層皮膜の防食機構についても必ずしも明らかではないが、個々の防食機構としては、上記(a)のバリア層としてエポキシ基含有樹脂にヒドラジン誘導体を付与することによって緻密な有機高分子皮膜が形成され、これが腐食因子(酸素、水、塩素イオンなど)の透過を抑制して腐食の要因となるカソード反応を効果的に抑制すること、また、腐食反応によって溶出しためっき金属イオンを皮膜中のフリーのヒドラジン誘導体がトラップし、安定な不溶性キレート化合物層を形成すること、また、上記(b)の反応層がめっき皮膜表層を不活性化して腐食の要因となるアノード反応を効果的に抑制すること、さらに、皮膜中に析出した析出化合物が腐食環境下で溶解して酸成分(リン酸イオンなど)が生成し、この酸成分がめっき皮膜から溶出した亜鉛イオンなどの金属イオンを捕捉(金属イオンと結合して不溶性化合物を形成)する自己補修作用が得られること、さらには、シランカップリング剤が酸成分によって活性化されためっき金属面と強固に結合し、めっき金属の溶解を抑制するとともに、皮膜形成樹脂とも結合することにより、密着性の高い緻密な皮膜が形成できること、などが考えられ、これらによる複合的な防食機構により、極めて優れた耐食性(耐白錆性)が得られるものと考えられる。
【0015】
以上が表面処理皮膜の基本的な組成と防食機構であるが、本発明者らは、表面処理組成物中にさらにウレタン樹脂の水分散体を配合することにより、特に優れた耐食性が得られることを見出した。すなわち、表面処理組成物にウレタン樹脂を配合することにより加工性が向上し、プレス加工を受けた際に皮膜のクラック発生を抑制することで、加工後においても優れたバリアー性を維持することができ、これにより耐食性が飛躍的に向上するものと思われる。
また、この表面処理組成物中に非クロム系防錆添加剤を配合することにより、非クロム系防錆添加剤が腐食の起点で保護皮膜を形成するため、さらに優れた防食性能が得られる。
【0016】
以上が特定の処理組成物により得られる表面処理皮膜の防食機構であるが、本発明者らが検討した結果によると、このような表面処理皮膜単層またはその上層に単に有機皮膜を形成しただけの二層皮膜構造では、特に自動車用プレス金型にあるしわ押えビードなどによる厳しい加工を受けた場合、当該加工部の損傷が大きく、その耐食性がかなり劣ったものとなることが判った。さらに、加工後に油を除去するために行われるアルカリ脱脂によって、その皮膜損傷部がダメージを受け、耐食性のさらなる劣化が生じることが判った。そこで、このような厳しい加工を受け、さらにアルカリ脱脂を受けた際の加工部耐食性を高度に満足できる皮膜構成について検討した結果、上述したように表面処理皮膜にウレタン樹脂を配合して加工性を高めることに加え、その上層に第二層皮膜として、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂とウレタン樹脂とを含有する、好ましくはこれらの樹脂を主成分樹脂とする皮膜を形成させることにより、上記のような厳しい加工とアルカリ脱脂を受けた部分においても高度な防食効果が得られることが判った。すなわち、本発明は、上記特定の表面処理皮膜(下層皮膜)と特定の高分子量樹脂皮膜を組み合せることにより、それらの複合作用によって特に高度な加工部耐食性が得られることを見出したものである。
【0017】
本発明は、このような知見に基づきなされたもので、その特徴は以下のとおりである。
[1]亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、乾燥することにより形成された皮膜厚が0.01〜1.0μmの表面処理皮膜を有し、
(a)エポキシ基含有樹脂(A)と、第1級アミン化合物および/または第2級アミン化合物(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させることにより得られる変性エポキシ樹脂(D)を水に分散させた水性エポキシ樹脂分散液
(b)ウレタン樹脂の水分散体
(c)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部
(d)リン酸および/またはヘキサフルオロ金属酸:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して0.1〜80質量部
その上層に、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)を含有する上層皮膜用塗料組成物を塗布し、乾燥することにより形成された皮膜厚が0.3〜2.0μmの上層皮膜を有することを特徴とする高耐食性表面処理鋼板。
【0018】
[2]上記[1]の表面処理鋼板において、活性水素を有するヒドラジン誘導体(C)が、5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物の中から選ばれる1種以上であることを特徴とする高耐食性表面処理鋼板。
[3]上記[1]又は[2]の表面処理鋼板において、表面処理皮膜形成用の表面処理組成物がさらに、非クロム系防錆添加剤を、成分(a)の水性エポキシ樹脂分散液と成分(b)のウレタン樹脂の水分散体とを合せた樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板。
[4]上記[1]〜[3]のいずれかの表面処理鋼板において、上層皮膜用塗料組成物がさらに、非クロム系防錆添加剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板。
【0019】
[5]上記[1]〜[4]のいずれかの表面処理鋼板において、表面処理皮膜形成用の表面処理組成物および/または上層皮膜用塗料組成物が非クロム系防錆添加剤として、下記(e1)〜(e7)の中から選ばれる1種以上を含有することを特徴とする高耐食性表面処理鋼板。
(e1)酸化ケイ素
(e2)カルシウムおよび/またはカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
[6]上記[1]〜[5]のいずれかの表面処理鋼板において、上層皮膜用塗料組成物がさらに、水酸基と架橋する基を有する硬化剤を、高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)とを合せた樹脂固形分100質量部に対して1〜50質量部含有することを特徴とする高耐食性表面処理鋼板。
[7]上記[6]の表面処理鋼板において、水酸基と架橋する基を有する硬化剤が、1分子中にイミノ基を平均1個以上有するアミノ樹脂(G)であることを特徴とする高耐食性表面処理鋼板。
【0020】
[8]上記[6]の表面処理鋼板において、水酸基と架橋する基を有する硬化剤が、1分子中にイソシアネート基を平均4個以上有するポリイソシアネート化合物(H)であることを特徴とする高耐食性表面処理鋼板。
[9]上記[8]の表面処理鋼板において、ポリイソシアネート化合物(H)が、ポリイソシアネート化合物が有するイソシアネート基の少なくとも一部をブロック剤によってブロックしたものであることを特徴とする高耐食性表面処理鋼板。
[10]上記[1]〜[9]のいずれかの表面処理鋼板において、上層皮膜用塗料組成物中の高分子量エポキシ基含有樹脂(E)が、一部または全部の化合物が活性水素を有するヒドラジン誘導体(J)からなる活性水素含有化合物(I)により変性された変性エポキシ基含有樹脂であることを特徴とする高耐食性表面処理鋼板。
[11]上記[1]〜[10]のいずれかの表面処理鋼板において、上層皮膜用塗料組成物がさらに、固形潤滑剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で1〜30質量部含有することを特徴とする高耐食性表面処理鋼板。
【0021】
[12]亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.01〜1.0μmの表面処理皮膜を形成し、
(a)エポキシ基含有樹脂(A)と、第1級アミン化合物および/または第2級アミン化合物(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させることにより得られる変性エポキシ樹脂(D)を水に分散させた水性エポキシ樹脂分散液
(b)ウレタン樹脂の水分散体
(c)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部
(d)リン酸および/またはヘキサフルオロ金属酸:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して0.1〜80質量部
その上層に、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)を含有する上層皮膜用塗料組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.3〜2.0μmの上層皮膜を形成することを特徴とする高耐食性表面処理鋼板の製造方法。
【発明の効果】
【0022】
本発明の表面処理鋼板は、皮膜中にクロムを含まないにもかかわらず非常に優れた平板および加工後の耐食性を有し、しかも溶接性、塗装性にも優れている。このため本発明の表面処理鋼板は、自動車用途に特に有用である。
【発明を実施するための最良の形態】
【0023】
以下、本発明の詳細とその限定理由を説明する。
本発明の表面処理鋼板のベースとなる亜鉛系めっき鋼板としては、亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、Zn−Fe合金めっき鋼板(電気めっき鋼板、合金化溶融亜鉛めっき鋼板)、Zn−Cr合金めっき鋼板、Zn−Mn合金めっき鋼板、Zn−Co合金めっき鋼板、Zn−Co−Cr合金めっき鋼板、Zn−Cr−Ni合金めっき鋼板、Zn−Cr−Fe合金めっき鋼板、Zn−Al合金めっき鋼板(例えば、Zn−5%Al合金めっき鋼板、Zn−55%Al合金めっき鋼板)、Zn−Mg合金めっき鋼板、Zn−Al−Mg合金めっき鋼板(例えば、Zn−6%Al−3%Mg合金めっき鋼板、Zn−11%Al−3%Mg合金めっき鋼板)、さらにはこれらのめっき鋼板のめっき皮膜中に金属酸化物、ポリマーなどを分散した亜鉛系複合めっき鋼板(例えば、Zn−SiO分散めっき鋼板)などを用いることができる。
【0024】
また、上記のようなめっきのうち、同種または異種のものを2層以上めっきした複層めっき鋼板を用いることもできる。
また、本発明の表面処理鋼板のベースとなるアルミニウム系めっき鋼板としては、アルミニウムめっき鋼板、Al−Si合金めっき鋼板などを用いることができる。
また、めっき鋼板としては、鋼板面に予めNiなどの薄目付めっきを施し、その上に上記のような各種めっきを施したものであってもよい。
めっき方法としては、電解法(水溶液中での電解または非水溶媒中での電解)、溶融法、気相法のうち、実施可能ないずれの方法を採用することもできる。
さらに、めっきの黒変を防止する目的で、めっき皮膜中に1〜2000ppm程度のNi,Co,Feの微量元素を析出させたり、或いはめっき皮膜表面にNi,Co,Feを含むアルカリ性水溶液または酸性水溶液による表面調整処理を施し、これらの元素を析出させるようにしてもよい。
【0025】
次に、上記亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、第一層皮膜として形成される表面処理皮膜およびこの皮膜形成用の表面処理組成物について説明する。
本発明の表面処理鋼板において、亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に形成される表面処理皮膜は、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、乾燥することにより形成された表面処理皮膜である。この表面処理皮膜はクロムを全く含まない。
(a)エポキシ基含有樹脂(A)と、第1級アミン化合物および/または第2級アミン化合物(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させることにより得られる変性エポキシ樹脂(D)を水中に分散してなる水性エポキシ樹脂分散液
(b)ウレタン樹脂の水分散体
(c)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部
(d)リン酸および/またはヘキサフルオロ金属酸:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して0.1〜80質量部
【0026】
まず、上記成分(a)である水性エポキシ樹脂分散液について説明する。
上記(A)成分であるエポキシ基含有樹脂は、分子中にエポキシ基を1個以上含有する樹脂であり、例えば、エポキシ樹脂、変性エポキシ樹脂、エポキシ基含有モノマーとその他のモノマーとを共重合してなるアクリル系共重合体樹脂、エポキシ基を有するポリブタジエン樹脂、エポキシ基を有するポリウレタン樹脂及びこれらの樹脂の付加物若しくは縮合物などがあげられ、これらの1種を単独でまたは2種以上を混合して使用することができる。
