説明

アンモニア精製システムおよびアンモニアの精製方法

【課題】 粗アンモニアに不純物として含まれる水分および炭化水素を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができるとともに、簡単化された方法でアンモニアを精製することができるアンモニア精製システムを提供する。
【解決手段】 アンモニア精製システム100において、制御手段5は、第2,3,4バルブ631,641,651を閉鎖させた状態で第1バルブ611を開放させることで、貯留タンク1における粗アンモニアからの低沸点不純物の排出動作の制御を行い、第1バルブ611を閉鎖させた後に第2,3,4バルブ631,641,651を開放させることで、排出動作後の吸着手段2における高沸点不純物の吸着除去動作の制御を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粗アンモニアを精製するアンモニア精製システムおよびアンモニアの精製方法に関する。
【背景技術】
【0002】
半導体製造工程および液晶製造工程においては、窒化物皮膜の作製などに用いる処理剤として、高純度のアンモニアが利用されている。このような高純度のアンモニアは、粗アンモニアを精製して不純物を除去することにより得られる。
【0003】
粗アンモニア中には、メタン、エタン、プロパン等の低次炭化水素、さらに多くの炭素数を有する高次炭化水素、水分、および水素、窒素、酸素、アルゴン、一酸化炭素等の低沸点ガスが不純物として含まれており、一般的に入手可能な粗アンモニアの純度は99.5重量%程度である。
【0004】
半導体製造工程および液晶製造工程におけるアンモニアが用いられる工程の種類によって、アンモニア中の不純物の影響の仕方は異なるが、アンモニアの純度としては、99.9999重量%以上、より好ましくは99.99999重量%以上であることが求められる。
【0005】
粗アンモニア中に含まれる不純物を除去する方法としては、シリカゲル、合成ゼオライト、活性炭等の吸着剤を用いて不純物を吸着除去する方法、不純物を蒸留除去する方法が知られている。
【0006】
たとえば、特許文献1には、液体状の粗アンモニアから高沸点不純物を除去する第1蒸留塔と、第1蒸留塔から導出された気体状のアンモニアに含まれる不純物(主に水分)を吸着剤により吸着除去する吸着塔と、吸着塔から導出された気体状のアンモニアから低沸点不純物を除去する第2蒸留塔とを備えるアンモニア精製システムが開示されている。また、特許文献2には、気体状の粗アンモニアに含まれる水分を酸化バリウムからなる吸着剤で吸着除去した後、蒸留することによってアンモニアを精製する方法が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−206410号公報
【特許文献2】特開2003−183021号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
粗アンモニアに含まれる不純物を吸着除去する吸着剤としては、水分に対して高い吸着能を有する吸着剤と、炭化水素に対して高い吸着能を有する吸着剤とを、区別して用いるのが一般的であり、特許文献1に開示されるアンモニアを精製する技術では、合成ゼオライト3Aからなる吸着剤により水分を吸着除去し、特許文献2に開示されるアンモニアを精製する技術では、酸化バリウムからなる吸着剤により水分を吸着除去している。
【0009】
粗アンモニアに含まれる水分および炭化水素の不純物を吸着除去するためには、水分に対して高い吸着能を有する吸着剤が充填された吸着塔と、炭化水素に対して高い吸着能を有する吸着剤が充填された吸着塔との、複数の吸着塔を備える構成とするか、または、1つの吸着塔に複数の吸着剤を積層して充填する構成とする必要がある。
【0010】
このような場合、粗アンモニアに不純物として含まれる水分と炭化水素との量比が変動したときには、一方の吸着剤が吸着飽和に達していないときであっても、他方の吸着剤が吸着飽和に達して破過する現象が生じる。そのため、吸着剤の吸着能を最大限に利用して、粗アンモニアに含まれる水分および炭化水素を効率的に吸着除去することができず、さらには、吸着剤の破過の管理も複雑になってしまう。
【0011】
また、特許文献1,2に開示されるアンモニアを精製する技術では、粗アンモニアに含まれる不純物を吸着塔で吸着除去し、さらに、蒸留塔で蒸留除去してアンモニアを精製するが、蒸留塔から導出された精製後の気体状のアンモニアは、凝縮されて液体アンモニアとして回収される。すなわち、特許文献1,2に開示されるアンモニアを精製する技術では、粗アンモニアに含まれる不純物を吸着・蒸留除去し、さらに凝縮して精製された液体アンモニアを得るので、アンモニアを精製する方法として簡単化されたものであるとは言えない。
【0012】
