説明

アミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体

本発明は、下記一般式(I)で示される新規アミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその塩の提供に関する。
前記誘導体又はその塩は、メタボトロピックグルタメート受容体作用を有し経口活性が優れ医薬として有用であることを見いだした。


(ここに、式中の記号は、以下の意味を表す。
:置換されてもよい含酸素飽和ヘテロ環−、置換されてもよい含硫黄飽和ヘテロ環−、置換されてもよいシクロアルキル、R−O−、又はR−S−;
Alk:低級アルキレン;
m:0又は1;
Alk:オキソ基で置換されてもよい低級アルキレン;
n:0又は1;
X:結合、O、S、又は−NR−;
:H、低級アルキル、ハロゲノ低級アルキル、低級アルケニル、低級アルキニル、置換されてもよいシクロアルキル、シアノ、又は飽和ヘテロ環−;
、R、R、R及びR:同一又は異なって、H、又は、低級アルキル)

【発明の詳細な説明】
【技術分野】
本発明は、医薬として有用な新規なアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその塩に関する。
【背景技術】
グルタミン酸は、ほ乳類の中枢神経系において神経伝達物質として働いている(Mayer M.L.and Westbrook G.L.,Prog.Neurobiol.,28(1987)197−276)。最近の研究により、グルタミン酸の高次脳神経機能における重要性が明らかにされてきている。グルタミン酸は神経終末より放出され、シナプス後膜あるいは神経終末に存在するグルタミン酸受容体を介して神経細胞活性あるいは神経伝達物質の放出を調節している。グルタミン酸受容体は、種々の薬理学的、生理学的研究から、現在大きく二つのカテゴリーに分類されている。その一つはイオンチャネル内蔵型受容体であり、もう一つは代謝調節型(メタボトロピック)の受容体である(Hollmann M.and Heinemann S.,Annu.Rev.Neurosci.,17(1994)31−108)。
分子生物学的研究により、メタボトロピックグルタメート受容体(以下mGluRという場合もある)には、現在少なくともmGluR1乃至mGluR8の異なる8種類のサブタイプが存在することが報告されている。mGluRは、Gタンパク質を介してホスホリパーゼCと共役し、イノシトール3リン酸(IP3)の産生、ならびに細胞内へのカルシウムイオンの動員を促進する受容体(グループI:mGluR1及びmGluR5)と、Giタンパク質と共役しcAMP産生を抑制する受容体(グループII:mGluR2、mGluR3、グループIII:mGluR4、mGluR6、mGluR7及びmGluR8)とに分類される。これら受容体は、それぞれ異なる脳内分布を示し、例えばmGluR6は脳内には存在せず網膜上にのみ存在するなどそれぞれの受容体が異なる生理的役割を担っているものと推察されている(Nakanishi S.,Neuron 13(1995)1031−1037)。
これまでイオンチャネル内蔵型グルタミン酸受容体と比較してmGluRに選択的な化合物が報告されており(Hayashi Y.et al.,Br.J.Pharmacol.107(1992)539−543;Hayashi Y.et al.,J.Neurosci.14(1995)3370−3377)、これらの化合物を用いた研究により、mGluRと種々の病態との関連が以下▲1▼乃至▲6▼に報告されている。
▲1▼mGluR作動薬である(1S,3R)−1−アミノシクロペンタン−1,3−ジカルボン酸(以下(1S,3R)−ACPDという)の投与により、てんかんが誘発される(Tizzano J.P.et al.,Neurosci.Lett.,162(1993)12−16;McDonald J.W.et al.,J.Neurosci.,13(1993)4445−4455)。さらに、mGluR1の拮抗薬で、かつmGluR2の作動薬である(S)−4−カルボキシ−3−ヒドロキシフェニルグリシン(以下(S)−CHPGという)の種々のてんかんモデルでの有効性が報告されている(Dalby,N.O.& Thomsen,C.J.Pharmacol.Exp.Ther.,276(1996)516−522)。
▲2▼脊髄後角神経細胞への痛覚刺激の伝達にmGluRの関与することが電気生理学的実験により証明されている(Young,M.R.et al.,Neuropharmacology,33(1994)141−144;ibid,34(1995)1033−1041)。さらに、ラットにおいて、(S)−CHPGに熱及び機械的痛覚刺激の回避反応を遅くさせる作用があることが報告されている(Young,M.R.et al.,Br.J.Pharmacol.,114(1995)316P)。
▲3▼(1S,3R)−ACPDや(RS)−3,5−ジヒドロキシフェニルグリシン(以下3,5−DHPGという)をマウスやラット脳実質に微量投与、又は全身投与するとけいれんを伴って、神経細胞死を引き起こすことが報告されている(Lipartit,M.et al.,Life Sci.,52(1993)PL85−90;McDonald,J.W.et al.,J.Neurosci.,13(1993)4445−4455;Tizzano,J.P.,et al.,Neuropharmacology,34(1995)1063−3067)。これは、mGluR1及びmGluR5が活性化された結果によると考えられている。
▲4▼ベンゾジアゼピンの慢性投与により、依存性が形成されることがよく知られている。ベンゾジアゼピンの7日間持続投与後の2日目と3日目に、(1S,3R)−ACPDのmGluRを介したイノシトール・リン脂質の代謝回転が上昇することが報告され、ベンゾジアゼピンの退薬症候群の発現にmGluRが関与していることが示唆されている(Mortensen,M.et al.,J.Pharmacol.Exp.Ther.,274(1995)155−163)。
▲5▼mGluRグループIの拮抗薬である1−アミノインダン−1,5−ジカルボン酸を脳室内投与することで、N−メチル−4−フェニル−1,2,3,6−テトラヒドロピリジン誘発黒質ドーパミン神経細胞死が抑制されると報告されている(Aguirre,J.A.et al.,Neuroreport.12(2001)2615−2617)。
▲6▼mGluR1の拮抗薬は三叉神経節電気刺激により硬膜血管外へ蛋白が漏出することを抑制することが報告されている(WO01/32632)。
即ち、以上の報告は、mGluR1に作用する化合物が、てんかん、痛み、神経細胞死の抑制、ベンゾジアゼピン退薬症候群、片頭痛に有用であることを示している。
また、ラット脳梗塞モデルにおいて、mGluR1拮抗剤の有効性を確認していることから、mGluR1拮抗剤は脳梗塞の予防・治療剤として有用であると考えられる(特許文献1)。
更に、mGluR1拮抗剤が神経因性疼痛モデルでの痛覚閾値の低下を改善することが確認されたことから、帯状疱疹後神経痛、糖尿病性神経障害に伴う疼痛、癌性疼痛、術後慢性疼痛などの神経因性疼痛の治療剤としても有用である(特許文献2)。
mGluR1拮抗作用を有する化合物としては、上記特許文献1、2、3及び特許文献4において、チアゾロベンゾイミダゾール誘導体が開示されており、特許文献4には、チアゾロベンゾイミダゾールのベンゼン環が臭素及びアミノ基で置換された化合物が開示されている(実施例90)。しかしながら、当該ベンゼン環がフッ素原子及びアミノメチル基で置換された本発明のチアゾロベンゾイミダゾール誘導体は、これらの文献には具体的な開示がない。
また、上記特許文献1、3及び4に開示されたチアゾロベンゾイミダゾール誘導体は、非経口投与が主要な投与形態である脳梗塞を主要な適応症として見いだされた化合物であったため、経口活性が充分でない等の問題があった。
一方、特許文献2には、チアゾロベンゾイミダゾール環のベンゼン環部分にアミノ基が置換したチアゾロベンゾイミダゾール誘導体が、経口投与で神経因性疼痛の治療効果を有することが報告されている。
しかしながら、これらの化合物はベンゼン環上にアミノ基(アニリン性アミノ基)を有する化学構造により、安全性に問題があった。
【特許文献1】 PCT国際公開パンフレットWO99/44639
【特許文献2】 PCT国際公開パンフレットWO01/08705
【特許文献3】 PCT国際公開パンフレットWO00/59913
【特許文献4】 特開2000−351782号公報
【発明の開示】
本発明の目的は、優れた経口活性を有するメタボトロピックグルタメート受容体拮抗剤として、臨床上有用な新規なアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体及びその塩を提供することである。
また、上記特許文献2の化合物は経口活性を有するものの、遺伝子突然変異誘発性を有することが当社の研究により確認されている。この遺伝子突然変異誘発性は、アニリン性アミノ基を有する構造上の特徴により発現していると考えられ、アニリン性アミノ基を有する化合物は経口活性を有するものでも発癌性を有する可能性があり医薬品として臨床に用いることができないという欠点があった。
このため、アニリン性アミノ基を有さず、かつ経口活性が優れた化合物が必要であった。しかしながら、特許文献1、3、4に示されたアニリン性アミノ基を有さない化合物の活性は充分ではなかった。
本発明者らは上記の課題を達成すべく鋭意研究を行ったところ、チアゾロベンゾイミダゾール誘導体のベンゼン環がフッ素原子及び置換アミノメチルで置換され、アニリン性アミノ基を置換基として有さないチアゾロベンゾイミダゾール誘導体、特に当該ベンゼン環がフッ素及び含酸素ヘテロ環を有するアミノメチル置換チアゾロベンゾイミダゾール誘導体が、従来知られていたフッ素原子が置換されていない特許文献1、3、4に記載のチアゾロベンゾイミダゾール誘導体に比べ、メタボトロピックグルタメート受容体に良好な活性を有し、発癌性を有する危険がなく、かつ優れた経口活性、特に神経の圧迫による神経因性疼痛に対して、優れた経口活性を有する予想外の効果を見出し本発明を完成させるに至った。
即ち、本発明は下記一般式(I)で示されるアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその塩、及びそれらを有効成分とする医薬に関する。
具体的には、以下に示す通りである。
(1)下記一般式(I)で示されるアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその塩。