【0027】
上記エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ノボラック型フェノールなどのポリフェノール類とエピクロルヒドリンなどのエピハロヒドリンとを反応させてグリシジル基を導入してなるか、このグリシジル基導入反応生成物にさらにポリフェノール類を反応させて分子量を増大させてなる芳香族エポキシ樹脂;さらには脂肪族エポキシ樹脂、脂環式エポキシ樹脂などが挙げられ、これらの1種を単独でまたは2種以上を混合して使用することができる。これらのエポキシ樹脂は、特に低温での皮膜形成性を必要とする場合には、数平均分子量が1500以上であることが好ましい。
上記変性エポキシ樹脂としては、上記エポキシ樹脂中のエポキシ基または水酸基に各種変性剤を反応させた樹脂を挙げることもできる。例えば、乾性油脂肪酸を反応させたエポキシエステル樹脂;アクリル酸またはメタクリル酸などを含有する重合性不飽和モノマー成分で変性したエポキシアクリレート樹脂;イソシアネート化合物を反応させたウレタン変性エポキシ樹脂などである。
【0028】
上記アクリル系共重合体樹脂としては、エポキシ基を有する不飽和モノマーとアクリル酸エステルまたはメタクリル酸エステルを必須とする重合性不飽和モノマー成分を溶液重合法、エマルション重合法または懸濁重合法などによって合成した樹脂を挙げることができる。上記重合性不飽和モノマー成分としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−、iso−若しくはtert−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレートなどのアクリル酸またはメタクリル酸の炭素数1〜24のアルキルエステル;アクリル酸、メタクリル酸、スチレン、ビニルトルエン、アクリルアミド、アクリロニトリル、N−メチロール(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミドの炭素数1〜4アルキルエーテル化物、N,N−ジエチルアミノエチルメタクリレートなどを挙げることができる。
【0029】
また、上記エポキシ基を有する不飽和モノマーとしては、グリシジルメタアクリレート、グリシジルアクリレート、3,4−エポキシシクロヘキシル−1−メチル(メタ)アクリレートなどのようなエポキシ基と重合性不飽和基を持つものであれば、特に制限されるものではない。
また、アクリル系共重合体樹脂は、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂であってもよい。
エポキシ基含有樹脂(A)として特に好ましいのは、ビスフェノールAとエピパロヒドリンとの反応生成物であるビスフェノールA型エポキシ樹脂であり、この樹脂は周知の製造方法で得ることができる。
【0030】
上記(B)成分である第1級アミン化合物および/または第2級アミン化合物は、エポキシ基含有樹脂の水分散性を発現するために必須のものである。
具体例としては、モノエチルアミン、モノn−またはiso−プロピルアミン、モノn−またはiso−ブチルアミン、モノエタノールアミン、ネオペンタノールアミン、2−アミノプロパノール、3−アミノプロパノール、2−ヒドロキシ−2′(アミノプロポキシ)エチルエーテルなどの第1級アミン化合物、ジエチルアミン、ジブチルアミン、メチルエチルアミン、ジエタノールアミン、ジ−n−または−ios−プロパノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミンなどの第2級アミン化合物等が挙げられる。これらの第1級アミン化合物、第2級アミン化合物は、1種を単独でまたは2種以上を混合して用いることができる。また、これらのなかでも、特に反応のし易さ、制御性、水分散性の観点からはジエタノールアミンが好ましい。
また、第1級アミン化合物および/または第2級アミン化合物で変性する量はエポキシ樹脂中のエポキシ基に対して20モル%以上、好ましくは40モル%以上、より好ましくは50〜60モル%の範囲であることが水分散性、防食性の点で好ましい。
【0031】
上記(C)成分である活性水素を有するヒドラジン誘導体は、皮膜に優れた耐食性を付与するために必須の成分であり、この活性水素を有するヒドラジン誘導体の具体例としては、例えば、
(1)カルボヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、チオカルボヒドラジド、4,4′−オキシビスベンゼンスルホニルヒドラジド、ベンゾフェノンヒドラゾン、アミノポリアクリルアミドなどのヒドラジド化合物;
【0032】
(2)ピラゾール、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾールなどのピラゾール化合物;
(3)1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、2,3−ジヒドロ−3−オキソ−1,2,4−トリアゾール、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール(1水和物)、6−メチル−8−ヒドロキシトリアゾロピリダジン、6−フェニル−8−ヒドロキシトリアゾロピリダジン、5−ヒドロキシ−7−メチル−1,3,8−トリアザインドリジンなどのトリアゾール化合物;
(4)5−フェニル−1,2,3,4−テトラゾール、5−メルカプト−1−フェニル−1,2,3,4−テトラゾールなどのテトラゾール化合物;
【0033】
(5)5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどのチアジアゾール化合物;
(6)マレイン酸ヒドラジド、6−メチル−3−ピリダゾン、4,5−ジクロロ−3−ピリダゾン、4,5−ジブロモ−3−ピリダゾン、6−メチル−4,5−ジヒドロ−3−ピリダゾンなどのピリダジン化合物;
などを挙げることができる。
また、これらのなかでも、5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物が耐食性などの観点から特に好適である。
以上のヒドラジン誘導体は1種を単独でまたは2種以上を混合して使用することができる。
【0034】
また、活性水素を有するヒドラジン誘導体(C)は、その一部をヒドラジン誘導体以外の活性水素含有化合物に置き換えることもできる。すなわち、本発明では活性水素含有化合物の一部として、活性水素を有するヒドラジン誘導体(C)以外の活性水素含有化合物を用いることができる。
ヒドラジン誘導体(C)以外の活性水素含有化合物としては、例えば、下記のものが挙げられる。
・アンモニア、カルボン酸などの有機酸
・塩化水素などのハロゲン化水素類
・アルコール類、チオール類
・活性水素を有しないヒドラジン誘導体または第3級アミンと酸との混合物である4級塩化剤
【0035】
活性水素含有化合物の一部として使用できる上記4級塩化剤は、活性水素を有しないヒドラジン誘導体または第3級アミンはそれ自体ではエポキシ基と反応性を有しないので、これらをエポキシ基と反応可能とするために酸との混合物としたものである。4級塩化剤は、必要に応じて水の存在下でエポキシ基と反応し、エポキシ基含有樹脂と4級塩を形成する。4級塩化剤を得るために使用される酸は、酢酸、乳酸などの有機酸、塩酸などの無機酸のいずれでもよい。また、4級塩化剤を得るために使用される活性水素を有しないヒドラジン誘導体としては、例えば3,6−ジクロロピリダジンなどを、また、第3級アミンとしては、例えば、ジメチルエタノールアミン、トリエチルアミン、トリメチルアミン、トリイソプロピルアミン、メチルジエタノールアミンなどを挙げることができる。
活性水素含有化合物中における活性水素を有するヒドラジン誘導体(C)の割合は10〜100モル%、より好ましくは30〜100モル%、さら好ましくは40〜100モル%とすることが適当である。活性水素を有するヒドラジン誘導体(C)の割合が10モル%未満では表面処理皮膜に十分な防錆機能を付与することができず、得られる防錆効果は皮膜形成有機樹脂とヒドラジン誘導体を単に混合して使用した場合と大差なくなる。
【0036】
変性エポキシ樹脂(D)を得るためには、通常、エポキシ基含有樹脂(A)と第1級アミン化合物および/または第2級アミン化合物(B)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物を10〜300℃、好ましくは50〜150℃の温度で約1〜8時間程度反応させることが望ましい。
この反応は有機溶剤を加えて行ってもよく、使用する有機溶剤の種類は特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジブチルケトン、シクロヘキサノンなどのケトン類;エタノール、ブタノール、2−エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルなどの水酸基を含有するアルコール類やエーテル類;酢酸エチル、酢酸ブチル、エチレングリコールモノブチルエーテルアセテートなどのエステル類;トルエン、キシレンなどの芳香族炭化水素などを例示でき、これらの1種または2種以上を使用することができる。また、これらのなかでエポキシ樹脂との溶解性、塗膜形成性などの面からは、ケトン系またはエーテル系の溶剤が特に好ましい。
【0037】
エポキシ基含有樹脂(A)と第1級アミン化合物および/または第2級アミン化合物(B)との配合割合は、エポキシ基含有樹脂(A)中のエポキシ基に対して上記アミン化合物(B)が20〜80mol%、好ましくは30〜70mol%、より好ましくは40〜60mol%となるような配合割合とすることが好ましく、反応後の残存エポキシ基に対してその量に相当する活性水素を有するヒドラジン誘導体(C)を反応させることが耐食性、水分散性などの点で好ましい。したがって、活性水素を有するヒドラジン誘導体(C)は、エポキシ基含有樹脂(A)中のエポキシ基に対して80〜20mol%、好ましくは70〜30mol%、より好ましくは60〜40mol%となるような配合割合とすることが好ましい。
【0038】
変性エポキシ樹脂(D)を水分散させて樹脂分散液を得る手法としては、上記変性エポキシ樹脂(D)に含まれるアミノ基に対する周知の中和剤である酢酸、蟻酸、燐酸などで中和し、水分散化することが可能である。その中和当量は特に制限されるものではないが、アミノ基に対して0.2〜0.8当量、好ましくは0.3〜0.7当量、より好ましくは0.4〜0.6当量とすることが、分散液の性状、耐水性の点で適当である。
【0039】
本発明の水性エポキシ樹脂分散液はそのまま塗布・乾燥することにより、金属などとの密着性のよい皮膜を形成できるが、より緻密なバリア皮膜を形成するためには、水性エポキシ樹脂分散液に硬化剤(K)を配合し、有機皮膜を加熱硬化させることが望ましい。この硬化剤(K)としては、ポリイソシアネート化合物、アミノ樹脂化合物などを挙げることができる。
上記ポリイソシアネート化合物は、1分子中に少なくとも2個のイソシアネート基を有する化合物であり、脂肪族イソシアネート化合物、脂環族イソシアネート化合物(複素環を含む)、芳香族イソシアネート化合物;これらのイソシアネート化合物を多価アルコールで部分反応させた化合物などを挙げることができ、また、これらのポリイソシアネート化合物中のイソシアネート基の一部または全部がブロック剤によりブロックされていてもよい。
【0040】
ポリイソシアネート化合物としては、例えば以下のものが例示できる。
(i)m−またはp−フェニレンジイソシアネート、2,4−または2,6−トリレンジイソシアネート、o−またはp−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、イソホロンジイソシアネート
(ii)上記(i)の化合物単独またはそれらの混合物と多価アルコール(エチレングリコール、プロピレングリコールなどの2価アルコール類;グリセリン、トリメチロールプロパンなどの3価アルコール;ペンタエリスリトールなどの4価アルコール;ソルビトール、ジペンタエリスリトールなどの6価アルコールなど)との反応生成物であって、1分子中に少なくとも2個のイソシアネートが残存する化合物
これらのポリイソシアネート化合物は、1種を単独でまたは2種以上を混合して使用できる。
【0041】
また、ブロック剤としては、例えば、(1)メタノール、エタノール、プロパノール、ブタノール、オクチルアルコールなどの脂肪族モノアルコール類;(2)エチレングリコールおよび/またはジエチレングリコールのモノエーテル類、例えば、メチル、エチル、プロピル(n−,iso)、ブチル(n−,iso,sec)などのモノエーテル;(3)フェノール、クレゾールなどの芳香族アルコール;(4)アセトオキシム、メチルエチルケトンオキシムなどのオキシム、などを使用することができ、これらの1種または2種以上と前記ポリイソシアネート化合物とを反応させることにより、少なくとも常温下で安定に保護されたポリイソシアネート化合物を得ることができる。
【0042】
