説明

アルカリ可溶性重合体、それを含む感光性樹脂組成物、及びその用途

【課題】より少ない吐出質量であっても、スピンコート法によりシリコンウエハー上へ全面に均一に塗布が出来、その塗膜の面内均一性が優れる感光性樹脂組成物、該組成物を用いた硬化レリーフパターンの製造方法、及び該硬化レリーフパターンを有してなる半導体装置を提供すること。
【解決手段】特定の繰り返し単位を有する構造を含むアルカリ可溶性樹脂(a)、光酸発生剤(b)、25℃での蒸気圧が50〜500Paであるケトン化合物である溶媒(c)、を少なくとも含む感光性樹脂組成物であり、かつ、該感光性樹脂組成物の密度が0.95g/cm3〜1.10g/cm3である感光性樹脂組成物を用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の表面保護膜及び層間絶縁膜等として有用な感光性樹脂組成物、該感光性樹脂組成物を用いた耐熱性を有する硬化レリーフパターンの製造方法、並びに該硬化レリーフパターンを有してなる半導体装置に関する。
【背景技術】
【0002】
半導体装置の表面保護膜、及び層間絶縁膜用の材料には、硬化後に耐熱性樹脂となるアルカリ性水溶液可溶性のポリヒドロキシアミド、例えばポリベンズオキサゾール(以下、「PBO」ともいう)前駆体を、感光性ジアゾキノン化合物などの光酸発生剤と混合してPBO前駆体組成物とし、このPBO前駆体組成物をポジ型感光性樹脂組成物として用いる方法が、例えば特許文献1に開示されている。
【0003】
半導体装置を製造する過程において、該前駆体組成物をシリコンウエハー等の基板に塗布し、活性光線によるパターニングを行い、現像し、熱ポリベンズオキサゾール化処理等を施すことによって、該半導体装置の一部分となる表面保護膜、または層間絶縁膜等を容易に形成させることが出来る。
半導体メモリの一種である、ダイナミック・ランダム・アクセス・メモリやNAND型フラッシュメモリにおいては、近年、低コスト生産が強く求められている。半導体メモリの表面保護膜を形成する工程においても、低コストで表面保護膜を形成することが強く求められている。
【0004】
上述の感光性樹脂組成物は、一般的にγ−ブチルラクトン(以下、GBLと記載)を溶媒とした溶液状態(ワニス)で供される。感光性樹脂組成物を使用する際には、ポンプ等を用いて、感光性樹脂組成物をシリコンウエハー上に所定量を吐出させ、スピンコート法により製膜する。GBLを溶媒とした場合、吐出質量が多いと、ワニスがスピンコート時にシリコンウエハーから振り切られ、廃棄されるワニスの量が多くなり、吐出質量を少なくすると、シリコンウエハー上に全面に均一に塗布出来ないといった課題があった。
【0005】
感光性樹脂組成物の使用量及び廃棄量の低減の試みは、例えば、スプレー塗布による感光性樹脂組成物の使用量低減など、塗布方法による提案がなされているが、既存のスピンコーターに代わる新たな塗布装置を導入する必要があった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開昭63−096162号公報
【特許文献2】特開2001−139806号公報
【特許文献3】特開2007−086215号公報
【特許文献4】特開2006−031084号公報
【特許文献5】特開2003−215789号公報
【特許文献6】特開平8−120174号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献2には溶媒としてシクロヘキサノンを、特許文献3には溶媒としてプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと記載)を用いた感光性樹脂組成物の開示があるが、後述の比較例に示すようにスピンコート法により塗膜すると、ワニスが回転塗布中に乾き、スピンコート膜が白化し、塗膜後の膜厚均一性に問題があった。
【0008】
特許文献4には、溶媒可溶性のポリイミドの溶媒に2−オクタノンを使用する旨が溶剤の例示の中に開示があるが、後述の比較例に示すように樹脂起因によるスピンコート時の濡れ広がりの悪化が見られた。
【0009】
特許文献5の実施例4には、2-ヘプタノンを溶媒成分としたノボラック樹脂を用いた感光性樹脂組成物の開示があるが、後述の比較例に示すように樹脂起因によるスピンコート時の濡れ広がりの悪化が見られた。
【0010】
特許文献6の実施例2には、2−ヘプタノンを溶媒成分としたポリアミド酸を用いた感光性樹脂組成物の開示があるが、後述の比較例に示すように樹脂起因によるスピンコート時の濡れ広がりの悪化が見られた。
【0011】
本発明は、より少ない吐出質量であっても、スピンコート法によりシリコンウエハー上へ全面に均一に塗布が出来、その塗膜の面内均一性が優れる感光性樹脂組成物、該組成物を用いた硬化レリーフパターンの製造方法、及び該硬化レリーフパターンを有してなる半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明者は、上述した従来技術の問題点に鑑み、鋭意検討した結果、特定構造のアルカリ可溶性樹脂と、溶媒として特定の構造を有する化合物を用い、感光性樹脂組成物の密度を低くすると、スピンコート法による塗膜作成時の濡れ広がりが向上することを見出した。また、適切な蒸気圧を持つ溶媒と適切な樹脂の組み合わせを選択することで、塗膜の面内均一性が向上することを見出した。その結果、上記の課題を解決する感光性樹脂組成物が得られることを見出し、本発明をなすに至った。
【0013】
すなわち、本発明は、以下の通りである。
[1] 下記一般式(1)で表される繰り返し単位を有する構造を含むアルカリ可溶性樹脂(a)、光酸発生剤(b)、25℃での蒸気圧が50〜500Paであるケトン化合物である溶媒(c)、を少なくとも含む感光性樹脂組成物であり、かつ、該感光性樹脂組成物の密度が0.95g/cm3〜1.10g/cm3である感光性樹脂組成物。
【0014】
【化1】

【0015】
(式中、X1及びY1は、各々独立に、少なくとも2個の炭素原子を有する2〜4価の有機基を表し、R1及びR2は、各々独立に、炭素原子数1〜10の炭化水素基を表し、n1+n2+n3+n4>0であり、そしてm1は、1〜1000の整数である。)
【0016】
[2] (全アルカリ可溶性樹脂の質量)/〔(全アルカリ可溶性樹脂の質量)+(全溶媒の質量)〕=0.2〜0.5である[1]に記載の感光性樹脂組成物。
[3] 溶媒として、上記溶媒(c)と、γ−ブチルラクトンとを含み、全溶媒に占めるγ−ブチルラクトンの割合が、10〜65重量%の範囲である[1]又は[2]に記載の感光性樹脂組成物。
[4]さらに架橋剤(d)を含む、[1]〜[3]のいずれか1つに記載の感光性樹脂組成物。
[5]さらに、溶解促進剤(e)として、カルボン酸化合物又はフェノール性化合物を含む[1]〜[4]のいずれか一つに記載の感光性樹脂組成物。
[6] 上記(c)溶媒は、2−ノナノン、2−オクタノン、及び2−ヘプタノンからなる群より選ばれる少なくとも一種の溶媒である[1]〜[5]のいずれか一つに記載の感光性樹脂組成物。
[7] 上記光酸発生剤(b)は、キノンジアジド化合物である[1]〜[6]のいずれか一つに記載の感光性樹脂組成物。
【0017】
[8] [1]〜[7]のいずれか1つに記載の感光性樹脂組成物を層またはフィルムの形で基板上に形成する工程、
該感光性樹脂組成物を露光する工程、
該露光の後の感光性樹脂組成物を現像してレリーフパターンを形成する工程、及び
該レリーフパターンを加熱して硬化レリーフパターンを形成する工程
を含む、硬化レリーフパターンの製造方法。
[9] [8]に記載の硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを有して成る、半導体装置。
【発明の効果】
【0018】
本発明によれば、より少ない吐出質量で、スピンコート法による塗膜作成時の濡れ広がり性に優れ、その塗膜の面内均一性が優れる感光性樹脂組成物、該感光性樹脂組成物を用いた硬化レリーフパターンの製造方法、および該硬化レリーフパターンを有してなる半導体装置が提供することができる。
【発明を実施するための最良の形態】
【0019】
<感光性樹脂組成物>
本発明の感光性樹脂組成物を構成する各成分について、以下に具体的に説明する。
[下記一般式(1)で表される繰り返し単位を有する構造を含むアルカリ可溶性樹脂(a)]
【0020】
【化2】