(ここに、式中の記号は、以下の意味を表す。
:置換されてもよい含酸素飽和ヘテロ環−、置換されてもよい含硫黄飽和ヘテロ環−、置換されてもよいシクロアルキル、R−O−、又はR−S−
Alk1:低級アルキレン
m:0又は1
Alk2:オキソ基で置換されてもよい低級アルキレン
n:0又は1
X:結合、O、S、又はNR
:H、低級アルキル、ハロゲノ低級アルキル、低級アルケニル、低級アルキニル、置換されてもよいシクロアルキル、シアノ、又は飽和ヘテロ環−
、R、R、R及びR:同一又は異なって、H、又は、低級アルキル)
(2)一般式(I)において、Rがオキセタン−又はジオキソラン−、RがH、Rがネオペンチル、Xが結合、Rがメチル、Alk1がメチレン、及びnが0である、前記(1)記載の誘導体又はその塩。
(3)5−フルオロ−N−メチル−N−ネオペンチル−6−[(オキセタン−3−イルアミノ)メチル]チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド;
6−{[(1,3−ジオキソラン−2−イルメチル)アミノ]メチル}−5−フルオロ−N−メチル−N−ネオペンチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド;又はその塩。
(4)前記(1)乃至(3)記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩を有効成分とする医薬組成物。
(5)前記(1)乃至(3)記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩を有効成分とする神経因性疼痛治療剤。
(6)前記(1)乃至(3)記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩及び担体からなる医薬組成物の有効量を患者に投与することによる神経因性疼痛の治療方法。
好ましくは、前記(1)乃至(3)記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩を有効成分とする神経の圧迫により生ずる神経因性疼痛治療剤、更に好ましくは、遺伝子突然変異誘発性のない前記(1)乃至(3)記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩を有効成分とする神経因性疼痛治療剤である。
本発明は更に、上記(1)乃至(3)記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその塩を有効成分として含有するmGluR1受容体拮抗剤に関する。
【発明を実施するための最良の形態】
本発明化合物についてさらに説明すると、次の通りである。
本明細書の一般式の定義において、特に断らない限り「低級」なる用語は炭素数が1乃至6個の直鎖又は分岐状の炭素鎖を意味する。
「低級アルキル」とは、C1−6アルキルであり、好ましくはメチル、エチル、プロピル、イソプロピル、t−ブチルなどの直鎖又は分枝のC1−4アルキル、さらに好ましくはC1−3アルキルである。
「低級アルキレン」とは、C1−6アルキレンであり、好ましくはメチレン、エチレン、メチルメチレン、トリメチレン、プロピレン、エチルエチレン、テトラブチレンなどの直鎖または分枝C1−4アルキレン、さらに好ましくはC1−3アルキレンである。
オキソ基で置換された低級アルキレンとは、上記低級アルキレンの任意の炭素原子にオキソ基が置換した基を意味し、好ましくは、−CH−C(O)−、−C(O)−CH−、−CH−C(O)−CH−、−(CH−C(O)−、−C(O)−(CH−である。
「低級アルケニル」とは、C2−6アルケニルであり、好ましくはビニル、プロペニル、ブテニルなどの直鎖又は分枝のC2−4アルケニルさらに好ましくはC2−3アルケニルである。
「低級アルキニル」とは、C2−6アルキニルであり、好ましくはエチニル、プロピニル、ブチニルなどの直鎖又は分枝のC2−4アルキニルさらに好ましくはC2−3アルキニルである。
「ハロゲン」とは、ハロゲン原子を意味し、例えば、フッ素、塩素、臭素、ヨウ素原子を意味する。
「ハロゲノ低級アルキル」とは、前記低級アルキルの任意の1以上の水素原子が上記ハロゲン原子によって置換された基を意味し、トリフルオロメチルが好ましい。
「シクロアルキル」とは、3〜8員のシクロアルキルを意味し、好ましくはシクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチル等である。
「飽和ヘテロ環」とは、窒素原子、酸素原子又は硫黄原子から選択されるヘテロ原子1乃至4個を含む3〜8員飽和ヘテロ環を意味し、ピロリジン、ピペリジン、ピペラジン、ホモピペラジン、イミダゾリジン、モルホリン、チオモルホリン、オキシラン、オキセタン、チエタン、テトラヒドロフラン、テトラヒドロピラン、[1,3]ジオキソラン、[1,4]ジオキサン、テトラヒドロチオフェン、[1,4]ジチアン、ヘキサヒドロアゼピン、ヘキサヒドロ−ピロロ[2,1−c][1,4]オキサジン等が挙げられる。
「含酸素飽和ヘテロ環」とは、上記飽和ヘテロ環のうち、環中のヘテロ原子として必ず酸素原子を含む飽和ヘテロ環を意味する。即ち、1乃至3個の酸素原子の他に、窒素原子又は硫黄原子を1乃至2個を含んでいてもよい3〜8員飽和ヘテロ環を意味する。好ましくは、4〜6員飽和ヘテロ環であり、更に好ましくはオキセタン、テトラヒドロフラン、1,3−ジオキソラン、テトラヒドロピラン、モルホリンである。
「含硫黄飽和ヘテロ環」とは、上記飽和ヘテロ環のうち、環中のヘテロ原子として必ず硫黄原子を含む飽和ヘテロ環を意味する。即ち、1乃至3個の硫黄原子の他に、窒素原子又は酸素原子を1乃至2個を含んでいてもよい3〜8員飽和ヘテロ環を意味する。好ましくは、4〜6員飽和ヘテロ環であり、更に好ましくはチエタン、1,3−ジチオラン、テトラヒドロチオフェン、チアゾリジン、チオモルホリンである。
置換されてもよい含酸素飽和ヘテロ環、置換されてもよい含硫黄飽和ヘテロ環、置換されてもよいシクロアルキルは、環上の任意の炭素原子又はヘテロ原子に1乃至3個の置換基を有していてもよい。
置換基は、置換される基の当該分野で慣用される通常の置換基を意味するが、最も好ましい置換基としては、ハロゲン、シアノ、ハロゲノ低級アルキル、低級アルキル、OH、低級アルキル−O−、オキソ、低級アルキル−C(O)−、カルボキシル、低級アルキル−O−C(O)−、低級アルキル−O−低級アルキル−、ニトロ、1又は2個の低級アルキルで置換されていてもよいアミノ等が挙げられる。
本発明化合物は基の種類によっては、光学異性体(光学活性体、ジアステレオマー等)が存在する。また、本発明化合物はアミド結合や、二重結合を有する化合物もあり、互変異性体や幾何異性体も存在する。本発明には、これらの異性体の分離されたもの、あるいは混合物を包含する。
本発明化合物は酸又は塩基と塩を形成する。酸との塩としては塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の鉱酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマール酸、マレイン酸、乳酸、リンゴ酸、クエン酸、酒石酸、炭酸、ピクリン酸、メタンスルホン酸、エタンスルホン酸、グルタミン酸等の有機酸との酸付加塩を挙げることができる。
塩基との塩としてはナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基、メチルアミン、エチルアミン、メグルミン、エタノールアミン等の有機塩基又はリジン、アルギニン、オルニチン等の塩基性アミノ酸との塩やアンモニウム塩が挙げられる。さらに、本発明化合物は水和物、エタノール等との溶媒和物や結晶多形を形成することができる。
更に本発明化合物には、薬理学的に許容されるプロドラッグも含まれる。本発明化合物の薬理学的に許容されるプロドラッグを形成する基としては、Prog.Med.5:2157−2161(1985)に記載されている基や、広川書店1990年刊「医薬品の開発」第7巻 分子設計163頁から198頁に記載されている基が挙げられる。具体的には、加水分解、加溶媒分解により又は生理学的条件の下で本発明の1級アミン、又は2級アミン、OH、COOH等に変換できる基であり、例としてはOH基のプロドラッグとしては、例えば−OC(O)−置換されてもよい低級アルキレン−C(O)OR(RはH又は低級アルキルを示す、以下同様)、−OC(O)−置換されてもよい低級アルケニレン−C(O)OR、−OC(O)−置換されてもよいアリール、−OC(O)−低級アルキレン−O−低級アルキレン−C(O)OR、−OC(O)−C(O)R、−OC(O)−置換されてもよい低級アルキル、−OSO−置換されてもよい低級アルキレン−C(O)OR、−O−フタリジル、5−メチル−1、3−ジオキソレン−2−オン−4−イル−メチルオキシ等が挙げられる。
製造法
本発明化合物(I)は、以下の製法により製造できる。
本明細書中、一般製法、参考例、実施例および表中の略語は以下の意味を示す。
DMF:ジメチルホルムアミド、DMSO:ジメチルスルホキシド、THF:テトラヒドロフラン