上記アミノ樹脂としては、メラミン、尿素、ベンゾグアナミン、アセトグアナミン、ステログアナミン、スピログアナミン、ジシアンジアミドなどのアミノ成分とアルデヒドとの反応によって得られるメチロール化アミノ樹脂があげられる。また、アルデヒドとしては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンツアルデヒドなどが挙げられる。また、このメチロール化アミノ樹脂を適当なアルコールによってエーテル化したものも使用でき、エーテル化に用いられるアルコールの例としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、i−ブチルアルコール、2−エチルブタノール、2−エチルヘキサノールなどが挙げられる。
アミノ樹脂としては、特に、メチロール基の少なくとも一部をアルキルエーテル化したメチロール化メラミン樹脂が好適である。
変性エポキシ樹脂(D)に対する硬化剤(K)の配合量は、不揮発分質量比で(D)/(K)=95/5〜55/45、好ましくは(D)/(K)=90/10〜65/35の割合で配合するのが、皮膜の素材への密着性、上塗り適正などの観点から適している。
【0043】
さらに、低温架橋性を増大させるため公知の硬化促進触媒を使用することが望ましい。硬化剤としてポリイソシアネート化合物を用いる場合の硬化促進触媒としては、例えば、N−エチルモルホリン、ジブチル錫ジラウレート、ナフテン酸コバルト、塩化第1スズ、ナフテン酸亜鉛、硝酸ビスマスなどが使用できる。硬化剤としてアミノ樹脂を用いる場合の硬化促進触媒としては、例えば、リン酸、スルホン酸化合物またはスルホン酸化合物のアミン中和物が好適である。スルホン酸化合物の代表例としては、p−トルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸などを挙げることができる。スルホン酸化合物のアミン中和物におけるアミンとしては、1級アミン、2級アミン、3級アミンのいずれであってもよい。
【0044】
次に、上記の成分(b)であるウレタン樹脂の水分散体について説明する。
ウレタン樹脂の水分散体は、ポリイソシアネート化合物と、ポリエーテルジオール、ポリエステルジオールなどのポリヒドロキシ化合物を反応させてなる生成物を使用したウレタンエマルションである。
ウレタンエマルションは、例えば、分子内にイソシアネート基と反応し得る活性水素を持たない親水性有機溶剤の存在下または非存在下で、ポリイソシアネート化合物とポリヒドロキシ化合物とを、ポリヒドロキシ化合物の水酸基に対してポリイソシアネート化合物のイソシアネート基過剰で反応させることにより容易に得ることができ、必要に応じてその反応生成物(ポリマー)とアミンと水とを混合してアミン伸長反応を行なわしめた後、ノニオン性あるいはイオン性の乳化剤と混合して水を加えることで乳化分散させ、必要により前記有機溶剤を留去することにより得ることができる。
また、ウレタン樹脂骨格中にノニオン性、アニオン性またはカチオン性の親水性基を有するポリオールを用いることにより、乳化剤を用いずにウレタンエマルションが得られる。
【0045】
上記ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどのような脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネート、イソホロンジイソシアネートなどのような環状脂肪族ジイソシアネート類;トリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネートなどのような芳香族ジイソシアネート類などの有機ジイソシアネート類、または上記有機ジイソシアネート類どうしの環化重合体、さらには上記有機ジイソシアネート類のイソシアヌレート体、ビウレット体などが挙げられる。
ウレタン樹脂の水分散体としては、特に、水性エポキシ樹脂分散液との混合安定性の面から、ノニオン性またはカチオン性ポリウレタンエマルションが好適である。
【0046】
表面処理組成物の前記水性エポキシ樹脂分散液(a)に対するウレタン樹脂の水分散体(b)の配合量は、樹脂固形分質量比で、[水性エポキシ樹脂分散液]/[ウレタン樹脂の水分散体]=95/5〜5/95、好ましくは75/25〜25/75とするのが適当である。このウレタン樹脂の水分散体を含有することにより、無添加の場合と比べ加工後の耐食性を効果的に向上させることができる。この理由は、ウレタン樹脂の水分散体を適量配合することにより表面処理組成物の造膜性が向上する結果、腐食因子の透過を抑制できること、皮膜中の防錆成分の流出を防ぐこと、加工後において樹脂皮膜のクラック発生を抑制できること、などによって耐食性が向上するためであると考えられる。水性エポキシ樹脂分散液(a)に対するウレタン樹脂の水分散体(b)の配合割合が上記下限を下回るとウレタン樹脂に由来する造膜性が十分ではなく、腐食因子の抑制作用が不十分となって耐白錆性が低下する傾向がある。一方、水性エポキシ樹脂分散液(a)に対するウレタン樹脂の水分散体(b)の配合割合が上記上限を上回ると、表面処理組成物中での活性水素を有するヒドラジン誘導体の割合が低下するため、この場合も耐白錆性が低下する傾向がある。
表面処理組成物には、上述した特定の水分散性樹脂以外に、他の水分散性樹脂および/または水溶性樹脂として、例えばアクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、エチレン系樹脂、アルキッド系樹脂、フェノール樹脂、オレフィン系樹脂の1種または2種以上を全樹脂固形分中での割合で25質量%程度を上限として配合してもよい。
【0047】
次に、上記成分(c)であるシランカップリング剤について説明する。
このシランカップリング剤としては、例えば、ビニルメトキシシラン、ビニルエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメエキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、p−スチリルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、γ−イソシアネートプロピルトリエトキシシラン、γ−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−(ビニルベンジルアミン)−β−アミノエチル−γ−アミノプロピルトリメトキシシランなどを挙げることができ、これらの1種を単独でまたは2種以上を混合して使用することができる。
【0048】
本発明において、表面処理組成物が特定の酸成分とともにシランカップリング剤を含むことにより耐白錆性が向上するには、先に述べたような理由が考えられる。
また、上記シランカップリング剤のなかでも、上記成分(a)の水分散性樹脂と反応性が高い官能基を有するという観点から、特に反応性官能基としてアミノ基を有すシランカップリング剤が好ましい。このようなシランカップリング剤としては、例えば、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメエキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシランなどが挙げられ、具体的には、信越化学(株)製のKBM−903、KBE−903、KBM−603、KBE−602、KBE−603(いずれも商品名)などを用いることができる。
【0049】
シランカップリング剤の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部、好ましくは5〜100質量部、さらに好ましくは15〜50質量部とするのが適当である。シランカップリング剤の配合量が1質量部未満では耐食性が劣り、一方、300質量部を超えると十分な皮膜が形成できないため、水分散性樹脂との密着性とバリア性を高める効果が発揮できず、耐食性が低下する。
【0050】
次に、上記成分(d)であるリン酸および/またはヘキサフルオロ金属酸は、不活性なめっき金属表面に作用してめっき金属表面を活性化させる作用を有する。このリン酸とヘキサフルオロ金属酸はそれぞれ単独で用いてもよいし、併用してもよい。
ヘキサフルオロ金属酸の種類は特に限定されないが、特にフッ化チタン酸、フッ化ジルコン酸、けいフッ酸などのようなTi、Si、Zrの中から選ばれる1種以上の元素を含むヘキサフルオロ金属酸が好ましく、これらの1種または2種以上を用いることができる。
リン酸および/またはヘキサフルオロ金属酸の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して、合計で0.1〜80質量部、好ましくは1〜60質量部、さらに好ましくは5〜50質量部とするのが適当である。リン酸および/またはヘキサフルオロ金属酸の配合量が0.1質量部未満では耐食性が劣り、一方、80質量部を超えると皮膜の可溶成分が増えることから、耐食性が低下するため好ましくない。
【0051】
表面処理組成物には、耐食性向上を目的として、必要に応じて水溶性リン酸塩を配合することができる。この水溶性リン酸塩としては、例えば、オルトリン酸、ピロリン酸、ポリリン酸、メタリン酸などの金属塩の1種または2種以上を用いることができる。また、有機リン酸の塩(例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩およびこれらの金属塩)の1種以上を添加してもよい。また、それらのなかでも第一リン酸塩が表面処理組成物の安定性などの面から好適である。
皮膜中でのリン酸塩の存在形態も特別な限定はなく、また、結晶若しくは非結晶であるか否かも問わない。また、皮膜中でのリン酸塩のイオン性、溶解度についても特別な制約はない。水溶性リン酸塩を配合することにより耐食性が向上する理由は、水溶性リン酸塩が皮膜形成時に緻密な難溶性化合物を形成するためであると考えられる。
【0052】
先に述べたようにシランカップリング剤は活性化されためっき金属と皮膜形成樹脂の両方と化学結合することで、めっき金属と皮膜形成樹脂との優れた密着性と耐食性が得られるが、めっき金属表面には不可避的に不活性な部分が存在し、このような不活性なサイトでは上記化学結合が生じにくく防錆効果を十分発揮できない。水溶性リン酸塩はこのようなめっき皮膜の部分に対して、皮膜形成時に緻密な難溶性化合物を形成する。すなわち、水溶性リン酸塩のリン酸イオンによるめっき皮膜の溶解に伴いめっき皮膜/表面処理組成物界面でpHが上昇し、その結果、水溶性リン酸塩の沈殿物皮膜が形成され、これが耐食性の向上に寄与する。
【0053】
また、特に優れた耐食性を得るという観点からは、水溶性リン酸塩のカチオン種としてはAl、Mn、Ni、Mgが特に望ましく、これらの中から選ばれる1種以上の元素を含む水溶性リン酸塩を用いることが好ましい。このような水溶性リン酸塩としては、例えば、第一リン酸アルミニウム、第一リン酸マンガン、第一リン酸ニッケル、第一リン酸マグネシウムが挙げられ、これらのうちでも特に第一リン酸アルミニウムが最も好ましい。また、そのカチオン成分とP成分のモル比[カチオン]/[P]は0.4〜1.0であることが好ましい。モル比[カチオン]/[P]が0.4未満では可溶性のリン酸によって皮膜の難溶性が損なわれ、耐食性が低下するので好ましくない。一方、1.0を超えると処理液安定性が著しく失われるので好ましくない。
この水溶性リン酸塩の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して、固形分の割合で0.1〜60質量部、好ましくは0.5〜40質量部、さらに好ましくは1〜30質量部とするのが適当である。水溶性リン酸塩の配合量が0.1質量部未満では耐食性の向上効果が十分でなく、一方、60質量部を超えると皮膜の可溶成分が増えることから、耐食性が低下するため好ましくない。
【0054】
表面処理組成物には、耐食性向上を目的として、必要に応じて非クロム系防錆添加剤を配合することができる。表面処理組成物中にこのような非クロム系防錆添加剤を配合することにより、より優れた防食性能(自己補修性)を得ることができる。
この非クロム系防錆添加剤は、特に下記(e1)〜(e7)の中から選ばれる1種以上を用いることが好ましい。
(e1)酸化ケイ素
(e2)カルシウムおよび/またはカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
これら(e1)〜(e7)の非クロム系防錆添加剤の詳細及び防食機構は以下の通りである。
【0055】
まず、上記(e1)の成分としては、微粒子シリカであるコロイダルシリカや乾式シリカを使用することができるが、耐食性の観点からは特に、カルシウムをその表面に結合させたカルシウムイオン交換シリカを使用するのが望ましい。
コロイダルシリカとしては、例えば、日産化学(株)製のスノーテックスO、20、30、40、C、S(いずれも商品名)を用いることができ、また、ヒュームドシリカとしては、日本アエロジル(株)製のAEROSIL