【0021】
(式中、X1及びY1は、各々独立に、少なくとも2個の炭素原子を有する2〜4価の有機基を表し、R1及びR2は、各々独立に、炭素原子数1〜10の炭化水素基を表し、n1+n2+n3+n4>0であり、そしてm1は、1〜1000の整数である。)
【0022】
本発明における感光性樹脂組成物としては、スピンコート法による塗膜作成時の吐出質量が削減出来るという観点と、塗膜の面内均一性が向上する観点から、上記一般式(1)で表される繰り返し単位を有する構造、すなわちポリベンゾオキサゾール前駆体構造を含むアルカリ可溶性樹脂(a)を、アルカリ可溶性樹脂全体のなかで一部含む。
ポリベンゾオキサゾール前駆体構造を有する樹脂(以下、「PBO前駆体」、「ポリヒドロキシアミド」とも言う)について詳細に述べる。
【0023】
該ジヒドロキシジアミドを構成する繰り返し単位は、Y1(OH)n2(COOR2n4(COOH)2の構造を有するジカルボン酸、及びX1(NH22(OH)n1(COOR1n3構造を有するジアミン、例えばビスアミノフェノールを重縮合させた構造を有する。該ビスアミノフェノールの2組のアミノ基とヒドロキシ基はそれぞれ互いにオルト位にある。該ポリヒドロキシアミドは約280〜400℃に加熱されることによって閉環して、耐熱性樹脂であるポリベンズオキサゾールに変化する。m1は1〜1000の範囲が好ましく、3〜50の範囲がより好ましく、3〜30の範囲であることが最も好ましい。
【0024】
1(NH22(OH)n1(COOR1n3構造を有するジアミン、例えばビスアミノフェノール化合物としては、例えば、3,3’−ジヒドロキシベンジジン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルスルホン、ビス−(3−アミノ−4−ヒドロキシフェニル)メタン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス−(4−アミノ−3−ヒドロキシフェニル)メタン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)プロパン、4,4’−ジアミノ−3,3’−ジヒドロキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジヒドロキシベンゾフェノン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルエーテル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、1,4−ジアミノ−2,5−ジヒドロキシベンゼン、1,3−ジアミノ−2,4−ジヒドロキシベンゼン、及び1,3−ジアミノ−4,6−ジヒドロキシベンゼンなどが挙げられる。これらのビスアミノフェノール化合物は単独あるいは混合して使用してもよい。
これらのX1(NH22(OH)n1(COOR1n3構造を有するジアミンのうち、特に好ましいものは、X1が下記から選ばれる有機基の場合である。
【0025】
【化3】

【0026】
また、X1(NH22(OH)n1(COOR1n3構造を有するジアミンとして、分子内に2組の互いにオルト位にあるアミド結合とフェノール性水酸基を有するジアミン(以下、「分子内にPBO前駆体構造を有するジアミン」という。)を使用することもできる。例えば、上述したビスアミノフェノールに2分子のニトロ安息香酸を反応させて還元することにより得られる、下記一般式で示されるジアミンが挙げられる。
【0027】
【化4】

【0028】
(式中、X3 は少なくとも2個以上の炭素原子を有する4価の有機基であり、前述したX1で示される有機基として好ましいものからなる群から選択される少なくとも1つの有機基であることが好ましい。)
【0029】
分子内にPBO前駆体構造を有するジアミンを得るための別法としては、Y3(COCl)2の構造を有するジカルボン酸ジクロリドに2分子のニトロアミノフェノールを反応させて還元し、下記一般式で示されるジアミンを得る方法もある。
【0030】
【化5】

【0031】
(式中、Y3は少なくとも2個以上の炭素原子を有する2価の有機基であり、後述するY1で示される有機基として好ましいものからなる群から選択される少なくとも1つの有機基であることが好ましい。)
【0032】
また、X1(NH22(OH)n1(COOR1n3構造を有するビスアミノフェノールとして、分子内に2組のポリイミド前駆体構造を持つ(以下、「分子内にPI前駆体構造を有するビスアミノフェノール」という。)を使用することもできる。このようなビスアミノフェノール化合物を得る方法としては、例えば、テトラカルボン酸二無水物をモノアルコール、またはモノアミン等で開環したジカルボン酸と、互いにオルトの位置にヒドロキシ基とニトロ基を有するアニリンを2分子縮合させた後、ニトロ基を還元し、下記一般式で示されるビスアミノフェノールを得る方法もある。
【0033】
【化6】

【0034】
(式中、Y4 は少なくとも4個以上の炭素原子を有する4価の有機基であり、R1は炭素原子数1〜10の炭化水素基を表す。)
【0035】
原料のX1(NH22(OH)n1(COOR1n3構造を有するジアミンに由来する構造以外に一部、ヒドロキシ基を有さないジアミンを用いてもよい。そのようなジアミンとしては、芳香族ジアミン、シリコンジアミンなどが挙げられる。
【0036】
このうち芳香族ジアミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、2,4−トリレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4−メチル−2,4−ビス(4−アミノフェニル)−1−ペンテン、4−メチル−2,4−ビス(4−アミノフェニル)−2−ペンテン、1,4−ビス(α,α−ジメチル−4−アミノベンジル)ベンゼン、イミノ−ジ−p−フェニレンジアミン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、4−メチル−2,4−ビス(4−アミノフェニル)ペンタン、5(または6)−アミノ−1−(4−アミノフェニル)−1,3,3−トリメチルインダン、ビス(p−アミノフェニル)ホスフィンオキシド、4,4’−ジアミノアゾベンゼン、4,4’−ジアミノジフェニル尿素、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]ベンゾフェノン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、4,4’−ビス[4−(α,α−ジメチル−4−アミノベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(α,α―ジメチル−4−アミノベンジル)フェノキシ]ジフェニルスルホン、4,4’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、フェニルインダンジアミン、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、o−トルイジンスルホン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシフェニル)スルフィド、1,4−(4−アミノフェノキシフェニル)ベンゼン、1,3−(4−アミノフェノキシフェニル)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ジ−(3−アミノフェノキシ)ジフェニルスルホン、及び4,4’−ジアミノベンズアニリド等、ならびにこれら芳香族ジアミンの芳香核の水素原子が、塩素原子、フッ素原子、臭素原子、メチル基、メトキシ基、シアノ基、及びフェニル基からなる群より選ばれた少なくとも一種の基または原子によって置換された化合物が挙げられる。
【0037】
また、基材との接着性を高めるためにX1(NH22(OH)n1(COOR1n3構造を有するジアミンの一部に、シリコンジアミンを選択することができ、この例としては、ビス(4−アミノフェニル)ジメチルシラン、ビス(4−アミノフェニル)テトラメチルシロキサン、ビス(4−アミノフェニル)テトラメチルジシロキサン、ビス(γ−アミノプロピル)テトラメチルジシロキサン、1,4−ビス(γ−アミノプロピルジメチルシリル)ベンゼン、ビス(4−アミノブチル)テトラメチルジシロキサン、ビス(γ−アミノプロピル)テトラフェニルジシロキサン等が挙げられる。
1(OH)n2(COOR2n4(COOH)2の構造を有するジカルボン酸としては、Y1 が下記から選ばれた、芳香族を含む基、脂環式基、又は脂肪族基であるジカルボン酸が挙げられる。
【0038】
【化7】

【0039】
(式中、A1は、−CH2−、−O−、−S−、−SO2−、−CO−、−NHCO−、−C(CF32−、及び単結合からなる群から選択される2価の基であり、m5は1〜30の整数であり、L1は、アルキル基、不飽和基、及びハロゲン原子からなる群から選択される基であり、jは0〜4、kは0〜1、lは0〜2の整数である。)
【0040】
また、上記Y1(OH)n2(COOR2n4(COOH)2構造を有するジカルボン酸の一部または全部に、5−アミノイソフタル酸の誘導体を用いることもできる。
該誘導体を得るために5−アミノイソフタル酸に対して反応させる具体的な化合物としては、5−ノルボルネン−2,3−ジカルボン酸無水物、エキソ−3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸無水物、3−エチニル−1,2−フタル酸無水物、4−エチニル−1,2−フタル酸無水物、シス−4−シクロヘキセン−1,2−ジカルボン酸無水物、1−シクロヘキセン−1,2−ジカルボン酸無水物、マレイン酸無水物、無水シトラコン酸、無水イタコン酸、無水エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸無水物、メチルテトラヒドロ無水フタル酸、アリルスクシン酸無水物、イソシアナートエチルメタクリレート、3−イソプロペニル−α,α−ジメチルベンジルイソシアネート、3−シクロヘキセン−1−カルボン酸クロライド、2−フランカルボン酸クロリド、クロトン酸クロリド、ケイ皮酸クロリド、メタクリル酸クロリド、アクリル酸クロリド、プロピオリック酸クロリド、テトロリック酸クロリド、チオフェン−2−アセチルクロリド、p−スチレンスルフォニルクロリド、グリシジルメタクリレート、アリルグリシジルエーテル、クロロぎ酸メチルエステル、クロロぎ酸エチルエステル、クロロぎ酸n−プロピルエステル、クロロぎ酸イソプロピルエステル、クロロぎ酸イソブチルエステル、クロロぎ酸2−エトキシエステル、クロロぎ酸−sec−ブチルエステル、クロロぎ酸ベンジルエステル、クロロぎ酸2−エチルヘキシルエステル、クロロぎ酸アリルエステル、クロロぎ酸フェニルエステル、クロロぎ酸2,2,2−トリクロロエチルエステル、クロロぎ酸−2−ブトキシエチルエステル、クロロぎ酸−p−ニトロベンジルエステル、クロロぎ酸−p−メトキシベンジルエステル、クロロぎ酸イソボルニルベンジルエステル、クロロぎ酸−p−ビフェニルイソプロピルベンジルエステル、2−t−ブチルオキシカルボニル−オキシイミノ−2−フェニルアセトニトリル、S−t−ブチルオキシカルボニル−4,6−ジメチル−チオピリミジン、ジ−t−ブチル−ジカルボナート、N−エトキシカルボニルフタルイミド、エチルジチオカルボニルクロリド、ぎ酸クロリド、ベンゾイルクロリド、p−トルエンスルホン酸クロリド、メタンスルホン酸クロリド、アセチルクロリド、塩化トリチル、トリメチルクロロシラン、ヘキサメチルジシラザン、N,O−ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、(N,N−ジメチルアミノ)トリメチルシラン、(ジメチルアミノ)トリメチルシラン、トリメチルシリルジフェニル尿素、ビス(トリメチルシリル)尿素、イソシアン酸フェニル、イソシアン酸n−ブチル、イソシアン酸n−オクタデシル、イソシアン酸o−トリル、1,2−フタル酸無水物、及びシス−1,2−シクロヘキサンジカルボン酸無水物、及びグルタル酸無水物が挙げられる。
【0041】
さらには、Y1(OH)n2(COOR2n4(COOH)2構造を有するジカルボン酸として、テトラカルボン酸二無水物をモノアルコール、またはモノアミン等で開環したジカルボン酸を使用することもできる。ここでモノアルコールの例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブタノール、ベンジルアルコール等が挙げられる。モノアミンの例としては、ブチルアミン、アニリン等が挙げられる。上記のテトラカルボン酸二無水物の例としては、下記の化学式で示される化合物が挙げられる。
【0042】
【化8】

