説明

アルカリ亜鉛蓄電池

【課題】主として、デンドライトによるショートの発生を十分に防止でき、長寿命化を図ることができる、アルカリ亜鉛蓄電池を提供すること。
【解決手段】正極2に対向する第1膜31と負極1に対向する第2膜32とを少なくとも有するセパレータ3を備えており、第1膜31は耐アルカリ性微孔膜であり、第2膜32はポリビニルアルコール膜であり、第1膜31は第2膜32側の面にニッケル被覆層31aを有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、負極に亜鉛を使用し電解液にアルカリ水溶液を使用したアルカリ亜鉛蓄電池、例えばニッケル−亜鉛蓄電池、酸化銀−亜鉛蓄電池、マンガン−亜鉛蓄電池、空気−亜鉛電池等に関し、特にそのセパレータの改良に関するものである。
【背景技術】
【0002】
アルカリ亜鉛蓄電池は、負極に亜鉛を用いているために、高エネルギー密度を有し、カドミウムや水銀等の有害物質を含まず、安価である等の良好な特性を有し、それ故、実用化が強く期待されている。しかし、電解液であるアルカリ水溶液に対して亜鉛が高い溶解度を示すことに起因して、負極のシェイプチェンジや負極におけるデンドライトの発生、ひいては寿命が短いという問題があり、そのため、広く実用化されるには至っていないのが現状である。
【0003】
ところで、従来のアルカリ亜鉛蓄電池では、セロハンやポリビニルアルコールからなるセパレータが使用されていた。そして、セパレータがアルカリ水溶液によって劣化するまでの期間は、亜鉛のデンドライトによる短絡を防止することが可能であった。また、近年では、ポリエチレン、ポリプロピレン等の微孔膜に界面活性剤処理を施したセパレータを用いることが提案され、アルカリ水溶液によって劣化しにくいセパレータとして使用されている。
【0004】
一方、セパレータのデンドライト生成を抑制する効果を高める技術として、次のものが知られている。
(a)特許文献1では、微孔膜セパレータに水素過電圧の低い金属を塗布又は蒸着している。
(b)特許文献2、特許文献3では、ニッケルメッキを施した又はニッケルを付着させたイオン交換樹脂等の選択透過膜を、微孔膜セパレータ間に配している。
(c)特許文献4では、微孔膜セパレータ中に特定の金属を均一に分散させている。
(d)特許文献5では、微孔膜セパレータの負極側に、水素過電圧の低い金属からなる層とセロハン層とを設けている。
更に、特許文献6のような先行文献が挙げられる。
【特許文献1】特開昭56−138864号公報
【特許文献2】特開昭58−165243号公報
【特許文献3】特開昭58−165244号公報
【特許文献4】特開昭57−197758号公報
【特許文献5】特開平5−343096号公報
【特許文献6】特開昭55−46243号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上記(a)〜(c)のセパレータは、水素過電圧の低い金属上にてデンドライトを酸化溶解させようとするものであるが、該セパレータでは、デンドライトが該金属と接触すると水素が発生し、自己放電が加速されてしまうという問題があった。
【0006】
また、上記(d)のセパレータでは、セロハン層によってデンドライトと水素過電圧の低い金属との接触を抑制できるが、セロハンはアルカリ水溶液中で容易に分解されてしまうので、上記抑制効果の持続性に欠けるという問題があった。
【課題を解決するための手段】
【0007】
上記問題を解決するために、本発明のアルカリ亜鉛蓄電池の内、請求項1記載の発明は、正極に対向する第1膜と負極に対向する第2膜とを少なくとも有するセパレータを備えており、第1膜が耐アルカリ性微孔膜であり、第2膜がポリビニルアルコール膜であり、第1膜は、ニッケル、鉄、コバルト、白金、パラジウム、インジウム、クロム、マンガン、チタン、及びこれらを主成分とする合金、の内から任意に選択された金属を有していることを特徴としている。
【0008】
請求項2記載の発明は、請求項1の構成に加え、第2膜が架橋構造を有している。