R971、R812、R811、R974、R202、R805、130、200、300、300CF(いずれも商品名)を用いることができる。また、カルシウムイオン交換シリカとしては、W.R.Grace&Co.製のSHIELDEX C303、SHIELDEX AC3、SHIELDEX AC5(いずれも商品名)、富士シリシア化学(株)製のSHIELDEX、SHIELDEX
SY710(いずれも商品名)などを用いることができる。これらシリカは、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制する。
【0056】
また、上記(e2)、(e3)の成分は沈殿作用によって特に優れた防食性能(自己補修性)を発現する。
上記(e2)の成分であるカルシウム化合物は、カルシウム酸化物、カルシウム水酸化物、カルシウム塩のいずれでもよく、これらの1種または2種以上を使用できる。また、カルシウム塩の種類にも特に制限はなく、ケイ酸カルシウム、炭酸カルシウム、リン酸カルシウムなどのようなカチオンとしてカルシウムのみを含む単塩のほか、リン酸カルシウム・亜鉛、リン酸カルシウム・マグネシウムなどのようなカルシウムとカルシウム以外のカチオンを含む複塩を使用してもよい。この(e2)の成分は、腐食環境下においてめっき金属である亜鉛やアルミニウムよりも卑なカルシウムが優先溶解し、これがカソード反応により生成したOHと緻密で難溶性の生成物として欠陥部を封鎖し、腐食反応を抑制する。また、上記のようなシリカとともに配合された場合には、表面にカルシウムイオンが吸着し、表面電荷を電気的に中和して凝集する。その結果、緻密で且つ難溶性の保護皮膜が生成して腐食が封鎖し、腐食反応を抑制する。
【0057】
また、上記(e3)である難溶性リン酸化合物としては、難溶性リン酸塩を用いることができる。この難溶性リン酸塩は単塩、複塩などの全ての種類の塩を含む。また、それを構成する金属カチオンに限定はなく、難溶性のリン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸アルミニウムなどのいずれの金属カチオンでもよい。また、リン酸イオンの骨格や縮合度などにも限定はなく、正塩、二水素塩、一水素塩または亜リン酸塩のいずれでもよく、さらに、正塩はオルトリン酸塩の他、ポリリン酸塩などの全ての縮合リン酸塩を含む。この難溶性リン化合物を用いることにより、腐食によって溶出しためっき金属の亜鉛やアルミニウムと、加水分解により解離したリン酸イオンとが錯形成反応し、緻密で且つ難溶性の保護皮膜が生成することによって腐食起点が封鎖され、腐食反応が抑制される。
また、上記(e4)のモリブデン酸化合物としては、例えば、モリブデン酸塩を用いることができる。このモリブデン酸塩は、その骨格、縮合度に限定はなく、例えばオルトモリブデン酸塩、パラモリブデン酸塩、メタモリブデン酸塩などが挙げられる。また、単塩、複塩などの全ての塩を含み、複塩としてはリン酸モリブデン酸塩などが挙げられる。モリブデン酸化合物は不動態化効果によって自己補修性を発現する。すなわち、腐食環境下で溶存酸素と共にめっき皮膜表面に緻密な酸化物を形成することで腐食起点を封鎖し、腐食反応を抑制する。
【0058】
また、上記(e5)の有機化合物としては、例えば、以下のようなものを挙げることができる。すなわち、トリアゾール類としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、1H−ベンゾトリアゾールなどが、またチオール類としては、1,3,5−トリアジン−2,4,6−トリチオール、2−メルカプトベンツイミダゾールなどが、またチアジアゾール類としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどが、またチアゾール類としては、2−N,N−ジエチルチオベンゾチアゾール、2−メルカプトベンゾチアゾール類などが、またチウラム類としては、テトラエチルチウラムジスルフィドなどが、それぞれ挙げられる。これらの有機化合物は吸着効果によって自己補修性を発現する。すなわち、腐食によって溶出した亜鉛やアルミニウムがこれらの有機化合物が有する硫黄を含む極性基に吸着して不活性皮膜を形成することで腐食起点を封鎖し、腐食反応を抑制する。
また、上記(e6)のバナジウム化合物としては、例えば、5価のバナジウム化合物、4価のバナジウム化合物が適用できる。特に耐食性の観点から4価のバナジウム化合物が好ましい。
【0059】
また、上記(e7)の有機化合物としては、例えば、以下のようなものを挙げることができる。すなわち、ヒドラジド化合物としては、カルボヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、チオカルボヒドラジド、4,4′−オキシビスベンゼンスルホニルヒドラジド、ベンゾフェノンヒドラゾン、アミノポリアクリルアミドなど;ピラゾール化合物としては、ピラゾール、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾールなど;トリアゾール化合物としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、2,3−ジヒドロ−3−オキソ−1,2,4−トリアゾール、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール(1水和物)、6−メチル−8−ヒドロキシトリアゾロピリダジン、6−フェニル−8−ヒドロキシトリアゾロピリダジン、5−ヒドロキシ−7−メチル−1,3,8−トリアザインドリジンなど;テトラゾール化合物としては、5−フェニル−1,2,3,4−テトラゾール、5−メルカプト−1−フェニル−1,2,3,4−テトラゾールなど;チアジアゾール化合物としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなど;ピリダジン化合物としては、マレイン酸ヒドラジド、6−メチル−3−ピリダゾン、4,5−ジクロロ−3−ピリダゾン、4,5−ジブロモ−3−ピリダゾン、6−メチル−4,5−ジヒドロ−3−ピリダゾンなどが挙げられる。また、これらのなかでも5員環又は6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物が特に好適である。
【0060】
非クロム系防錆添加剤の配合量は、成分(a)の水性エポキシ樹脂分散液の樹脂固形分100質量部に対して、固形分の割合で0.1〜50質量部、好ましくは0.5〜30質量部とするのが適当である。この非クロム系防錆添加剤の配合量が0.1質量部未満では、耐アルカリ脱脂後の耐食性向上効果が十分に得られず、一方、50質量部を超えると塗装性及び加工性が低下するだけでなく、耐食性も低下するので好ましくない。
なお、上記(e1)〜(e7)の防錆添加剤を2種以上複合添加してもよく、この場合にはそれぞれ固有の防食作用が複合化されるため、より高度の耐食性が得られる。特に、上記(e1)の成分としてカルシウムイオン交換シリカを用い、且つこれに(e3)〜(e5)の成分の1種以上、特に好ましくは(e3)〜(e5)の成分の全部を複合添加した場合に特に優れた耐食性が得られる。
また、表面処理皮膜(および表面処理組成物)中には、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機インヒビター(例えば、ヒドラジンおよびその誘導体、チオール化合物、チオカルバミン酸塩など)などの1種または2種以上を添加できる。
【0061】
さらに必要に応じて、表面処理皮膜(および表面処理組成物)中には添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種または2種以上を添加することができる。
以上のような成分を含む表面処理組成物により形成される表面処理皮膜は、乾燥膜厚が0.01〜1.0μm、好ましくは0.1〜0.8μmとする。乾燥膜厚が0.01μm未満では耐食性が不十分であり、一方、1.0μmを超えると導電性や加工性が低下する。
【0062】
次に、上記表面処理皮膜の上部に第二層皮膜として形成される上層皮膜(有機皮膜)について説明する。
この上層皮膜は、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)を含有する、好ましくはこれらを主成分樹脂とする上層皮膜用塗料組成物を塗布し、乾燥することにより形成された皮膜厚が0.3〜2.0μmの皮膜である。この上層皮膜もクロムを全く含まない。このような特定の樹脂皮膜を上記特定の表面処理皮膜(下層皮膜)の上層に形成することにより、両皮膜の複合作用によって特に高度な加工部耐食性が得られる。
【0063】
本発明において、上層皮膜にエポキシ基含有樹脂(E)を用いるのは、反応性、反応の容易さ、防食性など面が他の樹脂に較べて優れているためである。このエポキシ基含有樹脂(E)としては、例えば、エポキシ樹脂、変性エポキシ樹脂、エポキシ基含有モノマーと共重合したアクリル系共重合体樹脂、エポキシ基を有するポリブタジエン樹脂、エポキシ基を有するポリウレタン樹脂、およびこれらの樹脂の付加物若しくは縮合物などが挙げられ、これらのエポキシ基含有樹脂の1種を単独でまたは2種以上を混合して用いることができる。
また、これらのエポキシ基含有樹脂(E)の中でも、めっき表面との密着性、耐食性の点からエポキシ樹脂、変性エポキシ樹脂が特に好適である。またその中でも、酸素などの腐食因子に対して優れた遮断性を有する熱硬化性のエポキシ樹脂や変性エポキシ樹脂が最適であり、とりわけ高度なスポット溶接性を得るために皮膜の付着量を低レベルにする場合には特に有利である。
【0064】
エポキシ基含有樹脂(E)としては、数平均分子量が6000〜20000、好ましくは7000〜12000の高分子量エポキシ基含有樹脂を用いる。そのなかでもビスフェノール型のエポキシ樹脂が好ましい。一般的に用いられているビスフェノール型エポキシ樹脂は、数平均分子量が5500以下のものであるが、数平均分子量が6000未満では得られる皮膜の加工性が十分でなく、特に自動車用プレス金型にあるしわ押えビードによる厳しい加工を受けた際の皮膜損傷が大きく、加工部耐食性が劣ることになる。一方、数平均分子量が20000を超えるとエポキシ樹脂の製造が極めて困難となり、ゲル化などによって安定した品質のものが得られにくくなる。
上記ビスフェノール型エポキシ樹脂としては、例えば、エピクロルヒドリンとビスフェノールとを、必要に応じてアルカリ触媒などの触媒の存在下で高分子量まで縮合させてなる樹脂、エピクロルヒドリンとビスフェノールとを、必要に応じてアルカリ触媒などの触媒の存在下で縮合させて低分子量のエポキシ樹脂とし、この低分子量エポキシ樹脂とビスフェノールとを重付加反応させることにより得られる樹脂のいずれであってもよいが、高分子量エポキシ樹脂を安定に得るためには後者の方法が好ましい。
【0065】
上記ビスフェノールとしては、例えば、ビス(4−ヒドロキシフェニル)メタン[ビスフェノールF]、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、2,2−ビス(4−ヒドロキシフェニル)ブタン[ビスフェノールB]、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−tert−ブチル−フェニル)−2,2−プロパン、p−(4−ヒドロキシフェニル)フェノール、オキシビス(4−ヒドロキシフェニル)、スルホニルビス(4−ヒドロキシフェニル)、4,4′−ジヒドロキシベンゾフェノン、ビス(2−ヒドロキシナフチル)メタンなどを挙げることができるが、なかでも、ビス(4−ヒドロキシフェニル)メタン[ビスフェノールF]および2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]が好ましい。上記ビスフェノール類は、その1種を単独でまたは2種以上を混合して使用することができる。
【0066】
上記変性エポキシ樹脂としては、例えば、アクリル変性エポキシ樹脂、ポリエステル変性エポキシ樹脂、ウレタン変性エポキシ樹脂などを挙げることができる。また、ポリアルキレングリコール、ポリイソシアネートおよびエポキシ樹脂を反応させてなるポリアルキレングリコール変性エポキシ樹脂、一部または全部の化合物が活性水素を有するヒドラジン誘導体からなる活性水素含有化合物とエポキシ樹脂を反応させた変性エポキシ樹脂(ヒドラジン誘導体変性エポキシ樹脂)なども用いることができる。なかでもヒドラジン誘導体変性エポキシ樹脂は耐食性向上などの点から特に好ましい。
また、変性エポキシ樹脂としては、上記エポキシ樹脂中のエポキシ基または水酸基に各種変性剤を反応させたものでもよく、例えば、乾性油脂肪酸を反応させたエポキシエステル樹脂、アクリル酸またはメタクリル酸などを含有する重合性不飽和モノマー成分で変性したエポキシアクリレート樹脂、イソシアネート化合物を反応させたウレタン変性エポキシ樹脂などを例示できる。
【0067】
上記エポキシ基含有モノマーと共重合したアクリル系共重合体樹脂としては、エポキシ基を有する不飽和モノマーとアクリル酸エステルまたはメタクリル酸エステルを必須とする重合性不飽和モノマー成分とを、溶液重合法、エマルション重合法または懸濁重合法などによって合成した樹脂を挙げることができる。
