説明

アルボウイルス感染の診断又はスクリーニング方法、該方法に有用な試剤及びそれらの用途

アルボウイルス感染、好ましくはフラビウイルス科感染、より好ましくはフラビウイルス感染を診断又はスクリーニングするための方法、該方法に有用な試剤、及びそれらの使用。
上記の方法は、
(i) 対象者又は動物からの試料を、考慮される対象者又は動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、アルボウイルスED3ドメインとアルカリホスファターゼ(PhoA)とを少なくとも含むハイブリッドタンパク質からなる検知分子とインキュベートする
ことを含み、
該免疫複合体の検出が上記の試料中のアルボウイルスの存在の指標である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アルボウイルス感染、好ましくはフラビウイルス科への感染、より好ましくはフラビウイルス感染の診断又はスクリーニングのための方法、該方法において有用な試剤(reagent)及びそれらの用途に関する。
【背景技術】
【0002】
アルボウイルス(節足動物媒介ウイルス;arthropod-borne viruses)は、吸血性節足動物ベクターと感受性の脊椎動物宿主とを含むサイクルで天然に維持されるウイルスである。フラビウイルス属に主に焦点を当てて記載するが、エンベロープタンパク質を含む全てのアルボウイルスが本発明に含まれる。
【0003】
多くのアルボウイルス、特に多くのフラビウイルス、特に黄熱病ウイルス(YFV)、デングウイルス(DENV)、西ナイルウイルス(WNV)などは、深刻なヒト及び動物の疾患の原因である。
フラビウイルス感染は、現在のところ、ウイルス単離、RT-PCRによるウイルスRNAの検出及びウイルスタンパク質又は抗ウイルス免疫グロブリン分子を標的にした免疫化学的アッセイを含むいくつかの方法により検出されている。ウイルスRNA、ウイルスタンパク質、ビリオン及び異なるクラスの抗体(IgM、IgA及びIgG)の出現及び消滅の動態は、1次感染又はその後の感染の間に、いくつかのフラビウイルスについて、よく文書化されている。
【0004】
ウイルスに対して指向され、かつ患者の血清中に存在する抗体の免疫吸着アッセイによる検出は、フラビウイルスによる感染の診断のためによく確立され、推奨される方法である(Kuno, 2003; WHO, 1997)。これらの診断の目的は、少なくとも2つの部分からなる:フラビウイルス疾患を同様の臨床徴候を有する他の疾患と区別するための症例の確認:及び伝達のサーベイランス。
フラビウイルス感染の診断は、いくつかの因子により複雑である。あるフラビウイルスに対する抗体を測定するために現在最も用いられる血清学的試験は、このファミリーの他のメンバーと交差反応する(Kuno, 2003)。これらの交差反応は、いくつかのフラビウイルスが同時に循環している地域では問題であろう。例えば、WNVに対して指向された多くの抗体が、JEV (日本脳炎ウイルス)、SLEV (セントルイス脳炎ウイルス)及びDENVとさえも交差反応する(Granwehrら, 2004)。DENVに対して指向された多くの抗体が、YFV及びJEVと交差反応する(Vorndam及びKuno, 1997)。
【0005】
DENVの4つの血清型が、特に問題を有する。デングの重篤な形態、すなわちデング出血熱(DHF)及びデングショック症候群(DSS)の病因論は、議論の余地があるままである。2つの主な理論が提案されている。一般的に受け入れられている仮説は、2次感染又は免疫強化理論である(Halstead, 2003; Mongkolsapayaら, 2003)。他の仮説は、ウイルス因子の関与を強調する(McBride及びBielefeldt-Ohmann, 2000)。1次感染と2次感染との区別は、よって、DHFの病因を理解するために鍵となる問題である。ウイルスのmRNA及び抗原は、1次感染及びその後の感染の両方に存在する(Alconら, 2002)。よって、DENV抗体の検出は、感染の異なる形式を区別するための唯一の方法を提供する。
【0006】
現在の診断アッセイは、フラビウイルス感染の同定についてELISA又はディップスティックのフォーマットを利用する。
患者の血清中のウイルス抗体の検出のための免疫吸着アッセイ(ISA)は、主に2つのタイプに属する:間接的ISA及び抗体特異的捕捉ISA。
【0007】
・間接的ISAにおいて、固体担体は、ウイルス抗原(virAg)を用いて感作される。固定化された抗原を、分析されるヒト又は動物の血清と反応させる。最後に、結合した抗体をレポーター系を用いて顕示(reveal)するが、このレポーター系は、通常、免疫グロブリン結合タンパク質(@Ig)と酵素(Enz)、典型的にはセイヨウワサビペルオキシダーゼ(HRP)又はアルカリホスファターゼ(PhoA)とのコンジュゲートからなる。これは、酵素結合ISA (ELISA)である。他のタイプのプローブ、例えば蛍光体又は金コロイドを用いることができる。間接的ISAの一般的なスキームは、次のとおりである:
担体-virAg :: 血清 :: @Ig-レポーター (1)
ここで、「-」は共有結合又は固定化のことであり、「::」は非共有相互作用のことである。Ig結合タンパク質は、Igの特定のクラス(@IgX、ここでX = M、A又はG)に特異的であり得る。この場合、IgX特異的間接的ISAという。間接的ISAのいくつかのバリエーション、特に抗原捕捉ISA、エピトープブロッキングISA及びアビディティーISAが記載されている(Blitvichら, 2003; Johnsonら, 2000; Matheusら, 2005)。
【0008】
・IgM、-A又は-G特異的捕捉ISAにおいて、固体担体は、考慮される動物種のIg分子の特定のクラスに対して指向され、最も一般的には異種抗体からなるIg結合タンパク質(@IgX、ここでX = M、A又はG)で感作される。固定化されたIg結合タンパク質は、分析される血清、ウイルス抗原、及び抗原結合分子(@virAg)と酵素(Enz)との間のコンジュゲートから一般的になるレポーター系と逐次的に反応させる。包括的なIgX特異的捕捉ISA (XAC-ISA)は、次のように模式化できる:
担体-@IgX :: 血清 :: virAg :: @virAg-レポーター (2)
Ig結合タンパク質(@IgX)により、IgM、IgG又はIgA抗体捕捉免疫吸着アッセイ(MAC-ELISA、GAC-ELISA又はAAC-ELISA)ということができる。
【0009】
IgM抗体についての免疫吸着アッセイは、なかでも、フラビウイルスによる最近の感染を決定するために最も有用な血清学的手法である。なぜなら、これらのIgM分子は、感染の初期に出現し、疾患の経過において迅速に上昇し、IgG抗体よりも他のウイルスとの交差反応性が通常はより低いからである(Kuno, 2003)。IgM分子は、感染の5日後にはもう検出できるが、単量体抗原に対するその親和性は、通常、他の免疫グロブリン分子のタイプのものよりもより低い。
【0010】
MAC-ELISAは、IgM特異的間接的ELISAよりも好ましい。なぜなら、関連するウイルスによる以前の感染からのIgG抗体が、後者のアッセイの感度に抑制的な影響を有し得るからである(Vorndam及びKuno, 1997)。これは、いくつかのフラビウイルス感染、特にデング感染の血清学的診断について、WHOにより推奨されている(WHO, 1997)。
【0011】
MAC-ELISAは、以下の利点を有する。対になった血清サンプルが入手可能である場合、IgMの上昇、安定又は下落する力価は、感染の時間を示すことができる。単独サンプルについての並行するMAC-及びGAC-ELISAにおけるIgM抗体のIgG抗体に対する比を用いて、1次感染を2次感染から区別できる。なぜなら、IgM/IgG比は、1次感染の場合により高く、2次感染の場合により低いからである(Innisら, 1989)。これは、脳脊髄液及び唾液中の抗フラビウイルスIgMを検出できる(Kaoら, 2005; Telesら, 2005)。IgA特異的ELISAも開発されている。IgA応答は、IgM応答の後であるがIgG応答の前に生じる。並行するMAC-及びAAC-ELISAにおけるIgA/IgM比は、DENV及びWNVについて、感染が最近か又は数ヶ月前であるかを示すことができる(Prince及びLape-Nixon, 2005; Talarminら, 1998)。
【0012】
免疫吸着のアッセイの特異性は、主に、分析される血清と抗原との間の相互作用の結果であり、よって、抗原調製物の性質に依存する。しかし、これはまた、レポーター分子の性質の結果でもあり得る。
【0013】
最近まで、ISA用の抗原は、主に、検討されるウイルスに感染した乳飲みマウスの脳(SMB)又は細胞培養物の抽出物であった。これらは、組換えprM/gpEウイルス様粒子(VLP) (ここで、prM及びgpEは、ウイルスの膜タンパク質の前駆体とエンベロープ糖タンパク質である)、又はgpEの組換え細胞外ドメイン(sE)により累進的に置き換えられている。非構造タンパク質NS1も、IgG特異的間接的ELISA及びMAC-ELISAの両方で抗原として用いられている。NS1は、1次感染と2次感染を区別でき、1次感染患者の血清中の感染しているDENVの血清型を正確に同定できる(Shuら, 2004; Shuら, 2003; Shuら, 2002)。
【0014】
多くのMAC-ELISAは、抗ウイルスポリクローナル抗体を検知分子(detector molecules)として用いる。これらのポリクローナル抗体は、バッチごとに効力が変動し、ウイルス交差反応性であり得、このことは試験の特異性を制限する(Martinら, 2000)。よって、モノクローナル抗体(mAb)は、ポリクローナル抗体(pAb)よりも有利であり、特異性の変動を低減する。広く交差反応性のmAb、例えばmAb4G2及びmAb6B6C-1は、酵素とコンジュゲートされ、検知分子として広く用いられている(Kuno, 2003)。S169P位及びG257R位での中和回避変異体(Neutralization escape variants)が、gpEのドメイン1及びドメイン2の間の界面でのmAb4G2のエピトープをマッピングした(Serafin及びAaskov, 2001)。
【0015】
サンドイッチELISAのような他のタイプのISAが存在し(R. J. Kerschbaumerら, 1996)、そのフォーマットは次のとおりである:
担体-@GST :: GST-(3D6エピトープ) :: scFv3D6-PhoA
ここで、@GSTは、グルタチオン-S-トランスフェラーゼ(GST)に対して指向された抗体を表し、GST-(3D6エピトープ)は、GSTと抗体3D6のエピトープとのハイブリッドタンパク質を表し、scFv3D6-PhoAは、抗体3D6の単鎖可変フラグメント(scFv)とアルカリホスファターゼとのハイブリッドタンパク質を表す。
サンドイッチELISAアッセイは、患者の血清中の抗原の存在を検出するために用いられるが、本発明のように感染性因子に対して指向された抗体の存在を検出するために用いられない。さらに、このような方法は、アッセイにおいて用いられる少なくとも2つの非競合抗体の単離と特徴決定とを必要とする。
【0016】
別のタイプのISAは、リバースELISAであり(D. Ludolfsら, 2007)、そのフォーマットは次のとおりである:
担体-RF :: 血清 :: rED3-HRP
ここで、リウマチ因子(RF)は、IgG免疫グロブリンのFcフラグメントを認識する自己免疫抗体であり、rED3-HRPは、セイヨウワサビペルオキシダーゼ(HRP)と西ナイルウイルスからのエンベロープタンパク質Eの組換えドメイン3 (rED3)との化学的コンジュゲートである。HRPは単量体タンパク質であるが、アルカリホスファターゼは二量体であり、rED3-HRPハイブリッドタンパク質は、2つのパートナーであるrED3とHRPとを化学的にカップリングさせることにより得られた。
この研究における著者らは、彼らの「リバースELISA」がいずれの特異的IgM抗体も検出しないことを明確に述べている(第472頁、左欄、第31行以降)。彼らは、彼らのリバースELISAが、世界における西ナイルウイルス感染の流行に関する知識を向上できたと結論付けている。よって、このような方法論は、ウイルス感染の流行についての長期的な疫学的研究に最も適する。
【0017】
別のタイプのISAは、間接的IgG ELISAであり(D. W. C. Beasleyら, 2004)、そのフォーマットは次のとおりである:
担体-rED3 :: 血清 :: @IgG-HRP
ここで、@IgG-HRPは、セイヨウワサビペルオキシダーゼとヒトIgGに対して指向された抗体との化学的コンジュゲートである。
著者らは、組換えドメインrED3は、マイクロタイタープレートのウェルを被覆する抗体にほとんど結合せず(第2764頁、第34〜39行)、よって抗体捕捉ELISAに適しないことを明確に記載している。
【0018】
捕捉ELISAに用いるための抗原
* SMB由来又は細胞培養由来のウイルス抗原
GAC-又はMAC-ELISAの特異性は、SMB由来又は細胞培養由来のウイルス抗原を用いる場合に、著しくは異ならない(Cardosaら, 1992)。抗原のこのような調製物を用いて行われるMAC-ELISAは、ウイルス血清型群に通常は特異的であるが、感染しているウイルスを血清型群内で区別することはほとんどできない。例えば、この方法は、DENVによる感染と、JEV又はWNVのいずれかによる感染とを区別できる(Innisら, 1989; Martinら, 2002)。しかし、この方法は、感染している血清型がほとんどの場合に最高のシグナルを有するにもかかわらず、4つのDENV血清型による感染同士を区別することは困難である(Nawaら, 2000)。この方法は、WNV感染とSLEV又はJEV感染とを、JEV血清型群のこれらのフラビウイルスについての試験を同時に、そして精密で特異的な診断アルゴリズムを用いて行うならば、区別できる(Martinら, 2002; 2004)。しかし、このような特異的診断は、1次感染においてのみ可能である。なぜなら、交差反応性は、2次及びさらなる感染を経験した患者においてより重要であるからである(Kaoら, 2005; Telesら, 2005)。
【0019】
* 抗原としての組換えprM/gpE-VLP及びsE
いくつかのフラビウイルスからのprM/gpE VLPは、測定の感受性、特異性、正確性及びその他の統計的試験のいくつかの基準の点で、MAC-ELISAにおけるSMB由来抗原と同等又はよりよく作動する(Holmesら, 2005; Martinら, 2002; Martinら, 2000; Muerhoffら, 2002)。DENVについて、VLPは、1次感染における感染している血清型を検出することに成功している(Shuら, 2002; Shu及びHuang, 2004)。SLEVについて、VLPは、SMB由来抗原とは異なって、WNV又はポワッサンウイルスに対して指向されたIgM抗体と交差反応しない(Purdyら, 2004)。TBEV (ダニ媒介性脳炎ウイルス;Tick-Borne Encephalitis Virus)について、VLPは、市販の抗原とは異なって、JEVに対して指向されたIgM抗体と交差反応しない(Yoshiiら, 2003)。WNVについては、しかし、VLPは、その他のフラビウイルス(JEV、SLEV、DENV、YFV)に感染したか又はそれに対してワクチン接種された患者からの血清と高い割合で交差反応する(Hogrefeら, 2004)。ショウジョウバエ細胞で組換えタンパク質として発現されるgpEの細胞外ドメインsEは、MAC-及びGAC-ELISAのクロマトグラフィーフォーマットで用いられる。DENVの4つの血清型からの組換えsEドメインを用いるこの免疫クロマトグラフィーアッセイは、抗原としてSMB抽出物を用いて行われる通常のMAC-及びGAC-ELISAのものに匹敵する特異性及び感度を有する(Cuzzubboら, 2001)。
【0020】
* 抗原としてのrED3
免疫アッセイにおける抗原としてのED3ドメインの使用には、いくつかの因子が関連する。これは、高度に抗原性で免疫原性である。最も強く中和する抗体は、このドメインに対して指向される(Crill及びRoehrig, 2001; Sanchezら, 2005)。ED3ドメイン同士の配列は、gpEの他のドメイン同士よりもより離れている(Gritsunら, 1995)。異なるフラビウイルスと交差反応する抗体は、ED3に対するよりもgpEのED1及びED2ドメインに対して指向される(Crill及びChang, 2004; Kanaiら, 2006; Modisら, 2005; Roehrig, 2003; Sanchezら, 2005)。DENVについて、大腸菌(E. coli)からのTrpEタンパク質とED3ドメインの4つの血清型との間のハイブリッドTrpE-ED3は、細胞培養由来ウイルス抗原と比較されている。2種の抗原は、回復期血清中のDENVに対して指向されたIgM又はIgG抗体を検出するための感度が等しい。しかし、TrpE-ED3抗原は、DENV感染とYFV又はJEVのワクチン接種との間の区別について、細胞培養由来抗原よりもより特異的である(Simmonsら, 1998)。DENVについて、組換え単離ED3ドメイン(rED3)は、免疫ブロットストリップアッセイにおいて感染している血清型の検出に成功している(Ludolfsら, 2002)。WNVについて、rED3は、サル、ヒト及びウマの血清のパネルについて、IgG特異的間接的ELISAにおいてSMB由来抗原よりもより感度が高く特異的な応答を与える。これは、WNVに対するIgG応答を、その他の関連するフラビウイルス(JEV、SLEV、MVEV)に対するものから明確に区別できる(Beasleyら, 2004)。TBEVについて、rED3もIgG特異的間接的ELISAにおいてSMB由来抗原よりもより感度が高く特異的な応答を与える。これは、ダニ媒介(TBEV)フラビウイルスと蚊媒介(YFV、DENV)フラビウイルスとを区別できるが、フラビウイルスのTBEV血清型群のメンバー同士を区別できない(Holbrookら, 2004)。
【0021】
しかし、単離されたED3ドメインは、以下に説明する理由のために、IgG-又はIgM-特異的間接的ISAでのみ用いられている。