以下に、各製法について説明する。
製法1:4−アミノ−5−ブロモ−2−フルオロ−3−ニトロ安息香酸誘導体の製造

(式中Rは水素または低級アルキル、RはCl、Br、Iを示す。)
製法1はアニリン誘導体からニトロアニリン誘導体の製造法である。
工程1はベンゼン環のハロゲン化である。すなわち(II)を四塩化炭素、クロロホルム、塩化メチレン、1,4−ジオキサン、DMF、DMSO、メタノール、酢酸等の溶媒中、臭素、臭化水素、テトラブチルアンモニウムトリブロミド等のアンモニウム錯体、N−ブロモスクシンイミド、塩素、N−クロロスクシンイミド等のハロゲン化剤と氷冷から加温条件で反応させることで(III)を製造できる。
工程2はアミノ基のアシル化である。すなわち(III)をTHF、クロロホルム、ジエチルエーテル、DMF、アセトニトリル等の不活性溶媒中、またはピリジン等の活性溶媒中、酸ハライド、酸無水物、活性エステル等のアシル化剤と、低温から加温条件で反応させることで(IV)を製造できる。
工程3はベンゼン環のニトロ化である。すなわち(IV)を硫酸、酢酸等の溶媒中、硝酸、硝酸カリウム、硝酸アセチル等のニトロ化剤と、または硝酸を溶媒に用いて、低温から室温条件で、さらに必要に応じて加温条件で反応させることで(V)を製造できる。また、トルエン、アセトニトリル、THF、スルホラン等の不活性溶媒中、ニトロニウムテトラフルオロボレート等のニトロ化剤を用いて、低温から室温条件で、さらに必要に応じて加温条件で反応させることでも(V)を製造できる。
工程4は加水分解による脱アシル反応である。すなわち(V)を酸性条件あるいはアルカリ性条件下で加水分解反応させることで(VI−a)を製造できる。酸性条件の場合は、硫酸、塩酸、酢酸等を用いて、またアルカリ性条件の場合は、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等を用いて、メタノール、エタノール、THF、アセトニトリル、水等の溶媒、それらの混合溶媒、または無溶媒で、室温から加温条件で反応を行う。
製法2:4−アミノ−2−フルオロ−5−ニトロ安息香酸誘導体の製造

製法2はフルオロベンゼン誘導体からイプソ反応によるアミノベンゼン誘導体の製造法である。すなわち(VII)をエタノール、イソプロパノール等のアルコール系溶媒、DMF、DMSO、水等の溶媒中、塩化アンモニウム等のアミン供与剤またはアンモニアと室温から加温条件で反応させることで(VI−b)を製造できる。
製法3:チオキソベンゾイミダゾール環の製造

製法2はニトロアニリン誘導体からチオキソベンゾイミダゾール環の製造法である。
工程1は還元反応である。すなわち(VI)をメタノール、エタノール、DMF等の不活性溶媒中、水素雰囲気下、またはギ酸アンモニウム等の水素供与剤の存在下に、パラジウム等の金属触媒を用いて接触還元反応することで(VIII)を製造できる。また、R9が水素の場合には、酢酸、塩酸、塩化アンモニウム等の酸性条件下、鉄、塩化第一スズ等を用いて反応するか、あるいは、水およびメタノール、エタノール、THF等の混合溶媒中、ヒドロサルファイトナトリウム等の還元剤を用いて、室温から加温条件で反応させることでも(VIII)を製造できる。
工程2はチオキソベンゾイミダゾール環の環化反応である。すなわち(VIII)をメタノール、エタノール、DMF等の不活性溶媒中、トリエチルアミン等の塩基存在あるいは非存在下、二硫化炭素、1,1’−チオカルボニルジイミダゾール、チオ炭酸エステル等と反応させることで(IX)を製造できる。
さらに、工程1において接触還元反応を行った場合は、引き続き工程2を行うこともできる。
製法4:チアゾロベンゾイミダゾール環の製造

製法4はチオキソベンゾイミダゾール環からチアゾロベンゾイミダゾール環の製造法である。
工程1はアルキル化反応である。すなわち(IX)とα−ハロ酢酸誘導体とをエタノール、メタノール等のアルコール系溶媒、あるいはDMF、THF、アセトニトリル等の不活性溶媒中、ナトリウムメトキシド、ナトリウムエトキシド、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の塩基存在または非存在下、室温から加温条件にて反応させることで(X)を製造できる。
工程2は環化反応である。すなわち(X)とギ酸エステル、ギ酸無水物等のホルミル化剤とをエタノール、メタノール等のアルコール系溶媒、あるいはDMF、THF、アセトニトリル等の不活性溶媒中、ナトリウムエトキシド、カリウムエトキシド、水酸化ナトリウム、水素化ナトリウム、ピリジン、トリエチルアミン等の塩基条件下、室温から加温条件にて反応させることで(XI)を製造できる。この(XI)は溶液状態では式1の平衡状態をとることもある。

工程3はジヒドロチアゾロベンゾイミダゾール環の異性化反応である。すなわち(XI)を溶液または懸濁液状態で式1に示す平衡混合物とした後、これを塩酸、硫酸、酢酸、トリフルオロ酢酸等の酸性条件で処理することで(XII)を析出させることができる。
工程4はジヒドロチアゾロベンゾイミダゾール環からチアゾロベンゾイミダゾール環への脱水反応である。すなわち(XII)を濃硫酸、酢酸、トリフルオロ酢酸等の酸と室温から加温条件にて反応させることで(XIII)を製造できる。また、トルエン、ベンゼン等の不活性溶媒中、p−トルエンスルホン酸、カンファースルホン酸等の酸性条件下、必要に応じてモレキュラーシーブス等の脱水剤の存在下または、Dean−Stark脱水装置等での脱水反応条件下、室温から加温条件にて反応させることでも(XIII)を製造できる。
製法5:カルボン酸の還元

製法5は通常のカルボン酸の還元によるアルコール体の製造法である。すなわち(XIII−a)を酸ハライド、酸無水物、活性エステル等の反応活性体へと誘導し、これを水素化ホウ素ナトリウム、水素化ホウ素テトラブチルアンモニウム等のホウ酸塩と反応させることで(XIV)を製造できる。
製法6:エステルの加水分解

製法6はエステルの加水分解である。すなわち(XIV)を酸性条件あるいはアルカリ性条件下で加水分解反応させることで(XV)を製造できる。酸性条件の場合は、硫酸、塩酸、酢酸等を用いて、またアルカリ性条件の場合は、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等を用いて、メタノール、エタノール、THF、アセトニトリル、水等の溶媒、それらの混合溶媒、または無溶媒で、室温から加温条件で反応を行う。
製法7:アミド化

製法7はカルボン酸の通常のアミド化反応である。すなわち(XV)をDMF、THF、1,2−ジクロロエタン、クロロホルム等の不活性溶媒中、ジシクロヘキシルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、ジフェニルホスホリルトリアジド、1,1’−カルボニル−1H−イミダゾール、1−ヒドロキシベンゾトリアゾール等の縮合剤により活性化し、この活性体と対応するアミンとを反応させることで(XVI)を製造できる。カルボン酸の活性化として、塩化チオニルやオキザリルクロリド等による酸塩化物法、酸無水物法、オキシ塩化リン等による活性リン酸エステル法等も用いることが出来る。
製法8:アルコールの酸化

製法8はアルコールのアルデヒドへの酸化反応である。すなわち(XVI)をDMSOを溶媒に用いて、三酸化硫黄・ピリジン錯体と氷冷から室温条件で反応させることで(XVII)を製造できる。またSWERN酸化、クロム酸酸化、過マンガン酸酸化等の通常の酸化反応でも(XVII)を製造できる。
製法9:還元的アミノ化