上記重合性不飽和モノマー成分としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−,iso−若しくはtert−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレートなどのアクリル酸またはメタクリル酸のC1〜24アルキルエステル;アクリル酸、メタクリル酸、スチレン、ビニルトルエン、アクリルアミド、アクリロニトリル、N−メチロール(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミドのC1〜4アルキルエーテル化物;N,N−ジエチルアミノエチルメタクリレートなどを挙げることができる。
また、エポキシ基を有する不飽和モノマーとしては、グリシジルメタクリレート、グリシジルアクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレートなど、エポキシ基と重合性不飽和基を持つものであれば特別な制約はない。
【0068】
上記ヒドラジン誘導体変性エポキシ樹脂に代表される、一部または全部の化合物が活性水素を有するヒドラジン誘導体(J)からなる活性水素含有化合物(I)と高分子量エポキシ基含有樹脂とを反応させた変性エポキシ基含有樹脂は、高分子量エポキシ基含有樹脂のエポキシ基に活性水素を有するヒドラジン誘導体(J)が反応することにより、下地との密着性が向上し、耐食性が特に優れた皮膜を形成することができる。
【0069】
高分子量エポキシ基含有樹脂のエポキシ基と反応する活性水素含有化合物(I)としては、例えば以下に示すようなものを例示でき、これらの1種または2種以上を使用できるが、この場合も活性水素含有化合物(I)の少なくとも一部(好ましくは全部)は、活性水素を有するヒドラジン誘導体(J)であることが必要である。すなわち、これらのうち活性水素を有するヒドラジン誘導体(J)を必須成分とし、必要に応じてこのヒドラジン誘導体(J)以外の活性水素含有化合物を用いる。
・活性水素を有するヒドラジン誘導体
・活性水素を有する第1級または第2級のアミン化合物
・アンモニア、カルボン酸などの有機酸
・塩化水素などのハロゲン化水素
・アルコール類、チオール類
・活性水素を有しないヒドラジン誘導体または第3級アミンと酸との混合物である4級塩化剤
【0070】
上記活性水素を有するヒドラジン誘導体(J)としては、例えば、以下のものを挙げることができる。
(1)カルボヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、チオカルボヒドラジド、4,4′−オキシビスベンゼンスルホニルヒドラジド、ベンゾフェノンヒドラゾン、アミノポリアクリルアミドなどのヒドラジド化合物;
(2)ピラゾール、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾールなどのピラゾール化合物;
(3)1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、2,3−ジヒドロ−3−オキソ−1,2,4−トリアゾール、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール(1水和物)、6−メチル−8−ヒドロキシトリアゾロピリダジン、6−フェニル−8−ヒドロキシトリアゾロピリダジン、5−ヒドロキシ−7−メチル−1,3,8−トリアザインドリジンなどのトリアゾール化合物;
【0071】
(4)5−フェニル−1,2,3,4−テトラゾール、5−メルカプト−1−フェニル−1,2,3,4−テトラゾールなどのテトラゾール化合物;
(5)5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどのチアジアゾール化合物;
(6)マレイン酸ヒドラジド、6−メチル−3−ピリダゾン、4,5−ジクロロ−3−ピリダゾン、4,5−ジブロモ−3−ピリダゾン、6−メチル−4,5−ジヒドロ−3−ピリダゾンなどのピリダジン化合物;
また、これらのなかでも、5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物が特に好適である。
これらのヒドラジン誘導体は1種を単独でまたは2種以上を混合して使用することができる。
【0072】
活性水素含有化合物(I)の一部として使用できる上記活性水素を有するアミン化合物の代表例としては、例えば、以下のものを挙げることができる。
(1)ジエチレントリアミン、ヒドロキシエチルアミノエチルアミン、エチルアミノエチルアミン、メチルアミノプロピルアミンなどの1個の2級アミノ基と1個以上の1級アミノ基を含有するアミン化合物の1級アミノ基を、ケトン、アルデヒド若しくはカルボン酸と例えば100〜230℃程度の温度で加熱反応させてアルジミン、ケチミン、オキサゾリン若しくはイミダゾリンに変性した化合物;
(2)ジエチルアミン、ジエタノールアミン、ジ−n−または−iso−プロパノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミンなどの第2級モノアミン;
(3)モノエタノールアミンのようなモノアルカノールアミンとジアルキル(メタ)アクリルアミドとをミカエル付加反応により付加させて得られた第2級アミン含有化合物;
(4)モノエタノールアミン、ネオペンタノールアミン、2−アミノプロパノール、3−アミノプロパノール、2−ヒドロキシ−2′(アミノプロポキシ)エチルエーテルなどのアルカノールアミンの1級アミノ基をケチミンに変性した化合物;
【0073】
活性水素含有化合物(I)の一部として使用できる上記4級塩化剤は、活性水素を有しないヒドラジン誘導体または第3級アミンはそれ自体ではエポキシ基と反応性を有しないので、これらをエポキシ基と反応可能とするために酸との混合物としたものである。4級塩化剤は、必要に応じて水の存在下でエポキシ基と反応し、エポキシ基含有樹脂と4級塩を形成する。
4級塩化剤を得るために使用される酸は、酢酸、乳酸などの有機酸、塩酸などの無機酸のいずれでもよい。また、4級塩化剤を得るために使用される活性水素を有しないヒドラジン誘導体としては、例えば3,6−ジクロロピリダジンなどを、また、第3級アミンとしては、例えば、ジメチルエタノールアミン、トリエチルアミン、トリメチルアミン、トリイソプロピルアミン、メチルジエタノールアミンなどを挙げることができる。
【0074】
高分子量エポキシ基含有樹脂と一部または全部の化合物が活性水素を有するヒドラジン誘導体(J)からなる活性水素含有化合物(I)との反応生成物は、高分子量エポキシ基含有樹脂と活性水素含有化合物(I)とを10〜300℃、好ましくは50〜150℃で約1〜8時間程度反応させて得られる。
この反応は有機溶剤を加えて行ってもよく、使用する有機溶剤の種類は特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジブチルケトン、シクロヘキサノンなどのケトン類;エタノール、ブタノール、2−エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルなどの水酸基を含有するアルコール類やエーテル類;酢酸エチル、酢酸ブチル、エチレングリコールモノブチルエーテルアセテートなどのエステル類;トルエン、キシレンなどの芳香族炭化水素などを例示でき、これらの1種または2種以上を使用することができる。また、これらのなかでエポキシ樹脂との溶解性、塗膜形成性などの面からは、ケトン系またはエーテル系の溶剤が特に好ましい。
【0075】
高分子量エポキシ基含有樹脂と一部または全部の化合物が活性水素を有するヒドラジン誘導体(J)からなる活性水素含有化合物(I)との配合比率は、固形分の割合で高分子量エポキシ基含有樹脂100質量部に対して、活性水素含有化合物(I)を0.5〜20質量部、特に好ましくは1.0〜10質量部とするのが望ましい。
また、高分子量エポキシ基含有樹脂と活性水素含有化合物(I)との配合比率は、活性水素含有化合物(I)の活性水素基の数と高分子量エポキシ基含有樹脂のエポキシ基の数との比率[活性水素基数/エポキシ基数]が0.01〜10、より好ましくは0.1〜8、さらに好ましくは0.2〜4とすることが耐食性などの点から適当である。
また、活性水素含有化合物(I)中における活性水素を有するヒドラジン誘導体(J)の割合は10〜100モル%、より好ましくは30〜100モル%、さら好ましくは40〜100モル%とすることが適当である。活性水素を有するヒドラジン誘導体(J)の割合が10モル%未満では上層皮膜に十分な防錆機能を付与することができず、得られる防錆効果は皮膜形成有機樹脂とヒドラジン誘導体を単に混合して使用した場合と大差なくなる。
【0076】
ウレタン樹脂(F)は、ポリイソシアネート化合物と、ポリエーテルジオール、ポリエステルジオールなどのポリヒドロキシ化合物を反応させてなる生成物である。
ウレタン樹脂は、例えば、分子内にイソシアネート基と反応し得る活性水素を持たない親水性有機溶剤の存在下または非存在下で、ポリイソシアネート化合物とポリヒドロキシ化合物とを、ポリヒドロキシ化合物の水酸基に対しポリイソシアネート化合物のイソシアネート基過剰で反応させることにより容易に得ることができ、必要により前記有機溶剤に溶解させることにより得ることができる。
上記ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどのような脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネート、イソホロンジイソシアネートなどのような環状脂肪族ジイソシアネート類;トリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネートなどのような芳香族ジイソシアネート類等の有機ジイソシアネート類、または上記有機ジイソシアネート類どうしの環化重合体、さらには上記有機ジイソシアネート類のイソシアヌレート体、ビウレット体などが挙げられる。
【0077】
本発明の上層皮膜用塗料組成物の高分子量エポキシ樹脂(E)に対するウレタン樹脂(F)の配合量は、(E)/(F)の固形分質量比で95/5〜5/95、好ましくは75/25〜25/75が望ましい。このウレタン樹脂を含有することにより、未添加の場合と比べ、加工後の耐食性を効果的に向上させることができる。この理由は、ウレタン樹脂を特定比率、配合することにより表面処理組成物の造膜性が向上し、腐食因子の透過抑制できること、また皮膜中の防錆成分の流出を防ぐこと,更には加工後において樹脂皮膜のクラック発生を抑制することにより耐食性向上を実現できると考えられる。
上層皮膜用塗料組成物には上述した特定の樹脂以外にその他の樹脂として、例えばアクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、エチレン系樹脂、アルキッド系樹脂、フェノール樹脂、オレフィン系樹脂の2種以上を全樹脂固形分中での割合で25重量部程度を上限として配合してもよい。
【0078】
本発明の上層皮膜用塗料組成物は、高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)を必須成分として含有するものであるが、この高分子量エポキシ基含有樹脂中の水酸基と反応することができる硬化剤を含有させることにより、塗布後の加熱乾燥時に皮膜が架橋し、より加工性が優れた緻密なバリヤー性を有する皮膜を形成することができる。樹脂組成物皮膜を形成する場合の硬化方法としては、ポリイソシアネート化合物(H)とエポキシ基含有樹脂中の水酸基とのウレタン化反応を利用する硬化方法、アミノ樹脂(G)とエポキシ基含有樹脂中の水酸基との間のエーテル化反応を利用する硬化方法などを好ましいものとして挙げることができる。
上記アミノ樹脂(G)としては、メラミン、尿素、ベンゾグアナミン、アセトグアナミン、ステログアナミン、スピログアナミン、ジシアンジアミドなどのアミノ成分とホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンツアルデヒドなどのアルデヒド成分との反応によって得られるメチロール化アミノ樹脂が挙げられる。このメチロール化アミノ樹脂のメチロール基を炭素原子数1〜6の低級アルコールによってエーテル化したものも上記アミノ樹脂に包含される。
【0079】
また、上記アミノ樹脂のなかでも、メチロール化メラミン樹脂のメチロール基の一部又は全部を、メチルアルコールによってエーテル化したメチルエーテル化メラミン樹脂、ブチルアルコールによってブチルエーテル化したブチルエーテル化メラミン樹脂、あるいはメチルアルコールとブチルアルコールの両者によってエーテル化したメチルエーテルとブチルエーテルとの混合エーテル化メラミン樹脂が特に好ましい。また、これらのなかでも、イミノ基を1分子中に平均1個以上、好ましくは1.5個以上含有するメチルエーテル化メラミン樹脂を用いることにより、高分子量エポキシ基含有樹脂(E)およびウレタン樹脂(F)との低温反応性が向上し、皮膜の強靭性を大幅に向上させることができる。市販品の具体例としては、例えば、三井サイテック社製のサイメル325、サイメル327、サイメル703(いずれも商品名)などを挙げることができる。