【0043】
(式中、Bは、−CH2−、−O−、−S−、−SO2−、−CO−、−NHCO−、及び−C(CF32−、−COO−からなる群から選択される2価の基を表す。)
【0044】
または別法としてテトラカルボン酸二無水物とビスアミノフェノールもしくはジアミンを反応させて、生成するカルボン酸残基を、モノアルコールまたはモノアミンにより、エステル化またはアミド化することもできる。
また、ビスアミノフェノールに対してトリメリット酸クロリドを反応させて、テトラカルボン酸二無水物を生成し、上記のテトラカルボン酸二無水物と同様の方法で開環してジカルボン酸として使用することもできる。ここで得られるテトラカルボン酸二無水物としては下記の化学式で示される化学式が挙げられる。
【0045】
【化9】

【0046】
(式中、X4は、X1(OH)2(NH−)2で表される2価の有機基を表す。)
【0047】
ポリヒドロキシアミドを合成するための前記ジカルボン酸とビスアミノフェノール化合物(ジアミン)の重縮合の方法としては、ジカルボン酸と塩化チオニルを使用してジ酸クロライドとしたのちにビスアミノフェノール(ジアミン)を作用させる方法、またはジカルボン酸とビスアミノフェノール(ジアミン)をジシクロヘキシルカルボジイミドにより重縮合させる方法等が挙げられる。ジシクロヘキシルカルボジイミドを使用する方法においては同時にヒドロキシベンズトリアゾールを作用させることもできる。
【0048】
前述の一般式(1)で示される繰り返し単位を有するポリヒドロキシアミドにおいて、その末端基を有機基(以下、「封止基」という)で封止して使用することも好ましい。ヒドロキシポリアミドの重縮合において、ジカルボン酸成分をビスアミノフェノール成分とジアミン成分の和に比べて過剰のモル数で使用する場合には、封止基としては、アミノ基、または水酸基を有する化合物を用いるのが好ましい。該化合物の例としては、アニリン、エチニルアニリン、ノルボルネンアミン、ブチルアミン、プロパルギルアミン、エタノール、プロパルギルアルコール、ベンジルアルコール、ヒドロキシエチルメタクリレート、及びヒドロキシエチルアクリレート等が挙げられる。
【0049】
逆にビスアミノフェノール成分とジアミン成分の和をジカルボン酸成分に比べて過剰のモル数で使用する場合には、封止基としては、酸無水物、カルボン酸、酸クロリド、イソシアネート基等を有する化合物を用いるのが好ましい。該化合物の例としては、ベンゾイルクロリド、ノルボルネンジカルボン酸無水物、ノルボルネンカルボン酸、エチニルフタル酸無水物、グルタル酸無水物、無水マレイン酸、無水フタル酸、シクロヘキサンジカルボン酸無水物、メチルシクロヘキサンジカルボン酸無水物、シクロへキセンジカルボン酸無水物、メタクリロイルオキシエチルメタクリレート、フェニルイソシアネート、メシルクロリド、及びトシルクロリド等が挙げられる。
【0050】
また、感光性樹脂組成物に、上記、ポリベンゾオキサゾール前駆体構造を分子内に有するアルカリ可溶性樹脂(a)以外に、他のアルカリ可溶性樹脂、例えば、フェノール樹脂や、フェノール樹脂の誘導体を混合してもよい。具体例としては、ノボラック樹脂、レゾール樹脂及びポリヒドロキシスチレン樹脂等が挙げられる。
ノボラック樹脂としては、レジストの技術分野で広く用いられているものを使用することができる。このノボラック樹脂は、例えば、フェノール類と、アルデヒド類又はケトン類とを酸性触媒の存在下で反応させることにより得ることができる。
【0051】
中でも、メタクレゾールとパラクレゾールとを併用し、これらと、ホルムアルデヒド、ホルマリン又はパラホルムアルデヒドとを縮合反応させたノボラック樹脂が、感度制御性の観点から特に好ましい。メタクレゾールとパラクレゾールとの仕込み質量比は、通常、20:80〜80:20、好ましくは50:50〜70:30である。
【0052】
分子量は、質量平均分子量で、通常、1,000〜20,000、好ましくは1,000〜15,000、より好ましくは1,000〜10,000の範囲である。上記樹脂の質量平均分子量は、合成条件を調整することにより、所望の範囲に制御することができる。また、分子量分布が狭い方が、光感度が高くなるため、合成により得られた樹脂を適当な溶解度を持つ有機溶剤で固−液抽出したり、樹脂を良溶剤に溶解させて貧溶剤中に滴下したり、又は貧溶剤を滴下して固−液若しくは液−液抽出したりして分子量分布を制御してもよい。このノボラック樹脂の具体例としては、EP4000B(旭有機材工業:商品名)、EP4020G(旭有機材工業:商品名)、EP4050G(旭有機材工業:商品名)、EP4080G(旭有機材工業:商品名)等が挙げられる。
【0053】
次に、ポリヒドロキシスチレン樹脂及びその誘導体について詳述する。ポリヒドロキシスチレン樹脂及びその誘導体の具体例としては、例えば、ポリ−o−ヒドロキシスチレン、ポリ−m−ヒドロキシスチレン、ポリ−p−ヒドロキシスチレン、ポリ−α−メチル−o−ヒドロキシスチレン、ポリ−α−メチル−m−ヒドロキシスチレン、ポリ−α−メチル−p−ヒドロキシスチレン又はこれらの部分アセチル化物、シリル化物等が挙げられる。これらのポリヒドロキシスチレン樹脂又はその誘導体の質量平均分子量は、通常3,000〜100,000、特に好ましくは4,000〜20,000の範囲である。
【0054】
ノボラック樹脂、レゾール樹脂、ポリヒドロキシスチレン樹脂及びその誘導体を上述のアルカリ可溶性樹脂(a)に対して、10〜300質量部、好ましくは50〜200質量部混合すると、電子線に対して高感度になる。濡れ広がり性及び耐熱性の観点から300質量部以下であることが好ましい。
【0055】
[光酸発生剤(b)]
本発明の感光性樹脂組成物が含有する(b)光酸発生剤としては、感光性樹脂組成物をポジ型又はネガ型として目的用途に適用することを可能にする化合物を利用できる。感光性樹脂組成物をポジ型として使用する場合には、(b)光酸発生剤としては、キノンジアジド化合物、オニウム塩、ハロゲン含有化合物、などを用いることができるが、溶剤溶解性及び保存安定性の観点から、キノンジアジド化合物が好ましい。
【0056】
上記オニウム塩としては、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩等が挙げられ、ジアリールヨードニウム塩、トリアリールスルホニウム塩、及びトリアルキルスルホニウム塩から成る群から選ばれるオニウム塩が好ましい。
【0057】
上記ハロゲン含有化合物としては、ハロアルキル基含有炭化水素化合物等が挙げられ、高感度化の観点からトリクロロメチルトリアジンが好ましい。
上記キノンジアジド化合物としては、ナフトキノンジアジド化合物(NQD化合物)が好ましく、中でも、1,2−ベンゾキノンジアジド構造又は1,2−ナフトキノンジアジド構造を有する化合物が好ましい。該ナフトキノンジアジド構造は、以下に詳述する特定構造を有するポリヒドロキシ化合物の1,2−ナフトキノンジアジド−4−スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2−ナフトキノンジアジド−5−スルホン酸エステルから成る群から選択される少なくとも1種のNQD化合物である。
【0058】
該NQD化合物は、常法に従って、ナフトキノンジアジドスルホン酸化合物を、クロルスルホン酸又は塩化チオニルでスルホニルクロライドとし、得られたナフトキノンジアジドスルホニルクロライドと、ポリヒドロキシ化合物とを縮合反応させることにより得られる。例えば、ポリヒドロキシ化合物と、所定量の1,2−ナフトキノンジアジド−5−スルホニルクロリド又は1,2−ナフトキノンジアジド−4−スルホニルクロリドとを、ジオキサン、アセトン、テトラヒドロフラン等の溶媒中において、トリエチルアミン等の塩基性触媒の存在下で反応させてエステル化を行い、得られた生成物を水洗、乾燥することによりNQD化合物を得ることができる。
好ましいNQD化合物の例としては、例えば、下記一般式群で表されるものが挙げられる。
【0059】
【化10】