(XVII)から(I)は通常の還元的アミノ化反応である。すなわち(XVII)を、塩化メチレン、1,2−ジクロロエタン、クロロホルム、THF、メタノール、エタノール等の溶媒中、必要に応じて酢酸、塩酸等の酸触媒、またはチタニウムテトライソプロポキシド等のルイス酸存在下、対応するアミンとトリアセトキシ水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化ホウ素ナトリウム等の還元剤を用いて反応させることで(I)を製造できる。(I)は(XVII)と対応するアミンとをトルエン、ベンゼン等の不活性溶媒中、必要に応じてモレキュラーシーブス等の脱水剤、またはDean−Stark脱水装置等での脱水反応条件下、室温から加温条件下で反応させイミンとし、これをメタノール、エタノール等の溶媒中、または上記反応溶媒との混合溶媒中、水素化ホウ素ナトリウム等の還元剤で処理することでも製造できる。また上記還元剤を用いる代わりに通常の接触還元条件、具体的には水素雰囲気下、パラジウム等の金属触媒を用いても(I)を製造できる。
水酸基、アミノ基およびエステル基等の一般的な保護基等については、PROTECTIVE GROUPS IN ORGANIC SYNTHESIS、THEODORA W.GREENE and PETER G.M.WUTS著に詳細に記載されており、この文献の開示は本明細書に組み込まれる。
なお、上記製造法は式中の置換基に限定されるものではなく本発明化合物が同様の置換基を有する場合や反応基質と反応試剤が逆の場合にも広く適用される。
このようにして製造された本発明化合物は、遊離のまま、あるいはその塩として単離・精製される。
単離・精製は、抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。
各種の異性体は、適当な原料化合物を選択することにより、あるいは異性体間の物理的性質の差を利用して分離することができる。例えば、光学異性体は、適当な原料を選択することにより、あるいはラセミ化合物のラセミ分割法(例えば、一般的な光学活性な塩基とのジアステレオマー塩に導き、光学分割する方法等)により立体化学的に純粋な異性体に導くことができる。
本発明化合物又はその塩の1種又は2種以上を有効成分として含有する製剤は、通常製剤化に用いられる担体や賦形剤、その他の添加剤を用いて調製される。
製剤用の担体や賦形剤としては、固体又は液体いずれでも良く、例えば乳糖、ステアリン酸マグネシウム、スターチ、タルク、ゼラチン、寒天、ペクチン、アラビアゴム、オリーブ油、ゴマ油、カカオバター、エチレングリコール等やその他常用のものが挙げられる。
投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、あるいは静注、筋注等の注射剤、坐剤、経皮等による非経口投与のいずれの形態であってもよい。投与量は症状、投与対象の年齢、性別等を考慮して個々の場合に応じて適宜決定されるが、通常成人1人当たり、1日につき1〜1,000mg、好ましくは50〜200mgの範囲で1日1回から数回に分け経口投与されるか又は成人1人当たり、1日につき1〜500mgの範囲で、1日1回から数回に分け静脈内投与されるか、又は、1日1時間〜24時間の範囲で静脈内持続投与される。もちろん前記したように、投与量は種々の条件で変動するので、上記投与量範囲より少ない量で十分な場合もある。
本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、一つまたはそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や、デンプン、繊維素グルコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の糖衣又は胃溶性あるいは腸溶性物質のフィルムで被膜してもよい。
経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。
非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80等がある。このような組成物はさらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含んでいてもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。
【実施例】
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例で用いられる原料化合物の製造方法を参考例として説明する。(以下に用いている略号は以下の意味を示す。)
H−NMR;H−核磁気共鳴スペクトル(重ジメチルスルホキシド(以下DMSO−d)、重クロロホルム(以下CDCl3)または重メタノール(以下CD3OD)を測定溶媒、テトラメチルシランを内部標準に用い、300MHzまたは400MHzで測定し、化学シフトをppmで示した。br:broad、s;singlet、d;doublet、t;triplet、q;quartet、m;multiplet)
MS;質量分析(FAB+:陽イオン高速原子衝撃質量分析法、FAB−:陰イオン高速原子衝撃質量分析法、ES+:陽イオンエレクトロスプレーイオン化法、ES−:陰イオンエレクトロスプレーイオン化法。M:分子量)
Ex;実施例番号
精製に用いたカラムクロマトは充填剤にシリカゲルを用いた。
参考例1
4−アミノ−5−ブロモ−2−フルオロ安息香酸エチル
4−アミノ−2−フルオロ安息香酸エチル(10.0g)のクロロホルム(200ml)溶液に氷冷中テトラブチルアンモニウムトリブロミド(27.7g)のクロロホルム(60ml)溶液を50分間かけて滴下した。終了後、反応溶液を減圧濃縮したのち、残渣を酢酸エチルで抽出した。有機層を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。結晶化した残渣をヘキサン(50ml)と酢酸エチル(10ml)で再結晶し、濾取したのちヘキサンと酢酸エチルの混合溶媒(混合比10:1)で洗浄した。得られた結晶を50℃中加温下減圧乾燥する事により表題化合物(10.1g)を得た。
H−NMR(DMSO−d);1.27(t,3H),4.23(q,2H),6.43(br,2H),6.55(d,1H),7.82(d,1H)
参考例2
4−(アセチルアミノ)−5−ブロモ−2−フルオロ安息香酸エチル
参考例1の化合物(128.27g)のTHF(800ml)溶液に氷冷中塩化アセチル(104.4ml)を加え、室温中一昼夜攪拌した。終了後、反応溶液を減圧下濃縮したのち、酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。結晶化した残渣に酢酸エチル(200ml)を加え、加熱還流して溶解させたのちヘキサン(250ml)を加えて結晶化させた。析出した結晶を濾取し、ヘキサンと酢酸エチルの混合溶媒(混合比3:1)で洗浄した。得られた結晶を50℃中加温下減圧乾燥する事により表題化合物(140.5g)を得た。
H−NMR(DMSO−d);1.31(t,3H),2.18(s,3H),4.31(q,2H),7.92(d,1H),8.07(d,1H),9.57(br,1H)
参考例3
4−(アセチルアミノ)−5−ブロモ−2−フルオロ−3−ニトロ安息香酸エチル
参考例2の化合物(125.5g)の濃硫酸(800ml)溶液を、塩化ナトリウム−氷水浴中冷却し、メカニカルスターラーで攪拌中発煙硝酸(342ml)を2時間かけて滴下した。滴下終了後、塩化ナトリウム−氷水浴中6時間半攪拌した。終了後、反応溶液を氷水(8L)に注ぎ込み、5℃で1昼夜攪拌した。攪拌後不溶物を濾取して水で洗浄したのち、THFと酢酸エチルを用いて溶解させた。溶液を無水硫酸ナトリウムを用いて乾燥したのち、減圧濃縮した。残渣に酢酸エチル(400ml)を加え、加熱還流して溶解させたのち、ヘキサン(400ml)を加えて結晶化させた。析出した結晶を濾取し、ヘキサンと酢酸エチルの混合溶媒(混合比3:1)で洗浄した。得られた結晶を50℃中加温下減圧乾燥する事により表題化合物(70.6g)を得た。
H−NMR(DMSO−d);1.33(t,3H),2.08(s,3H),4.36(q,2H),8.38(d,1H),10.50(br,1H)
参考例4
4−アミノ−5−ブロモ−2−フルオロ−3−ニトロ安息香酸
参考例3の化合物(88.4g)を濃塩酸と酢酸の混合溶媒(混合比1:1、1L)に溶解させたのち、100℃の油浴中一昼夜攪拌した。終了後、反応溶液を氷冷したのち氷水(4L)に注ぎ込んだ。析出した結晶を濾取し、水で洗浄したのち、70℃中加温下減圧乾燥する事により表題化合物(65.2g)を得た。
H−NMR(DMSO−d);7.14(br,2H),8.04(d,1H),13.24(br,1H)
参考例5
4−フルオロ−2−チオキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−カルボン酸
参考例4の化合物(16.7g)のメタノール(300ml)溶液にアルゴン雰囲気下10%パラジウム−炭素(1.67g)を加え、水素雰囲気下室温で3時間攪拌した。終了後二硫化炭素(4.69ml)、トリエチルアミン(8.35ml)を加え、30℃の油浴中14時間攪拌した。さらに二硫化炭素(6.13ml)、トリエチルアミン(8.35ml)を加え、40℃の油浴中9時間半攪拌した。終了後、反応溶液を濾過したのち、減圧下濃縮した。残渣に1M塩酸水溶液(200ml)を加えたのち、析出した結晶を濾取した。結晶を1M塩酸水溶液および水で洗浄し、60℃中加温下減圧乾燥する事により表題化合物(11.9g)を得た。
H−NMR(DMSO−d);7.02(d,2H),7.66(dd,1H),12.99(br,1H),13.30(br,1H)
参考例6
2−[(2−エトキシ−2−オキソエチル)スルファニル]−4−フルオロ−1H−ベンゾイミダゾール−5−カルボン酸 臭化水素塩
参考例5の化合物(14.7g)のDMF(60ml)溶液にブロモ酢酸エチル(11.6ml)を加え、60℃の油浴中1時間攪拌した。終了後、反応溶液を減圧下濃縮し、2−ブタノン(200ml)を加えた。析出した結晶を濾取し、2−ブタノンで洗浄したのち、60℃中加温下減圧乾燥することにより表題化合物(21.5g)を得た。
H−NMR(DMSO−d);1.19(t,3H),4.14(q,2H),4.26(s,2H),7.30(d,1H),7.63−7.67(m,1H)
参考例7
2−(エトキシカルボニル)−8−フルオロ−3−ヒドロキシ−2,3−ジヒドロチアゾロ[3,2−a]−ベンゾイミダゾール−7−カルボン酸
参考例6の化合物(21.5g)のDMF(160ml)溶液にアルゴン雰囲気下氷冷中ギ酸エチル(45.6ml)を加え、さらに20%ナトリウムエトキシド/エタノール溶液(111ml)を30分かけて滴下した。滴下終了後40℃の湯浴中2時間半攪拌した。終了後、反応混合物に1M塩酸(227ml)を加え、減圧下濃縮した。残渣に水(200ml)を加え、析出した結晶を濾取した、濾取した結晶を水で洗浄したのち、60℃中加温下減圧乾燥することにより表題化合物(16.9g)を得た。
MS(ES−);325(M−1)
参考例8
2−(エトキシカルボニル)−5−フルオロ−3−ヒドロキシ−2,3−ジヒドロチアゾロ[3,2−a]ベンゾイミダゾール−6−カルボン酸 塩酸塩
参考例7の化合物(16.3g)のエタノール(100ml)懸濁液に、氷冷中4N塩酸/酢酸エチル溶液(25.0ml)を加えた。反応懸濁液を加温して溶解させたのち、酢酸エチル(400ml)を加え、5℃で一昼夜攪拌した。終了後、析出した結晶を濾取し、酢酸エチルで洗浄したのち、60℃中加温下減圧乾燥することにより表題化合物(15.5g)を得た。
MS(ES−);325(M−1)
参考例9
2−(エトキシカルボニル)−5−フルオロチアゾロ[3.2−a]ベンゾイミダゾール−6−カルボン酸 硫酸塩
参考例8の化合物(15.5g)を濃硫酸(50ml)に溶解させ、45℃の油浴中4時間攪拌した。終了後、反応溶液を氷冷したのち、氷冷した酢酸エチル(400ml)に分散させた。析出した結晶を濾取し、酢酸エチルで洗浄したのち、60℃中加温下減圧乾燥することにより表題化合物(14.5g)を得た。
H−NMR(DMSO−d);1.37(t,3H),4.39(q,2H),7.59(d,1H),7.87−7.89(m,1H)
参考例10
5−フルオロ−6−(ヒドロキシメチル)チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボン酸エチル
参考例9の化合物(14.5g)をアセトニトリル(150ml)に懸濁させ、アルゴン雰囲気下室温中1,1’−カルボキシジイミダゾール(17.4g)を加えた。添加後反応混合物を室温中3時間攪拌した。続いて反応混合物を氷冷したのち、水素化ホウ素ナトリウム(4.05g)/0.1%水酸化ナトリウム水溶液(20ml)を加え、氷冷中5時間攪拌、さらに室温に昇温後4時間攪拌した。終了後、反応懸濁液に濃塩酸(25.3g)、水(230ml)を加え、30分間加熱還流した。反応懸濁液を氷冷後、析出した結晶を濾取した。析出物を水で洗浄し、60℃中加温下減圧乾燥することにより表題化合物(7.97g)を得た。
H−NMR(DMSO−d);1.32−1.37(m,3H),4.38(q,2H),4.69(s,2H),5.35(br,1H),7.44−7.48(m,1H),7.53(d,1H),8.79(s,1H)
参考例11
5−フルオロ−6−(ヒドロキシメチル)チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボン酸
参考例10の化合物(7.95g)を40%アセトニトリル水溶液(100ml)に懸濁させ、氷冷中1M水酸化ナトリウム水溶液(32ml)に加え、室温中4時間攪拌した。終了後、反応溶液に1M塩酸水溶液(32ml)を加え氷冷し、析出した結晶を濾取した。濾取物を水で洗浄し、60℃中加温下減圧乾燥することにより表題化合物(6.49g)を得た。
H−NMR(DMSO−d);4.69(s,2H),5.34(br,1H),7.42−7.46(m,1H),7.50−7.52(m,1H),8.66(s,1H)
参考例12
5−フルオロ−6−(ヒドロキシメチル)−N−メチル−N−ネオペンチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド
参考例11の化合物(20.8g)のDMF(350ml)懸濁液に室温中メチルネオペンチルアミン塩酸塩(21.5g)、トリエチルアミン(21.7ml)、1−ヒドロキシベンゾトリアゾール(13.7g)および1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(29.9g)を加え、反応混合物を室温中一昼夜攪拌した。終了後、反応混合物を氷冷中0.5M水酸化ナトリウム水溶液(3L)に注ぎ込み、氷冷中2時間攪拌した。不溶物を濾取し、水で洗浄後、70℃中加温下減圧乾燥することにより表題化合物(23.3g)を得た。
H−NMR(DMSO−d);0.97(s,9H),3.40−3.46(m,5H),4.69−4.70(m,2H),5.31(t,1H),7.41−7.45(m,1H),7.50−7.52(m,1H),8.64(s,1H)
参考例13
5−フルオロ−6−ホルミル−N−メチル−N−ネオペンチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド
参考例12の化合物(6.92g)のDMSO(100ml)溶液に室温中トリエチルアミン(11.0ml)および三酸化硫黄・ピリジン混合物(15.76g)を徐々に添加し、反応混合物を室温中20分間攪拌した。終了後、反応混合物を氷冷中0.17M水酸化ナトリウム水溶液(1.2L)に加え、15分間攪拌した。反応溶液をクロロホルムで抽出し、有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。結晶化した残渣をエタノールと酢酸エチルで再結晶化を行い、得られた結晶を濾取した。結晶をエタノールと酢酸エチルの混合溶媒(混合比1:3)で洗浄したのち、60℃中加温下減圧乾燥することにより表題化合物(3.65g)を得た。さらに再結晶化の母液および洗浄液を減圧下濃縮し、残渣をカラムクロマト(溶出液;ヘキサン次いでヘキサン:酢酸エチル=10:1次いでヘキサン:酢酸エチル=3:2次いでヘキサン:酢酸エチル=2:3)で精製することにより表題化合物(1.90g)を得た。
H−NMR(DMSO−d);0.98(s,9H),3.41−3.48(m,5H),7.65−7.67(m,1H),7.80−7.84(m,1H),8.80(s,1H),10.33(s,1H)
参考例14
4−アミノ−2−フルオロ−5−ニトロ安息香酸 アンモニウム塩
2,4−ジフルオロ−5−ニトロ安息香酸(26.29g)を濃アンモニア水溶液(500ml)に溶解し、反応混合物を室温で4時間攪拌した。終了後、混合物を減圧下濃縮した。残渣にエタノールを加えて再度減圧下濃縮した。残渣を水および少量のエタノールで洗浄後減圧下乾燥することで表題化合物(26.38g)を得た。
H−NMR(DMSO−d);6.65(d,1H),7.62(s,2H),8.47(d,1H)
参考例15
6−フルオロ−2−チオキソ−2,3−ジヒドロ−1H−ベンズイミダゾール−5−カルボン酸
参考例14の化合物(4.38g)のメタノール(100ml)溶液に6M塩酸水(10ml)および含水パラジウム/炭素(0.44g)を加え、混合物を常圧水素雰囲気下室温で4時間攪拌した。混合物にトリエチルアミン(11.1ml)および二硫化炭素(2.4ml)を加え、これを室温で3日間攪拌した。不溶物を濾別し、メタノールで洗浄後、濾液を濃縮した。残渣を水に懸濁後、1M塩酸水により混合物を酸性へと調整した。不溶物を濾取し、水で洗浄後、メタノールに懸濁させた。混合物を減圧下濃縮することで表題化合物(3.40g)を得た。
H−NMR(DMSO−d);7.02(d,1H),7.54(d,1H),12.78(s,1H),12.88(s,1H),13.06(br,1H)
参考例16
2−[(2−エトキシ−2−オキソエチル)スルファニル]−6−フルオロ−1H−ベンズイミダゾール−5−カルボン酸 臭化水素酸塩
参考例15の化合物(10.65g)のDMF(100ml)溶液にブロモ酢酸エチル(6.68ml)を加え、混合物を室温で2時間攪拌した。終了後、混合物を減圧下適当量まで濃縮した。残渣を2−ブタノンで希釈した。析出物を濾取し、2−ブタノンで洗浄後減圧下乾燥することで表題化合物(17.08g)を得た。
H−NMR(DMSO−d);1.18(t,3H),4.13(q,2H),4.26(s,1H),7.37(d,1H),7.90(d,1H),7.96(s,1H)
参考例17
2−(エトキシカルボニル)−7−フルオロチアゾロ[3,2−a]ベンズイミダゾール−6−カルボン酸 硫酸塩
氷浴中、参考例16の化合物(16.90g)のDMF(150ml)溶液にギ酸エチル(35.88ml)を加えた。混合物に20%ナトリウムエトキシドエタノール溶液(87.36ml)を5℃以下で加えた後、これを50℃の油浴中2時間攪拌した。終了後、氷浴中混合物に1M塩酸水溶液(178.28ml)を10℃以下で加え、減圧下濃縮した。残渣に水を加え、不溶物を濾取し、水で洗浄後減圧下乾燥することで6−フルオロ−3−ヒドロキシ−2,3−ジヒドロチアゾロ[3,2−a]ベンズイミダゾール−2,7−ジカルボン酸(12.49g、MS(ES+):327(M+1))を得た。氷浴中、6−フルオロ−3−ヒドロキシ−2,3−ジヒドロチアゾロ[3,2−a]ベンズイミダゾール−2,7−ジカルボン酸(12.40g)のエタノール(62ml)懸濁液に4M塩酸/酢酸エチル溶液(19ml)を加えた後、氷浴を除き攪拌すると懸濁液から溶液へと変化した。これに酢酸エチル(155ml)を加えて5℃で一昼夜攪拌した。析出物を濾取し、酢酸エチルで洗浄後減圧下乾燥することで2−(エトキシカルボニル)−7−フルオロ−3−ヒドロキシ−2,3−ジヒドロチアゾロ[3,2−a]ベンズイミダゾール−6−カルボン酸 塩酸塩(10.12g)を得た。次いで2−(エトキシカルボニル)−7−フルオロ−3−ヒドロキシ−2,3−ジヒドロチアゾロ[3,2−a]ベンズイミダゾール−6−カルボン酸(9.98g)の濃硫酸(30ml)溶液を30℃の油浴中3時間攪拌した。終了後、混合物を冷酢酸エチル(500ml)に注ぎ込んだ。析出物を濾取し、酢酸エチルで洗浄後減圧下乾燥することで表題化合物(9.96g)を得た。
H−NMR(80℃,DMSO−d+CD3OD);1.36(t,3H),4.39(q,2H),7.54(d,1H),8.76(d,1H),9.38(s,1H)
参考例18
7−フルオロ−6−(ヒドロキシメチル)チアゾロ[3,2−a]ベンズイミダゾール−2−カルボン酸エチル
参考例17の化合物(11.84g)のアセトニトリル(120ml)懸濁液に1,1’−カルボキシジイミダゾール(14.16g)を加え、混合物を室温で6時間攪拌した。混合物に氷浴中水素化ホウ素ナトリウム(3.30g)の0.1%水酸化ナトリウム水溶液(18ml)を10℃以下で加えて、5℃で一昼夜攪拌した。混合物に濃塩酸(17.5ml)および水(200ml)を加えて2時間加熱還流した。終了後反応混合物を氷浴中2時間攪拌した。不溶物を濾取し、水およびアセトニトリルで洗浄後、減圧下乾燥することで表題化合物(6.52g)を得た。
H−NMR(DMSO−d);1.35(t,3H),4.37(q,2H),4.68(d,2H),5.41(t,1H),7.51(d,1H),8.27(d,1H),9.45(s,1H)
参考例19
7−フルオロ−6−(ヒドロキシメチル)チアゾロ[3,2−a]ベンズイミダゾール−2−カルボン酸
参考例18の化合物(6.40g)のアセトニトリル(50ml)懸濁液に水(30ml)および1M水酸化ナトリウム水溶液(26.1ml)を加え、混合物を室温で6時間攪拌した。終了後、反応混合物に1M塩酸水溶液(26.1ml)を加え、混合物を室温で30分間攪拌した。不溶物を濾取し、水およびアセトニトリルで洗浄後、減圧下乾燥することで表題化合物(5.69g)を得た。
H−NMR(DMSO−d);4.68(s,2H),5.41(br,1H),7.49(d,1H),8.24(d,1H),9.30(s,1H)
参考例20
7−フルオロ−6−(ヒドロキシメチル)−N−メチル−N−ネオペンチルチアゾロ[3,2−a]ベンズイミダゾール−2−カルボキサミド
参考例19の化合物(5.22g)のDMF(90ml)懸濁液にメチルネオペンチルアミン塩酸塩(5.70g)、トリエチルアミン(5.77ml)、1−ヒドロキシベンゾトリアゾール(5.59g)および1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(7.94g)を加え、混合物を室温で一昼夜攪拌した。終了後反応混合物に1M水酸化ナトリウム水溶液(100ml)を加えて、混合物を室温で1時間攪拌した。不溶物を濾取し水で洗浄した。濾液を酢酸エチルで抽出し、有機層を水で洗浄後、減圧下濃縮した。残渣と先に得られた濾取物を併せてエタノールに懸濁させ、混合物を減圧下濃縮することで表題化合物(6.78g)を得た。
H−NMR(DMSO−d);0.96(s,9H),3.41(br,2H),3.46(br,3H),4.70(d,2H),5.44(t,1H),7.47(d,1H),8.22(d,1H),9.13(s,1H)
参考例21
7−フルオロ−6−ホルミル−N−メチル−N−ネオペンチルチアゾロ[3,2−a]ベンズイミダゾール−2−カルボキサミド
参考例20の化合物(6.75g)のDMSO(100ml)溶液にトリエチルアミン(10.76ml)および三酸化硫黄・ピリジン混合物(15.36g)を加え、混合物を室温で1時間攪拌した。終了後、混合物を水に注ぎ、1M水酸化ナトリウム水溶液によりアルカリ性へ調整した。析出物を濾取し水で洗浄後、減圧下乾燥した。得られた化合物をカラムクロマト(溶出液:クロロホルム:メタノール=90:10)で粗精製した。得られた粗精製物をTHFと酢駿エチルより再結晶、酢酸エチルで洗浄することで表題化合物(2.82g)を得た。
H−NMR(DMSO−d);0.97(s,9H),3.42(br,2H),3.47(br,3H),7.68(d,1H),8.66(d,1H),9.24(s,1H),10.32(s,1H)
参考例22
4−(アセチルアミノ)−3−フルオロ安息香酸エチル
4−アミノ−3−フルオロ安息香酸エチル(31.88g)のピリジン(300ml)溶液に無水酢酸(81.4ml)を加え、混合物を72時間攪拌した。これに水(30ml)を加えさらに室温で30分間攪拌した。終了後、混合物を減圧下濃縮した。残渣を酢酸エチルと水とに分配した。水層を分け、これを酢酸エチルで抽出した。集めた有機層を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、水および飽和食塩水で洗浄後、無水硫酸マグネシウム乾燥し、減圧下濃縮した。残渣を酢酸エチルとヘキサンから再結晶することで表題化合物(30.24g)を得た。
H−NMR(DMSO−d);1.32(t,3H),2.15(s,3H),4.30(q,2H),7.71−7.77(m,2H),8.21−8.25(m,1H),10.01(s,1H)
参考例23
4−(アセチルアミノ)−3−フルオロ−5−ニトロ安息香酸エチル
氷/食塩水浴中、参考例22の化合物(6.76g)の濃硫酸(70ml)溶液に発煙硝酸(12.4ml)を内温が0℃を越えないように徐々に滴下した。滴下終了後さらに氷/食塩水浴中で2時間攪拌した。終了後、混合物を氷水に注いだ。析出物を濾取し、氷水で洗浄後加熱下減圧乾燥することで表題化合物(5.84g)を得た。
H−NMR(DMSO−d);1.34(t,3H),2.11(s,3H),4.37(q,2H),8.14(dd,1H),8.21(t,1H),10.63(s,1H)
参考例24
4−アミノ−3−フルオロ−5−ニトロ安息香酸
参考例23の化合物(9.90g)のエタノール(200ml)溶液に1M水酸化ナトリウム水溶液(110ml)を加え、これを80℃の油浴中一昼夜攪拌した。混合物を室温まで冷却後、これに1M塩酸水溶液(110ml)を加えた。析出物を濾取し、冷水で洗浄後加熱下減圧乾燥することで表題化合物(4.87g)を得た。
H−NMR(DMSO−d);7.77(dd,1H),7.86(s,2H),8.41(t,1H),13.09(s,1H)
参考例25
7−フルオロ−2−チオキソ−2,3―ジヒドロ−1H−ベンズイミダゾール−5−カルボン酸
参考例24の化合物(4.83g)のメタノール(100ml)溶液に含水パラジウム/炭素(241mg)を加え、混合物を常圧水素雰囲気下室温で3時間攪拌した。混合物に二硫化炭素(2.18ml)を加え、混合物を60℃油浴中一昼夜攪拌した。混合物を濾過し、メタノールで洗浄し、ついで濾液を濃縮した。残渣のメタノール(30ml)溶液に二硫化炭素(4.36ml)を加えて、これを40℃油浴中一昼夜攪拌した。混合物にトリエチルアミン(3.36ml)を加えて、40℃油浴中さらに1時間攪拌した。終了後、反応混合物を減圧下濃縮した。残渣を水で希釈し、ついで1M塩酸水により酸性へ調整した。析出物を濾取し、水で洗浄後減圧下乾燥することで表題化合物(4.93g)を得た。
H−NMR(DMSO−d);7.53(s,1H),7.53(d,1H),13.02(s,1H),13.13(br,1H),13.41(s,1H)
【実施例1】
5−フルオロ−N−メチル−N−ネオペンチル−6−[(オキセタン−3−イルアミノ)メチル][1,3]チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド 1フマル酸塩
参考例12の化合物(250mg)のジクロロエタン溶液(15ml)に酢酸(206μl)、3−アミノオキセタン塩酸塩(267mg)、およびトリエチルアミン(301μl)を加え、室温中2時間攪拌した。続いてトリアセトキシ水素化ホウ素ナトリウム(458mg)を加え、室温中14時間攪拌した。さらにトリアセトキシ水素化ホウ素ナトリウム(458mg)を加え、室温中4時間半攪拌した。終了後、反応溶液に1M水酸化ナトリウム水溶液を加えた後、5%メタノール/クロロホルム溶液で抽出し、減圧濃縮した。残渣をカラムクロマト(溶出液;酢酸エチル次いで酢酸エチル:メタノール=40:1次いで酢酸エチル:メタノール:28%アンモニア水=40:1:0.1次いで酢酸エチル:メタノール:28%アンモニア水=20:1:0.1次いで酢酸エチル:メタノール:28%アンモニア水=10:1:0.1)で精製した。精製物にエタノールを加え溶解させたのち、フマル酸(141mg)を加え減圧下濃縮した。結晶化した残渣をエタノールと酢酸エチルで再結晶化し、得られた結晶を濾取した。濾取した結晶を減圧乾燥することにより表題化合物(279mg)を得た。
H−NMR(DMSO−d);0.97(s,9H),3.40−3.46(m,5H),3.87(s,2H),3.91−3.98(m,1H),4.33−4.37(m,2H),4.55−4.58(m,2H),6.62(s,2H),7.41(dd,1H),7.50(d,1H),8.65(s,1H)
MS(EAB+);405(M+1)
【実施例2】
6−{[(1,3−ジオキソラン−2−イルメチル)アミノ]メチル}−5−フルオロ−N−メチル−N−ネオペンチル[1,3]チアゾロ[3−2−a]ベンゾイミダゾール−2−カルボキサミド 1塩酸塩
参考例12の化合物(150mg)のジクロロエタン溶液(10ml)に酢酸(123μl)、(1,3−ジオキソラン−2−イル)メチルアミン(122μl)を加え、室温中2時間半攪拌した。続いてトリアセトキシ水素化ホウ素ナトリウム(274mg)を加え、室温中14時間攪拌した。さらにトリアセトキシ水素化ホウ素ナトリウム(274mg)を加え、室温中4時間半攪拌した。終了後、反応溶液に1M水酸化ナトリウム水溶液を加えた後、5%メタノール/クロロホルム溶液で抽出し、減圧濃縮した。残渣をカラムクロマト(溶出液;酢酸エチル次いで酢酸エチル:メタノール=20:1次いで酢酸エチル:メタノール:28%アンモニア水=20:1:0.1次いで酢酸エチル:メタノール:28%アンモニア水=10:1:0.1)で精製した。精製物にエタノール(10ml)を加え溶解させたのち、1M塩酸水溶液(0.76ml)を加え減圧下濃縮した。結晶化した残渣をエタノールと酢酸エチルで再結晶化し、得られた結晶を濾取した。濾取した結晶をエタノールと酢酸エチルの混合溶媒(混合比1:5)で洗浄した後、60℃中加温下減圧乾燥することにより表題化合物(142mg)を得た。
H−NMR(DMSO−d);0.97(s,9H),3.17(d,2H),3.41−3.46(m,5H),3.85−3.93(m,2H),3.97−4.06(m,2H),4.40(s,2H),5.23(t,1H),7.61−7.67(m,2H),8.73(s,1H),9.51(br,1H)
MS(FAB+);435(M+1)
【実施例3】
7−フルオロ−N−メチル−N−ネオペンチル−6−[(オキセタン−3−イルアミノ)メチル][1,3]チアゾロ[3,2−a]ベンズイミダゾール−2−カルボキサミド 2フマル酸塩
参考例21の化合物(250mg)のジクロロエタン溶液(15ml)に酢酸(206μl)、オキセタン−3−アミン塩酸塩(267mg)、トリエチルアミン(301μl)を加え、室温中2時間半攪拌した。続いてトリアセトキシ水素化ホウ素ナトリウム(458mg)を加え、室温中終夜攪拌した。終了後、反応溶液を飽和炭酸水素ナトリウム水溶液に加えた後、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣をカラムクロマト(溶出液;クロロホルム次いでクロロホルム:メタノール:28%アンモニア水=9:1:0.1)で精製した。精製物にエタノール(30ml)を加え溶解させたのち、フマル酸(138mg)を加え減圧下濃縮した。結晶化した残渣をエタノールと酢酸エチルで再結晶化し、得られた結晶を濾取した。濾取した結晶をエタノールと酢酸エチルの混合溶媒(混合比1:10)で洗浄した後、60℃中加温下減圧乾燥することにより表題化合物(220mg)を得た。
H−NMR(DMSO−d);0.96(s,9H),3.41−3.47(m,5H),3.83(s,2H),3.94−4.04(m,1H),4.33−4.37(t,2H),4.59−4.63(t,2H),6.62(s,1H),7.49(d,1H),8.16(d,1H),9.08(s,1H)
MS(FAB+);405(M+1)
【実施例4】
6−{[(1,3−ジオキソラン−2−イルメチル)アミノ]メチル}−7−フルオロ−N−メチル−N−ネオペンチル[1,3]チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド 2塩酸塩
参考例21の化合物(250mg)のジクロロエタン溶液(15ml)に酢酸(206μl)、(1,3−ジオキソラン−2−イル)メチルアミン(202μl)を加え、室温中1時間攪拌した。続いてトリアセトキシ水素化ホウ素ナトリウム(275mg)を加え、室温中5時間攪拌した。さらにトリアセトキシ水素化ホウ素ナトリウム(488mg)を加え、室温中14時間攪拌した。終了後、反応溶液を飽和炭酸水素ナトリウム水溶液に加えた後、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣をカラムクロマト(溶出液;クロロホルム次いでクロロホルム:メタノール:28%アンモニア水=9:1:0.1)で精製した。精製物にエタノール(10ml)を加え溶解させたのち、1M塩酸水溶液(1.49ml)を加え減圧下濃縮した。結晶化した残渣をエタノールと酢酸エチルで再結晶化し、得られた結晶を濾取した。濾取した結晶をエタノールと酢酸エチルの混合溶媒(混合比1:5)で洗浄した後、60℃中加温下減圧乾燥することにより表題化合物(310mg)を得た。
H−NMR(DMSO−d);0.97(s,9H),3.20(d,2H),3.42−3.47(m,5H),3.85−3.94(m,2H),3.98−4.06(m,2H),4.35(s,2H),5.27(t,1H),7.66(d,2H),8.36(d,1H),9.16(s,1H),9.60(br,2H)
MS(FAB+);435(M+1)
【実施例5】
7−フルオロ−N−メチル−N−ネオペンチル−6−{[(テトラヒドロ−2H−ピラン−4−イルメチル)アミノ]メチル}[1,3]チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド 2塩酸塩
参考例21の化合物(250mg)のジクロロエタン溶液(15ml)に酢酸(206μl)、(テトラヒドロ−2H−ピラン−4−イルメチル)アミン塩酸塩(328mg)、トリエチルアミン(301μl)を加え、室温中1時間半攪拌した。続いてトリアセトキシ水素化ホウ素ナトリウム(458mg)を加え、室温中終夜攪拌した。終了後、反応溶液を飽和炭酸水素ナトリウム水溶液に加えた後、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣をカラムクロマト(溶出液;クロロホルム次いでクロロホルム:メタノール:28%アンモニア水=9:1:0.1)で精製した。精製物にエタノール(30ml)を加え溶解させたのち、1M塩酸水溶液(1.34ml)を加え減圧下濃縮した。結晶化した残渣をエタノールと酢酸エチルで再結晶化し、得られた結晶を濾取した。濾取した結晶をエタノールと酢酸エチルの混合溶媒(混合比1:10)で洗浄した後、60℃中加温下減圧乾燥することにより表題化合物(240mg)を得た。
H−NMR(DMSO−d);0.97(s,9H),1.16−1.28(m,2H),1.70−1.73(m,2H),1.99−2.06(m,1H),2.87−2.90(m,2H),3.24−3.30(m,2H),3.42−3.47(m,5H),3.83−3.87(m,2H),4.29(br,2H),7.67(d,2H),8.37(d,1H),9.14(s,1H),9.39−9.47(m,2H)
MS(FAB+);447(M+1)
上記実施例に記載されているものの他に、前述の製造法、参考例及び実施例の製造法、通常の当業者にとって公知の製造法及びそれらの変法を用い、以下の表1の化合物を得ることが出来る。