以上のアミノ樹脂は、1種を単独でまたは2種以上を混合して用いることができる。
【0080】
上記ポリイソシアネート化合物(H)としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどのような脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネート、イソホロンジイソシアネートなどのような環状脂肪族ジイソシアネート類;トリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネートなどのような芳香族ジイソシアネート類;トリフェニルメタン−4,4′,4″−トリイソシアネート、1,3,5−トリイソシアナトベンゼン、2,4,6−トリイソシアナトトルエン、4,4′−ジメチルジフェニルメタン−2,2′,5,5′−テトライソシアネートなどの3個以上のイソシアネ−ト基を有するポリイソシアネート化合物の如き有機ポリイソシアネートそれ自体、またはこれらの各有機ポリイソシアネートと多価アルコール、低分子量ポリエステル樹脂若しくは水等との付加物、或いは上記した各有機ポリイソシアネートどうしの環化重合体、さらには、イソシアヌレート体、ビウレット体などを挙げることができる。
【0081】
さらに、それらのなかでも、1分子中にイソシアネート基を4個以上、特に好ましくは6個〜10個有するポリイソシアネート化合物は、反応温度を低下させた場合にも、高分子量エポキシ基含有樹脂(E)との密な架橋により強靭な皮膜を形成することができ、厳しい加工を行った際の加工部耐食性を特に良好なものとすることができる。このようなポリイソシアネート化合物としては、4,4′−ジメチルジフェニルメタン−2,2′,5,5′−テトライソシアネートのアダクト化物、ヘキサメチレンジイソシアネートのアダクト化物などが挙げられる。
【0082】
上記ポリイソシアネート化合物(H)は、ポリイソシアネート化合物のイソシアネート基の一部または全部をブロック化剤でブロックしたものでもよく、このブロック化剤としては、フェノール、クレゾール、キシレノールなどのフェノール系;ε−カプロラクタム、δ−バレロラクタム、γ−ブチロラクタム、β−プロピオラクタムなどのラクタム系;メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコールなどのアルコール系;ホルムアミドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシムなどのオキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトンなどの活性メチレン系、などのブロック化剤を挙げることができる。
1分子中に4個以上のイソシアネート基を含有するポリイソシアネート化合物の市販品の具体例としては、例えば、旭化成社製のMF−B80M、MF−B60X、MF−K60X、ME20−B80S(いずれも商品名)などを挙げることができる。
【0083】
上層皮膜用塗料組成物中の上記硬化剤の含有量としては、高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)の合計量の樹脂固形分100質量部に対して1〜50質量部、好ましくは5〜30質量部とすることが、硬化性の観点から適している。
なお、高分子量エポキシ基含有樹脂(E)は以上のような架橋剤(硬化剤)の添加により十分に架橋するが、さらに低温架橋性を増大させるため、公知の硬化促進触媒を使用することが望ましい。この硬化促進触媒としては、例えば、N−エチルモルホリン、ジブチル錫ジラウレート、ナフテン酸コバルト、塩化第1スズ、ナフテン酸亜鉛、硝酸ビスマスなどが使用できる。
また、付着性など若干の物性向上を狙いとして、高分子量エポキシ基含有樹脂(E)およびウレタン樹脂(F)とともに公知のアクリル、アルキッド、ポリエステルなどの樹脂を混合して用いることもできる。
【0084】
本発明の上層皮膜(上層皮膜用塗料組成物)には、耐食性向上を目的として、必要に応じて非クロム系防錆添加剤を含有させることができる。上層皮膜中にこのような非クロム系防錆添加剤を含有させることにより、より優れた防食性能を得ることができる。
この非クロム系防錆添加剤は、特に下記(e1)〜(e7)の中から選ばれる1種以上を用いることが好ましい。
(e1)酸化ケイ素
(e2)カルシウムまたは/およびカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
これら(e1)〜(e7)の非クロム系防錆添加剤の詳細および防食機構は、先に表面処理皮膜に関して述べた通りである。
【0085】
非クロム系防錆添加剤の配合量は、皮膜形成用の塗料組成物の樹脂固形分100質量部に対して、固形分の割合で0.1〜50質量部、好ましくは0.5〜30質量部とするのが適当である。この非クロム系防錆添加剤の配合量が0.1質量部未満では、耐アルカリ脱脂後の耐食性向上効果が十分に得られず、一方、50質量部を超えると塗装性、加工性および溶接性が低下するだけでなく、耐食性も低下するので好ましくない。
なお、上記(e1)〜(e7)の防錆添加剤を2種以上複合添加してもよく、この場合にはそれぞれ固有の防食作用が複合化されるため、より高度の耐食性が得られる。特に、上記(e1)の成分としてカルシウムイオン交換シリカを用い、且つこれに(e3)〜(e5)の成分の1種以上、特に好ましくは(e3)〜(e5)の成分の全部を複合添加した場合に特に優れた耐食性が得られる。
【0086】
また、上層皮膜(上層皮膜用塗料組成物)中には上記の防錆添加成分に加えて、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機リン酸及びその塩(例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩、及びこれらの金属塩、アルカリ金属塩、アルカリ土類金属塩など)、有機インヒビター(例えば、ヒドラジン誘導体、チオール化合物、ジチオカルバミン酸塩など)などの1種又は2種以上を添加できる。
【0087】
上層皮膜(上層皮膜用塗料組成物)中には、さらに必要に応じて、皮膜の加工性を向上させる目的で固形潤滑剤を配合することができる。
本発明に適用できる固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの1種または2種以上を用いることができる。
(1)ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2)フッ素樹脂微粒子:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
また、この他にも、脂肪酸アミド系化合物(例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど)、金属石けん類(例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど)、金属硫化物(例えば、二硫化モリブデン、二硫化タングステンなど)、グラファイト、フッ化黒鉛、窒化ホウ素、ポリアルキレングリコール、アルカリ金属硫酸塩などの1種または2種以上を用いてもよい。
【0088】
以上の固形潤滑剤の中でも、特に、ポリエチレンワックス、フッ素樹脂微粒子(なかでも、ポリ4フッ化エチレン樹脂微粒子)が好適である。
ポリエチレンワックスとしては、例えば、ヘキスト社製のセリダスト
9615A、セリダスト 3715、セリダスト 3620、セリダスト 3910(いずれも商品名)、三洋化成社製のサンワックス 131−P、サンワックス 161−P(いずれも商品名)、三井石油化学社製のケミパール
W−100、ケミパール W−200、ケミパール W−500、ケミパール W−800、ケミパール W−950(いずれも商品名)などを用いることができる。
【0089】
また、フッ素樹脂微粒子としては、テトラフルオロエチレン微粒子が最も好ましく、例えば、ダイキン工業社製のルブロン
L−2、ルブロン L−5(いずれも商品名)、三井・デュポン社製のMP1100、MP1200(いずれも商品名)、旭アイシーアイフロロポリマーズ社製のフルオンディスパージョン
AD1、フルオンディスパージョン AD2、フルオン L141J、フルオン L150J、フルオン L155J(いずれも商品名)などが好適である。
また、これらのなかで、ポリオレフィンワックスとテトラフルオロエチレン微粒子の併用により特に優れた潤滑効果が期待できる。
上層皮膜中での固形潤滑剤の配合量は、上層皮膜用塗料組成物の樹脂固形分100質量部に対して、固形分の割合で1〜30質量部、好ましくは1〜10質量部とする。固形潤滑剤の配合量が1質量部未満では潤滑効果が乏しく、一方、配合量が30質量部を超えると塗装性が低下するので好ましくない。
【0090】
本発明の表面処理鋼板が有する上層皮膜(上層皮膜用塗料組成物)は、高分子量エポキシ基含有樹脂(E)およびウレタン樹脂(F)を必須成分とし、これに必要に応じて硬化剤、非クロム系防錆添加剤、固形潤滑剤などが添加されるが、さらに必要に応じて、添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、有機溶剤可溶性アゾ系染料、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、キレート剤(例えば、チオールなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種または2種以上を添加することができる。
【0091】
また、上記主成分および添加成分を含む皮膜形成用の塗料組成物は、通常、溶媒(有機溶剤および/または水)を含有し、さらに必要に応じて中和剤などが添加される。
上記有機溶剤としては、上記高分子量エポキシ基含有樹脂(E)およびウレタン樹脂(F)を溶解または分散でき、塗料組成物として調整できるものであれば特別な制約なく、例えば、先に例示した種々の有機溶剤を使用することができる。
上記中和剤は、高分子量エポキシ基含有樹脂(E)を中和して水性化するために必要に応じて配合されるものであり、高分子量エポキシ基含有樹脂(E)がカチオン性樹脂である場合には酢酸、乳酸、蟻酸などの酸を中和剤として使用することができる。
上層皮膜の乾燥膜厚は0.3〜2.0μm、好ましくは0.4〜1.5μmとする。上層皮膜の膜厚が0.3μm未満では耐食性が不十分であり、一方、膜厚が2.0μmを超えると溶接性や電着塗装性が低下する。
また、溶接性や電着塗装性の観点からは、第一層の表面処理皮膜と第二層の上層皮膜の合計膜厚は2.0μm以下であることが好ましい。
【0092】
次に、本発明の表面処理鋼板の製造方法について説明する。
亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に上記表面処理皮膜を形成するには、上述した組成を有する表面処理組成物(処理液)を乾燥皮膜厚が上記範囲となるようにめっき鋼板面に塗布し、水洗することなく加熱乾燥させる。
表面処理組成物をめっき鋼板面に形成する方法としては、塗布法、浸漬法、スプレー法のいずれでもよい。塗布処理方法としては、ロールコーター(3ロール方式、2ロール方式など)、スクイズコーター、ダイコーターなどいずれの方法でもよい。また、スクイズコーターなどによる塗布処理または浸漬処理、スプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。
【0093】
表面処理組成物をコーティングした後は、水洗することなく加熱乾燥を行う。加熱乾燥手段としては、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥は到達板温で30〜150℃、好ましくは40℃〜140℃の範囲で行うことが望ましい。この加熱乾燥温度が30℃未満では皮膜中に水分が多量に残り、耐食性が不十分となる。また、加熱乾燥温度が150℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じ耐食性が低下する。また、加熱乾燥温度が150℃を超えるとBH鋼板に適用できなくなるため好ましくない。
上記のようにして形成された表面処理皮膜の上層には、第二層皮膜として上層皮膜(有機樹脂皮膜)を形成する。第二層皮膜用の塗料組成物を上述した膜厚となるよう上記表面処理皮膜面に塗布し、加熱乾燥させる。塗料組成物の塗布は、上述した表面処理皮膜の形成に用いた方法に準じて行えばよい。
【0094】
塗料組成物の塗布後、通常は水洗することなく、加熱乾燥を行うが、塗料組成物の塗布後に水洗工程を実施しても構わない。加熱乾燥処理には、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥は到達板温で30〜150℃、好ましくは40℃〜140℃の範囲で行うことが望ましい。この加熱乾燥温度が30℃未満では皮膜中に水分が多量に残り、耐食性が不十分となる。また、加熱乾燥温度が150℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じ耐食性が低下する。また、加熱乾燥温度が150℃を超えるとBH鋼板に適用できなくなるため好ましくない。