【0060】
{式中、Qは、水素原子、又は下記式群:
【0061】
【化11】

【0062】
のいずれかで表されるナフトキノンジアジドスルホン酸エステル基であるが、すべてのQが同時に水素原子であることはない。}
また、同一分子中に4−ナフトキノンジアジドスルホニル基及び5−ナフトキノンジアジドスルホニル基を含有するナフトキノンジアジドスルホニルエステル化合物を用いることもできるし、4−ナフトキノンジアジドスルホニルエステル化合物と5−ナフトキノンジアジドスルホニルエステル化合物とを混合して使用することもできる。
【0063】
光酸発生剤のアルカリ可溶性樹脂全体に対する配合量は、全アルカリ可溶性樹脂100質量部(b)に対し、1〜50質量部が好ましく、5〜30質量部がより好ましい。光酸発生剤の配合量が1質量部以上だと樹脂のパターニング性が良好であり、50質量部以下だと硬化後の膜の引張り伸び率が良好、かつ露光部の現像残渣(スカム)が少ない。
なお、本発明の感光性樹脂組成物を後述する(d)架橋剤と組み合わせることによりネガ型として利用できる。その場合、(b)光酸発生剤として、例えば、以下の化合物が挙げられる。
【0064】
ア)トリクロロメチル−s−トリアジン類
トリス(2,4,6−トリクロロメチル)−s−トリアジン、2−フェニル−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−クロロフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−クロロフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メトキシフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メトキシフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−メトキシフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メチルチオフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メチルチオフェニル)ビス(4,6−トリクロロメチル−s−トリアジン、2−(2−メチルチオフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3,4,5−トリメトキシ−β−スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メチルチオ−β―スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メチルチオ−β―スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−メチルチオ−β−スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン等。
【0065】
イ)ジアリールヨードニウム類
ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラフルオロホスフェート、ジフェニルヨードニウムテトラフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム−p−トルエンスルホナート、4−メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4−メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4−メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4−メトキシフェニルフェニルヨードニウムトリフルオロメタンスホナート、4−メトキシフェニルフェニルヨードニウムトリフルオロアセテート、4−メトキシフェニルフェニルヨードニウム−p−トルエンスルホナート、ビス(4−ter−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4−ter−ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4−ter−ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4−ter−ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4−ter−ブチルフェニル)ヨードニウム−p−トルエンスルホナート等。
【0066】
ウ)トリアリールスルホニウム塩類
トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム−p−トルエンスルホナート、4−メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4−メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4−メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4−メトキシフェニルジフェニルスルホニウムメタンスルホナート、4−メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4−メトキシフェニルジフェニルスルホニウム−p−トルエンスルホナート、4−フェニルチオフェニルジフェニルテトラフルオロボレート、4−フェニルチオフェニルジフェニルヘキサフルオロホスホネート、4−フェニルチオフェニルジフェニルヘキサフルオロアルセネート、4−フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4−フェニルチオフェニルジフェニルトリフルオロアセテート、4−フェニルチオフェニルジフェニルーp−トルエンスルホナート等。
【0067】
これらの化合物の内、トリクロロメチル−S−トリアジン類としては、2−(3−クロロフェニル)−ビス(4,6−トリクロロメチル)−S−トリアジン、2−(4−クロロフェニル)−ビス(4,6−トリクロロメチル)−S−トリアジン、2−(4−メチルチオフェニル)−ビス(4,6−トリクロロメチル)−S−トリアジン、2−(4−メトキシーβ―スチリル)−ビス(4,6−トリクロロメチル)−S−トリアジン、2−(4−メトキシナフチル)−ビス(4,6−トリクロロメチル)−S−トリアジン等を、ジアリールヨードニウム塩類としては、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウムトリフルオロメタンスルホナート、4−メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4−メトキシフェニルフェニルヨードニウムトリフルオロアセテート等を、トリアリールスルホニウム塩類としては、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、4−メトキシフェニルジフェニルスルホニウムメタンスルホナート、4−メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4−フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4−フェニルチオフェニルジフェニルトリフルオロアセテート等を好適なものとして挙げることができる。
【0068】
エ)ジアゾケトン化合物
ジアゾケトン化合物として、例えば、1,3−ジケト−2−ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができ、具体例としてはフェノール類の1,2−ナフトキノンジアジド−4−スルホン酸エステル化合物を挙げることができる。
【0069】
オ)スルホン化合物
スルホン化合物として、例えば、β−ケトスルホン化合物、β−スルホニルスルホン化合物及びこれらの化合物のα−ジアゾ化合物を挙げることができ、具体例として、4−トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェナシルスルホニル)メタン等を挙げることができる。
【0070】
カ)スルホン酸化合物
スルホン酸化合物として、例えば、アルキルスルホン酸エステル類、ハロアルキルスルホン酸エステル類、アリールスルホン酸エステル類、イミノスルホネート類等を挙げることができる。好ましい具体例としては、ベンゾイントシレート、ピロガロールトリストリフルオロメタンスルホネート、o−ニトロベンジルトリフルオロメタンスルホネート、o−ニトロベンジルp−トルエンスルホネート等を挙げることができる。
【0071】
キ)スルホンイミド化合物
スルホンイミド化合物の具体例として、例えば、N−(トリフルオロメチルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N−(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ナフチルイミド等を挙げることができる。
【0072】
ク)オキシムエステル化合物
2−[2−(4−メチルフェニルスルホニルオキシイミノ)]−2,3−ジヒドロチオフェン−3−イリデン]−2−(2−メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG121」)、[2−(プロピルスルホニルオキシイミノ)−2,3−ジヒドロチオフェン−3−イリデン]−2−(2−メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG103」)、[2−(n−オクタンスルホニルオキシイミノ)−2,3−ジヒドロチオフェン−3−イリデン]−2−(2−メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG108」)、α−(n−オクタンスルフォニルオキシイミノ)−4−メトキシベンジルシアニド(チバスペシャルティケミカルズ社商品名「CGI725」)等を挙げることができる。
【0073】
ケ)ジアゾメタン化合物
ジアゾメタン化合物の具体例として、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン等を挙げることができる。
とりわけ、感度の観点から、上記オキシムエステル化合物群が特に好ましい。
【0074】
後述する(d)架橋剤と組み合わせてネガ型感光性樹脂組成物とする場合の(b)光酸発生剤の配合量は、全アルカリ可溶性樹脂100質量部に対して、0.1〜100質量部である。該配合量が0.1質量部以上であれば感度の向上効果を十分得ることができ、該配合量が100質量部以下であれば硬化後の機械物性が良好である。該配合量は、好ましくは、1〜40質量部である。
【0075】
[25℃での蒸気圧が50〜500Paであるケトン化合物である溶媒(c)]
本発明においては、(a)成分のポリヒドロキシアミドを含むアルカリ可溶性樹脂と(b)成分の光酸発生剤を溶媒に溶解してワニス状にし、感光性樹脂組成物として使用する。その際、溶媒として25℃での蒸気圧が50〜500Paであるケトン化合物を使用する。
【0076】
ケトン化合物溶媒は、感光性樹脂組成物で広く使用されているγ―ブチルラクトンと比較して密度が軽い上に、アルカリ可溶性樹脂(a)に対する溶解性も同等程度に高い。そのため、ケトン化合物を溶媒として使用することで、密度の軽い感光性樹脂組成物とすることができる。スピンコート膜作成時には、密度の軽い感光性樹脂組成物を使用すると、より少ない塗布質量で塗布膜を作成できることを本発明者らは見出した。そのため、溶媒は、スピンコート膜作成時の吐出質量削減の観点から、密度が軽いケトン化合物が好ましく、25℃での密度が0.9以下のケトン化合物が好ましい。
【0077】
更に25℃の蒸気圧が50〜500Paのケトン化合物を使用することが、塗布膜の均一性の観点から好ましい。50Pa以下の蒸気圧のケトン化合物を使用すると、プリベーク時に溶媒成分が揮発しにくいためにプリベーク後の膜に溶媒が残り、プリベーク時に使用するホットプレートの温度むらや、排気むらの影響を強く受け、プリベーク後の塗膜の膜厚均一性が悪い。500Pa以上の蒸気圧のケトン化合物を用いると、スピンコート時に溶媒成分が揮発し、膜厚の均一性が悪くなる。
【0078】
溶媒(c)としては、具体的には炭素数7以上のケトン化合物であることが好ましく、ジイソブチルケトン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、5−メチル−3−ヘプタノン、2−メチル−3−ヘプタノン、6−メチル−2−ヘプタノン、2−メチル−4−ヘプタノン、3−メチル−4−ヘプタノン、2−オクタノン、3−オクタノン、4−オクタノン、5−メチル―2−オクタノン、2−ノナノン、3−ノナノン、4−ノナノン、5−ノナノン、2−ヘキシルシクロペンタノンが挙げられる。
【0079】
中でも、炭素数7〜9の環式構造、及び分岐構造を有さない炭素数7以上の直鎖構造ケトンからなる群より選ばれる化合物が好ましく、その中でも更に、2−ヘプタノン、2−オクタノン、2−ノナノンがプリベーク後の塗膜の膜厚均一性が向上する観点及び、感光性樹脂組成物の密度が下がり、スピンコート法による塗膜作成時の吐出質量を低減できるという観点から好ましく、2−オクタノンが最も好ましい。
【0080】
本発明においては、上記の25℃での蒸気圧が50〜500Paであるケトン化合物の他に、感光性樹脂組成物の密度が1.1g/cm3を超えない範囲で、例えば、以下の溶媒を1種以上混合して使用することができる。
【0081】
このような溶媒としては、N−メチル−2−ピロリドン、γ−ブチロラクトン(以下、「GBL」ともいう。)、N,N−ジメチルアセトアミド(以下、「DMAc」ともいう。)、ジメチルイミダゾリノン、テトラメチルウレア、ジメチルスルホキシド、乳酸メチル、乳酸エチル、乳酸ブチル、メチル−1,3−ブチレングリコールアセテート、1,3−ブチレングリコール−3−モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル−3−メトキシプロピオネート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等がある。
【0082】
これらの溶媒のうち、非アミド系溶媒が化学増幅型フォトレジストなどへの影響が少ない点から好ましい。具体的なより好ましい例としてはγ−ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートを挙げることができる。アルカリ可溶性樹脂(a)への溶解性が高い点、光酸発生剤(b)の経時後の析出を防止する観点から、γ−ブチロラクトンがケトン化合物である溶媒(c)と併用する際は最も好ましい。
【0083】
ケトン化合物である溶媒(c)に、γ−ブチルラクトンを10〜65質量%含むと、感光性樹脂組成物のプリベーク膜の膜厚均一性が向上する。γ−ブチルラクトンの含有割合が15〜50質量%であると、プリベーク膜の膜厚均一性の観点とスピンコート膜作成時の吐出質量削減の両立の観点から更に好ましい。
【0084】
感光性樹脂を形成する際の全溶媒の添加量は、(全アルカリ可溶性樹脂の質量)/〔(全アルカリ可溶性樹脂の質量)+(全溶媒の質量)〕=0.2〜0.5となる添加量であることが好ましい。上述の(全アルカリ可溶性樹脂の質量)とは、アルカリ可溶性樹脂(a)以外に、例えばノボラック樹脂等のアルカリ可溶性樹脂を感光性樹脂組成物に含有する際には、ノボラック樹脂の質量も含むことを意味する。また、(全溶媒の質量)とは、ケトン化合物である溶媒(c)以外の溶媒を使用する場合、その溶媒の質量も含むことを意味する。0.2〜0.5の範囲であると、感光性樹脂組成物の粘度が適正な粘度となり、通常の半導体保護膜で必要とされる膜厚(最終硬化膜で3μm〜20μm)をスピンコート法で適正な回転数(500rpm〜5000rpm)で作成することが可能となる。0.3〜0.45であると塗布厚みの調整が容易になるため、より好ましい。
【0085】
感光性樹脂組成物の密度は、0.95g/cm3〜1.10g/cm3である必要が、スピンコート膜作成時の吐出質量削減の観点から必要であり、ケトン化合物である溶媒(c)を感光性樹脂組成物に含有することで可能となる。より好ましくは、0.95g/cm3〜1.08g/cm3の範囲が吐出質量削減と塗布膜の均一性の観点から好ましい。
【0086】
[(d)架橋剤]
本発明においては、感光性樹脂組成物を、ポジ型で利用する場合には、熱硬化後の膜(感光性樹脂層)の耐薬品性を高める目的で、ネガ型で利用する場合には、熱硬化後の膜の耐薬品性を高める目的とともにパターン形成の目的で、それぞれ、(d)架橋剤を好ましく利用することができる。
【0087】
(d)架橋剤としては、メチロール基及び/又はアルコキシメチル基を有する芳香族化合物、N位がメチロール基及び/又はアルコキシメチル基で置換された化合物、エポキシ化合物、オキセタン化合物、アリル化合物、からなる群から選ばれる少なくとも1種の化合物等が利用できる。
これらの架橋剤の中でも、メチロール基及び/又はアルコキシメチル基を有する芳香族化合物、並びにN位がメチロール基及び/又はアルコキシメチル基で置換された化合物からなる群から選ばれる少なくとも1種の化合物が、熱硬化後の耐薬品性の観点から好ましい。
メチロール基及び/又はアルコキシメチル基を有する芳香族化合物としては、下記一般式:
【0088】
【化12】