したがって本発明の目的は、粗アンモニアに不純物として含まれる水分および炭化水素を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができるとともに、簡単化された方法でアンモニアを精製することができるアンモニア精製システムおよびアンモニアの精製方法を提供することである。
【課題を解決するための手段】
【0013】
本発明は、不純物が含まれる粗アンモニアを精製するアンモニア精製システムであって、
気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれるアンモニアよりも沸点の低い低沸点不純物を前記気相に分配し、前記気相から気体状のアンモニアを導出する貯留手段と、
前記貯留手段から導出された気体状のアンモニアに含まれるアンモニアよりも沸点の高い高沸点不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着手段と、
前記貯留手段の前記気相と外部とを連通し、前記気相に分配された低沸点不純物を外部に排出する流路となる第1配管と、
前記貯留手段と前記吸着手段とを接続し、前記貯留手段から導出された気体状のアンモニアが前記吸着手段に向けて流過する流路となる第2配管と、
前記第1配管における流路を開放または閉鎖する第1流路開閉手段と、
前記第2配管における流路を開放または閉鎖する第2流路開閉手段と、
前記第1流路開閉手段および前記第2流路開閉手段のそれぞれの開閉動作を制御することで、前記貯留手段の前記気相に分配された低沸点不純物を外部に排出する排出動作と、前記吸着手段における高沸点不純物の吸着除去動作とを制御する制御手段と、を含み、
前記制御手段は、
前記第2流路開閉手段を閉鎖させた状態で、前記第1流路開閉手段を開放させることで、前記排出動作の制御を行い、
前記第1流路開閉手段を閉鎖させた後に前記第2流路開閉手段を開放させることで、前記吸着除去動作の制御を行うことを特徴とするアンモニア精製システムである。
【0014】
また本発明のアンモニア精製システムは、前記吸着手段が、前記貯留手段から導出された気体状のアンモニアに含まれる高沸点不純物を吸着除去する複数の吸着部であって、直列または並列に接続される複数の吸着部を有することを特徴とする。
【0015】
また本発明のアンモニア精製システムは、前記制御手段が、前記第2流路開閉手段を閉鎖させた状態で、前記第1流路開閉手段を複数回にわたって開放および閉鎖させることで、前記排出動作の制御を行うことを特徴とする。
【0016】
また本発明のアンモニア精製システムは、前記吸着手段が用いる前記吸着剤が、多孔質の合成ゼオライトであることを特徴とする。
【0017】
また本発明のアンモニア精製システムは、前記合成ゼオライトが、5〜9Åの細孔径を有する合成ゼオライトであることを特徴とする。
【0018】
また本発明は、不純物が含まれる粗アンモニアを精製する方法であって、
気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれるアンモニアよりも沸点の低い低沸点不純物を前記気相に分配する貯留工程と、
前記貯留工程において前記気相に分配された低沸点不純物を外部に排出する排出工程と、
前記排出工程において低沸点不純物を外部に排出した後の前記気相から気体状のアンモニアを導出する導出工程と、
前記導出工程で導出された気体状のアンモニアに含まれる、アンモニアよりも沸点の高い高沸点不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着工程と、を含むことを特徴とするアンモニアの精製方法である。
【発明の効果】
【0019】
本発明によれば、アンモニア精製システムは、不純物が含まれる粗アンモニアを精製するシステムであって、貯留手段と、吸着手段と、第1配管と、第2配管と、第1流路開閉手段と、第2流路開閉手段と、制御手段とを含む。貯留手段は、気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれるアンモニアよりも沸点の低い低沸点不純物を前記気相に分配し、前記気相から気体状のアンモニアを導出する。吸着手段は、貯留手段から導出された気体状のアンモニアに含まれる高沸点不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する。第1配管は、貯留手段の気相と外部とを連通し、低沸点不純物を気相から外部に排出する流路となる。第2配管は、貯留手段と吸着手段とを接続し、貯留手段から導出された気体状のアンモニアが吸着手段に向けて流過する流路となる。第1流路開閉手段は、第1配管における流路を開放または閉鎖する。第2流路開閉手段は、第2配管における流路を開放または閉鎖する。そして、制御手段は、第2流路開閉手段を閉鎖させた状態で第1流路開閉手段を開放させることで、貯留手段の気相に分配された低沸点不純物を外部に排出する排出動作の制御を行い、第1流路開閉手段を閉鎖させた後に第2流路開閉手段を開放させることで、排出動作後の吸着手段における高沸点不純物の吸着除去動作の制御を行う。