【0095】
したがって、本発明の表面処理鋼板の製造方法およびその好ましい実施形態は以下のとおりである。
[1]亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.01〜1.0μmの表面処理皮膜を形成し、
(a)エポキシ基含有樹脂(A)と、第1級アミン化合物および/または第2級アミン化合物(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させることにより得られる変性エポキシ樹脂(D)を水中に分散してなる水性エポキシ樹脂分散液
(b)ウレタン樹脂の水分散体
(c)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部
(d)リン酸および/またはヘキサフルオロ金属酸:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して0.1〜80質量部
その上層に、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂(E)とウレタン樹脂を含有する上層皮膜用塗料組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.3〜2.0μmの上層皮膜を形成することを特徴とする高耐食性表面処理鋼板の製造方法。
【0096】
[2]上記[1]の製造方法において、活性水素を含有するヒドラジン誘導体(C)が、5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物の中から選ばれる1種以上であることを特徴とする高耐食性表面処理鋼板の製造方法。
[3]上記[1]または[2]の製造方法において、表面処理皮膜形成用の表面処理組成物がさらに、非クロム系防錆添加剤を、成分(a)の水性エポキシ樹脂分散液と成分(b)のウレタン樹脂の水分散体とを合せた樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、上層皮膜用塗料組成物がさらに、非クロム系防錆添加剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
【0097】
[5]上記[1]〜[4]のいずれかの製造方法において、表面処理皮膜形成用の表面処理組成物および/または上層皮膜用塗料組成物が非クロム系防錆添加剤として、下記(e1)〜(e7)の中から選ばれる1種以上を含有することを特徴とする高耐食性表面処理鋼板の製造方法。
(e1)酸化ケイ素
(e2)カルシウムまたは/およびカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
【0098】
[6]上記[1]〜[5]のいずれかの製造方法において、上層皮膜用塗料組成物がさらに、水酸基と架橋する基を有する硬化剤を、高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)とを合せた樹脂固形分100質量部に対して1〜50質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[7]上記[6]の製造方法において、水酸基と架橋する基を有する硬化剤が、1分子中にイミノ基を平均1個以上有するアミノ樹脂(G)であることを特徴とする高耐食性表面処理鋼板の製造方法。
[8]上記[6]の製造方法において、水酸基と架橋する基を有する硬化剤が、1分子中にイソシアネート基を平均4個以上有するポリイソシアネート化合物(H)であることを特徴とする高耐食性表面処理鋼板の製造方法。
【0099】
[9]上記[8]の製造方法において、ポリイソシアネート化合物(H)が、ポリイソシアネート化合物が有するイソシアネート基の少なくとも一部をブロック剤によってブロックしたものであることを特徴とする高耐食性表面処理鋼板の製造方法。
[10]上記[1]〜[9]のいずれかの製造方法において、上層皮膜用塗料組成物中の高分子量エポキシ基含有樹脂(E)が、一部または全部の化合物が活性水素を有するヒドラジン誘導体(J)からなる活性水素含有化合物(I)により変性された変性エポキシ基含有樹脂であることを特徴とする高耐食性表面処理鋼板の製造方法。
[11]上記[1]〜[10]のいずれかの製造方法において、上層皮膜用塗料組成物がさらに、固形潤滑剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で1〜30質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
【0100】
なお、上述した表面処理皮膜および上層皮膜はめっき鋼板の片面、両面のいずれに形成してもよく、めっき鋼板表裏面の皮膜形態の組み合わせとしては、例えば、表面処理皮膜+上層皮膜/無処理、表面処理皮膜+上層皮膜/表面処理皮膜、表面処理皮膜+上層皮膜/表面処理皮膜+上層皮膜など、任意の形態とすることができる。
【実施例】
【0101】
第一層形成用の表面処理組成物は、樹脂組成物として表2に示す水性エポキシ樹脂分散液と表3に示すウレタン樹脂水分散体を用い、これにシランカップリング剤(表4)、リン酸またはヘキサフルオロ金属酸(表5)、水溶性リン酸塩(表6)、非クロム系防錆添加剤(表7)を適宜配合し、さらにアンモニア水、硝酸、酢酸、硫酸、リン酸、ヘキサフルオロ金属酸などでpHを0.5〜6に調整した後、塗料用分散機(サンドグラインダー)を用いて所定時間攪拌し、表面処理組成物を調製した。
【0102】
表2に示す水性エポキシ樹脂分散液は以下のようにして製造した。
<製造例1>
温度計、撹拌機、冷却管を備えたガラス製4ツ口フラスコに、エピコート1007(エポキシ樹脂、シェルジャパン(株)製、エポキシ当量2000)787.4gとプロピレングリコールモノブチルエーテル425g加え、110℃で撹拌混合し均一透明になった後、100℃に冷却した。このものに、ジエタノールアミン20.7gを加え、1時間反応させた後、エポキシアミン価を測定し、理論値になっていることを確認して、3−アミノ−1,2,4−トリアゾール(分子量84)16.5gを加えて、5時間反応させた。その後、プロピレングリコールモノブチルエーテル250gを加えて変性エポキシ樹脂(D1)を得た。この変性エポキシ樹脂(D1)にリン酸23.3gを加え、水を混合・滴下し、固形分濃度20%の水性エポキシ樹脂分散液(E1)を得た。
【0103】
<製造例2>
温度計、撹拌機、冷却管を備えたガラス製4ツ口フラスコに、エピコート1004(エポキシ樹脂、シェルジャパン(株)製、エポキシ当量925)546gとプロピレングリコールモノブチルエーテル311g加え、110℃で撹拌混合し均一透明になった後、100℃に冷却した。このものに、ジエタノールアミン31.5gを加え、1時間反応させた後、エポキシアミン価を測定し、理論値になっていることを確認して、3−アミノ−1,2,4−トリアゾール(分子量84)25.2gを加えて、5時間反応させた。その後、プロピレングリコールモノブチルエーテル182.6gを加えて変性エポキシ樹脂(D2)を得た。この変性エポキシ樹脂(D2)にリン酸35.3gを加え、水を混合・滴下し、固形分濃度20%の水性エポキシ樹脂分散液(E2)を得た。
【0104】
<製造例3>
製造例1におけるジエタノールアミンの量を12.4gに、3−アミノ−1,2,4−トリアゾールの量を23.1gに置き換えた以外は、製造例1と同様にして反応を行い、変性エポキシ樹脂を得た。この変性エポキシ樹脂に水を混合し、固形分濃度20%の水性エポキシ樹脂分散液(E3)を得た。
<製造例4>(比較例)
温度計、撹拌機、冷却管を備えたガラス製4ツ口フラスコに、エピコート1001(エポキシ樹脂、ジャパンエポキシレジン社製、エポキシ当量約475、数平均分子量約900)186.6gとプロピレングリコールモノブチルエーテル115.2gを加え、110℃まで昇温して撹拌混合し、液が均一透明になった後100℃に冷却し、ジエタノールアミン25.5gを加えて100℃の温度に1時間保持した。その後、プロピレングリコールモノブチルエーテル68.0gを加えて変性エポキシ樹脂溶液(D4)を得た。この変性エポキシ樹脂溶液(D4)にリン酸23.3gを加え、水を滴下しながら混合し、固形分濃度20%の水性エポキシ樹脂分散液(E4)を得た。
<製造例5>(比較例)
製造例1において3−アミノ−1,2,4−トリアゾール16.5gをN−メチル−エタノールアミン14.7gに置き換えた以外は、製造例1と同様にして反応を行い、変性エポキシ樹脂溶液(D5)を得た。この変性エポキシ樹脂溶液(D5)に水を混合し固形分濃度20%の水性エポキシ樹脂分散液(E5)を得た。
【0105】
第二層形成用の塗料組成物は、樹脂組成物として表8および表9に示すものと表10に示すウレタン樹脂を用い、これに非クロム系防錆添加剤(表7)、固形潤滑剤(表11)を適宜配合し、塗料用分散機(サンドグラインダー)を用いて所定時間攪拌し、塗料組成物を調製した。
表8および表9に示す樹脂組成物の基体樹脂(反応生成物)は以下のようにして合成した。
<合成例1>
エピコート828(ジャパンエポキシレジン社製、エポキシ当量187)634部、ビスフェノールA366部、50%テトラエチルアンモニウムブロマイド水溶液8部及びシクロヘキサノン180部を四つ口フラスコに仕込み、150℃まで昇温して5時間反応させた後、冷却しながらメチルイソブチルケトン300部とシクロヘキサノン1843部を加えて、固形分30%のエポキシ樹脂溶液F1(樹脂組成物(1))を得た。この樹脂の数平均分子量は7600であった。
<合成例2>
エピコート1256(ジャパンエポキシレジン社製、エポキシ当量7880)347部及びシクロヘキサノン543部を四つ口フラスコに仕込み、130℃まで昇温して2時間で完全にエポキシ樹脂を溶解した。このものを120℃に冷却し、3−アミノ−1,2,4−トリアゾール(分子量84)を3.7部加えて、エポキシ基が消失するまで6時間反応させた後、冷却しながらメチルイソブチルケトン78部とシクロヘキサノン197部を加え、固形分30%のトリアゾール変成エポキシ樹脂溶液F2(樹脂組成物(2))を得た。この樹脂の数平均分子量は10100であった。
【0106】
<合成例3>
エピコート828(ジャパンエポキシレジン社製、エポキシ当量187)637部、ビスフェノールA363部、50%テトラエチルアンモニウムブロマイド水溶液10部及びシクロヘキサノン175部を四つ口フラスコに仕込み、160℃まで昇温して4時間反応させ、固形分85%のエポキシ樹脂溶液を得た。このものに、シクロヘキサノン1315部を加えてから100℃に冷却し、3,5−ジメチルピラゾール9.7部とジブチルアミン13部を加えて、エポキシ基が消失するまで6時間反応させた後、冷却しながらメチルイソブチルケトン908部を加え、固形分30%のピラゾール変性エポキシ樹脂溶液F3(樹脂組成物(3))を得た。この樹脂の数平均分子量は6300であった。
<合成例4>
エピコート828(ジャパンエポキシレジン社製、エポキシ当量187)1833部、ビスフェノールA894部、テトラエチルアンモニウムブロマイド1.96部及びメチルイソブチルケトン294部を四つ口フラスコに仕込み、140℃まで昇温して4時間反応させ、冷却しながらエチレングリコールモノブチルエーテル3795部を加えて、エポキシ当量1388、固形分40%のエポキシ樹脂溶液F4(樹脂組成物(4))を得た。この樹脂の数平均分子量は3100であった。
【0107】
冷延鋼板をベースとした家電、建材、自動車部品用のめっき鋼板である、表1に示すめっき鋼板を処理原板として用いた。なお、鋼板の板厚は評価の目的に応じて所定の板厚のものを採用した。このめっき鋼板の表面をアルカリ脱脂処理、水洗乾燥した後、上記第一層形成用の表面処理組成物をロールコーターにより塗布し、各種温度で加熱乾燥した。皮膜の膜厚は、表面処理組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
次いで、上記第二層形成用の塗料組成物をロールコーターにより塗布し、各種温度で加熱乾燥した。皮膜の膜厚は、塗料組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
【0108】
得られた表面処理鋼板の皮膜組成と品質性能(耐食性、加工後耐食性、溶接性、電着塗装性)を評価した結果を表12〜表27に示す。なお、品質性能の評価は以下のようにして行った。
(1)耐食性
各サンプルについて、日本パーカライジング(株)製「FC−4460」を用いて、60℃、2分間の条件で脱脂した後、下記の複合サイクル試験(CCT)を施し、64サイクル経過後の白錆発生面積率および赤錆発生面積率で評価した。
塩水噴霧(JIS Z 2371に基づく):4時間