組換え抗原を用いる捕捉ELISA法を用いる場合、結合価(valence)及び折り畳みの問題が生じ、検出の問題も生じ得る。
【0022】
- 結合価及び折り畳み
実際に、予備実験は、WNVからのrED3ドメインが、マイクロタイタープレートのウェルを被覆する抗体にほとんど結合しないか、又は捕捉され得るが立体障害のために検出抗体が結合しないことを示唆している。よって、rED3は、捕捉アッセイフォーマットに直ちに適しないであろうと結論付けられた(Beasleyら, 2004)。しかし、他の説明は、等しく可能性がある。フラビウイルスは、その表面にて180個の単量体(90個の二量体)のgpEを示すので、gpE及びそのED3ドメインは、複数の近接したコピーで存在する(Kuhnら, 2002; Mukhopadhyayら, 2003)。IgG、IgA又はIgMの同じ分子は、そのエピトープの2〜5コピーに同時に結合でき、この結合の多価形式は、強い見かけの親和性(アビディティー)をもたらす。抗原の結合価は、prM/gpE VLPにおいても高い(Ferlenghiら, 2001)。これは、可溶性gpE (sE)のような二量体の組換え抗原について2である(Kanaiら, 2006; Modisら, 2003; Modisら, 2005; Reyら, 1995)が、単離されたED3ドメインについて1だけである。よって、単量体rED3ドメインと、IgMの1つの結合部位との間の親和性は、MAC-ELISAのために不充分であろう。同様の問題が、特に1次感染についてIgG-又はIgA-捕捉ELISAに生じ得る。単量体rED3ドメインのこの制限を克服するために、そのオリゴマー形成を工学的に操作する(engineer)ことが必要であろう。
【0023】
ED3ドメインは、2つのシステイン残基を含有する。これらは、ジスルフィド結合を形成し、これはドメインの適切な折り畳み及び抗原の完全性に必要である(Roehrigら, 2004)。rED3は、必須のジスルフィド結合が形成される大腸菌のペリプラスム空間において適切に折り畳まれた状態で生成され得る。ペリプラスム空間での生成は、タンパク質が生成細菌から単純な浸透圧ショックにより、濃縮され部分的に生成された形態で抽出され得るという付加的な利点を有する。
【0024】
- 検出
いくつかの異なる抗原に対する血清の応答を量的に比較し(例えば異なるウイルス血清型に対して)、よってその特異性を推定するために、アッセイの検出系は、全ての試験される抗原について同じでなければならない。このことは、ポリクローナル抗体を用いる場合についてはそうでないだろう。異なるウイルス又はウイルス血清型の共通エピトープに対して指向されたモノクローナル抗体の使用は、以下の問題を導くであろう。(i)ヒト血清への抗原の結合は、トレーサーモノクローナル抗体のエピトープをマスクし得る。(ii)トレーサー抗体と異なる抗原との間の親和性は、エピトープの構造の関係に依存し得る。結果として、アッセイの出力シグナルと捕捉された抗原の量との関係は、異なる抗原について変動し得る。
【発明の概要】
【発明が解決しようとする課題】
【0025】
よって、従来技術の試剤よりも、ELISA試験、より好ましくはXAC-ELISA試験により適合した試剤に対する必要性がある。
【課題を解決するための手段】
【0026】
よって、本発明は:
(i) 対象者又は動物からの試料を、考慮される対象者又は動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質、最も一般的には異種抗体からなるIg結合タンパク質(抗IgX抗体)で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、アルボウイルスED3ドメイン、好ましくはフラビウイルスED3ドメインとアルカリホスファターゼ(PhoA)とを少なくとも含むハイブリッドタンパク質からなる検知分子とインキュベートする
ことを含み、
該免疫複合体の検出が上記の試料中のアルボウイルスの存在の指標である、
ことを特徴とする、対象者又は動物宿主におけるアルボウイルスの診断又はスクリーニングのための方法に関する。
【図面の簡単な説明】
【0027】
【図1】プラスミドpLB11、pVP5、pLIP5GN-H6及びpEBL1の構造。
【図2】H6-ED3.DEN1-PhoAハイブリッドを用いて行った、マウス血清の単純化GAC-ELISA。
【図3】H6-ED3.WN-PhoAハイブリッドを用いて行った、マウス血清の単純化MAC-ELISA。
【図4】抗原に対する単純化GAC-ELISAの特異性。
【図5】抗原に対する単純化MAC-ELISAの特異性。
【図6】H6-ED3.DEN1-PhoAハイブリッドを用いて行った、ヒト血清の単純化MAC-ELISAにおけるシグナルの濃度依存性。
【図7】H6-ED3.DEN1-PhoAハイブリッドを用いて行った、4つの血清型のDENVでの感染を経験した患者からの血清の単純化MAC-及びGAC-ELISA。
【発明を実施するための形態】
【0028】
上記の方法を行う有利な形態によると、Ig結合タンパク質は、抗IgM、抗IgG及び抗IgA (@IgX、ここでX = M、A又はG)からなる群より選択される。
上記の方法を行う別の有利な形態によると、上記のアルボウイルスは好ましくはフラビウイルスである。
上記の方法を行う別の有利な実施形態によると、上記のアルカリホスファターゼは、ラット、マウス、ニワトリ、ウシ、酵母及び細菌のアルカリホスファターゼからなる群より選択され、好ましくは大腸菌のアルカリホスファターゼである。
【0029】
上記の方法を行うさらに有利な形態によると、上記のハイブリッドタンパク質は、例えば該ハイブリッドタンパク質をペリプラスム抽出物から精製するために有用なポリペプチドタグをさらに含む。このようなポリペプチドタグの例は、HIS (ヘキサヒスチジン)、c-MYC、HA、VSV-G、HSV、V5及びFLAG (Sigma製品)であり得る。
よって、上記の方法を行うさらに有利な形態によると、上記のハイブリッドタンパク質は、好ましくは、ヘキサヒスチジンと、適切なフラビウイルスED3ドメインと、大腸菌のアルカリホスファターゼとを含み、配列番号25を含む。
好ましくは、アルカリホスファターゼは配列番号25からなる。
【0030】
上記の方法を行う上記の形態によると、上記の大腸菌のアルカリホスファターゼは、改変される。より好ましくは、上記の大腸菌のアルカリホスファターゼは、その活性部位に2つの変異:D153G及びD330Nを含み、配列番号24を含む(Le Duら, 2002による番号付け)。このような改変PhoAは、欧州特許出願第0752475号に記載されている。
好ましくは、アルカリホスファターゼは配列番号24からなる。
アルカリホスファターゼへのその他の改変は可能であり、本発明に包含される。
【0031】
予期せぬことに、上記の検知分子、すなわち少なくともフラビウイルスドメインED3と大腸菌のアルカリホスファターゼとを含む検知分子、好ましくはヘキサヒスチジンと、フラビウイルスドメインED3と、大腸菌のアルカリホスファターゼ、好ましくは改変アルカリホスファターゼとのハイブリッドタンパク質を用いることにより、フラビウイルス検出のためのIgX抗体捕捉免疫吸着アッセイが、いくつかのレベルにて著しく改善される:
(i) いくつかのアッセイで用いられる反応物(抗原又は検出系)の粗調製物が、規定された(defined)均質な分子種で置き換えられる;
(ii) アッセイに必要な反応物及び工程の数が低減される;
(iii) 感染性ウイルス、動物又は細胞培養物の安全な実験室におけるそれらの調製のための操作を伴うアッセイの全ての要素を、細菌で生成でき、容易に精製できる組換え要素で置き換えられる。
【0032】
よって、検知分子は、好ましくは(H6-ED3-PhoA)2ハイブリッドである。よって、(H6-ED3-PhoA)2ハイブリッドの結合は、それらのPhoA部分の酵素活性により顕示された。比色反応又は化学発光反応を生じるPhoAの多くの基質を、この顕示(revelation)に用いることができる。好ましくは、抗IgG又は抗IgM抗体を固定化するマイクロタイタープレートが用いられる。担体のその他の型及びフォーマットをそれらの固定化のために用いることができ、特に光ファイバーである。
【0033】
つまり、(H6-ED3-PhoA)2ハイブリッドを用いるアッセイは、ED3ドメインに対して指向された他の免疫グロブリンのタイプ、IgA及びIgEの検出のため、ヒト及び異なる動物、例えばマウス、ウシ及びウマの免疫グロブリンの検出のため、並びに血清以外の体液中のそれらの検出のために行うことができる。このアッセイは、引用された以外のアルボウイルス及び引用された以外のフラビウイルスからのED3ドメインを用いて行うこともできる。なぜなら、この分類学上の群のウイルスからのE糖タンパク質は、高度に相同性の構造を有するからである。このアッセイは、他の抗原性タンパク質又はタンパク質フラグメント間のハイブリッドを用いて行うことができ、これらが病原性因子に由来しようがしまいが、かつこれらの因子中で単量体状態又は多量体状態で存在しようが関係がない。このアッセイは、PhoAとは別のトレーサーを含む二官能性ハイブリッドタンパク質まで拡張できる。最後に、このアッセイは、トレーサーとは区別される特定のタンパク質モジュールとの遺伝子的融合又は化学的カップリングにより抗原のオリゴマー化が得られる場合にまで拡張できる。ハイブリッドの構築は、ヌクレオチド又はアミノ酸配列に基づいてED3ドメインをコードするDNAセグメントを化学的に合成する可能性により、大きく促進される。
【0034】
(H6-ED3-PhoA)2、より包括的には(Ag-PhoA)2のような二官能性の二量体ハイブリッドは、多数の用途を有する。これらは、(i) PhoAと融合された抗原(Ag)に対して指向された抗体を検出するため;(ii)抗原が由来するか又は模倣する病原体に対して指向された抗体を検出するため;(iii)病原体による感染を診断するか、又は病原体若しくは免疫原によるワクチン接種を確認するため;(iv)病原体の疫学を研究するため;(v) PhoAと融合されたタンパク質若しくはタンパク質フラグメントと、分子、タンパク質又は細胞との間の相互作用を研究するため;(vi)融合タンパク質若しくはタンパク質フラグメントと、細胞の標的分子、タンパク質との間の相互作用を改変する分子を化学ライブラリーにおいてスクリーニングして同定するために用いることができる。
【0035】
rED3を用いて、感染した個体の血清中のIgMの検出に成功したことは、以前に記載されていない。
本発明は、組換え抗原を二量体化し、同時に、その遺伝子配列とアルカリホスファターゼ遺伝子とのハイブリッドを構築することにより組換え抗原を酵素トレーサーと融合させる可能性に依拠する。このようにして、低い親和性の抗体、例えば、五量体でありかつアルボウイルスによる感染において初期に出現するIgM免疫グロブリンを検出できる反応物が得られる。この初期の検出は、流行病の管理におけるツールとして用いることができる。よって、これは、IgGの検出に基づき、かつ後向き調査においてのみ用いられる種々のサンドイッチ、リバース及び間接的ELISAのようなアッセイとは明らかに異なる。
【0036】
特に、本発明による方法及び反応物の従来技術に対する利点は、以下のことを含む:(i)低安全性実験室での診断反応物の生成;(ii)単一工程でいずれの化学的反応工程なしで、ウイルスあたり単一の反応物の生産;(iii)感染の初期に出現し、親和性が低いIgMを、人工二量体抗原を用いて検出する能力;(iv)ウイルス及び感染のタイプに対する検出の特異性;(iv)抗原と酵素トレーサーとの融合による診断アッセイの単純化とスピードアップ。
【0037】
よって、好ましくは、上記のハイブリッド(H6-ED3-PhoA)2を、ヘキサヒスチジンと、ウイルスドメインED3と、大腸菌のアルカリホスファターゼとをコードする配列間で遺伝子レベルにて構築した。ヘキサヒスチジンタグは、ニッケルイオンのカラムでのハイブリッドの精製を可能にした。PhoAは二量体のペリプラスムタンパク質である。遺伝子レベルでのPhoAとのパッセンジャータンパク質の融合体は、ハイブリッドタンパク質の二量体化、ペリプラスム空間へのその輸送、及び2つのパートナーの折り畳み及び機能の保存をもたらす(Boulain及びDucancel, 2004)。さらに、PhoA二量体の結晶構造中のパッセンジャータンパク質についての挿入の対称点は、分子の同じ側に位置し、互いに近く(17.6Å)、触媒部位からは遠い(>32.5Å) (Le Duら, 2002)。
【0038】
よって、ハイブリッド(ED3-PhoA-H6)2の構築は、抗原の結合価の問題を解決する。ハイブリッドは、それら自体の酵素トレーサーを含み、ハイブリッドの酵素部分はその抗原性部分の性質に依存しない。この新しい反応物を用いて、MAC-又はAAC-又はMAC-ELISAは、以下のスキームによる3つの参加分子のみを伴う:
担体-@IgX :: 血清 :: (H6-ED3-PhoA)2 (3)
(ここで、X = M、A又はG)。
【0039】
本発明の方法を行う別の形態によると、エンベロープタンパク質ドメイン3ポリペプチドは、黄熱病ウイルスエンベロープタンパク質ドメイン3ポリペプチド、西ナイルウイルスエンベロープタンパク質ドメイン3ポリペプチド、デングウイルスエンベロープタンパク質ドメイン3ポリペプチド、セントルイス脳炎ウイルスエンベロープタンパク質ドメイン3ポリペプチド、マリーバレー脳炎ウイルスエンベロープタンパク質ドメイン3ポリペプチド、及び日本脳炎ウイルスエンベロープタンパク質ドメイン3ポリペプチドからなる群より選択される。
より好ましくは、ED3ドメインは、特にWNV (ED3.WNと記載される)から、黄熱病ウイルス(ED3-YF)から、又はデングウイルス(血清型1、2、3又は4)からであり、好ましくはDENVの血清型1からである(ED3.DEN1と記載される)。
フラビウイルスのED3ポリペプチドは、例えば、国際PCT出願WO 2004/016586に記載される。
【0040】
これらの新しい反応物は、予期せぬことに、MAC-、AAC-及びGAC-ELISAを単純化し、これらをより再現性があり定量的であり、よって特異的であるようにすることに貢献する。これらは、生物学的安全性及びその調製のための技術的手段の低いレベルのみを必要とする。
【0041】
本発明は、適切なポリペプチドタグと、アルボウイルスED3ドメインと、アルカリホスファターゼとを含むことを特徴とするハイブリッドタンパク質にも関する。
特に、本発明は、本発明による方法に用いることができるハイブリッドタンパク質に関する。
上記のハイブリッドタンパク質の有利な実施形態によると、これは、ヘキサヒスチジンと、適切なフラビウイルスED3ドメインと、大腸菌のアルカリホスファターゼとを含む。
上記のハイブリッドタンパク質は、好ましくは多量体の形態であり、より好ましくは例えば(H6-ED3-PhoA)2のような二量体の形態である。
【0042】
上記のハイブリッドタンパク質の別の有利な実施形態によると:
- ED3ドメインがDEN1ウイルスからである場合、該ハイブリッドタンパク質(H6-ED3.DEN1-PhoA)は、(配列番号2)の配列を示す。
- ED3ドメインがDEN2ウイルスからである場合、該ハイブリッドタンパク質(H6-ED3.DEN2-PhoA)は、(配列番号4)を示す。
- ED3ドメインがDEN3ウイルスからである場合、該ハイブリッドタンパク質(H6-ED3.DEN3-PhoA)は、(配列番号6)の配列を示す。
- ED3ドメインがDEN4ウイルスからである場合、該ハイブリッドタンパク質(H6-ED3.DEN4-PhoA)は、(配列番号8)の配列を示す。
- ED3ドメインが西ナイルウイルスからである場合、該ハイブリッドタンパク質(H6-ED3.WN-PhoA)は、(配列番号10)の配列を示す。
- ED3ドメインが黄熱病ウイルスからである場合、該ハイブリッドタンパク質(H6-ED3.YF-PhoA)は、(配列番号12)の配列を示す。
【0043】
本発明は、本発明によるハイブリッドタンパク質をコードする核酸にも関する。
好ましくは、上記の核酸は、H6-ED3.DEN1-PhoAハイブリッドタンパク質をコードする配列番号1、H6-ED3.DEN2-PhoAハイブリッドタンパク質をコードする配列番号3、H6-ED3.DEN3-PhoAハイブリッドタンパク質をコードする配列番号5、H6-ED3.DEN4-PhoAハイブリッドタンパク質をコードする配列番号7、H6-ED3.WN-PhoAハイブリッドタンパク質をコードする配列番号9、及びH6-ED3.YF-PhoAハイブリッドタンパク質をコードする配列番号11からなる群より選択される。
【0044】
上記のハイブリッドタンパク質は、EP 0407259及びEP 0752475に記載されるものと同様の方法に従って得ることができる。
好ましくは、これらは、正しいED3を、2つの変異(D153G及びD330N) (Le Duら, 2002の番号付けによる)を含む改変アルカリホスファターゼ(配列番号24)を含む発現ベクターpEBL1 (配列番号13)に挿入することにより得られる。
上記の発現ベクターは、CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28 (28 rue du Docteur Roux, 75015 PARIS))に、2007年4月23日に、アクセッション番号I-3747で寄託されている。
【0045】
本発明は、本発明によるハイブリッドタンパク質を作製する方法に関し、該方法は:
(a) 上記で定義されるハイブリッドタンパク質をコードする配列を含む発現ベクターを、適切なアルボウイルスED3ポリペプチド、好ましくはフラビウイルスED3ポリペプチドをコードする配列をベクターpEBL1 (配列番号13)に挿入することにより得て、
(b) 適切な大腸菌株、好ましくはXL1-blue株(Bullockら, 1997により記載される)を、(a)で得られた発現ベクターで形質転換し、
(c) 上記の改変された株を、適切な培地中で培養し、
(d) タグ-ED3-PhoAハイブリッドタンパク質を、ペリプラスム抽出物から精製する
ことを含むことを特徴とする。
【0046】
タグがヘキサヒスチジンである場合、工程(d)の精製は、NiNTA樹脂のカラムでの親和性クロマトグラフィーにより行われる。
【0047】
このようにして得られた異なる発現ベクターは、適切なハイブリッドタンパク質を発現する配列を含む:
【表1】