【0020】
本発明のアンモニア精製システムにおいて、吸着手段は、水分および炭化水素に対する吸着能を単独で有する吸着剤により、気体状のアンモニアに含まれる高沸点不純物を吸着除去するので、従来技術のように、水分に対する吸着能を有する吸着剤と、炭化水素に対する吸着能を有する吸着剤との、複数の吸着剤を用いる必要がない。そのため、気体状のアンモニアに含まれる高沸点不純物を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができる。また、本発明のアンモニア精製システムにおいて、制御手段は、第2流路開閉手段を閉鎖させた状態で第1流路開閉手段を開放させることで、貯留手段における粗アンモニアから低沸点不純物を排出除去する排出動作の制御を行う。これによって、貯留手段に形成された気相に分配された粗アンモニア中の低沸点不純物を、第1配管を介して排出することができる。また、制御手段は、第1流路開閉手段を閉鎖させた後に第2流路開閉手段を開放させることで、排出動作後の吸着手段における高沸点不純物の吸着除去動作の制御を行う。これによって、排出動作時において低沸点不純物が排出除去された後のアンモニアを、第2配管を介して吸着手段に導入することができるので、吸着手段により高沸点不純物を除去することができる。したがって、従来技術のように蒸留手段を設けなくても、簡単化されたシステムでアンモニアを精製することができる。
【0021】
また本発明によれば、吸着手段は、貯留手段から導出された気体状のアンモニアに含まれる高沸点不純物を吸着除去する複数の吸着部であって、直列または並列に接続される複数の吸着部を有する。吸着手段が直列に接続される複数の吸着部を有する場合には、貯留手段から導出された気体状のアンモニアに含まれる高沸点不純物に対する吸着除去能力を向上することができる。また、吸着手段が並列に接続される複数の吸着部を有する場合には、貯留手段から導出された気体状のアンモニアを、並列に接続される複数の吸着部に対してそれぞれ区別した状態で導入することができるので、1つの吸着部で吸着除去している間に、使用済みの他の吸着部で再度吸着除去動作が可能なように、使用済みの他の吸着部を再生処理することができる。
【0022】
また本発明によれば、制御手段は、第2流路開閉手段を閉鎖させた状態で、第1流路開閉手段を複数回にわたって開放および閉鎖させることで、貯留手段における粗アンモニアから低沸点不純物を排出除去する排出動作の制御を行う。これによって、貯留手段に形成された気相に分配された粗アンモニア中の低沸点不純物を、第1配管を介してより確実に排出することができるので、精製後のアンモニアの純度を高めることができる。
【0023】
また本発明によれば、吸着手段が用いる吸着剤は、多孔質の合成ゼオライトである。これによって、貯留手段から導出された気体状のアンモニアに不純物として含まれる水分および炭化水素を、効率よく吸着除去することができる。
【0024】
また本発明によれば、吸着手段が吸着剤として用いる合成ゼオライトが、5〜9Åの細孔径を有するものである。これによって、貯留手段から導出された気体状のアンモニアに不純物として含まれる水分および炭化水素(特に高次炭化水素)を、効率よく吸着除去することができる。
【0025】
また本発明によれば、アンモニアの精製方法は、不純物が含まれる粗アンモニアを精製する方法であって、貯留工程と、排出工程と、導出工程と、吸着工程とを含む。貯留工程では、気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれるアンモニアよりも沸点の低い低沸点不純物を気相に分配する。排出工程では、貯留工程において気相に分配された低沸点不純物を外部に排出する。導出工程では、排出工程において低沸点不純物を外部に排出した後の気相から気体状のアンモニアを導出する。吸着工程では、導出工程で導出された気体状のアンモニアに含まれる、アンモニアよりも沸点の高い高沸点不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する。
【0026】
本発明のアンモニアの精製方法では、貯留することで液体状の粗アンモニアから気相に分配した低沸点不純物を外部に排出し、その後、気相から気体状のアンモニアを導出する。そして、気相から導出された気体状のアンモニアに含まれる高沸点不純物を吸着除去するので、従来技術のように蒸留工程を経ることなく、簡単化された方法でアンモニアを精製することができる。また、本発明のアンモニアの精製方法において、吸着工程では、水分および炭化水素に対する吸着能を単独で有する吸着剤により、気体状のアンモニアに含まれる高沸点不純物を吸着除去するので、従来技術のように、水分に対する吸着能を有する吸着剤と、炭化水素に対する吸着能を有する吸着剤との、複数の吸着剤を用いる必要がない。そのため、気体状のアンモニアに含まれる高沸点不純物を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができる。