(試験法)
mGluR1に対する本発明化合物の効果は特許文献3記載の方法に準じて確認した。
本発明化合物の作用はmGluR1に対する選択的、かつ強力な作用を有する6−アミノ−N−シクロヘキシル−N,3−ジメチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミドのトリチウムラベル体(特異活性;81Ci/mmol(Amersham))を用いた結合実験により確認した。
上記化合物は、mGluR1α発現細胞を用いたフォスファチジルイノシトール(PI)加水分解系(Nature 383,89−92,1996)においてグルタミン酸の反応に対しIC50=24nMという高い阻害活性を有している。
(ラット小脳P2膜画分の作成)
ラット(Wistar、雄性、9−12週齢)を断頭し、小脳を摘出した。重量を測定し、7−10倍量の0.32Mショ糖溶液でホモジナイズした。900xgで15分間遠心を行い、上清を別の容器に保管した(氷中)。沈査を1回目と同量の0.32Mショ糖溶液で再度ホモジナイズし900xgで15分間遠心を行った。この時得られた上清と先に得られた上清を合わせ15,000xgで20分間遠心を行った。沈査を5mM Tris−HCl、pH7.4でホモジナイズし、15,000xgで15分間遠心を行った。この操作をもう一度繰り返した。沈査を50mM Tris−HCl、pH7.4でホモジナイズし、15,000xgで15分間遠心を行った。沈査を適量の50mM Tris−HCl、pH7.4でホモジナイズし、小分けして−80℃にて保存した。
(結合実験)
アッセイバッファーとして50mM Tris−HCl、2.5mM CaCl2、pH7.4を用いた。[3H]−6−アミノ−N−シクロヘキシル−N,3−ジメチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド、試験化合物及び約0.1mgのラット小脳P2膜画分を全量で100μLになるように96穴マイクロプレート内に懸濁し、室温(約25℃)で45分間インキュベーションを行った。インキュベーションの終了はWhatman GF/B filterを用いた濾過法で行った。放射能量は液体シンチレーションカウンターで測定した。競合実験には約20nMの[3H]−6−アミノ−N−シクロヘキシル−N,3−ジメチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミドを用い、特異結合は全結合量のうち10μMの6−{[(2−メトキシエチル)アミノ]メチル}−N−ネオペンチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド(特許文献3 実施例75に記載の化合物)によって置換された部分とした。試験化合物の評価は、特異結合に及ぼす結合阻害率を求めて行った。
蛋白定量はBIO−RAD DC protein assay(BIO−RAD)を用いた。標準物質として牛血清アルブミンを用い行った。
結果は表2に示す。
参考文献:
Thomsen−C;Mulvihill−ER;Haldeman−B;Pickering−DS;Hampson−DR;Suzdak−PD、Apharmacological characterization of the mGluR1 alpha subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line.、Brain−Res.1993 Aug 13;619(1−2):22−8
試験例2:神経因性疼痛に対する抑制効果
1)ストレプトゾトシン(Streptozotocin、以下STZという)誘発糖尿病モデル
実験は既報(Pharmacol Biochem Behav 39、541−544,1991)の一部を改変して行った。4週齢ICRマウスに対してSTZを200mg/kg腹腔内投与する。投与2週間後の午後にtail pinch testのpre試験を行い、反応潜時が3秒以下の動物についてのみ翌日の実験に供した。
対照化合物には、チアゾロベンゾイミダゾールのベンゼン環上に置換アミノメチル基を有する化合物として対照化合物A、B、及びCを選択した。
本発明化合物及び対照化合物Cは10mg/kgを経口投与により負荷し、投与後30分でtail pinch testを行った。一方対照化合物A及びBは100mg/kgを経口投与し同様に評価した。
なお、STZを負荷していない正常マウスでは、本試験において平均6−7秒の反応潜時を示す。今回試験に用いたSTZ負荷マウスは、明らかな痛覚閾値の低下が認められた反応潜時3秒以下のものを用いた。
結果を表2に示す。
なお、糖尿病性神経因性疼痛薬として承認され、市販されているメキシレチンは約3秒である。