【0048】
上記の方法を行うある形態によると、工程(a)の発現ベクターは、本明細書で定義されるハイブリッドタンパク質の発現ベクター、より好ましくは、ハイブリッドタンパク質H6-ED3.DEN1-PhoAの発現ベクター(pEBL11、CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3748で寄託された)、及びハイブリッドタンパク質H6-ED3.WN-PhoAの発現ベクター(pEBL15、CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3749で寄託された)からなる群より選択される。
【0049】
本発明は、対象者又は動物におけるアルボウイルス抗体、好ましくはフラビウイルス抗体をスクリーニングする方法にも関し、該方法は:
(i) 対象者又は動物からの試料を、考慮される対象者又は動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、アルボウイルスED3ドメインとアルカリホスファターゼとを少なくとも含むハイブリッドタンパク質からなる検知分子とインキュベートし、
(iii) 上記のアルボウイルス抗体の存在を検出する
ことを含む。
上記の検出は、pNPPを加え、パラニトロフェノールの形成を測定することにより行われるのが好ましい。
【0050】
記載される方法及びキットの全てにおいて、Ig結合タンパク質、ED3ドメイン、アルカリホスファターゼ及びポリペプチドタグは、上記で定義されるとおりである。
【0051】
本発明は:
- 考慮される動物種のIg分子の特定のクラスに対して指向されたIg結合タンパク質、最も一般的には異種抗体からなるIg結合タンパク質(抗IgX抗体)で感作された固体担体と、
- 少なくとも、アルボウイルスED3ドメインとアルカリホスファターゼとを少なくとも含むハイブリッドタンパク質と、
- 少なくとも1つの陽性対照、好ましくは感染した個体からの参照血清と、
- 少なくとも1つの陰性対照、好ましくは感染していない個体からの参照血清と
を含む、対象者におけるアルボウイルス抗体、好ましくはフラビウイルス抗体を診断及び/又はスクリーニングするためのキットにも関する。
【0052】
好ましくは、Ig結合タンパク質は、抗IgM、抗IgG及び抗IgA (@IgX、ここでX = M、A又はG)からなる群より選択され、ハイブリッドタンパク質は、ヘキサヒスチジンと、適切なフラビウイルスのウイルスED3ドメインと、大腸菌のアルカリホスファターゼとを含む。
【0053】
上記のキットの有利な実施形態によると、アルカリホスファターゼは、その活性部位に2つの変異:D153G及びD330N (Le Duらの番号付けによる)を含む改変アルカリホスファターゼである。
好ましくは、アルカリホスファターゼは配列番号24を含む。
【0054】
本発明は、病原体の適切な抗原とアルカリホスファターゼとを含むハイブリッドタンパク質の、該病原体による感染のインビトロ診断のため、又は該病原体の疫学の研究のための使用にも関する。
【0055】
本発明は、タンパク質又はそのフラグメントとアルカリホスファターゼとを含むハイブリッドタンパク質の、該病原体又はその免疫原に対するワクチン接種のインビトロでの確認のための使用にも関する。
【0056】
本発明は、病原体の適切な抗原とアルカリホスファターゼとを含むハイブリッドタンパク質の、PhoAと融合したタンパク質又はそのフラグメントと分子、タンパク質又は細胞との間の相互作用を研究するための使用にも関する。
【0057】
本発明は、
(i) 対象者又は動物からの試料を、考慮される動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、病原体の適切な抗原とアルカリホスファターゼとを含むハイブリッドタンパク質からなる検知分子とインキュベートする
ことを含み、
該免疫複合体の存在が感染の指標である
ことを特徴とする、病原体による感染を診断するか、病原体又はその免疫原によるワクチン接種を確認するか、又は病原体の疫学を研究する方法にも関する。
【0058】
本発明は:
(i) 分子、タンパク質又は細胞を、PhoAと融合したタンパク質又はそのフラグメントを含むハイブリッドタンパク質と接触させ、
(ii) PhoAと融合したタンパク質又はそのフラグメントと上記の分子、タンパク質又は細胞との間で結局は形成された複合体を検出する
ことを含むことを特徴とする、PhoAと融合したタンパク質又はそのフラグメントと、分子、タンパク質又は細胞との相互作用を研究する方法にも関する。
【0059】
本発明は、抗アルボウイルス化合物をスクリーニングする方法にも関し、該方法は:
(i)固体担体と結局は結合させた抗アルボウイルス抗体又はアルボウイルスの表面分子の受容体を、PhoAと融合したアルボウイルスのエピトープを含むハイブリッドタンパク質と接触させ、
(ii)上記の抗アルボウイルス抗体又は上記の受容体と上記のエピトープとの間で形成された複合体を、適切なシグナル、例えばパラニトロフェノールの形成を測定することにより検出し、
(iii)試験する化合物を加え、
(iv)上記の抗アルボウイルス抗体又は上記の受容体と上記のエピトープとの間で形成された複合体の量が、工程(ii)で検出された複合体の量に関して低減したかを、適切なシグナルを測定し、(ii)で得られたシグナルと得られたシグナルとを比較することにより検出する
ことを含む。
【0060】
全ての方法において、免疫複合体の形成は、4-ニトロフェニルホスフェート(pNPP)を加え、パラニトロフェノールの形成を測定することにより直接検出される。
【0061】
上記の規定に加えて、本発明は、本発明の実施例及び添付の図面に言及する以下の記載から明らかになるその他の規定も含む。添付の図面において:
図1. プラスミドpLB11、pVP5、pLIP5GN-H6及びpEBL1の構造。bla及びaph遺伝子は、それぞれアンピシリン及びカナマイシンに対する耐性をコードする。Ssはシグナル配列についてであり、H6はヘキサヒスチジンについてである。下の部分:pLIP5GN-H6及びpEBL1におけるphoAシグナル配列の5'末端とphoA 遺伝子の主要部分との間の配列の詳細。垂直の矢印は、シグナルペプチドの切断部位を示す。phoA遺伝子に属さない残基又はその生成物は、斜体である。
【0062】
図2. H6-ED3.DEN1-PhoAハイブリッドを用いて行った、マウス血清の単純化GAC-ELISA。塗りつぶした印、DENV1を感染させたマウスからの血清;白抜きの印、非感染マウスの対照血清。四角、25℃にて2.5時間の顕示;丸、4℃にて一晩の顕示;菱形、ブランクの平均値。2.5時間及び一晩後の対照血清のシグナルを重ねる。
図3. H6-ED3.WN-PhoAハイブリッドを用いて行った、マウス血清の単純化MAC-ELISA。塗りつぶした印、gpE.WNを感染させたマウスからの血清;白抜きの印、非感染マウスの対照血清。四角、25℃にて3時間の顕示;丸、4℃にて一晩の顕示;菱形、ブランクの平均値。
【0063】
図4. 抗原に対する単純化GAC-ELISAの特異性。アッセイを、H6-ED3.DEN1-PhoA及びH6-ED3.WN-PhoAハイブリッドを並行して用いて行った。塗りつぶした印、DENV1に感染させたマウスからの血清;白抜きの印、非感染マウスの対照血清。丸、同族H6-ED3.DEN1-PhoA抗原;四角、非同族H6-ED3.WN-PhoA抗原;菱形、ブランクの平均値。顕示は、4℃にて一晩行った。
図5. 抗原に対する単純化MAC-ELISAの特異性。アッセイを、H6-ED3.DEN1-PhoA及びH6-ED3.WN-PhoAハイブリッドを並行して用いて行った。塗りつぶした印、WNVに感染させたマウスからの血清;白抜きの印、非感染マウスの対照血清。丸、同族H6-ED3.WN-PhoA抗原;四角、非同族H6-ED3.DEN1-PhoA抗原;菱形、ブランクの平均値。顕示は、4℃にて一晩行った。
【0064】
図6. H6-ED3.DEN1-PhoAハイブリッドを用いて行った、ヒト血清の単純化MAC-ELISAにおけるシグナルの濃度依存性。塗りつぶした印、DENV1での1次感染を経験した患者からの血清;白抜きの印、DENV1での2次感染。顕示は、25℃にて3時間行った。
図7. H6-ED3.DEN1-PhoAハイブリッドを用いて行った、4つの血清型のDENVでの感染を経験した患者からの血清の単純化MAC-及びGAC-ELISA。血清を400倍に希釈し、アッセイの顕示を、25℃にて3時間行った。(A) 単純化MAC-ELISA。(B) 単純化GAC-ELISA。(C) MAC-及びGAC-ELISAにおけるシグナルの比r。試料1.1、DENV1による1次感染の血清;試料1.2、DENV1による2次感染の血清;試料2、3及び4、DENV-2、-3及び-4による感染の血清;試料C、健康な個体の血清;試料N及びB、血清又は抗ヒトIgをそれぞれ省略したアッセイでのシグナル。
【実施例】
【0065】
以下の実施例は、本発明を説明するが、本発明をいずれの様式でも限定しない。
実施例1:材料及び方法
- 培地、バッファー及びキット
培養培地LB (Sambrook及びRussell, 2001)及びSB (Pluckthun, 1996)は、記載されている。アンピシリンは200μg/mLで、カナマイシンは50μg/mLで用いた。アンピシリンを含むLB培地は、全ての遺伝子構築物について用いた。プラスミドDNAの調製は、Qiaprep Spin Miniprepキットを用い、アガロースゲルからのDNA抽出はGel Extractionキット(ともにQiagenから)を用い、DNAのライゲーションはQuick Ligationキット(Roche)を用い、ポリアクリルアミドゲル電気泳動はNuPAGE Novexシステム(Invitrogen)を用いて行った。酵素結合免疫吸着アッセイ(ELISA)は、96ウェルマイクロタイトレーションプレート(Maxisorb, Nunc)で行った。PBSバッファー(リン酸緩衝塩水)は、Invitrogen又はSigma-Aldrichから購入し、ウシ血清アルブミン(BSA)はRocheから;低脂肪ドライミルクはRegilaitから;Tween 20、4-ニトロフェニルホスフェート(pNPP)及び5-ブロモ-4-クロロ-3-インドリルホスフェート(Xp)はSigma-Aldrichから購入した。バッファーAは、50 mM Tris-HCl、pH 8.0、500 mM NaClを含有し;バッファーBは、PBS中の0.05% Tweenを含有し;バッファーCは、PBS中の0.1% Tweenを含有し;バッファーDは、10%エタノールアミン、pH 9.8、0.01 M MgSO4を含有し;バッファーEは、バッファーD中の20μM ZnCl2を含有した。
【0066】
- 細菌、プラスミド及びウイルス株
大腸菌のXL1-Blue株(Bullockら, 1987)、並びにプラスミドpET20b+ (www.novagen.com)、pUC-4K (Genbankアクセッション番号X06404) (Vieira及びMessing, 1982)、pCR-Blunt (Bernardら, 1994), pQUANTAbody (Boulain及びDucancel, 2004)、pLB11 (Lisovaら, 2007)及びpVP5 (Lisovaら, 2007)は、記載されている。XL1-Blueのハイパーコンピテント細胞(Stratagene)、pCR-Blunt (Invitrogen)、pET20b+ (Novagen)及びpUC-4K (Amersham Biosciences)は、供給業者から購入した。プラスミドpLIP5GN-H6は、pQUANTAbodyの誘導体である(図1)。デングウイルスの血清型1のFGA/89株(DENV1;Genbankアクセッション番号AF226687) (Duarte dos Santosら, 2000)、西ナイルウイルスのIS-98-ST1株(WNV;Genbank AF481864;(Malkinsonら, 2002))、麻疹ウイルスのSchwarz株の組換え形MVSchw及びその誘導体MVSchw-sEWNV (Despresら, 2005)は、記載されている。pUC-4Kは、カナマイシン耐性を与えるaph遺伝子を、容易に可動化できるDNAカセットの形で有する。pQUANTAbodyは、大腸菌からのphoA遺伝子の変異対立遺伝子を、プロモーターptacの制御下に有する。この対立遺伝子は、その活性部位にD153G及びD330Nの2つの変異を有し、かつ触媒特性が向上されたアルカリホスファターゼ(PhoA)をコードする(Boulain及びDucancel, 2004; Le Duら, 2002; Mullerら, 2001)。pLIP5GN-H6は、pQUANTAbodyとは、ヒスチジンの6コドン(H6)及びマルチクローニング部位領域の存在が異なり、これらはともに、シグナル配列の下流のphoAのコドン27とコドン28の間に位置する(図1)。pLB11及びpVP5は、ED3.DEN1及びED3.WNをそれぞれコードする遺伝子セグメントを、pET20b+のNcoI及びXhoI制限部位の間に有する(図1)。MVSchw-sEWNVは、WNVからのgpEの可溶形を発現する。
【0067】
- 抗体及び抗血清
ヤギ抗ヒトIgM及びIgG (Sigma-Aldrich)は、供給業者から購入した。ヒト血清は、フランス領ギアナのインスティティ・パスツール、国立アルボウイルス参照センター(the National Center of Reference for Arboviruses, Institut Pasteur of French Guiana)のコレクションからであった。これらは、発疹及び軽い出血の症状発現を伴うか又は伴わないデングの基本的な臨床症状(発熱、頭痛、筋肉痛、関節痛)を示す患者から回収された。血清は、標準的な診断法、特に抗原としてマウス脳抽出物を用いるGAC-及びMAC-ELISAを用いて特徴決定した。
【0068】
ヤギ抗マウスIgM (Pierce)及びIgG (Sigma-Aldrich)は、供給業者から購入した。マウスモノクローナル抗体mAb4E11は、記載されている(Bedouelleら, 2006)。ED3.DEN1ドメインの表面のエピトープはマッピングされている。これは、不連続で高次構造(conformational)である(Lisovaら, 2007)。DENV1に指向されたマウス血清は、第J0日にBALB/cマウスにウイルスを感染させ、同じウイルスで第J28日に攻撃し、第J53日に出血させることにより得た。対照血清は、同じ種の非感染マウスから得た。以下のように定義され、ドメインED3.DEN1に対する間接的ELISAにより測定した陽性血清のIgG力価は、30000に等しかった(Despresら, 2005)。WNVからのsEに対して指向された血清は、CD46-IFNARマウスに組換えウイルスMVSchw-sEWNVを第J0日に感染させ、第J8日に出血させることにより得た。対照血清は、マウスに「空の」ウイルスMVSchwを感染させることにより得た。陽性及び対照の血清のIgM力価は、それぞれ1000及び100であった。
【0069】
実施例2:CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に2007年4月23日に、アクセッション番号I-3747で寄託された中間ベクター(intermediate vector) pEBL1の構築
プラスミドpLIP5GN-H6のクローニング領域に位置する制限部位は非常に近く、この領域での二重制限切断はモニターするのが困難である。よって、カナマイシンに対する耐性のカセットを、この領域のSalI部位に挿入した。プラスミドpUC-4Kを、SalI酵素で消化し、aph遺伝子を含有するDNAフラグメントをアガロースゲル電気泳動で精製した。pLIP5GN-H6もSalIで消化した。精製したフラグメントと線状ベクターとを、ライゲーションにより再び結合させた。組換えプラスミドpEBL1 (配列番号13)を、ライゲーション混合物でXL1-Blueのコンピテント細胞を形質転換し、形質転換細胞を、アンピシリン及びカナマイシンの両方を含有するLB培地上で選択することにより回収した。
【0070】
より具体的には:
* XL1-Blue(pEBL1)
XL1-Blue(pEBL1)は、pEBL1プラスミドを含有する大腸菌株である。pEBL1は、ヘキサヒスチジンと、所望のパッセンジャータンパク質(フラビウイルスのED3)と、触媒特性が向上された大腸菌からのアルカリホスファターゼとの融合タンパク質の構築を単純化するために工学的に作製された。pEBL1において、カナマイシンに対する耐性を与えるDNAカセットは、パッセンジャー遺伝子の位置にて挿入されている。よって、Hermannら,1990により以前に記載されたクローニングストラテジーに従って、パッセンジャー遺伝子の挿入を行ってモニターするのがより容易である。
【0071】
* XL1-Blueの構築に用いた細菌株及びプラスミド(pEBL1)
実施例1を参照されたい。
【0072】
* 微生物の生存能を確認するために調べる活性
生物は、アンピシリン及びカナマイシンに対して耐性である。この表現型は、LB寒天培地、100μg/ml アンピシリン及び50μg/mlカナマイシンを含有するペトリ皿上で生物を培養することにより調べることができる。
【0073】
実施例3:ED3-PhoAハイブリッド遺伝子の構築
方法
フラビウイルスのED3ドメインとPhoAとのハイブリッドタンパク質をコードするED3-phoAハイブリッド遺伝子を、次のようにして構築した。プラスミドpEBL1 (実施例2を参照)を、まず、制限酵素SmaIで消化し、消化の完了を電気泳動により確認し、消化したDNAを、Microspin G25カラム(Amersham-Biosciences)上でのサイズ排除クロマトグラフィーにより脱塩した。pEBL1の線状の形態を、次いで、SalI酵素で消化し、制限切断を電気泳動によりモニターし、カナマイシン耐性のカセット(1252 bp)に相当するDNAフラグメントが出現した。ED3遺伝子を、2つのオリゴヌクレオチドプライマーと高忠実度のポリメラーゼPfu-Turbo (Stratagene)を用いるPCRにより増幅した。ED3遺伝子の5'末端とハイブリッド形成するプライマーはSalI部位を有し、3'末端にハイブリッド形成するプライマーはScaI及びSpeI部位を有した。ScaI部位(AGT-ACT)は、SmaI部位(CCC-GGG)よりも好ましい。なぜなら、後者は希なコドンCCCを導入するからである。ScaI、SpeI及びSalI部位は、ED3.DEN1遺伝子にもED3.WN遺伝子にも存在しなかった。PCR生成物をSalI及びScaIで消化した。消化生成物を、アガロースゲルによる電気泳動及び抽出により精製し、次いで、ライゲーションにより再結合させた。組換えプラスミドを形質転換によりXL1-Blue株に導入し、組換え細菌を、Xp指示薬培地上での青色コロニーの形成及びカナマイシンに対する感受性についてスクリーニングした。
【0074】
プラスミドpLB11からのED3.DEN1を増幅するために用いたプライマーは以下の配列を有した(制限部位に下線を付す):
5'-GCCGGCGGTCGACAAAGGGATGTCATATGTGATGTGCAC-3' (配列番号14);
5'-G TTTAGTACTAGTTTTCCCTATGCTGCT TCCCTT C-3' (配列番号15)。
同様に、ED3.WNを増幅するために用いたプライマーは、以下の配列を有した:
5'-GCCGGCGGTCGACAAAGGAACAACCTATGGCGTCTG-3' (配列番号16);
5'GGTGAGTACTAGTTTTGCCAATGCTGCT ACCAGAC-3' (配列番号17)。
【0075】
H6-ED3.DEN1-PhoAをコードする組換えプラスミドpEBL11と、H6-ED3.WN-PhoAをコードする組換えプラスミドpEBL15の配列を、pEBL1内のクローニング領域の外側でハイブリッド形成するオリゴヌクレオチドを用いて確認した:
5'-GCACTGGCACTCTTACCGTTAC-3' (配列番号18);
5'-CAGTCTGATCACCCGTTAAAC-3' (配列番号19)。
【0076】
実施例4:二官能性ED3-PhoAハイブリッドの生成及び精製
生成及び精製