【0089】
(式中、R31は水酸基であり、m31は0〜3の整数である。R32は炭素数1〜30の有機基であり、m32は0〜3の整数である。R33は水素原子又は炭素数1〜8のアルキル基であり、m33は1〜6の整数である。)
で表される構造を有するものが好ましい。
【0090】
メチロール基及び/又はアルコキシメチル基を有する芳香族化合物として、より具体的には、下記の化合物が挙げられる。
【0091】
【化13】

【0092】
【化14】

【0093】
N位がメチロール基及び/又はアルコキシメチル基で置換された化合物としては、下記一般式:
【0094】
【化15】

【0095】
(式中、R34及びR35は、それぞれ独立に、水素原子又は炭素数1〜8のアルキル基であり、R36は炭素数1〜30の有機基である。)
で表される構造を有するものが好ましい。
【0096】
N位がメチロール基及び/又はアルコキシメチル基で置換された化合物として、より具体的には、メラミン樹脂、ベンゾグアナミン樹脂、グリコールウリル樹脂、ヒドロキシエチレン尿素樹脂、尿素樹脂、グリコール尿素樹脂、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、及びアルコキシメチル化尿素樹脂を挙げることができる。
【0097】
これらの内、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、及びアルコキシメチル化尿素樹脂は、公知のメチロール化メラミン樹脂、メチロール化ベンゾグアナミン樹脂、又はメチロール化尿素樹脂のメチロール基をアルコキシメチル基に変換することにより得ることができる。このアルコキシメチル基の種類については、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができる。
【0098】
N位がメチロール基及び/又はアルコキシメチル基で置換された化合物として、具体的には、サイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300(三井サイテック(株)製)、ニカラックMX−270、−280、−290、ニカラックMS―11、ニカラックMW―30、−100、−300、−390、−750(三和ケミカル社製)等を好ましく使用することができる。
【0099】
また、上記記載の樹脂の単量体も(d)架橋剤として使用でき、例えば、下記化合物、ヘキサメトキシメチルメラミン、ジメトキシメチル尿素等を挙げることができる。
【0100】
【化16】