上記試験によって、本発明化合物は、mGluR1に特異的に結合する化合物であることが確認された。
また、本発明化合物は、10mg/kgの経口投与で平均反応潜時差が全て2秒以上を示したことから、糖尿病による神経因性疼痛の治療効果を有することが確認された。
一方、対照化合物A及びBは100mg/kgの経口投与で平均反応潜時差が約1秒以下であった。
従って、本発明化合物は、対照化合物A、Bに比べ、経口活性が少なくとも10倍以上優れた化合物であり、経口剤として有用な化合物であることが確認された。一方、対照化合物Cについては、2秒以上の反応潜時差を示した。
2)L5/L6脊髄神経結紮ラット
実験は既報(PAIN 50,355−363,1992)の一部を改変して行った。SDラットを用い、ペントバルビタール麻酔下で左側腰神経(L5およびL6)を絹糸で結紮した。術後7日目に以下の試験を実施した。
薬物を10mg/kg経口投与し、30分後にvon Frey hair(VFH)testを行い、機械侵害刺激に対する痛覚閾値を求めた。測定は左右の後肢で実施した。
なお、擬手術ラットの痛覚閾値は、左右差はなく、平均値で17−20g(log(g):1.23−1.30)であり、L5/L6脊髄神経結紮ラットの手術側足で機械侵害刺激に対する痛覚閾値の低下が認められた。
有意差検定は、Dunnett法を用い、左右それぞれの足でコントロール群と薬物投与群との間で行った。
結果を表3に示す。