H6-ED3-PhoAハイブリッドは、XL1-Blue株中のプラスミドpEBL11及びpEBL15から生成した。生成株の前培養を、SBブロス(1/10容量)に単離したコロニーを植菌し、37℃にて一晩インキュベーションすることにより行った。生成は、前培養物を同じ培地の1容量で希釈して最初の吸光度A600nm = 0.25〜0.30を得て、30℃にてA600nm = 1.5〜2.0まで成長させ、プロモーターptacを0.2 mM IPTGを用いて誘導し、同じ温度にてさらに2時間インキュベーションすることにより行った。全てのその後の工程は4℃にて行った。培養物は、5000 rpmにて10分間遠心分離した。細菌ペレットをバッファーA中の5 mMイミダゾール、1 mg/ml硫酸ポリミキシンB (Sigma-Aldrich)に再懸濁し(1/40容量)、細菌懸濁物を、磁気撹拌器で1時間穏やかに撹拌した。ペリプラスム抽出物は、懸濁物を13000 rpmにて10分間遠心分離し、-20℃にて凍結させることにより回収した。ED3-PhoAハイブリッドを、NiNTA樹脂(0.6ml/L-培養物、Qiagen)のカラム上での親和性クロマトグラフィーにより、ペリプラスム抽出物から精製した。カラムにペリプラスム抽出物を載せ、バッファーA中の20 mMイミダゾール(樹脂の10容量)で洗浄した。結合したタンパク質は、バッファーA中のイミダゾールの40〜100 mMのステップ勾配を用いて溶出した。精製物のフラクションを、還元条件下のSDS-PAGE (12%アクリルアミド)により分析した。H6-ED3-PhoAを含有し、>90%の純度のものをプールし、P10カラム(Amersham biosciences)上でのサイズ排除クロマトグラフィーによりPBSバッファーに移した。これらを、PBSへの移行の前又は後のいずれかで(このことは機能的特性の点で重要でない) (結果を参照)、-80℃にて直ちに凍結させた。精製H6-ED3-PhoAハイブリッドの濃度は、A280nmと、ソフトウェアスイートEMBOSSのサブルーチンPepstatsを用いてそれらのアミノ酸配列から算出した(Riceら, 2000)単量体についての吸光係数ε280nm = 40 680 M-1cm-1とを用いて決定した。
【0077】
間接的ELISA
間接的ELISAは、200μL/ウェルの容量のマイクロタイトレーションプレートで行った。抗体mAb4E11を、PBSで10000倍に希釈した。プレートのウェル1〜11に抗体溶液を装填し、ウェル12にPBS単独を装填し、吸着反応のために4℃にて一晩インキュベートした。ウェルをバッファーBで洗浄し(3回)、バッファーB中の3% BSAで25℃にて3時間ブロッキングし、バッファーBで再び洗浄した(4回)。H6-ED3.DEN1-PhoAハイブリッド(0.2μMの最初の濃度)を、バッファーB中の1% BSAを用いて2倍に系列希釈した。ウェル1〜10に、ハイブリッドの最初の希釈10個を装填し、ウェル11に希釈バッファー単独を、ウェル12にハイブリッドの最低希釈を装填した。プレートを、捕捉反応のために25℃にて1時間インキュベートした。ウェルを上記のようにして洗浄し、捕捉されたハイブリッドを、バッファーD中の5 mM (2 mg/ml)のpNPPの添加により顕示した。パラニトロフェノールの形成を、A405nmを用いて4℃にて一晩の後に測定した。
【0078】
酵素活性
pNPPからのp-ニトロフェノレート(pNP)の形成を、25℃にて、バッファーD又はE中でA405nmによりモニターした。pNPPの最初の濃度(5 mM)は飽和していた(Le Duら, 2002)ので、動力学的パラメータkcatは、以下の等式により算出できた:
dA405nm/dt = kcatE0ε405nm(pNP) (4)
式中、dA405nm/dtは、pNPの形成の初速度であり;E0は、(H6-ED3-PhoA)2二量体の合計濃度であり;ε405nm(pNP) = 1.78×104 M-1cm-1である(Mullerら, 2001)。kcatの値は、いくつかの値のE0について測定し、平均した。
【0079】
H6-ED3-PhoAハイブリッドの機能的特性
H6-ED3-PhoAハイブリッドの機能を評価するために、それらのホスファターゼ活性を測定し、モノクローナル抗体mAb4E11によるそれらの認識をアッセイした。H6-ED3.DEN1-PhoA及びH6-ED3.WN-PhoAハイブリッドは、pNPPのpNPへの脱リン酸化について活性であり、バッファーD中、25℃での二量体1分子についてのkcat値がそれぞれ190±18 s-1及び154±6 s-1に等しい。H6-ED3.DEN1-PhoAは、固定化されたmAb4E11に、間接的ELISAにおいて特異的に結合し、このことはその固有のホスファターゼ活性により顕示された。これらの結果は、ハイブリッドのPhoA部分が正しく折り畳まれて二量体であったことを示した。なぜなら、PhoAの二量体の形態は、その単量体の形態よりも100倍活性が高いからである(Boulanger及びKantrowitz, 2003)。これらの結果は、ハイブリッドのED3.DEN1部分が正しく折り畳まれて抗原として機能的であることを示した。なぜなら、mAb4E11のエピトープは不連続で高次構造であり、ED3.DEN1ドメイン中に含まれるからである(Lisovaら, 2007)。各ハイブリッド分子の抗原特性はその固有の酵素活性を用いて明らかにされたので、結果は、H6-ED3.DEN1-PhoA分子の著しい割合が全ての所望される特性を同時に有し、すなわち、それらのPhoA部分が二量体でかつ活性であり、それらのED3.DEN1部分が抗原性でかつ二価(bivalent)状態であることを示した。PhoAポリペプチド鎖の7位の2つの残基は、PhoA二量体の構造中の同じ側に位置する(Le Duら, 2002)。よって、H6-ED3-PhoA二量体中のED3部分の2つのコピーも、分子の同じ側にあるはずであり、アビディティーの形態により免疫グロブリンと相互作用できるはずである。上記の結果は、H6-ED3-PhoAハイブリッドをGAC-ELISA及びMAC-ELISAで用い得ることを示すのに充分であった。
【0080】
H6-ED3.DEN1-PhoAと、そのエピトープが不連続で高次構造である抗体mAb4E11との間の認識の存在は、マイクロタイタープレートのウェルにmAb4E11が固定化され、ハイブリッドの結合がアルカリホスファターゼ活性により顕示される間接的ELISAにより示された。この実験は、それぞれのハイブリッド分子の2つの部分ED3.DEN1及びPhoAが、同時に機能的であることを示した。よって、これらの2つの部分が正しく折り畳まれ、それらの必須のジスルフィド結合がペリプラスムの酸化媒体中で形成され、それらの組み立てが二量体であった。なぜなら、PhoAはこのオリゴマー形成状態でのみ著しく活性であるからである。ハイブリッドのそれぞれの分子は、二量体でかつ二官能性であった。
【0081】
間接的ELISAの実験は、ED3.DEN1ドメインと抗体mAb4E11との間の認識を、(H6-ED3.DEN1-PhoA)2を用いて検出できたことを示した。このハイブリッドは、ED3とその他の分子、例えば阻害剤、その他の抗体、受容体又は細胞全体との間の相互作用を検出するために用いることができた。
H6-ED3.DEN1-PhoA及びH6-ED3.WN-PhoAについての触媒定数kcatの値により、これらのハイブリッド分子のPhoA部分の高い活性、よってそれらの二量体状態が確かめられた。PhoAによる組換えED3ドメインの人工的な二量体形成は、ウイルス全体の表面でのそれらの多量体での提示を、よって、抗体又はその他の受容体とのそれらの多価性の形態の相互作用を部分的に模倣した。
【0082】
実施例5:GAC-ELISA及びMAC-ELISA
方法
捕捉ELISAは、100μL/ウェルの容量のマイクロタイトレーションプレートを用いて行った。抗IgG及び抗IgM抗体をPBSで希釈した(最終濃度1μg/mL)。プレートのウェル1〜11に抗体の溶液を装填し、ウェル12にPBS単独を装填した。プレートを、吸着反応のために4℃にて一晩インキュベートした。次の朝に、ウェルをバッファーCで洗浄し(3回)、バッファーC中の3% (w/v)ドライミルクで37℃にて1時間ブロッキングし、次いでバッファーCで洗浄した(3回)。分析される血清及び対照血清を、100倍に、バッファーC中の1%粉ミルクで希釈し、次いで系列希釈した。H6-ED3-PhoAハイブリッドを、同じバッファーで希釈した(0.5μMの単量体の最終濃度)。ウェル1〜10に血清の最初の希釈10個を装填し、ウェル11に希釈バッファー単独を、ウェル12に血清の最低希釈を装填した。プレートを抗体捕捉反応のために37℃にて1時間インキュベートした。ウェルをバッファーCで洗浄し(3回)、次いで、H6-ED3-PhoAの溶液を装填した。プレートを、結合反応のために37℃にて1時間インキュベートした。ウェルを上記のようにして洗浄し、結合したH6-ED3-PhoA分子を、バッファーE中の5 mM pNPPの添加により顕示した。A405nmを、25℃にて数時間又は4℃にて一晩の後に測定した。血清のシグナルは、その値がブランク対照の少なくとも2倍であった場合に、著しいとみなした。血清の力価は、シグナルが著しかったものについての最大希釈係数に等しかった。いくつかの洗浄を延長し、抗IgM抗体を2.4μg/mLの最終濃度で用い、H6-ED3.DEN1-PhoAを0.2μMの単量体の最終濃度で用い、pNPPがバッファーD中にあった以外は、ヒト血清と同様にしてマウス血清について捕捉ELISAを行った。
【0083】
結果
抗フラビウイルスIgGの定量のための単純化GAC-ELISA
H6-ED3-PhoAハイブリッドが、同族フラビウイルスに対して指向されたIgGを、免疫化されたマウスの血清中で検出でき、よって、このような血清学に通常用いられるGAC-ELISAのプロトコルを単純化できるかについて試験した。よって、マウスIgGに対して指向された抗体を、マイクロタイトレーションプレートのウェルに、プラスチックの受動吸着により固定化した。この固定化抗体は、マウス血清中に存在するIgGを捕捉するために用いた。ED3ドメインに対して指向されたIgGを、H6-ED3-PhoAハイブリッドを用いて、その抗原性部分の結合とそのPhoA部分の触媒活性とにより顕示した(等式3)。
【0084】
このアッセイは、DENV1で免疫にしたマウスの血清を用いて行った。非免疫化マウスの血清、抗IgG抗体を用いないブランク試験及び血清を用いないブランク試験を対照として用いた(材料及び方法)。H6-ED3.DEN1-PhoAハイブリッドにより触媒されA405nmでモニターしたpNPPからのpNPの形成をシグナルとして用いて、結合反応を顕示した(図2)。A405nmシグナルは、免疫血清中の濃度の関数として彩度の低値(a low of saturation)に従った。独立して3回反復したこれらの実験において、免疫血清の力価は、一晩の顕示の後に>50000であった(2.5時間後に>12500)。非免疫血清についてのA405nmは、ブランクシグナルと変わらなかったが、免疫血清についてのシグナルは、一晩の顕示の後に、濃度に応じてブランクシグナルより2〜18倍高かった(2.5時間後に2〜6倍)。これらの結果により、H6-ED3.DEN1-PhoAの両方の部分が、ハイブリッドの1つの分子中で同時に機能的であったことが確かめられた。これらの結果は、このハイブリッドが、ED3.DEN1ドメインに対して指向されたIgGの存在を、血清中で高感度で、定量的にかつ特異的にアッセイでき、よって、デングウイルスによる感染を検出できることを示した。
【0085】
抗フラビウイルスIgMの定量のための単純化MAC-ELISA
同様にして、H6-ED3-PhoAハイブリッドが、フラビウイルスに対して指向されたIgMを、免疫化したマウスの血清中で検出でき、よって、通常用いられるMAC-ELISAのプロトコルを単純化できるかについて試験した。マウスIgMに対して指向された抗体を固定化した。固定化抗体を用いて、マウス血清中に存在するIgMを捕捉した。ED3ドメインに対して指向されたIgMを、二価のH6-ED3-PhoAハイブリッドを用いて顕示した(等式3)。
【0086】
このアッセイは、WNVからのgpEの分泌形を発現するキメラウイルスMVSchw-sEWNVで免疫にしたマウスの血清を用いて行った。空のベクターMVSchwで免疫にしたマウスの血清、抗IgM抗体を用いないブランク試験、及び血清を用いないブランク試験を対照として用いた(材料及び方法)。H6-ED3.WN-PhoAハイブリッドを用いて、結合反応を顕示した(図3)。A405nmシグナルは、免疫血清の濃度の関数として彩度の低値に従った。免疫血清の力価は、一晩の顕示の後に>800であった(3時間後に>400)。非免疫化血清についてのA405nmシグナルは、一晩のインキュベーションの後にブランクシグナルより最大で1.7倍高かったが、免疫血清についてのシグナルは、濃度に応じてブランクシグナルよりも2〜6.4倍高かった。これらの数字は、3時間の顕示の後に、非免疫血清について1.2倍であり、免疫血清について2〜2.6倍であった。非免疫血清についてのシグナルは、血清の相対濃度≦2.5‰についてブランクシグナルと著しく異ならなかったことに注目されたい。これらの結果により、H6-ED3.WN-PhoAの両方の部分が、ハイブリッドの1つの分子中で同時に機能的であったことが確かめられた。これらの結果は、このハイブリッドが、ED3.WNドメインに対して指向されたIgMの存在を高感度で、定量的にかつ特異的にアッセイできたことを示した。これらの結果は、ハイブリッドが、WNVへの早期の曝露の検出を可能にすることを示唆する(第8日にて)。
【0087】
実施例6:ED3-PhoAハイブリッドによるフラビウイルス間の区別
本発明による単純化GAC-及びMAC-ELISAの特異性を、交差反応を行うことにより試験した。DENV1ウイルスで免疫にしたマウスの血清を、2つの並行するGAC-ELISAに供し、これらはH6-ED3.DEN1-PhoAハイブリッド又はH6-ED3.WN-PhoAを用いて顕示した(図4)。逆に、MVSchw-sEWNVキメラウイルスで免疫にしたマウスの血清を、2つの並行するMAC-ELISAに供し、これらはH6-ED3.DEN1-PhoAハイブリッド又はH6-ED3.WN-PhoAを用いて顕示した(図5)。一晩の顕示の後に、同族のシグナルは、GAC-ELISAにおける非同族のシグナルよりも5.4倍まで高く、MAC-ELISAにおいて3.9倍まで高かった。もちろん、これらの数字は、特異的シグナル(血清のシグナルからブランクのシグナルを減じる)を考慮すると、より高かった。これらの結果は、本明細書に記載されるようなGAC-及びMAC-ELISAは特異的であり、これらが、感染又は免疫化に関与したフラビウイルスを同定することを可能にしたことを示した。
【0088】
実施例7:単純化GAC-及びMAC-ELISAを用いたヒト血清のアッセイ
H6-ED3.DEN1-PhoAハイブリッドを用いて、デングウイルスの4つの血清型DENV1〜DENV4の1つに感染したヒト患者からの血清を試験した。DENV1について、症状の開始から第9日と第28日の間に採取された3つの血清試料は、デングウイルスでの1次感染に相当した。第13及び18日に採取された2つの血清試料は、2次感染に相当した。DENV2、-3及び-4について、試料を第8日〜第32日の間に採取し、感染の1次又は2次の状態はわからなかった。これらの血清は、予め、乳飲みマウスの脳抽出物を抗原として用いるGAC-及びMAC-ELISAの標準的な方法によりアッセイされた。以下の対照を用いた:ヒトIgG又はIgMに対して指向された固定化抗体を省略したアッセイ;血清を省略したアッセイ;デングウイルスにより感染していない患者の血清を用いる2つのアッセイ。
【0089】
A405nmシグナルは、DENV1の1次感染の患者からの血清についてMAC-ELISAにおいて(図6)、そしてDENV1の2次感染の患者からの血清についてGAC-ELISAにおいて(示さず)、血清の濃度の関数として彩度の法則(a law of saturation)に従った。これは、血清の相対濃度>2.5‰まで直線状に増加した。よって、この相対濃度を、以下の分析のために用いた。25℃にて3時間のアッセイの顕示が充分であった。
【0090】
試験した20個の血清のうち、1次感染に相当する3つの血清だけがMAC-ELISAにおいて陽性のシグナルを与え、すなわち対象のシグナルの2倍を超えていた。他の全ての血清は、対照と同じシグナルを与えた(図7A)。よって、本発明による単純化MAC-ELISAは、DENV1での1次感染を検出でき、DENV1と他の3つの血清型での感染を区別できた。4つの血清試料:2次DENV1感染の患者からの2つの試料;DENV2感染の患者からの6つの試料のうちの1つの試料(2d);及びDENV4感染の患者からの2つの試料のうちの1つの試料(4a)は、GAC-ELISAにおいて陽性シグナルを与えた(図7B)。よって、本発明による単純化GAC-ELISAは、DENV1での2次感染を、症状の開始の13日後に検出できた。血清2d及び4aが単純化GAC-ELISAにおいて陽性と評価された患者は、以前に、DENV1に気づかぬうちに感染していたのかもしれない。各試料を採取した日と単純化MAC-及びGAC-ELISAにおけるシグナルの値との間に相関関係は観察されなかった。
【0091】
並行するMAC-及びGAC-ELISAにおけるシグナルの比rは、デングウイルスによる感染が1次又は2次のいずれのタイプによるものであるかを決定するために用いられている。本発明による単純化捕捉ELISAにおけるシグナルについてこのような比(図7C)を算出した。DENV1による1次感染に相当する3つの血清は、r>1.90を有した。DENV2、-3及び-4での感染に相当する全ての血清は、血清2d及び4a以外は、r<1.4を有した。DENV1による2次感染に相当する血清、並びに血清2d及び4aは、r<0.4を有した。よって、比rは、1次感染と2次感染を区別でき、DENV1での1次感染と他のDENV血清型での感染とを区別することもできるだろう。
【0092】
(H6-ED3.DEN1-PhoA)2ハイブリッドは、単純化GAC-ELISAにおいて用いて、DENV1に対して指向されたIgGの存在を、このウイルスで過免疫されたマウスの血清又はこのウイルスによる2次感染に耐えたヒト患者からの血清中で顕示することに成功した。同じハイブリッドを、単純化MAC-ELISAにおいて用いて、DENV1に対して指向されたIgMの存在を、このウイルスによる1次感染に耐えた患者の血清中で顕示することに成功した。単純化GAC-ELISAにより、マウスにおけるDENV1及びWNVによる感染を区別できた。単純化GAC-及びMAC-ELISAの組み合わせにより、ヒトにおいてDENV1による感染とDENVの3つの他の血清型による感染とを、そしてDENV1による1次感染と2次感染とを区別できた。
【0093】
同様に、(H6-ED3.WN-PhoA)2ハイブリッドは、単純化MAC-ELISAにおいて用いて、WNVに対して指向されたIgMの存在を、マウスの血清中で顕示することに成功した。この単純化MAC-ELISAにより、WNV及びDENV1による感染を区別することができる。単純化GAC-及びMAC-ELISAの高い特異性及び感度は、おそらく2つの因子による:抗原の性質及び抗原と血清の免疫グロブリンとの相互作用に向かう、PhoAとの融合体からなる抗原としてのED3ドメインの使用及び検出系の独立性。(H6-ED3-PhoA)2二官能性二量体の特異性は、現在まで用いられている抗原及び検出系のものよりも高いはずである。
【0094】
実施例8:単純化MAC-ELISAを用いるヒト血清のアッセイ
実験のさらなる系列において、デングウイルスの4つの血清型DEN1〜DEN4の1つ又は黄熱病ウイルス(YFV)に感染した患者の血清を回収し、MAC-ELISA (Talarminら, 1998)及びPCR (Lanciottiら, 1992)の標準的な方法により特徴決定した。標準的なMAC-ELISAは、感染した乳飲みマウスの脳の抽出物を抗原として用い、PCRは、それぞれのウイルス血清型に特異的なプライマーを用いた(表I)。プライマー配列と増幅条件は、記載されたとおりであった(Lanciottiら, 1992)。特に、プライマー配列は、次のとおりであった:
プライマーD1: 5'- TCAATATGCTGAAACGCGCGAGAAACCG -3' (配列番号26)。
プライマーD2: 5'- TTGCACCAACAGTCAATGTCTTCAGGTTC -3' (配列番号27)。
プライマーTS1: 5'- CGTCTCAGTGATCCGGGGG -3' (配列番号28)。
プライマーTS2: 5'- CGCCACAAGGGGCATGAACAG -3' (配列番号29)。
プライマーTS3: 5'- TAACATCATCATGAGACAGAGC -3' (配列番号30)。
プライマーTS4: 5'- CTC TGT TGT CTT AAA CAA GAG A -3' (配列番号31)。
【0095】
増幅は、以下の成分を含有する100μlの容量で行った:50 mM KCl、10 mM Tris (pH 8.5)、1.5 mM MgCl2、0.01%ゼラチン、200μMのそれぞれの4種類のデオキシヌクレオチド3リン酸、5 mMジチオトレイトール、50 pmol各プライマー、2.5ユニットのrav-2組変えRT (Amersham, Arlington Heights, Ill.)及び2.5ユニットのAmplitaqポリメラーゼ(Perkin Elmer, Norwalk, Conn.)。反応は、42℃にて1時間インキュベートし、次いで35サイクルの変性(94℃、30秒)、プライマーアニーリング(55℃、1分)及びプライマー伸長(72℃、2分)を進めるようにプログラムに組み込まれたサーモサイクラーで行った。
【0096】
【表2】