【図面の簡単な説明】
【0027】
【図1】本発明の第1実施形態に係るアンモニア精製システム100の構成を示す図である。
【図2】アンモニア精製システム100の構成を示すブロック図である。
【図3】本発明の第2実施形態に係るアンモニア精製システム200の構成を示す図である。
【発明を実施するための形態】
【0028】
図1は、本発明の第1実施形態に係るアンモニア精製システム100の構成を示す図である。また図2は、アンモニア精製システム100の構成を示すブロック図である。本実施形態のアンモニア精製システム100は、不純物が含まれる液体状の粗アンモニアを精製するシステムである。液体状の粗アンモニア中には、メタン、エタン、プロパン等の低次炭化水素、さらに多くの炭素数を有する高次炭化水素、水分、および水素、窒素、酸素、アルゴン、一酸化炭素等の低沸点ガスが不純物として含まれている。すなわち、液体状の粗アンモニア中には、アンモニア(沸点−33.44℃)よりも沸点の低い低次炭化水素、低沸点ガスなどの低沸点不純物と、アンモニアよりも沸点の高い高次炭化水素、水分などの高沸点不純物とが含まれている。
【0029】
アンモニア精製システム100は、貯留手段である貯留タンク1、吸着手段2、コンデンサ3、回収タンク4、および制御手段5を含んで構成される。また、アンモニア精製システム100は、本発明に係るアンモニアの精製方法を実現し、貯留タンク1で貯留工程を実行し、制御手段5で排出工程および導出工程を実行し、吸着手段2で吸着工程を実行する。
【0030】
貯留タンク1は、粗アンモニアを貯留するものである。本実施形態において、貯留タンク1に貯留される粗アンモニアは、純度99.5重量%程度である。
【0031】
貯留タンク1は、耐圧性および耐腐食性を有する保温容器であれば特に制限されるものではない。この貯留タンク1は、粗アンモニアを液体状のアンモニアとして貯留し、温度および圧力が一定条件となるように、制御手段5の稼動条件制御部5bにより制御されている。具体的には、貯留タンク1は、温度が10〜50℃に制御され、圧力が0.5〜2.0MPaに制御されている。
【0032】
貯留タンク1が液体状の粗アンモニアを貯留した状態で、貯留タンク1の上部には気相が形成され、下部には液相が形成されている。貯留タンク1は、気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれる低沸点不純物を気相に分配する。本実施形態では、貯留タンク1から吸着手段2にアンモニアを導出する際には、前記気相から気体状のアンモニアとして導出する。
【0033】
貯留タンク1には、第1流路開閉手段である第1バルブ611が設けられた第1配管61と、第2配管62とが接続されている。
【0034】
第1配管61は、貯留タンク1の気相と外部とを連通し、気相に分配された低沸点不純物を気相から外部に排出する流路となる。また、第1配管61に設けられた第1バルブ611は、第1配管61における流路を開放または閉鎖する。また、第2配管62は、貯留タンク1の気相から導出された気体状のアンモニアが吸着手段2に向けて流過する流路となる。
【0035】
吸着手段2は、貯留タンク1の気相から導出された気体状のアンモニアに含まれる高沸点不純物を吸着剤により吸着除去する。本実施形態では、吸着手段2は、複数の吸着部である第1吸着塔21、第2吸着塔22および第3吸着塔23を含んで構成される。
【0036】
第1吸着塔21、第2吸着塔22および第3吸着塔23に充填される吸着剤は、水分および炭化水素に対する吸着能を単独で有する。このような吸着剤としては、多孔質の合成ゼオライトを挙げることができる。合成ゼオライトの中でも、5〜9Åの細孔径を有する合成ゼオライトが好ましく、細孔径が5Åの合成ゼオライトとしてMS−5Aが挙げられ、細孔径が9Åの合成ゼオライトとしてMS−13Xが挙げられる。これらの中でも、細孔径が9Åの合成ゼオライトであるMS−13Xを吸着剤として用いるのが、特に好ましい。本実施形態で用いる吸着剤は、加熱、減圧、加熱および減圧のいずれかの処理によって、吸着した不純物(水分および炭化水素)を脱離させて再生することができる。たとえば、加熱処理によって吸着剤に吸着した不純物を脱離させる場合には、200〜350℃の温度下で加熱するようにすればよい。
【0037】