【0009】
請求項3記載の発明は、請求項1の構成に加え、耐アルカリ性微孔膜が、ポリエチレン微孔膜又はポリプロピレン微孔膜である。
【0010】
請求項4記載の発明は、請求項1の構成に加え、第1膜が上記金属の粒子を分散状態で内部に有している。
【0011】
請求項5記載の発明は、請求項1の構成に加え、第1膜が上記金属を層状態で負極に対向する面に有している。
【0012】
請求項6記載の発明は、請求項1の構成に加え、第1膜と正極との間又は第2膜と負極との間、の少なくとも一方に不織布を介在させている。
【0013】
請求項7記載の発明は、請求項1の構成に加え、第2膜が第1膜の一方の面にポリビニルアルコール樹脂を塗布することによって形成されているものである。
【発明の効果】
【0014】
以上のように本発明のアルカリ亜鉛蓄電池によれば、次のような効果を奏する。
請求項1記載の発明によれば、セパレータ3の第1膜31がニッケル等の所定の金属を有しているので、該金属上で析出亜鉛を酸化溶解でき、デンドライト生成を抑制できる。また、セパレータ3がポリビニルアルコール膜からなる第2膜32を有しているので、デンドライトを微細化して容易に溶解でき、デンドライト成長を抑制でき、更に、第1膜31の金属にデンドライトが直接接触するのを防止でき、従って、自己放電を防止できる。従って、第1膜31と第2膜32とが相乗的に作用することによって、デンドライトによるショートの発生を十分に防止でき、長寿命化を図ることができる。
【0015】
請求項2又は3記載の発明によれば、セパレータ3の耐アルカリ性を向上でき、従って、セパレータ3の劣化によるショートの発生を十分に防止できる。
【0016】
請求項4記載の発明によれば、セパレータ3の第1膜31における金属の剥離や脱落を防止でき、従って、デンドライト生成の抑制効果の持続性を向上できる。
【0017】
請求項5記載の発明によれば、セパレータ3の第1膜31に形成した金属層によって、確実に、析出亜鉛を酸化溶解でき、デンドライト生成を抑制できる。
【0018】
請求項6記載の発明によれば、電極表面を均一且つ十分に電解液で濡らすことができ、従って、活物質利用率を向上でき、充放電時の電流分布を均一にでき、そのため、亜鉛負極のシェイプチェンジを抑制できる。
【0019】
請求項7記載の発明によれば、セパレータ3の製造工程を簡素化できる。
【発明を実施するための最良の形態】
【0020】
図1は本発明の一実施形態に属する試作のアルカリ亜鉛蓄電池の発電要素を示す断面部分図である。この発電要素は、正極2/不織布4/セパレータ3/不織布4/負極1という配置で構成されている。なお、この発電要素は、実際的には図2に示すように配設されて電池を構成する。なお、図2は以下に示す実施例6のセパレータ3を用いたものである。
【0021】
試作電池は次の構成を有している。
負極1は、厚さ0.1mmの銅パンチングメタルからなる集電体の両面に、酸化亜鉛粉末80重量部と亜鉛粉末20重量部とポリテトラフルオロエチレン粒子3重量部とからなる混合物を塗布して構成されている。多孔度は約50%、極板寸法は3cm×3cmである。
【0022】
正極2は、水酸化ニッケルを主体とする焼結式ニッケル極であり、極板寸法は3cm×3cmである。
【0023】
電解液は、8mol/lの水酸化カリウム水溶液を用い、全空隙の80〜90%まで注液した。また、正極2の容量密度を30mAh/cm とし、負極1の容量密度を120mAh/cm とした。
【0024】
そして、セパレータ3として、以下に示す実施例1〜6のものを用いた。なお、比較するために、以下に示す比較例1〜10のセパレータ3を用い、その他は実施例のセパレータ3を用いた場合と同じ構成のアルカリ亜鉛蓄電池を試作した。実施例1〜6及び比較例6〜10のセパレータ3は、図3に示すように、第1膜31及び第2膜32からなる2膜構造を有しており、特に実施例6、比較例6,7は、図4に示すように、第1膜31自体が2層構造を有している。
【0025】