【0097】
上記の表Iにおいて、第1列:標準的な診断方法(本文を参照)によりヒト患者の血清において検出されたフラビウイルス。第3列:DENVの4つの血清型に対応するH6-ED3-PhoAハイブリッドを用いて並行して試験された血清の数。第4列:4つのH6-ED3.DEN-PhoAハイブリッドとH6-ED3.YF-PhoAハイブリッドとを用いて並行して試験された血清の数。第4列の血清は、第3列の血清の部分集合を構成した。
【0098】
YFVに感染した患者の19個の血清のうち4個は、カイエンヌ(フランス領ギアナ)のインスティティ・パスツールから受け取り、YFVに対して最近ワクチン接種された患者に相当し、残りの15個の血清は、ダカール(セネガル)のインスティティ・パスツールから受け取った。
【0099】
回収された血清は、本発明による単純化MAC-ELISAにより、5つの対応するH6-ED3-PhoAハイブリッドを用いて以前に記載したようにして(実施例5を参照)アッセイした。単純化MAC-ELISAの一般的なフォーマットは、次のとおりである:
担体-@huIgM :: 血清 :: (H6-ED3-PhoA)2
ここで、@huIgMは、ヒトIgMに対して指向された抗体である。本発明者らは、血清アッセイのシグナルAが、対照のシグナルAcの2倍を超える場合、すなわちA>2Acの場合に陽性であるとみなした。対照は、n重(n≧3)で行い、ヒトIgMに対して指向された抗体が省略されたアッセイであった。
【0100】
表IIは、血清及びハイブリッドのそれぞれのタイプについての陽性シグナルの割合を示す。血清のそれぞれのタイプについて、陽性シグナルの割合は、DENV4に感染した患者の血清を除いて、同族ハイブリッドについて最大であった。このDENV4に感染した患者の血清の場合において、陽性シグナルの割合は、ED3.DEN1-PhoA及びED3.DEN2-PhoAハイブリッドを用いて最大であった。DEN2及びYF血清は、非同族ハイブリッドとはほとんど反応しなかった。対照的に、DEN1血清は、DEN2及びDEN3ハイブリッドと頻繁に反応し、DEN4血清は、全てのDENハイブリッドと反応した。逆に、ハイブリッドのそれぞれのタイプについて、陽性シグナルの割合は、全ての種類の血清と弱く反応したED3.DEN4-PhoA以外は、同族血清を用いて最大であった。特に、DEN1及びYFハイブリッドは、非同族血清とはほとんど反応しなかった。
【0101】
【表3】