本実施形態のアンモニア精製システム100において、第1吸着塔21、第2吸着塔22および第3吸着塔23は、水分および炭化水素に対する吸着能を単独で有する吸着剤により、貯留タンク1の気相から導出された気体状のアンモニアに含まれる高沸点不純物を吸着除去するので、従来技術のように、水分に対する吸着能を有する吸着剤と、炭化水素に対する吸着能を有する吸着剤との、複数の吸着剤を用いる必要がない。そのため、気体状のアンモニアに不純物として含まれる水分および炭化水素を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができる。さらに、水分および炭化水素に対する吸着能を単独で有する吸着剤により、気体状のアンモニアに含まれる不純物を吸着除去することによって、第1吸着塔21、第2吸着塔22および第3吸着塔23に供給されるアンモニアに含まれる水分と炭化水素との量比が変動する場合であっても、後述する分析手段53による分析結果に基づいて、第1吸着塔21、第2吸着塔22および第3吸着塔23の破過の管理を簡単に実施することができる。
【0038】
また、吸着剤として用いる合成ゼオライトが5〜9Åの細孔径を有するもの、特に細孔径が9ÅのMS−13Xであることによって、貯留タンク1の気相から導出された気体状のアンモニアに不純物として含まれる水分および炭化水素(特に高次炭化水素)を、効率よく吸着除去することができる。
【0039】
なお、第1吸着塔21、第2吸着塔22および第3吸着塔23において、水分および炭化水素に対する吸着能を単独で有する吸着剤と、その他の吸着剤とを組合わせて用いることができるが、水分および炭化水素に対する吸着能を単独で有する吸着剤のみを用いるのが好ましい。その他の吸着剤としては、水分に対する吸着能に優れる合成ゼオライトである、MS−3A(細孔径3Å)、MS−4A(細孔径4Å)などを挙げることができる。
【0040】
本実施形態のアンモニア精製システム100において、第1吸着塔21、第2吸着塔22および第3吸着塔23は、制御手段5の稼動条件制御部5bにより、温度が0〜60℃に制御され、圧力が0.1〜1.0MPaに制御される。第1吸着塔21、第2吸着塔22および第3吸着塔23の温度が0℃未満の場合には、不純物の吸着除去時に発生する吸着熱を除去する冷却が必要となってエネルギ効率が低下するおそれがある。第1吸着塔21、第2吸着塔22および第3吸着塔23の温度が60℃を超える場合には、吸着剤による不純物の吸着能が低下するおそれがある。また、第1吸着塔21、第2吸着塔22および第3吸着塔23の圧力が0.1MPa未満の場合には、吸着剤による不純物の吸着能が低下するおそれがある。第1吸着塔21、第2吸着塔22および第3吸着塔23の圧力が1.0MPaを超える場合には、一定圧力に維持するために多くのエネルギが必要となり、エネルギ効率が低下するおそれがある。
【0041】
また、第1吸着塔21、第2吸着塔22および第3吸着塔23における線速度(リニアベロシティ)は、単位時間あたりに気体状のアンモニアを、各吸着塔21,22,23に供給する量をNTPでのガス体積に換算し、各吸着塔21,22,23の空塔断面積で除算して求めた値の範囲が、0.1〜5.0m/秒であることが好ましい。線速度が0.1m/秒未満の場合には、不純物の吸着除去に長時間を要するので好ましくなく、線速度が5.0m/秒を超える場合には、不純物の吸着除去時に発生する吸着熱の除去が充分に行われずに、吸着剤による不純物の吸着能が低下するおそれがある。
【0042】
そして、本実施形態では、貯留タンク1の気相から導出された気体状のアンモニアが流過する第2配管62には、第2配管62から分岐する第3配管63、第4配管64および第5配管65が接続される。
【0043】
第3配管63は、第2配管62から分岐して第1吸着塔21の塔頂部に接続される。この第3配管63には、第3配管63における流路を開放または閉鎖する第2バルブ631が設けられている。第4配管64は、第2配管62から分岐して第2吸着塔22の塔頂部に接続される。この第4配管64には、第4配管64における流路を開放または閉鎖する第3バルブ641が設けられている。第5配管65は、第2配管62から分岐して第3吸着塔23の塔頂部に接続される。この第5配管65には、第5配管65における流路を開放または閉鎖する第4バルブ651が設けられている。なお、本実施形態では、第2バルブ631、第3バルブ641および第4バルブ651により、第2流路開閉手段が実現される。
【0044】
また、第1吸着塔21の塔底部には、第1吸着塔21から導出された気体状のアンモニアが流過する第6配管66が接続される。この第6配管66には、第6配管66における流路を開放または閉鎖する第5バルブ661が設けられている。第2吸着塔22の塔底部には、第2吸着塔22から導出された気体状のアンモニアが流過する第7配管67が接続される。この第7配管67には、第7配管67における流路を開放または閉鎖する第6バルブ671が設けられている。第3吸着塔23の塔底部には、第3吸着塔23から導出された気体状のアンモニアが流過する第8配管68が接続される。この第8配管68には、第8配管68における流路を開放または閉鎖する第7バルブ681が設けられている。
【0045】