表3に示された本発明化合物は、STZ誘発糖尿病モデルで2秒以上の反応潜時差を示した対照化合物Cに対し、約8倍〜50倍以上の作用を示した。
また、上記本発明化合物は、特許文献2で神経圧迫による痛覚閾値の低下作用を有することが確認されたアニリン性アミノ基を有する対照化合物Dに対し4〜30倍の作用を示した。
3.遺伝毒性
本発明化合物の遺伝子突然変異誘発性は、細菌を用いる復帰突然変異試験にて確認した。
試験方法は医薬品の遺伝毒性試験ガイドライン(医薬審 第1604号、平成11年11月1日)に従い、代謝活性化系の存在下および非存在下に、プレインキュベーション法により実施した。ただし、試験菌株はSalmonella typhimurium TA98およびTA100のみ使用した。
(細菌を用いる復帰突然変異試験)
試験管に、0.1Mリン酸ナトリウム緩衝液(pH7.4)0.5mL、一晩培養した試験菌懸濁液0.1mLおよび試験物質溶液0.1mLを加え、37℃で20分間振盪(60往復/分)した後、約45℃に保温した軟寒天2mLを加えて最少グルコース寒天平板培地(プレート)に拡げ、37℃で約48時間培養した。代謝活性化試験の場合は、0.1Mリン酸ナトリウム緩衝液の代わりに同量のS9Mixを加え同様に操作した。
結果
代謝活性化試験に用いたS9MixはS−9/cofactor A set(phenobarbitalおよび5,6−benzoflavoneで薬物代謝酵素を誘導したラット肝ホモジネートの9000×g上清とCofactor,Ames試験用,オリエンタル酵母株式会社)を用いて調製した.S9Mix中のS9量は0.1mL/mLとした。溶媒はdimethylsulphateを用いた。
48時間培養後プレート上に生じたコロニーを計数した。
被験物質で処理したプレートの復帰変異コロニー数(平均値)が溶媒対照の復帰変異コロニー数(平均値)の2倍以上に増加し、用量依存性が認められ,再現性が確認された場合に遺伝子突然変異誘発性を有すると判断した。
上記試験において、実施例1及び実施例2の化合物は遺伝子突然変異誘発性を有さないことが確認された。一方、アニリン性アミノ基を有する対照化合物Dは遺伝子突然変異誘発性を有することが確認された。
これらの結果から、本発明化合物はアニリン性アミノ基を有さないことから遺伝子突然変異誘発性がなく、特許文献1乃至4からは予想できない優れた経口活性、特に神経圧迫による神経因性疼痛抑制効果を有することを確認した。
【発明の効果】
本発明化合物は、メタボトロピックグルタメート受容体に強い作用を示す、経口活性に優れた化合物であり、経口投与に於いても使用しうる。
従って、本発明化合物は、mGluR1受容体が関与していると考えられる疾患、例えば、てんかん、痛み、神経細胞死の抑制、ベンゾジアゼピン退薬症候群、パーキンソン病、偏頭痛、不安障害、脳梗塞(好ましくは脳梗塞急性期に投与する梗塞巣の進展防止剤)或いは神経因性疼痛(好ましくは、糖尿病性神経因性疼痛、帯状疱疹後神経痛、癌性疼痛、術後疼痛)の予防・治療剤として有用である。