【0102】
上記の表IIにおいて、第1列は、アッセイにおいて用いたH6-ED3-PhoAハイブリッドのタイプ、すなわちそのED3部分のウイルス起源を示す。第2〜6列は、血清及びハイブリッドのそれぞれのタイプについてアッセイでの陽性血清の割合を示す。血清のシグナルAが対照シグナルAcの2倍を超える(A≧2Ac)場合に、該血清のシグナルを陽性とみなし、2倍より低い(A<2Ac)場合に陰性とみなした。ヒト血清の数及び特性を、表Iに示す。
【0103】
表IIIは、血清のそれぞれのタイプ及びハイブリッドのそれぞれのタイプについての比(血清シグナル)/(対照シグナル)、すなわち<A/Ac>の平均値を示す。血清のそれぞれのタイプについて、この平均値は、DEN4血清を除いて、同族ハイブリッドについて最大であった。しかし、ハイブリッドのそれぞれのタイプについて、この平均値は、全般的に、同族血清について最大でなかった。
【0104】
【表4】

【0105】
上記の表IIIにおいて、第1列は、アッセイにおいて用いたH6-ED3-PhoAハイブリッドのタイプを示す。第2〜6列は、血清及びハイブリッドのそれぞれのタイプについてのA/Acの平均値を示す。詳細については表IIの凡例を参照されたい。
【0106】
実施例9:閾値シグナルを用いた単純化MAC-ELISAの感度及び特異性
単純化MAC-ELISAの感度を、血清及び同族ハイブリッドのそれぞれのタイプについて表IVの第1行に示す。この感度は、DEN1及びDEN2血清について高く、DEN3及びYF血清について中程度であり、DEN4血清について低かった。カイエンヌのインスティティ・パスツールから受け取り、ワクチン接種された患者に相当する4つのYF血清に限定するならば、感度はより高かった(4つの陽性シグナル)。YFVのワクチン株17Dに相当する配列を有するED3.YF-PhoAハイブリッドは、野生型株に対して指向されたものよりも、ワクチンウイルスに対して指向されたIgMをよりよく検出できるだろう。
【0107】
【表5】