また、第6配管66には、第6配管66から分岐する第9配管69が接続される。この第9配管69は、第6配管66から分岐して第4配管64に接続され、第1吸着塔21から導出された気体状のアンモニアを、第2吸着塔22に導入するための流路となる。第9配管69には、第9配管69における流路を開放または閉鎖する第8バルブ691が設けられている。この第9配管69には、第9配管69から分岐する第10配管70が接続される。この第10配管70は、第9配管69から分岐して第5配管65に接続され、第1吸着塔21から導出された気体状のアンモニアを、第3吸着塔23に導入するための流路となる。第10配管70には、第10配管70における流路を開放または閉鎖する第9バルブ701が設けられている。
【0046】
また、第7配管67には、第7配管67から分岐する第11配管71および第12配管72が接続される。第11配管71は、第7配管67から分岐して第3配管63に接続され、第2吸着塔22から導出された気体状のアンモニアを、第1吸着塔21に導入するための流路となる。第11配管71には、第11配管71における流路を開放または閉鎖する第10バルブ711が設けられている。第12配管72は、第7配管67から分岐して第5配管65に接続され、第2吸着塔22から導出された気体状のアンモニアを、第3吸着塔23に導入するための流路となる。第12配管72には、第12配管72における流路を開放または閉鎖する第11バルブ721が設けられている。
【0047】
また、第8配管68には、第8配管68から分岐する第13配管73が接続される。この第13配管73は、第8配管68から分岐して第3配管63に接続され、第3吸着塔23から導出された気体状のアンモニアを、第1吸着塔21に導入するための流路となる。第13配管73には、第13配管73における流路を開放または閉鎖する第12バルブ731が設けられている。この第13配管73には、第13配管73から分岐する第14配管74が接続される。この第14配管74は、第13配管73から分岐して第4配管64に接続され、第3吸着塔23から導出された気体状のアンモニアを、第2吸着塔22に導入するための流路となる。第14配管74には、第14配管74における流路を開放または閉鎖する第13バルブ741が設けられている。
【0048】
また、第6配管66、第7配管67および第8配管68において、気体状のアンモニアの流過方向下流側端部には、第15配管75が接続される。この第15配管75には、第1吸着塔21、第2吸着塔22および第3吸着塔23のいずれか1つの吸着塔から導出された気体状のアンモニアが供給される。そして、第15配管75には、第15配管75から分岐して、後述のコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76が設けられている。
【0049】
ここで、本実施形態のアンモニア精製システム100における制御手段5による各バルブの開閉動作の制御について説明する。本実施形態では、制御手段5は、流路開閉制御部5aにより各バルブの開閉動作の制御を行う。
【0050】
制御手段5の流路開閉制御部5aは、第1バルブ611と、第2バルブ631、第3バルブ641、第4バルブ651、第5バルブ661、第6バルブ671、第7バルブ681、第8バルブ691、第9バルブ701、第10バルブ711、第11バルブ721、第12バルブ731、および第13バルブ741との開閉動作を制御することで、貯留タンク1の気相に分配された低沸点不純物を外部に排出する排出動作と、吸着手段2における高沸点不純物の吸着除去動作とを制御する。
【0051】
制御手段5の流路開閉制御部5aは、第2バルブ631、第3バルブ641および第4バルブ651を閉鎖させた状態で、第1バルブ611を開放させることで、貯留タンク1における粗アンモニアから低沸点不純物を排出除去する排出動作の制御を行う。具体的には、液体状の粗アンモニアを貯留タンク1に0.5〜3日間貯留した後、第2バルブ631、第3バルブ641および第4バルブ651を閉鎖させた状態で、第1バルブ611を10〜300分間開放させる。空欄部に数値を補充下さい。これによって、貯留タンク1に形成された気相に分配された粗アンモニア中の低沸点不純物を、第1配管61を介して排出することができる。
【0052】
また、制御手段5の流路開閉制御部5aは、第2バルブ631、第3バルブ641および第4バルブ651を閉鎖させた状態で、第1バルブ611を複数回にわたって開放および閉鎖させることで、貯留タンク1における粗アンモニアから低沸点不純物を排出除去する排出動作の制御を行うようにすることが好ましい。例えば、第1バルブ611を5回にわたって開放および閉鎖させる場合には、液体状の粗アンモニアを貯留タンク1に0.5〜3日間貯留した後、第2バルブ631、第3バルブ641および第4バルブ651を閉鎖させた状態で、第1バルブ611を10〜120分間開放させた後、第1バルブ611を閉鎖させて60〜300分間放置する。この第1バルブ611を10〜120分間開放させた後に、第1バルブ611を閉鎖させて60〜300分間放置するという動作を、合計5回繰り返すようにすればよい。空欄部に数値を補充下さい。これによって、貯留タンク1に形成された気相に分配された粗アンモニア中の低沸点不純物を、第1配管61を介してより確実に排出することができるので、精製後のアンモニアの純度を高めることができる。