【特許請求の範囲】
【請求項1】
下記一般式(I)で示されるアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその塩。

(ここに、式中の記号は、以下の意味を表す。
:置換されてもよい含酸素飽和ヘテロ環−、置換されてもよい含硫黄飽和ヘテロ環−、置換されてもよいシクロアルキル、R−O−、又はR−S−
Alk1:低級アルキレン
m:0又は1
Alk2:オキソ基で置換されてもよい低級アルキレン
n:0又は1
X:結合、O、S、又は−NR
:H、低級アルキル、ハロゲノ低級アルキル、低級アルケニル、低級アルキニル、置換されてもよいシクロアルキル、シアノ、又は飽和ヘテロ環−
、R、R、R及びR:同一又は異なって、H、又は、低級アルキル)
【請求項2】
一般式(I)において、Rがオキセタン−又はジオキソラン−、RがH、Rがネオペンチル、Xが結合、Rがメチル、Alk1がメチレン、及びnが0である、請求の範囲1記載の誘導体又はその塩。
【請求項3】
5−フルオロ−N−メチル−N−ネオペンチル−6−[(オキセタン−3−イルアミノ)メチル]チアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド;
6−{[(1,3−ジオキソラン−2−イルメチル)アミノ]メチル}−5−フルオロ−N−メチル−N−ネオペンチルチアゾロ[3,2−a]ベンゾイミダゾール−2−カルボキサミド;又はその塩。
【請求項4】
請求の範囲1乃至3記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩を有効成分とする医薬組成物。
【請求項5】
請求の範囲1乃至3記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩を有効成分とする神経因性疼痛治療剤。
【請求項6】
請求の範囲1乃至3記載のアミノメチル置換フルオロチアゾロベンゾイミダゾール誘導体又はその製薬学的に許容される塩及び担体からなる医薬組成物の有効量を患者に投与することによる神経因性疼痛の治療方法。

【国際公開番号】WO2004/106348
【国際公開日】平成16年12月9日(2004.12.9)
【発行日】平成18年7月20日(2006.7.20)
【国際特許分類】
【出願番号】特願2005−506550(P2005−506550)
【国際出願番号】PCT/JP2004/007655
【国際出願日】平成16年5月27日(2004.5.27)
【出願人】(000006677)アステラス製薬株式会社 (274)
【Fターム(参考)】