【0108】
表IVにおいて、第1行の感度は、同族H6-ED3-PhoAハイブリッドを用いてアッセイしたときに陽性シグナルを与える血清の割合と定義した(表IIの対角線を参照)。第2行のDEN血清型特異性は、同族DENハイブリッドを用いて陽性シグナルを与えるもののうち、3つの非同族DENハイブリッドを用いて陰性シグナルを与える血清の割合と定義した。第3行のDEN血清型特異性は、同族ハイブリッドを用いて陽性シグナルを与えるもののうち、非同族DENハイブリッドを用いたよりも同族DENハイブリッドを用いてより高いシグナルを与える血清の割合と定義した。第2行及び第3行のDEN血清型特異性は、表I、第3列の血清を用いて決定した。第4行の群特異性は、同族DENハイブリッドを用いて陽性シグナルを与え、YFハイブリッドを用いて陰性シグナルを与えるDEN血清の割合として、そして同族YFハイブリッドを用いて陽性シグナルを与え、4つ全てのDENハイブリッドを用いて陰性シグナルを与えるYF血清の割合として定義した。第5行のウイルス特異性は、同族ハイブリッドを用いて陽性シグナルを与えるもののうち、非同族ハイブリッドを用いるよりも同族ハイブリッドを用いてより高いシグナルを与える血清の割合として定義した。第4行及び第5行の群特異性及びウイルス特異性は、表I、第4列の血清を用いて決定した。その他の詳細については表IIを参照されたい。
【0109】
単純化MAC-ELISAにおけるDEN血清型についてのED3-PhoAハイブリッドの特異性は、同族ハイブリッドを用いて陽性シグナルを与える血清(A>2Ac)のうちの、3つの非同族ハイブリッドを用いて陰性シグナルを与える血清(A<2Ac)の割合として算出した。血清型のこの特異性は、ED3.DEN2-PhoAハイブリッドについて高く、DEN3ハイブリッドについて中程度であり、DEN1ハイブリッドについて低く、DEN4ハイブリッドについてゼロであった(表IV、第2行)。
【0110】
単純化MAC-ELISAにおけるウイルス群についてのED3-PhoAハイブリッドの特異性は、一方で、同族ED3.DEN-PhoAハイブリッドを用いて陽性シグナルを与え、ED3.YF-PhoAハイブリッドを用いて陰性シグナルを与えるDEN血清の割合として、他方で、同族ED3.YF-PhoAハイブリッドを用いて陽性シグナルを与え、全てのED3.DEN-PhoAハイブリッドを用いて陰性シグナルを与えるYF血清の割合として算出した。ウイルス群についてのこの特異性は、全ての場合において≧89%であり、ED3.DEN1-PhoA及びED3.DEN4-PhoAハイブリッドについて100%までであった(表IV、第4行)。
【0111】
実施例10:最大シグナルを用いる単純化MAC-ELISAの特異性
ED3-PhoAハイブリッドのモジュール性構造は、単純化MAC-ELISAでのシグナル強度が、そのED3部分と血清の抗体との間の認識の特性にのみ依存するようなものである。この特性は、異なるED3ドメインを有するED3-PhoAハイブリッドを用いて所定の血清について得られたシグナルを定量的に比較することを可能にする。よって、本発明者らは、同族ED3-PhoAハイブリッドを用いて陽性シグナルを与える血清と、非同族ハイブリッドよりも同族ハイブリッドを用いてより高いシグナルを与える血清の割合を算出した。本発明者らは、これらの割合を、4つのED3.DENハイブリッドについて、次いで5つのED3-PhoAハイブリッドについて算出した。このようにして4つのDENハイブリッドについて算出された血清型特異性は、DEN1、DEN2及びDEN3ハイブリッドについて≧89%であり、DEN4ハイブリッドについてゼロであった(表IV、第3行)。5つのハイブリッドについて算出したウイルス特異性も、DEN4ハイブリッドを除いて≧89%であった(表IV、第5行)。
【0112】
実施例11:単純化GAC-ELISAを用いるヒト血清のアッセイ
デングウイルスの3つの血清型DEN1、DEN2及びDEN3のうちの1つに感染した患者の血清を回収し、IgG特異的間接的ELISA及びPCRの標準的な方法により特徴決定した。間接的ELISAは、感染した乳飲みマウスの脳の抽出物を抗原として用い、PCRは、それぞれのウイルス血清型に特異的なプライマーを用いた(表I)。回収した血清を、本発明による単純化GAC-ELISAにより、以前に記載したような3つの対応するH6-ED3-PhoAハイブリッドを用いてアッセイした(実施例5を参照)。単純化GAC-ELISAの一般的なフォーマットは、次のとおりである:
担体-@huIgG :: 血清 :: (H6-ED3-PhoA)2
ここで、@huIgGは、ヒトIgGに対して指向された抗体である。本発明者らは、血清アッセイのシグナルが、対照のシグナルの2倍より高い場合に、陽性であるとみなした。対照は、n重(n≧3)で行われた、ヒトIgGに対して指向された抗体を省略したアッセイであった。同族ハイブリッドを用いて行った単純化GAC-ELISAにおける陽性血清の割合は低く、最大でも29%であった(表V)。
【0113】
【表6】

【0114】
表Vにおいて、感度及び血清型特異性は、表IVのように定義した。ヒト血清の数及び特性は、表Iに示す。
実施例8〜11において特徴決定したH6-ED3-PhoAハイブリッドにより、本発明者らは、単純化MAC-ELISAにより、早期のデングウイルス又は黄熱病ウイルスによる最近の感染を認識できた。感度は、DEN1>DEN2>DEN3 = YF >> DEN4の順に、DEN4ウイルスを除いて高い〜より高いになった。
【0115】
これらの感度の差は、ウイルスによりED3ドメインの免疫原性のレベルが変動することによるのであろう。この仮定の下に、ED3.DEN4ドメインは、他の3つの血清型DEN1〜DEN3又はYFVからのED3ドメインよりも免疫原性がより低い可能性がある。或いは、感度の差は、特定の株、つまり、組換えハイブリッドを構築するために本発明者らが用いたウイルスの配列による可能性がある。例えば、YFVによる感染についての単純化MAC-ELISAは、17Dワクチン株に相当する1つと、野生型に相当する1つとの2つのハイブリッドを自由に有することにより改良できるであろう。
【0116】
5つの試験したハイブリッドは、非常に良好なウイルス群特異性を有し、すなわちデング群対黄熱病群で、89%より高かった。これらは、異なるハイブリッドを用いた同じ血清のアッセイを量的に比較したときに、DEN4ハイブリッドを除いて89%より高い非常に良好な血清型特異性も有した。この結果は、ED3.DEN4に対して指向された抗体が、フラビウイルス間で共有されるエピトープを認識することを示唆する。
【0117】
H6-ED3-PhoAハイブリッドの血清型DEN1〜DEN3を用いてヒト血清に対して行った単純化GAC-ELISAは、低い感度を有した。この結果が一般的であり、他のウイルス又は生物に拡張すべきかは、まだ決定されていない。図2及び4は、DENV1で免疫にされたマウスからの血清に対してH6-ED3.DEN1-PhoAを用いて行った単純化GAC-ELISAについての感度を示す。本発明者らは、ヒト血清に対して行った単純化MAC-及びGAC-ELISAにおけるシグナルの量的比較も示し、これが、DENV1による1次感染と2次感染とを区別し得ることを示した、実施例7及び図7を参照されたい。
【0118】
よって、組換えH6-ED3-PhoAハイブリッドは、安全性の低い実験室で容易に調製できる。これらのハイブリッドは、早期のフラビウイルスによる感染の検出を可能にし、ウイルスの群の間又はデングウイルスの血清型の間さえ臨床医が区別することを可能にする。
【0119】
【表7】