【0053】
さらに、制御手段5の流路開閉制御部5aは、第1バルブ611を閉鎖させた後に、第2バルブ631、第3バルブ641および第4バルブ651のいずれかを開放させることで、排出動作後の吸着手段2における高沸点不純物の吸着除去動作の制御を行う。これによって、排出動作時において低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第2配管62を介して第1吸着塔21、第2吸着塔22および第3吸着塔23のいずれかに導入することができるので、高沸点不純物を除去することができる。したがって、従来技術のように蒸留手段を設けなくても、簡単化されたシステムでアンモニアを精製することができる。
【0054】
本実施形態では、制御手段5の流路開閉制御部5aによる吸着手段2における吸着除去動作の制御は、以下の6つの制御パターンがある。
【0055】
第1の制御パターンは、低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第1吸着塔21、第2吸着塔22の順に通過させる制御パターンである。第1の制御パターンでは、流路開閉制御部5aは、第1バルブ611を閉鎖させた状態で、第2バルブ631、第6バルブ671および第8バルブ691を開放させ、第3バルブ641、第4バルブ651、第5バルブ661、第7バルブ681、第9バルブ701、第10バルブ711、第11バルブ721、第12バルブ731および第13バルブ741を閉鎖させる。これによって、貯留タンク1の気相から導出されて第2配管62を流過した気体状のアンモニアは、第3配管63を流過して第1吸着塔21に導入され、第1吸着塔21から導出された気体状のアンモニアは、第6配管66および第9配管69を流過して第2吸着塔22に導入され、第2吸着塔22から導出された気体状のアンモニアは、第7配管67を流過して第15配管75に供給され、この第15配管75からコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76に、気体状のアンモニアが供給される。このような第1の制御パターンでは、気体状のアンモニアに含まれる高沸点不純物を、第1吸着塔21および第2吸着塔22で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。なお、第1の制御パターンでは、第3吸着塔23における吸着除去動作は実行されないので、この第3吸着塔23を再生処理することができる。
【0056】
第2の制御パターンは、低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第1吸着塔21、第3吸着塔23の順に通過させる制御パターンである。第2の制御パターンでは、流路開閉制御部5aは、第1バルブ611を閉鎖させた状態で、第2バルブ631、第7バルブ781および第9バルブ701を開放させ、第3バルブ641、第4バルブ651、第5バルブ661、第6バルブ671、第8バルブ691、第10バルブ711、第11バルブ721、第12バルブ731および第13バルブ741を閉鎖させる。これによって、貯留タンク1の気相から導出されて第2配管62を流過した気体状のアンモニアは、第3配管63を流過して第1吸着塔21に導入され、第1吸着塔21から導出された気体状のアンモニアは、第6配管66、第9配管69および第10配管70を流過して第3吸着塔23に導入され、第3吸着塔23から導出された気体状のアンモニアは、第8配管68を流過して第15配管75に供給され、この第15配管75からコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76に、気体状のアンモニアが供給される。このような第2の制御パターンでは、気体状のアンモニアに含まれる高沸点不純物を、第1吸着塔21および第3吸着塔23で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。なお、第2の制御パターンでは、第2吸着塔22における吸着除去動作は実行されないので、この第2吸着塔22を再生処理することができる。
【0057】