乾燥(60℃):2時間

湿潤(50℃、95%RH):2時間
その評価基準は以下の通りである。
◎ :白錆発生面積率5%未満
○+:白錆発生面積率5%以上、10%未満
○ :白錆発生面積率10%以上、30%未満
○−:白錆発生面積率30%以上で、赤錆発生なし
△ :赤錆発生ありで、赤錆発生面積率10%未満
× :赤錆発生面積率10%以上
【0109】
(2)加工後耐食性
各サンプルに対して、下記の条件によるドロービードで変形と摺動を付加し、このサンプルを日本パーカライジング(株)製「FC−4460」を用いて、60℃、2分間の条件で脱脂した後、前記「(1)耐食性」で行ったCCTを施し、36サイクル経過後の白錆発生面積率および赤錆発生面積率で評価した。
押付荷重:800kgf
引抜速度:1000mm/min
ビード肩R:オス側2mmR,メス側3mmR
押し込み深さ:7mm
使用油:スギムラ化学工業(株)製「プレトンR−352L」
その評価基準は以下の通りである。
◎ :白錆発生面積率5%未満
○+:白錆発生面積率5%以上、10%未満
○ :白錆発生面積率10%以上、30%未満
○−:白錆発生面積率30%以上で、赤錆発生なし
△ :赤錆発生ありで、赤錆発生面積率10%未満
× :赤錆発生面積率10%以上
【0110】
(3)溶接性
各サンプルについて、使用電極:CF型Cr−Cu電極、加圧力:200kgf、通電時間:10サイクル/50Hz、溶接電流:10kAの条件で連続打点性の溶接試験を行い、連続打点数で評価した。その評価基準は以下の通りである。
◎:2000点以上
○:1000点以上、2000点未満
△:500点以上、1000点未満
×:500点未満
(4)電着塗装性
各サンプルにカチオン系電着塗料(関西ペイント(株)製「GT−10」)を膜厚30μmとなるように塗装した後、130℃×30分の焼付を行った。塗装したサンプルを沸水中に2時間浸漬し、直ちに碁盤目(10×10個、1mm間隔)のカットを入れて接着テープによる貼着・剥離を行い、塗膜の剥離面積率を測定した。その評価基準は以下の通りである。
◎:剥離なし
○:剥離面積率5%未満
△:剥離面積率5%以上、20%未満
×:剥離面積率20%以上
【0111】
【表1】

【0112】
【表2】

【0113】
【表3】

【0114】
【表4】

【0115】
【表5】

【0116】
【表6】

【0117】
【表7】

【0118】
【表8】

【0119】
【表9】

【0120】
【表10】

【0121】
【表11】

【0122】
なお、表12〜表27中に記載の*1〜*12は以下の内容を指す。
*1:表1に記載のNo.(めっき鋼板)
*2:表2に記載のNo.(水性エポキシ樹脂分散液)
*3:表3に記載のNo.(ウレタン樹脂水分散体)
*4:表4に記載のNo.(シランカップリング剤)
*5:表5に記載のNo.(リン酸またはヘキサフルオロ金属酸)
*6:表6に記載のNo.(水溶性リン酸塩)
*7:表7に記載のNo.(防錆添加剤)
*8:質量部(水性エポキシ樹脂分散液とウレタン樹脂水分散体以外の成分については、水性エポキシ樹脂分散液の樹脂固形分100質量部に対する質量部)
*9:表8及び表9に記載のNo.(樹脂組成物)
*10:表10に記載のNo.(ウレタン樹脂)
*11:表11に記載のNo.(固形潤滑剤)
*12:質量部(防錆添加剤および固形潤滑剤については、有機樹脂の固形分100質量部に対する質量部)
【0123】
【表12】

【0124】
【表13】

【0125】
【表14】

【0126】
【表15】

【0127】
【表16】

【0128】
【表17】

【0129】
【表18】

【0130】
【表19】

【0131】
【表20】

【0132】
【表21】

【0133】
【表22】

【0134】
【表23】

【0135】
【表24】

【0136】
【表25】

【0137】
【表26】

【0138】
【表27】


【特許請求の範囲】
【請求項1】
亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、乾燥することにより形成された皮膜厚が0.01〜1.0μmの表面処理皮膜を有し、
(a)エポキシ基含有樹脂(A)と、第1級アミン化合物および/または第2級アミン化合物(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させることにより得られる変性エポキシ樹脂(D)を水に分散させた水性エポキシ樹脂分散液
(b)ウレタン樹脂の水分散体
(c)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部
(d)リン酸および/またはヘキサフルオロ金属酸:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して0.1〜80質量部
その上層に、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)を含有する上層皮膜用塗料組成物を塗布し、乾燥することにより形成された皮膜厚が0.3〜2.0μmの上層皮膜を有することを特徴とする高耐食性表面処理鋼板。
【請求項2】
活性水素を有するヒドラジン誘導体(C)が、5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物の中から選ばれる1種以上であることを特徴とする請求項1に記載の高耐食性表面処理鋼板。
【請求項3】
表面処理皮膜形成用の表面処理組成物がさらに、非クロム系防錆添加剤を、成分(a)の水性エポキシ樹脂分散液と成分(b)のウレタン樹脂の水分散体とを合せた樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする請求項1または2に記載の高耐食性表面処理鋼板。
【請求項4】
上層皮膜用塗料組成物がさらに、非クロム系防錆添加剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする請求項1〜3のいずれかに記載の高耐食性表面処理鋼板。
【請求項5】
表面処理皮膜形成用の表面処理組成物および/または上層皮膜用塗料組成物が非クロム系防錆添加剤として、下記(e1)〜(e7)の中から選ばれる1種以上を含有することを特徴とする請求項1〜4のいずれかに記載の高耐食性表面処理鋼板。
(e1) 酸化ケイ素
(e2) カルシウムおよび/またはカルシウム化合物
(e3) 難溶性リン酸化合物
(e4) モリブデン酸化合物
(e5) トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6) バナジウム化合物
(e7) ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
【請求項6】
上層皮膜用塗料組成物がさらに、水酸基と架橋する基を有する硬化剤を、高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)とを合せた樹脂固形分100質量部に対して1〜50質量部含有することを特徴とする請求項1〜5のいずれかに記載の高耐食性表面処理鋼板。
【請求項7】
水酸基と架橋する基を有する硬化剤が、1分子中にイミノ基を平均1個以上有するアミノ樹脂(G)であることを特徴とする請求項6に記載の高耐食性表面処理鋼板。
【請求項8】
水酸基と架橋する基を有する硬化剤が、1分子中にイソシアネート基を平均4個以上有するポリイソシアネート化合物(H)であることを特徴とする請求項6に記載の高耐食性表面処理鋼板。
【請求項9】
ポリイソシアネート化合物(H)が、ポリイソシアネート化合物が有するイソシアネート基の少なくとも一部をブロック剤によってブロックしたものであることを特徴とする請求項8に記載の高耐食性表面処理鋼板。
【請求項10】
上層皮膜用塗料組成物中の高分子量エポキシ基含有樹脂(E)が、一部または全部の化合物が活性水素を有するヒドラジン誘導体(J)からなる活性水素含有化合物(I)により変性された変性エポキシ基含有樹脂であることを特徴とする請求項1〜9のいずれかに記載の高耐食性表面処理鋼板。
【請求項11】
上層皮膜用塗料組成物がさらに、固形潤滑剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で1〜30質量部含有することを特徴とする請求項1〜10のいずれかに記載の高耐食性表面処理鋼板。
【請求項12】
亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.01〜1.0μmの表面処理皮膜を形成し、
(a)エポキシ基含有樹脂(A)と、第1級アミン化合物および/または第2級アミン化合物(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させることにより得られる変性エポキシ樹脂(D)を水に分散させた水性エポキシ樹脂分散液
(b)ウレタン樹脂の水分散体
(c)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して1〜300質量部
(d)リン酸および/またはヘキサフルオロ金属酸:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して0.1〜80質量部
その上層に、数平均分子量が6000〜20000の高分子量エポキシ基含有樹脂(E)とウレタン樹脂(F)を含有する上層皮膜用塗料組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.3〜2.0μmの上層皮膜を形成することを特徴とする高耐食性表面処理鋼板の製造方法。

【公開番号】特開2006−342419(P2006−342419A)
【公開日】平成18年12月21日(2006.12.21)
【国際特許分類】
【出願番号】特願2005−171748(P2005−171748)
【出願日】平成17年6月10日(2005.6.10)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】