以下に、実施例及び比較例を示す。なお、実施例1〜4の第1膜31としては、ポリビニルアルコール膜の代わりに、ポリエチレン微孔膜、ポリプロピレン微孔膜等の耐アルカリ性微孔膜を用いる。
【実施例1】
【0026】
第1膜31は、ニッケル粉末を分散状態で含有し且つ架橋構造を有するポリビニルアルコール膜(PVA膜)である。但し、架橋は電子線照射により行なわれた。第2膜32は単なるポリビニルアルコール膜である。
【0027】
第1膜31は次のようにして形成した。即ち、重合度が1500〜1800のポリビニルアルコール粉末試薬(株式会社和光純薬製)10重量部を精製水50重量部に溶解させ、その中に、平均粒子径15μm、平均厚さ1μmの、鱗片状ニッケル粉末10重量部を均一に分散し、これに電子線を照射して架橋させ、膜抵抗を230mΩ・cm とした。
【0028】
第2膜32は次のようにして形成した。即ち、重合度が1500〜1800のポリビニルアルコール粉末試薬(株式会社和光純薬製)を均一に分散させて厚み15μmの膜とし、180℃の温度下で10分間加熱処理してアルカリに対して溶解しにくくした。
【実施例2】
【0029】
第1膜31は、ニッケル粉末を分散状態で含有し且つ架橋構造を有するポリビニルアルコール膜である。但し、架橋はホウ酸処理により行なわれた。第2膜32は実施例1の第2膜32と同じポリビニルアルコール膜である。
【0030】
第1膜31は次のようにして形成した。即ち、ポリビニルアルコール粉末10重量部を精製水50重量部に溶解させ、その中に、平均粒子径15μm、平均厚さ1μmの、鱗片状ニッケル粉末10重量部を均一に分散し、これに飽和ホウ酸水溶液1重量部を添加して架橋させ、膜抵抗を230mΩ・cm とした。
【実施例3】
【0031】
第1膜31は、ニッケル粉末を分散状態で含有したポリビニルアルコール膜である。第2膜32は実施例1の第2膜32と同じポリビニルアルコール膜である。
【0032】
第1膜31は次のようにして形成した。即ち、ポリビニルアルコール粉末10重量部を精製水50重量部に溶解させ、その中に、平均粒子径15μm、平均厚さ1μmの、鱗片状ニッケル粉末10重量部を均一に分散し、厚さ40μmの膜とし、180℃の温度下で10分間加熱処理してアルカリに対して溶解しにくくするとともに、膜抵抗を165mΩ・cm とした。
【実施例4】
【0033】
実施例3の第1膜31と第2膜32とが一体となっているものである。
これは次のようにして形成した。即ち、ポリビニルアルコール粉末10重量部を精製水50重量部に溶解させ、その中に、平均粒子径15μm、平均厚さ1μmの、鱗片状ニッケル粉末10重量部を均一に分散し、厚さ40μmの膜(第1膜32)とし、この膜の一方の面にポリビニルアルコール樹脂を塗布して15μmのポリビニルアルコール膜(第2膜32)を形成し、180℃の温度下で10分間加熱処理してアルカリに対して溶解しにくくするとともに、膜抵抗を180mΩ・cm とした。
【実施例5】
【0034】
第1膜31は、ニッケル粉末を分散状態で含有したポリエチレン微孔膜(PE微孔膜)である。第2膜32は実施例1の第2膜32と同じポリビニルアルコール膜である。
【0035】
第1膜31は次のようにして形成した。即ち、ポリエチレン粉末100重量部にカルボニルニッケル粉末(INCO製#255)10重量部を混練してロール成形し、厚さ50μm、多孔度42%、膜抵抗200mΩ・cm の膜とした。
【実施例6】
【0036】
第1膜31は、第2膜32側にニッケル被覆層31a(図2,4)を有するポリプロピレン微孔膜(PP微孔膜)である。第2膜32は実施例1の第2膜32と同じポリビニルアルコール膜である。
【0037】
第1膜31は次のようにして形成した。即ち、厚さ25μmのポリプロピレン微孔膜(ヘキストセラニーズ製、セルガード#3401)の第2膜32側の面に、ニッケル粒子を付着させてニッケル被覆層を形成した。
【比較例1】
【0038】
厚さ25μmのポリプロピレン微孔膜(ヘキストセラニーズ製、セルガード#3401)1枚のみでできている。
【比較例2】