【0101】
エポキシ化合物は、3員環環状エーテル構造を持つ化合物であり、その具体例としては、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ポリスルフィド型エポキシ樹脂等が挙げられるが、これらに限定されない。
【0102】
オキセタン化合物は、4員環環状エーテル構造を持つ化合物であり、カチオン開環重合反応、又はカルボン酸、チオール、若しくはフェノールとの付加反応が可能なものである。オキセタン化合物の具体例としては、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、ビス[1−エチル(3−オキセタニル)]メチルエーテル、4,4’−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ビフェニル、4,4′−ビス(3−エチル−3−オキセタニルメトキシ)ビフェニル、エチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、ジエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、ビス(3−エチル−3−オキセタニルメチル)ジフェノエート、トリメチロールプロパントリス(3−エチル−3−オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル、ポリ[[3−[(3−エチル−3−オキセタニル)メトキシ]プロピル]シラセスキオキサン]誘導体、オキセタニルシリケート、フェノールノボラック型オキセタン、1,3−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、OXT121(東亞合成:商品名)、OXT221(東亞合成:商品名)等が挙げられるが、これらに限定されない。
【0103】
耐熱性の観点から、4,4’−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ビフェニル、4,4’−ビス(3−エチル−3−オキセタニルメトキシ)ビフェニル、及びOXT121(東亞合成:商品名)が好ましい。
【0104】
アリル化合物の具体例としては、アリルアルコール、アリルアニソール、安息香酸アリルエステル、桂皮酸アリルエステル、N−アリロキシフタルイミド、アリルフェノール、アリルフェニルスルフォン、アリルウレア、フタル酸ジアリル、イソフタル酸ジアリル、テレフタル酸ジアリル、マレイン酸ジアリル、イソシアヌル酸ジアリル、トリアリルアミン、イソシアヌル酸トリアリル、シアヌル酸トリアリル、トリアリルアミン、1,3,5−ベンゼントリカルボン酸トリアリル、トリメリット酸トリアリル(和光純薬工業社製 TRIAM705)、ピロメリット酸トリアリル(和光純薬工業社製 TRIAM805)、オキシジフタル酸トリアリル、トリアリルホスフェート、トリアリルホスファイト、及びクエン酸トリアリルが挙げられるが、これらに限定されない。感度の観点から、トリメリット酸トリアリル(和光純薬工業社製 TRIAM705)、及びピロメリット酸トリアリル(和光純薬工業社製 TRIAM805)が好ましい。
【0105】
(d)架橋剤は、単独で又は2種以上を混合して使用することができ、配合量は、(a)アルカリ可溶性樹脂100質量部に対して1〜100質量部であることが好ましく、より好ましくは3〜50質量部である。該配合量が1質量部以上である場合、架橋が良好に進行してパターニング性が良好となり、該配合量が100質量部以下である場合、キュア後の機械物性が良好に保たれる。
【0106】
[溶解促進剤(e)]
本発明においては、溶解促進剤(e)を好ましく利用することができる。溶解促進剤としては、カルボン酸化合物やフェノール性化合物が挙げられる。
カルボン酸化合物の例としては、3−フェニル乳酸、4−ヒドロキシフェニル乳酸、4−ヒドロキシマンデル酸、3,4−ジヒドロキシマンデル酸、4−ヒドロキシ−3−メトキシマンデル酸、2−メトキシ−2−(1−ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、アセチルマンデル酸、α−メトキシフェニル酢酸、3−フェニル乳酸、4−ヒドロキシフェニル乳酸、4−ヒドロキシマンデル酸、3,4−ジヒドロキシマンデル酸、4−ヒドロキシ−3−メトキシマンデル酸、2−メトキシ−2−(1−ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、O−アセチルマンデル酸、α−メトキシフェニル酢酸、4−ヒドロキシマンデル酸、3,4−ジヒドロキシマンデル酸、4−ヒドロキシ−3−メトキシマンデル酸、マンデル酸、アトロラクチン酸、O−アセチルマンデル酸、α−メトキシフェニル酢酸、O−アセチルマンデル酸、α−メトキシフェニル酢酸、ジヒドロキシベンゼンカルボン酸ヘキシル、ジヒドロキシベンゼンカルボン酸オクチル、ジヒドロキシベンゼンカルボン酸ドデシル、トリヒドロキシベンゼンカルボン酸ヘキシルである没食子酸ヘキシル及びフロログルシノールカルボン酸ヘキシル、トリヒドロキシベンゼンカルボン酸オクチルである没食子酸オクチル及びフロログルシノールカルボン酸オクチル、トリヒドロキシベンゼンカルボン酸ドデシルである没食子酸ドデシル及びフロログルシノールカルボン酸ドデシル、トリヒドロキシベンゼンカルボン酸ヘキサデシルである没食子酸ヘキサデシル及びフロログルシノールカルボン酸ヘキサデシル等を挙げることができる。
【0107】
フェノール化合物としては、前記感光性ジアゾキノン化合物に使用しているバラスト剤、並びにパラクミルフェノール、ビスフェノール類、レゾルシノール類、あるいはMtrisPC、MtetraPC等の直鎖状フェノール化合物(本州化学工業社製:商品名)、TrisP−HAP、TrisP−PHBA、TrisP−PA等の非直鎖状フェノール化合物(本州化学工業社製:商品名)、ジフェニルメタンのフェニル基の水素原子2〜5個を水酸基に置換した化合物、2,2−ジフェニルプロパンのフェニル基の水素原子1〜5個を水酸基に置換した化合物、等が挙げられる。該フェノール化合物の添加により、現像時のレリーフパターンの密着性を向上させ残渣の発生をおさえることができる。なお、バラスト剤とは、フェノール性水素原子の一部がナフトキノンジアジドスルホン酸エステル化されたフェノール化合物である前述の感光性ジアゾキノン化合物に原料として使用されているフェノール化合物をいう。
フェノール化合物を加える場合の添加量は、全アルカリ可溶性樹脂100質量部に対し、0〜50質量部が好ましく、1〜30質量部が好ましい。添加量が50質量部以下であれば、熱硬化後の膜の耐熱性が良好である。
【0108】
(f)その他の添加剤
本発明の感光性樹脂組成物には、必要に応じて、界面活性剤、安定剤、シリコンウエハーとの密着性を高めるための接着助剤、染料等を添加することも可能である。
【0109】
上記添加剤について更に具体的に述べると、界面活性剤としては、ポリプロピレングリコール、もしくはポリオキシエチレンラウリルエーテル等のポリグリコール類、またはその誘導体からなる非イオン系界面活性剤があげられる。また、フロラード(住友3M社製:商品名)、メガファック(大日本インキ化学工業社製:商品名)、またはルミフロン(旭硝子社製:商品名)等のフッ素系界面活性剤があげられる。さらに、KP341(信越化学工業社製:商品名)、DBE(チッソ社製:商品名)、またはグラノール(共栄社化学社製:商品名)等の有機シロキサン界面活性剤が挙げられる。該界面活性剤の添加により、塗布時のウエハーエッジでの塗膜のハジキをより発生しにくくすることができる。
界面活性剤を加える場合の添加量は、(a)アルカリ可溶性樹脂100質量部に対し、0〜10質量部が好ましく、0.01〜1質量部がより好ましい。添加量が10質量部以下であれば、熱硬化後の膜の耐熱性が良好である。
【0110】
接着助剤としては、t−ブチルノボラック、アルミ化合物、チタンカップリング剤、エポキシポリマー、およびエポキシシランなどの各種シランカップリング剤が挙げられる。
【0111】
シランカップリング剤の具体的な好ましい例としては、3−メタクリロキシプロピルトリアルコキシシラン、3−メタクリロキシプロピルジアルコキシアルキルシラン、3−グリシドキシプロピルトリアルコキシシラン、3−グリシドキシプロピルジアルコキシアルキルシラン、3−アミノプロピルトリアルコキシシラン又は3−アミノプロピルジアルコキシアルキルシランと、酸無水物又は酸二無水物の反応物、3−アミノプロピルトリアルコキシシラン又は3−アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基やウレア基に変換したものが挙げられる。この際のアルキル基としてはメチル基、エチル基、ブチル基などが、酸無水物としてはマレイン酸無水物、フタル酸無水物などが、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが、ウレタン基としてはt−ブトキシカルボニルアミノ基などが、ウレア基としてはフェニルアミノカルボニルアミノ基などが挙げられる。
【0112】
接着助剤を加える場合の添加量は、アルカリ可溶性樹脂100質量部に対し、0〜30質量部が好ましく、0.1〜10質量部がより好ましい。添加量が30質量部以下であれば、熱硬化後の膜の耐熱性が良好である。
【0113】
<硬化レリーフパターン、及び半導体装置の製造方法>
次に、本発明の硬化レリーフパターンの製造方法について、以下具体的に説明する。
(1)上記感光性樹脂組成物を層またはフィルムの形で基板上に形成する工程;
本発明の感光性樹脂組成物を、例えばシリコンウエハー、セラミック基板、アルミ基板等の基板に、スピンコーターを用いた回転塗布、又はダイコーター、もしくはロールコーター等のコータ−により塗布する。これをオーブンやホットプレートを用いて50〜140℃で乾燥して溶媒を除去する。膜厚の均一な塗布膜を得るという観点からスピンコーターを用いた回転塗布法が最も好ましい。
【0114】
(2)該感光性樹脂組成物を露光する工程;
次に、上記で得られた基板に対し、マスクを介して、コンタクトアライナーやステッパーを用いて化学線による露光を行うか、光線、電子線またはイオン線を直接照射する。
【0115】
(3)該露光の後の感光性樹脂組成物を現像してレリーフパターンを形成する工程;
次に現像を、浸漬法、パドル法、回転スプレー法等の方法から選択して行うことができる。現像により、塗布された感光性樹脂樹脂組成物から、露光部(ポジ型の場合)又は未露光部(ネガ型の場合)を溶出除去し、レリーフパターンを得ることができる。現像液としては、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩類等の水溶液、及び必要に応じてメタノール、エタノール等の水溶性有機溶媒又は界面活性剤を適当量添加した水溶液を使用することができる。これらの中で、テトラメチルアンモニウムヒドロキシド水溶液が好ましく、該テトラメチルアンモニウムヒドロキシドの濃度は、好ましくは、0.5〜10質量%であり、さらに好ましくは、1〜5質量%である。
【0116】
(4)該レリーフパターンを加熱して硬化レリーフパターンを形成する工程;
最後に、得られたレリーフパターンをキュアして、ポリベンズオキサゾール構造を有する樹脂からなる耐熱性硬化レリーフパターンを形成する。加熱装置としては、オーブン炉、ホットプレート、縦型炉、ベルトコンベアー炉、圧力オーブン等を使用することができ、加熱方法としては、熱風、赤外線、電磁誘導による加熱等が推奨される。温度は200〜450℃が好ましく、250〜400℃がより好ましい。加熱時間は15分〜8時間が好ましく、15分〜4時間がより好ましい。雰囲気としては、窒素、アルゴン等不活性ガス中が好ましい。
【0117】
半導体装置用途の例としては、半導体素子の上部に設けられた硬化膜を備えるものであって、その硬化膜が上述の感光性樹脂組成物の硬化膜からなる硬化レリーフパターンであるものが挙げられる。該硬化膜としては、半導体素子上のパッシベーション膜、パッシベーション膜上に上述の感光性樹脂組成物の硬化膜を形成してなるバッファーコート膜等の保護膜、また、半導体素子上に形成された回路上に上述の感光性樹脂組成物の硬化膜を形成してなる層間絶縁膜等の絶縁膜、また、α線遮断膜、平坦化膜、突起(樹脂ポスト)、隔壁等を挙げることができる。
【0118】
また、本発明の感光性樹脂組成物は、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、表示体装置の液晶配向膜等の用途、発光素子の用途にも有用である。
【実施例】
【0119】
〔参考例1〕ポリヒドロキシアミドの合成
容量2Lのセパラブルフラスコ中で、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)−ヘキサフルオロプロパン(以下、6FAPとも呼ぶ)197.8g(0.54mol)、ピリジン75.9g(0.96mol)、DMAc692gを室温(25℃)で混合攪拌し溶解させた。得られた混合物に、別途GBL88g中に5−ノルボルネン−2,3−ジカルボン酸無水物19.7g(0.12mol)を溶解させた混合溶液を、滴下ロートより滴下した。滴下に要した時間は40分、反応液温は最大で28℃であった。
滴下終了後、湯浴により該フラスコを50℃に加温し、18時間撹拌したのち反応液のIRスペクトルの測定を行い、1385cm-1および1772cm-1のイミド基の特性吸収が現れたことを確認した。
【0120】
次に該フラスコを水浴により8℃に冷却し、別途GBL398g中に4,4’−ジフェニルエーテルジカルボン酸ジクロライド142.3g(0.48mol)を溶解させた混合溶液を、滴下ロートより滴下した。滴下に要した時間は80分、反応液温は最大で12℃であった。滴下終了から3時間後、上記反応液を12lの水に高速攪拌下で滴下し重合体を分散析出させた。この精製沈殿物を回収し、適宜水洗、脱水の後に真空乾燥を施し、ポリヒドロキシアミド(P−1)を得た。このようにして合成されたヒドロキシポリアミドのゲル透過クロマトグラフィー(GPC)による質量平均分子量は、ポリスチレン換算で14000であった。GPCの分析条件を以下に記す。
カラム:昭和電工社製 商標名 Shodex 805/804/803直列
容離液:テトラヒドロフラン 40℃
流速 :1.0ml/分
検出器:昭和電工製 商標名 Shodex RI SE−61
【0121】
〔参考例2〕ポリヒドロキシアミドの合成
テフロン(登録商標)製の碇型攪拌器を取り付けた、容量300mLの三口フラスコ内に、以下の構造:
【0122】
【化17】