【0120】
【表8】

【0121】
【表9】

【0122】
【表10】

【0123】
【表11】

【0124】
【表12】

【0125】
【表13】

【0126】
【表14】

【受託番号】
【0127】
CNCM I−3747
CNCM I−3748
CNCM I−3749

【特許請求の範囲】
【請求項1】
(i) 対象者又は動物からの試料を、考慮される対象者又は動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、アルボウイルスED3ドメインとアルカリホスファターゼ(PhoA)とを少なくとも含むハイブリッドタンパク質からなる検知分子とインキュベートする
ことを含み、
該免疫複合体の検出が、前記試料中のアルボウイルスの存在の指標である、
ことを特徴とする、対象者又は動物宿主におけるアルボウイルスの診断又はスクリーニングのための方法。
【請求項2】
前記Ig結合タンパク質が、抗IgM、抗IgG及び抗IgA抗体からなる群より選択されることを特徴とする請求項1に記載の方法。
【請求項3】
前記アルボウイルスが、フラビウイルスであることを特徴とする請求項1又は2に記載の方法。
【請求項4】
前記アルカリホスファターゼが、ラット、マウス、ニワトリ、ウシ、酵母及び細菌のアルカリホスファターゼからなる群より選択されることを特徴とする請求項1〜3のいずれか1項に記載の方法。
【請求項5】
前記アルカリホスファターゼが大腸菌のアルカリホスファターゼであり、配列番号25を含むことを特徴とする請求項4に記載の方法。
【請求項6】
前記ハイブリッドタンパク質が、ポリペプチドタグをさらに含むことを特徴とする請求項1〜5のいずれか1項に記載の方法。
【請求項7】
前記ポリペプチドタグが、HIS (ヘキサヒスチジン)、c-MYC、HA、VSV-G、HSV、V5及びFLAGからなる群より選択されることを特徴とする請求項6に記載の方法。
【請求項8】
前記ハイブリッドタンパク質が好ましくはヘキサヒスチジンと、フラビウイルスED3ドメインと、大腸菌のアルカリホスファターゼとを含むことを特徴とする請求項1〜7のいずれか1項に記載の方法。
【請求項9】
前記大腸菌のアルカリホスファターゼが改変されていることを特徴とする請求項5又は8に記載の方法。
【請求項10】
前記大腸菌のアルカリホスファターゼが、その活性部位に2つの変異D153G及びD330Nを含み、配列番号24を含む請求項9に記載の方法。
【請求項11】
前記ED3ドメインのポリペプチドが、黄熱病ウイルスED3ドメインポリペプチド、西ナイルウイルスED3ドメインポリペプチド、デングウイルスED3ドメインポリペプチド、セントルイス脳炎ウイルスED3ドメインポリペプチド、マリーバレー脳炎ウイルスED3ドメインポリペプチド、及び日本脳炎ウイルスED3ドメインポリペプチドからなる群より選択されることを特徴とする請求項1〜10のいずれか1項に記載の方法。
【請求項12】
ポリペプチドタグと、アルボウイルスED3ドメインと、アルカリホスファターゼとを含むことを特徴とするハイブリッドタンパク質。
【請求項13】
ヘキサヒスチジンと、
黄熱病ウイルスED3ドメインポリペプチド、西ナイルウイルスED3ドメインポリペプチド、デングウイルスED3ドメインポリペプチド、セントルイス脳炎ウイルスED3ドメインポリペプチド、マリーバレー脳炎ウイルスED3ドメインポリペプチド、及び日本脳炎ウイルスED3ドメインポリペプチドを含む群より選択されるフラビウイルスED3ドメインと、
大腸菌のアルカリホスファターゼと
を含むことを特徴とする請求項12に記載のハイブリッドタンパク質。
【請求項14】
好ましくは多量体の形態にあり、より好ましくは二量体の形態にあることを特徴とする請求項12又は13に記載のハイブリッドタンパク質。
【請求項15】
配列番号2の配列からなる(H6-ED3.DEN1-PhoA)2、配列番号4の配列からなる(H6-ED3.DEN2-PhoA)2、配列番号6の配列からなる(H6-ED3.DEN3-PhoA)2、配列番号8の配列からなる(H6-ED3.DEN4-PhoA)2、配列番号10の配列からなる(H6-ED3.WN-PhoA)2、及び配列番号12の配列からなる(H6-ED3.YF-PhoA)2からなる群より選択されることを特徴とする請求項12〜14のいずれか1項に記載のハイブリッドタンパク質。
【請求項16】
請求項12〜15のいずれか1項に記載のハイブリッドタンパク質をコードする核酸。
【請求項17】
H6-ED3.DEN1-PhoAハイブリッドタンパク質をコードする配列番号1、H6-ED3.DEN2-PhoAハイブリッドタンパク質をコードする配列番号3、H6-ED3.DEN3-PhoAハイブリッドタンパク質をコードする配列番号5、H6-ED3.DEN4-PhoAハイブリッドタンパク質をコードする配列番号7、H6-ED3.WN-PhoAハイブリッドタンパク質をコードする配列番号9、及びH6-ED3.YF-PhoAハイブリッドタンパク質をコードする配列番号11からなる群より選択されることを特徴とする請求項16に記載の核酸。
【請求項18】
(a) 請求項12〜15のいずれか1項に記載のハイブリッドタンパク質をコードする配列を含む発現ベクターを、アルボウイルスED3ポリペプチド、好ましくはフラビウイルスED3ポリペプチドをコードする配列をベクターpEBL1 (配列番号13)に挿入することにより得て、
(b) 適切な大腸菌株、好ましくはXL1-blue株を、(a)で得られた発現ベクターで形質転換し、
(c) 改変された前記株を、適切な培地中で培養し、
(d) タグ-ED3-PhoAハイブリッドタンパク質を、ペリプラスム抽出物から精製する
ことを含むことを特徴とする、請求項12〜15のいずれか1項に記載のハイブリッドタンパク質を作製する方法。
【請求項19】
工程(a)の発現ベクターが、請求項12〜15のいずれか1項で定義されるハイブリッドタンパク質の発現ベクターからなる群より選択されることを特徴とする請求項18に記載の方法。
【請求項20】
前記発現ベクターが、ハイブリッドタンパク質H6-ED3.DEN1-PhoAをコードする配列を含む(pEBL11、CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3748で寄託された)ことを特徴とする請求項19に記載の方法。
【請求項21】
前記発現ベクターが、ハイブリッドタンパク質H6-ED3.WN-PhoAをコードする配列を含む(pEBL15、CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3749で寄託された)ことを特徴とする請求項19に記載の方法。
【請求項22】
CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3747で寄託された発現ベクターpEBL1。
【請求項23】
CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3748で寄託された発現ベクターpEBL11。
【請求項24】
CNCM (Collection Nationale de Culture de Microorganismes、75015 パリ、リュ デュ ドクトール ル 28)に、2007年4月23日に、アクセッション番号I-3749で寄託された発現ベクターpEBL15。
【請求項25】
(i) 対象者又は動物からの試料を、考慮される対象者又は動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、アルボウイルスED3ドメインとアルカリホスファターゼとを少なくとも含むハイブリッドタンパク質からなる検知分子とインキュベートし、
(iii) 前記アルボウイルス抗体の存在を検出する
ことを含む、対象者又は動物におけるアルボウイルス抗体、好ましくはフラビウイルス抗体をスクリーニングする方法。
【請求項26】
- 考慮される動物種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と、
- 少なくとも、請求項12〜15のいずれか1項で定義されるアルボウイルスED3ドメインとアルカリホスファターゼとを少なくとも含むハイブリッドタンパク質と、
- 少なくとも1つの陽性対照、好ましくは感染した個体からの参照血清と、
- 少なくとも1つの陰性対照、好ましくは感染していない個体からの参照血清と
を含む、対象者におけるアルボウイルス抗体、好ましくはフラビウイルス抗体について診断及び/又はスクリーニングするためのキット。
【請求項27】
前記Ig結合タンパク質が、抗IgM、抗IgG及び抗IgAからなる群より選択され、前記ハイブリッドタンパク質が、ヘキサヒスチジンと、適切なフラビウイルスのウイルスED3ドメインと、大腸菌のアルカリホスファターゼとを含むことを特徴とする請求項26に記載のキット。
【請求項28】
前記アルカリホスファターゼが、その活性部位に2つの変異D153G及びD330Nを含む改変アルカリホスファターゼであり、配列番号24を含むことを特徴とする請求項27に記載のキット。
【請求項29】
病原体の適切な抗原とアルカリホスファターゼとを含むハイブリッドタンパク質の、前記病原体による感染のインビトロ診断又は前記病原体の疫学の研究のための使用。
【請求項30】
病原体の適切な抗原とアルカリホスファターゼとを含むハイブリッドタンパク質の、前記病原体又はその免疫原に対するワクチン接種のインビトロでの確認のための使用。
【請求項31】
タンパク質又はそのフラグメントとアルカリホスファターゼとを含むハイブリッドタンパク質の、PhoAと融合した前記タンパク質又はそのフラグメントと分子、タンパク質又は細胞との相互作用を研究するための使用。
【請求項32】
(i) 対象者又は動物からの試料を、考慮される動物の種のIg分子の特定のクラスに対して指向されたIg結合タンパク質で感作された固体担体と接触させ、
(ii) (i)で形成された免疫複合体を、病原体の適切な抗原とアルカリホスファターゼとを含むハイブリッドタンパク質からなる検知分子とインキュベートする
ことを含み、
該免疫複合体の存在が感染の指標である
ことを特徴とする、病原体による感染を診断するか、病原体又はその免疫原によるワクチン接種を確認するか、又は病原体の疫学を研究するための方法。
【請求項33】
(i) 分子、タンパク質又は細胞を、PhoAと融合したタンパク質又はそのフラグメントを含むハイブリッドタンパク質と接触させ、
(ii) PhoAと融合したタンパク質又はそのフラグメントと前記分子、タンパク質又は細胞との間で結局は形成された複合体を検出する
ことを含むことを特徴とする、PhoAと融合したタンパク質又はそのフラグメントと、分子、タンパク質又は細胞との相互作用を研究する方法。
【請求項34】
(i)固体担体と結局は結合させた抗アルボウイルス抗体又はアルボウイルスの表面分子の受容体を、PhoAと融合したアルボウイルスのエピトープを含むハイブリッドタンパク質と接触させ、
(ii)前記抗アルボウイルス抗体又は前記受容体と前記エピトープとの間で形成された複合体を、適切なシグナル、例えばパラニトロフェノールの形成を測定することにより検出し、
(iii)試験する化合物を加え、
(iv)前記抗アルボウイルス抗体又は前記受容体と前記エピトープとの間で形成された複合体の量が、工程(ii)で検出された複合体の量に関して低減したかを、適切なシグナルを測定し、(ii)で得られたシグナルと得られたシグナルとを比較することにより検出する
ことを含む、抗アルボウイルス化合物をスクリーニングする方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2010−530960(P2010−530960A)
【公表日】平成22年9月16日(2010.9.16)
【国際特許分類】
【出願番号】特願2010−511745(P2010−511745)
【出願日】平成20年6月13日(2008.6.13)
【国際出願番号】PCT/IB2008/002614
【国際公開番号】WO2008/152528
【国際公開日】平成20年12月18日(2008.12.18)
【出願人】(501474748)インスティティ・パスツール (27)
【氏名又は名称原語表記】INSTITUT PASTEUR
【住所又は居所原語表記】28,rue du Docteur Roux,F−75724 Paris Cedex 15 FRANCE
【出願人】(502205846)サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク (154)
【Fターム(参考)】