【0039】
厚さ25μmのセロハン膜1枚のみでできている。
【比較例3】
【0040】
実施例1の第2膜32と同じポリビニルアルコール膜1枚のみでできている。
【比較例4】
【0041】
実施例3の第1膜31と同じポリビニルアルコール膜1枚のみでできている。
【比較例5】
【0042】
実施例6の第1膜31と同じポリプロピレン微孔膜1枚のみでできている。
【比較例6】
【0043】
第1膜31は実施例6の第1膜31と同じものである。第2膜32は比較例1と同じポリプロピレン微孔膜である。
【比較例7】
【0044】
第1膜31は実施例6の第1膜31と同じものである。第2膜32は比較例2と同じセロハン膜である。
【比較例8】
【0045】
第1膜31及び第2膜32は、共に比較例1と同じポリプロピレン微孔膜である。
【比較例9】
【0046】
第1膜31は比較例1と同じポリプロピレン微孔膜である。第2膜32は比較例2と同じセロハン膜である。
【比較例10】
【0047】
第1膜31は比較例1と同じポリプロピレン微孔膜である。第2膜32は比較例3と同じポリビニルアルコール膜である。
【0048】
以上の実施例1〜6及び比較例1〜10の構成を簡単に示すと、表1のようになる。
【0049】
【表1】

【0050】
上記実施例1〜6のセパレータ3を備えた本発明のアルカリ亜鉛蓄電池では、次のような作用効果を奏する。
(1)セパレータ3の第1膜31がニッケルを分散状態で又は層状態で有しているので、ニッケル上で析出亜鉛が酸化溶解され、デンドライト生成が抑制される。また、セパレータ3がポリビニルアルコール膜からなる第2膜32を有しているので、デンドライトが微細化されて容易に溶解され、デンドライト成長が抑制され、更に、第1膜31のニッケルにデンドライトが直接接触するのが防止され、従って、自己放電が防止される。従って、第1膜31によるデンドライト生成抑制作用と、第2膜32によるデンドライト成長抑制作用とが、相乗的に作用し、デンドライトによるショートの発生が十分に防止され、長寿命となる。
【0051】
なお、ポリビニルアルコール膜による上記作用は、ポリビニルアルコールが有する官能基であるアルコール基と、ポリビニルアルコール分子の集合構造とによるものと考えられ、合成物であるポリビニルアルコールは、分子量、けん化度、結晶化度等の制御が容易であるので、最適な条件を設定することにより、優れたデンドライト成長抑制作用が得られる。
【0052】
なお、第1膜31によるデンドライト生成抑制作用、第2膜32によるデンドライト成長抑制作用、及びそれらの作用による相乗的作用は、以下に示す[試験1]〜[試験3]により証明される。
【0053】
(2)特に実施例1,2,6のセパレータ3を用いた電池では、セパレータ3の耐アルカリ性が向上し、従って、セパレータ3の劣化によるショートの発生が十分に防止される。
【0054】
(3)特に実施例1〜5のセパレータ3を用いた電池では、実施例6の場合に比して、セパレータ3の第1膜31におけるニッケルの剥離や脱落が防止され、従って、デンドライト生成の抑制効果の持続性が向上する。
【0055】
(4)特に実施例6のセパレータ3を用いた電池では、セパレータ3の第1膜31に形成したニッケル層によって、確実に、析出亜鉛が酸化溶解され、デンドライト生成が抑制される。
【0056】
(5)不織布4を用いているので、電極1,2表面が均一且つ十分に電解液で濡らされ、従って、活物質利用率が向上し、充放電時の電流分布が均一になり、そのため、亜鉛負極のシェイプチェンジが抑制される。
【0057】
(6)特に実施例4のセパレータ3を用いた電池では、セパレータ3の製造工程が簡素化される。
【0058】
なお、第1膜31で用いる金属は、ニッケル、鉄、コバルト、白金、パラジウム、インジウム、クロム、マンガン、チタン、及びこれらを主成分とする合金、の内から任意に選択された金属であれば、ニッケルに限るものではない。
【0059】
また、実施例6のセパレータ3では、第1膜31にニッケル被覆層31aを形成しているが、その代わりに、第2膜32の第1膜31側の面にニッケル被覆層を形成してもよい。