【0123】
TMOM−BP(本州化学:商品名)21.7g(0.06mol)、ピリジン9.48g(0.12mol)及びGBL130gを0℃で混合攪拌した溶液に、別途GBL142g中にビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを47.5g(0.18mol)を溶解させたものを、滴下ロートより滴下した。滴下に要した時間は40分、反応液温は最大で16℃であった。
【0124】
滴下後、1時間攪拌した反応溶液を、滴下ロートを用いて、別途、テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中で、6FAP51.2g(0.14mol)、ピリジン15.0g(0.19mol)、GBL307g及びDMAc102gを室温(25℃)で混合攪拌し溶解させ、その反応容器をメタノールにドライアイスを加えた容器に浸して−15℃に冷却した反応溶液に、滴下した。反応系中は−15〜0℃に保って45分を要して反応容器に滴下した。滴下終了後、反応容器を氷浴に浸し、0〜10℃に保って1時間攪拌した。さらにピリジン7.12g(0.09mol)を加えた。その後、反応液を室温に戻し、5−ノルボルネン−2,3−ジカルボン酸無水物(東京化成工業社製)19.7g(0.12mol)とピリジン9.49g(0.12mol)を加え、50℃の湯浴に浸して、反応液を50℃とし18時間攪拌した。
【0125】
上記反応液にエタノールを加えて重合体を析出させた後、回収し、GBL626gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、PBO前駆体構造と架橋基含有構造を有するアルカリ可溶性重合体(P−2)の紛体を得た。
このようにして合成されたアルカリ可溶性重合体のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で13200の単一のシャープな曲線であり、単一組成物であった。
【0126】
〔参考例3〕ポリヒドロキシアミドの合成
テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中に、6FAP51.2g(0.14mol)、ピリジン15.0g(0.19mol)、GBL307g及びDMAc102gを加え、室温(25℃)で混合攪拌し溶解させ、その反応容器をメタノールにドライアイスを加えた容器に浸して−15℃に冷却した。これに別途GBL132g中に4,4’−ジフェニルエーテルジカルボン酸ジクロライド26.56g(0.09mol)を溶解させた混合溶液を、滴下ロートより滴下した。反応系中は−15〜0℃に保って45分を要して反応容器に滴下した。(反応液1)
別途、テフロン(登録商標)製の碇型攪拌器を取り付けた、容量300mLの三口フラスコ内に、TMOM−BP(本州化学:商品名)10.9g(0.03mol)、4,4−ビフェノール0.93g(0.005mol)ピリジン9.48g(0.12mol)及びGBL130gを0℃で混合攪拌した溶液に、別途GBL142g中にビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを23.75g(0.09mol)を溶解させたものを、滴下ロートより滴下した。滴下に要した時間は40分、反応液温は最大で16℃であった。滴下後、1時間攪拌した。(反応液2)
【0127】
(反応液2)を、(反応液1)に滴下ロートを用いて滴下した。滴下に要した時間は40分、反応液温は最大で6℃であった。終了後、反応容器を氷浴に浸し、0〜10℃に保って1時間攪拌した。さらにピリジン7.12g(0.09mol)を加えた。その後、反応液を室温に戻し、5−ノルボルネン−2,3−ジカルボン酸無水物(東京化成工業社製)19.7g(0.12mol)とピリジン9.49g(0.12mol)を加え、50℃の湯浴に浸して、反応液を50℃とし18時間攪拌した。
【0128】
上記反応液にエタノールを加えて重合体を析出させた後、回収し、GBL626gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、PBO前駆体構造と架橋基含有構造を有するアルカリ可溶性重合体(P−3)の紛体を得た。
【0129】
このようにして合成されたアルカリ可溶性重合体のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で11300の単一のシャープな曲線であり、単一組成物であった。
【0130】
〔参考例4〕ポリアミド酸の合成
撹拌機、温度計、窒素導入管、ジムロート冷却管を備えた0.5リットルのフラスコ中に、N−メチル−2−ピロリドン295.0g、2−オクタノン55.3g、ジエチルケトン36.9gを仕込み、4,4′−ジアミノジフェニルエーテル26.21g、ビス(3−アミノフェノキシフェニル)スルホン14.70g、LP7100(信越化学工業株式会社製商品名、1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン)1.49gを加え、撹拌溶解した。次にこの溶液に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物50.02gを加え、25℃で8時間次いで60℃で8時間撹拌し反応させた。このようにして得られたポリアミド酸溶液をイオン交換水5Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、ポリアミド酸構造を有するアルカリ可溶性重合体(P−3)の紛体を得た。このようにして合成されたアルカリ可溶性重合体のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で26400の単一のシャープな曲線であり、単一組成物であった。
【0131】
〔参考例5〕可溶性PIの合成
攪拌棒、玉付きディーンスターク型トラップ、窒素導入管を備えた4つ口フラスコに、6FAP 32.96g(90ミリモルを加え、NMP 196g、トルエン40gを加えて室温で攪拌した。ついで、3,3、4,4−オキシジフタル酸二無水物31.02g(100ミリモル)を添加し、室温で2時間攪拌した。ついで、180℃、180rpmで3時間加熱攪拌し、反応中、副生成物である水がトルエンと共沸して留出し、30分毎に還流管の底に溜まっている水を抜いた。このようにして製造されたポリイミドポリマーのポリスチレン換算の重量平均分子量は24400であった。この反応液を5Lの水に高速攪拌下で滴下し、ポリマーを分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し有機溶剤に可溶なポリイミド構造を有するアルカリ可溶性重合体(P−5)の紛体を得た。
【0132】
<感光性樹脂組成物の調製>
[実施例1〜13、比較例1〜7]
上記参考例1〜5にて得られた(a)アルカリ可溶性樹脂としての(P−1)〜(P−5)及び、クレゾールノボラック樹脂EP4080G(旭有機材工業:商品名)(P−6)、(b)光酸発生剤として下記構造式の化合物 PAC1、
【0133】
【化18】