【0060】
また、上記電池では、正極活物質としてニッケルを用いているが、酸化銀やマンガンを用いてもよい。また、正極として、空気極を用いてもよい。
【0061】
更に、上記電池では、不織布4を配設しているが、負極1及び正極2が電解液に均一且つ十分に濡れるようであれば、不織布4は特に必要としない。
【0062】
[試験1]
実施例1〜6及び比較例1〜10のセパレータ3を備えた、上記構成のアルカリ亜鉛蓄電池を試作し、これに対して、次の試験を行なった。即ち、各電池を、60℃の雰囲気下で、300mA/cm の電流密度で充電し、充電中の電圧が低下し始める時点の電気量をショート発生充電電気量として求めた。その結果を表2に示す。ショート発生充電電気量が大きいことは、耐ショート性が高いことを示す。なお、試験後、試作電池を解体したところ、いずれもショートしていることが確認された。
【0063】
【表2】

【0064】
表2から、次のことがわかる。まず、単膜構造のセパレータである比較例1〜3を比較すると、ポリプロピレン微孔膜が最も耐ショート性が低く、セロハン膜、ポリビニルアルコール膜の順に耐ショート性が向上している。そして、比較例1〜3と比較例8〜10とを比較すると、2膜構造のセパレータである比較例8〜10の耐ショート性は単膜構造のセパレータのショート発生充電電気量の和となっている。ところが、比較例1と比較例5とを比較すると、同じ単膜構造のセパレータであってもニッケル被覆層を形成することにより、耐ショート性が大きく向上している。このことは、比較例6,7及び実施例6と、比較例8〜10とを、比較してもわかる。即ち、第1膜31であるポリプロピレン微孔膜にニッケル被覆層31aを形成してなる2膜構造のセパレータは、単なる2膜構造のセパレータより耐ショート性が向上している。
【0065】
一方、ニッケル被覆層を形成してなる同じ2膜構造のセパレータであっても、実施例6は比較例6,7に比して耐ショート性が著しく向上している。これは、第2膜32がポリビニルアルコール膜であることによるものと考えられる。即ち、第2膜32をポリビニルアルコール膜としたセパレータの方が、第2膜32をポリプロピレン微孔膜、セロハン膜としたセパレータよりも、デンドライトが微細化されやすく、デンドライトがニッケル被覆層に達しても容易に酸化溶解されるため、耐ショート性が向上したものと考えられる。
【0066】
更に、実施例1〜5をみると、第1膜31にニッケル被覆層31aを形成する代わりにニッケル粉末を分散状態で含有させた場合でも、実施例6の場合と同程度に、耐ショート性が向上している。
【0067】
これらのことから、第1膜31にニッケル被覆層31aを形成し又はニッケル粉末を分散状態で含有させること、及び第2膜32としてポリビニルアルコール膜を用いることが、耐ショート性の向上に寄与していることがわかる。
【0068】
[試験2]
実施例1〜6及び比較例1,7,9のセパレータ3を備えた、上記構成のアルカリ亜鉛蓄電池を試作し、これに対して、次の試験を行なった。なお、電池容量は2Ahとした。即ち、初期放電容量と、充電後60℃の恒温槽内で40日間放置した時の開路電圧の変化と、放置後室温に戻してからの放電容量とを求めた。表3は初期放電容量及び放置後放電容量を示し、図5は開路電圧の変化を示す。なお、試験後、試作電池を解体したところ、比較例1,9ではショートしており、比較例7ではニッケル被覆層31aと負極1の亜鉛とが接触して自己放電が促進されていることが確認された。
【0069】
【表3】

【0070】
表3から、次のことがわかる。比較例1,7,9では、初期放電容量に対して放置後放電容量が低下しているが、実施例1〜6では低下していない。また、図5からわかるように、比較例1,7,9では、放置後30日経過後に急に開路電圧が低下している。特に、実施例6と比較例7とを比較すると、第2膜32としてポリビニルアルコール膜を用いることが有効であることがわかる。これは、第2膜32をポリビニルアルコール膜としたセパレータの方が、第2膜32をセロハン膜としたセパレータよりも、耐アルカリ性に優れていることに因るものである。
【0071】
従って、第1膜31にニッケル被覆層31aを形成し又はニッケル粉末を分散状態で含有させること、及び第2膜32としてポリビニルアルコール膜を用いることは、放電特性の向上にも寄与すると考えられる。
【0072】
[試験3]
実施例1〜6及び比較例1,7,9のセパレータ3を備えた、上記構成のアルカリ亜鉛蓄電池を試作し、これに対して、次の試験を行なった。なお、電池容量は2Ahとした。即ち、2Cの充放電サイクル1回、0.2Cの充放電サイクル1回、及び−10℃〜60℃のヒートサイクル50回からなるパターンを繰返し行ない、各パターン終了後の放電容量を求めた。その結果を表4に示す。なお、表4において、初期の放電容量は電池組立直後の放電容量を示す。
【0073】
【表4】

【0074】
表4から、次のことがわかる。比較例1では1パターンのヒートサイクル前の2Cの充電でショートし、比較例7では2パターンのヒートサイクル前の2Cの充電で自己放電し、比較例9では2パターンのヒートサイクル前の2Cの充電でショートした。これに対し、実施例1〜6では、6パターン終了後でも放電容量は殆んど低下せず、ショートも認められなかった。即ち、実施例1〜6は高い耐ショート性を有している。
【産業上の利用可能性】
【0075】
本発明は、デンドライトによるショートの発生を十分に防止でき、長寿命化を図ることができるので、産業上の利用価値が大である。
【図面の簡単な説明】
【0076】
【図1】本発明の一実施形態に属する試作のアルカリ亜鉛蓄電池の発電要素を示す断面部分図である。
【図2】本発明の実際的なアルカリ亜鉛蓄電池の一例を示す断面図である。
【図3】実施例1〜6及び比較例6〜10のセパレータを示す拡大断面部分図である。
【図4】図3のセパレータの内、特に実施例6、比較例6,7のセパレータを示す拡大断面部分図である。
【図5】試験2における開路電圧の変化を示す図である。
【符号の説明】
【0077】
1 負極 2 正極 3 セパレータ 31 第1膜 31a ニッケル被覆層 32 第2膜 4不織布

【特許請求の範囲】
【請求項1】
正極に対向する第1膜と負極に対向する第2膜とを少なくとも有するセパレータを備えており、
第1膜が耐アルカリ性微孔膜であり、第2膜がポリビニルアルコール膜であり、第1膜は、ニッケル、鉄、コバルト、白金、パラジウム、インジウム、クロム、マンガン、チタン、及びこれらを主成分とする合金、の内から任意に選択された金属を有していることを特徴とするアルカリ亜鉛蓄電池。
【請求項2】
第2膜が架橋構造を有している請求項1記載のアルカリ亜鉛蓄電池。
【請求項3】
耐アルカリ性微孔膜が、ポリエチレン微孔膜又はポリプロピレン微孔膜である請求項1記載のアルカリ亜鉛蓄電池。
【請求項4】
第1膜が上記金属の粒子を分散状態で内部に有している請求項1記載のアルカリ亜鉛蓄電池。
【請求項5】
第1膜が上記金属を層状態で負極に対向する面に有している請求項1記載のアルカリ亜鉛蓄電池。
【請求項6】
第1膜と正極との間又は第2膜と負極との間、の少なくとも一方に不織布を介在させている請求項1記載のアルカリ亜鉛蓄電池。
【請求項7】
第2膜が第1膜の一方の面にポリビニルアルコール樹脂を塗布することによって形成されている請求項1記載のアルカリ亜鉛蓄電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−73541(P2006−73541A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2005−300532(P2005−300532)
【出願日】平成17年10月14日(2005.10.14)
【分割の表示】特願平7−305663の分割
【原出願日】平成7年11月24日(1995.11.24)
【出願人】(000006688)株式会社ユアサコーポレーション (21)
【Fターム(参考)】