【0134】
(式中、Qは、全体数の83%が下記式:
【0135】
【化19】

【0136】
で表される構造であり、残りの17%が水素原子である。)
【0137】
(c)溶媒として下記(C−1)〜(C−7)のケトン化合物及びGBLを表1に示す質量部の組み合わせで、感光性樹脂組成物をそれぞれ調整し、細孔が0.2μmのポリエチレン製フィルターで濾過して、実施例1〜13、及び比較例1〜7の感光性樹脂組成物を調製した。下記に使用する溶媒と蒸気圧を示す。
γ―ブチルラクトン (25℃での蒸気圧 425Pa)
(C−1)ジイソブチルケトン (21℃での蒸気圧 239Pa)
(C−2)2−ヘプタノン (25℃での蒸気圧 279Pa)
(C−3)2−オクタノン (25℃での蒸気圧 229Pa)
(C−4)2−ノナノン (25℃での蒸気圧 86Pa)
(C−5)シクロヘキサノン (25℃での蒸気圧 665Pa)
(C−6)アセトン (25℃での蒸気圧 2470Pa)
(C−7)プロピレングリコールモノメチルエーテルアセテート(20℃での蒸気圧 3800Pa)
【0138】
<感光性樹脂組成物の密度の測定方法>
3cm3ディスポーサルシリンジに感光性樹脂組成物を2.5cm3測り取り、その質量を精密天秤により質量を計り取った。下記(式1)より感光性樹脂組成物の密度を算出した。
感光性樹脂組成物の密度(g/cm3)=2.5cm3の感光性樹脂組成物の質量(g)/2.5(cm3)・・・(式1)
【0139】
<樹脂固形分濃度の測定方法>
感光性樹脂組成物を調整する際の全ポリマー質量と全溶媒質量より、下記(式2)より感光性樹脂組成物の固形分濃度を算出した。
感光性樹脂組成物の樹脂固形分濃度(%)=(全アルカリ可溶性樹脂の質量(g))/〔(全アルカリ可溶性樹脂の質量(g))+(全溶媒の質量(g))〕・・・(式2)
【0140】
<感光性樹脂組成物の濡れ広がり及び膜厚均一性の評価>
[加熱硬化後のキュア膜6μmを得る為に、必要となるプリベーク後膜厚の算出]
上記実施例、及び比較例で得られた感光性樹脂組成物をスピンコーター(東京エレクトロン社製:MARK−8、商品名)にて、8インチシリコンウエハーの中心に所定のワニスを2.5gディスペンスし、スピン塗布した。ホットプレートにて125℃、180秒間プリベークを行い、プリベーク膜を形成した。膜厚は膜厚測定装置(大日本スクリーン製造社製:ラムダエース、商品名)にてX方向に15mmピッチで13ポイント膜厚を測定し平均膜厚T1を求めた。これを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、加熱硬化後のキュア膜を同様に膜厚測定を行い、キュア後膜厚T2を求めた。T2/T1×100をキュア後残膜率として算出した。現像時にプリベーク膜が10%減ると設定し、キュア残膜率の結果から、キュア膜6μmを作成するのに必要なプリベーク後の膜厚をそれぞれ求めた。その結果を表2に示す。必要となるプリベーク後の膜厚が厚い程、必要となる感光性樹脂組成物の吐出質量は多い。
【0141】
[塗布面積の比較]
上記実施例、及び比較例で得られた感光性樹脂組成物をスピンコーター(東京エレクトロン社製:MARK−8、商品名)にて、8インチシリコンウエハーの中心に所定のワニスを0.9gディスペンスし、スピン塗布した。ホットプレートにて125℃、180秒間プリベークを行い、シリコンウェハー上に、上記で求めた最終キュア膜の膜厚が6μmになるプリベーク膜厚になるように、スピンコーターの回転数をそれぞれ調整し、円形の塗膜を形成した。膜厚は膜厚測定装置(大日本スクリーン製造社製:ラムダエース、商品名)にてX方向に15mmピッチで13ポイント膜厚を測定した平均値を膜厚とした。
【0142】
この塗膜の直径を定規(ミツトヨ社製:ABSデジマチックキャリパ、商品名)で測定し、下記式にて塗布面積を算出した。
塗布面積(cm2)=[(測定直径(cm)/2)2×3.14]
この値が大きい程、スピンコート法にて、より少ない吐出質量で所定膜厚のプリベーク膜を得る事が出来る。
本件では塗布面積を以下のように評価した。
塗布面積700cm2以上:○
塗布面積700cm2未満:×
【0143】
[面内均一性]
測定した膜厚から、下記式より面内均一性を求めた。
面内均一性(%)=
[〔(測定膜厚の最大値)−(測定膜厚の最小値)〕/(平均膜厚)]x100
本件では、以下のように面内均一性を評価した。
面内均一性5%以下:○
面内均一性5%超過:×
【0144】
【表1】

【0145】
【表2】

【0146】
表2の結果から、実施例1〜13は、従来の技術である比較例と比べて、スピンコート法にて、より少ない吐出質量で所定膜厚のプリベーク膜を得る事が出来、膜厚均一性にも優れる。
【産業上の利用可能性】
【0147】
本発明の感光性樹脂組成物は、半導体装置の表面保護膜、層間絶縁膜、及び再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、並びに液晶配向膜等として好適に利用できる。

【特許請求の範囲】
【請求項1】
下記一般式(1)で表される繰り返し単位を有する構造を含むアルカリ可溶性樹脂(a)、光酸発生剤(b)、25℃での蒸気圧が50〜500Paであるケトン化合物である溶媒(c)、を少なくとも含む感光性樹脂組成物であり、かつ、該感光性樹脂組成物の密度が0.95g/cm3〜1.10g/cm3である感光性樹脂組成物。
【化1】

(式中、X1及びY1は、各々独立に、少なくとも2個の炭素原子を有する2〜4価の有機基を表し、R1及びR2は、各々独立に、炭素原子数1〜10の炭化水素基を表し、n1+n2+n3+n4>0であり、そしてm1は、1〜1000の整数である。)
【請求項2】
(全アルカリ可溶性樹脂の質量)/〔(全アルカリ可溶性樹脂の質量)+(全溶媒の質量)〕=0.2〜0.5である請求項1に記載の感光性樹脂組成物。
【請求項3】
溶媒として、上記溶媒(c)と、γ−ブチルラクトンとを含み、全溶媒に占めるγ−ブチルラクトンの割合が、10〜65重量%の範囲である請求項1又は2に記載の感光性樹脂組成物。
【請求項4】
さらに架橋剤(d)を含む、請求項1〜3のいずれか1項に記載の感光性樹脂組成物。
【請求項5】
さらに、溶解促進剤(e)として、カルボン酸化合物又はフェノール性化合物を含む請求項1〜4のいずれか一項に記載の感光性樹脂組成物。
【請求項6】
上記溶媒(c)は、2−ノナノン、2−オクタノン、及び2−ヘプタノンからなる群より選ばれる少なくとも一種の溶媒である請求項1〜5のいずれか一項に記載の感光性樹脂組成物。
【請求項7】
上記光酸発生剤(b)は、キノンジアジド化合物である請求項1〜6のいずれか一項に記載の感光性樹脂組成物。
【請求項8】
請求項1〜7のいずれか1項に記載の感光性樹脂組成物を層またはフィルムの形で基板上に形成する工程、
該感光性樹脂組成物を露光する工程、
該露光の後の感光性樹脂組成物を現像してレリーフパターンを形成する工程、及び
該レリーフパターンを加熱して硬化レリーフパターンを形成する工程
を含む、硬化レリーフパターンの製造方法。
【請求項9】
請求項8に記載の硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを有して成る、半導体装置。

【公開番号】特開2013−15729(P2013−15729A)
【公開日】平成25年1月24日(2013.1.24)
【国際特許分類】
【出願番号】特願2011−149435(P2011−149435)
【出願日】平成23年7月5日(2011.7.5)
【出願人】(309002329)旭化成イーマテリアルズ株式会社 (771)
【Fターム(参考)】