第3の制御パターンは、低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第2吸着塔22、第1吸着塔21の順に通過させる制御パターンである。第3の制御パターンでは、流路開閉制御部5aは、第1バルブ611を閉鎖させた状態で、第3バルブ641、第5バルブ661および第10バルブ711を開放させ、第2バルブ631、第4バルブ651、第6バルブ671、第7バルブ681、第8バルブ691、第9バルブ701、第11バルブ721、第12バルブ731および第13バルブ741を閉鎖させる。これによって、貯留タンク1の気相から導出されて第2配管62を流過した気体状のアンモニアは、第4配管64を流過して第2吸着塔22に導入され、第2吸着塔22から導出された気体状のアンモニアは、第7配管67および第11配管71を流過して第1吸着塔21に導入され、第1吸着塔21から導出された気体状のアンモニアは、第6配管66を流過して第15配管75に供給され、この第15配管75からコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76に、気体状のアンモニアが供給される。このような第3の制御パターンでは、気体状のアンモニアに含まれる高沸点不純物を、第1吸着塔21および第2吸着塔22で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。なお、第3の制御パターンでは、第3吸着塔23における吸着除去動作は実行されないので、この第3吸着塔23を再生処理することができる。
【0058】
第4の制御パターンは、低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第2吸着塔22、第3吸着塔23の順に通過させる接続パターンである。第4の制御パターンでは、流路開閉制御部5aは、第1バルブ611を閉鎖させた状態で、第3バルブ641、第7バルブ681および第11バルブ721を開放させ、第2バルブ631、第4バルブ651、第5バルブ661、第6バルブ671、第8バルブ691、第9バルブ701、第10バルブ711、第12バルブ731および第13バルブ741を閉鎖させる。これによって、貯留タンク1の気相から導出されて第2配管62を流過した気体状のアンモニアは、第4配管64を流過して第2吸着塔22に導入され、第2吸着塔22から導出された気体状のアンモニアは、第7配管67および第12配管72を流過して第3吸着塔23に導入され、第3吸着塔23から導出された気体状のアンモニアは、第8配管68を流過して第15配管75に供給され、この第15配管75からコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76に、気体状のアンモニアが供給される。このような第4の制御パターンでは、気体状のアンモニアに含まれる高沸点不純物を、第2吸着塔22および第3吸着塔23で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。なお、第4の制御パターンでは、第1吸着塔21における吸着除去動作は実行されないので、この第1吸着塔21を再生処理することができる。
【0059】
第5の制御パターンは、低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第3吸着塔23、第1吸着塔21の順に通過させる接続パターンである。第5の制御パターンでは、流路開閉制御部5aは、第1バルブ611を閉鎖させた状態で、第4バルブ651、第5バルブ661および第12バルブ731を開放させ、第2バルブ631、第3バルブ641、第6バルブ671、第7バルブ681、第8バルブ691、第9バルブ701、第10バルブ711、第11バルブ721および第13バルブ741を閉鎖させる。これによって、貯留タンク1の気相から導出されて第2配管62を流過した気体状のアンモニアは、第5配管65を流過して第3吸着塔23に導入され、第3吸着塔23から導出された気体状のアンモニアは、第8配管68および第13配管73を流過して第1吸着塔21に導入され、第1吸着塔21から導出された気体状のアンモニアは、第6配管66を流過して第15配管75に供給され、この第15配管75からコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76に、気体状のアンモニアが供給される。このような第5の制御パターンでは、気体状のアンモニアに含まれる高沸点不純物を、第1吸着塔21および第3吸着塔23で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。なお、第5の制御パターンでは、第2吸着塔22における吸着除去動作は実行されないので、この第2吸着塔22を再生処理することができる。
【0060】
第6の制御パターンは、低沸点不純物が排出された後の貯留タンク1の気相から導出された気体状のアンモニアを、第3吸着塔23、第2吸着塔22の順に通過させる制御パターンである。第6の制御パターンでは、流路開閉制御部5aは、第1バルブ611を閉鎖させた状態で、第4バルブ651、第6バルブ671および第13バルブ741を開放させ、第2バルブ631、第3バルブ641、第5バルブ661、第7バルブ681、第8バルブ691、第9バルブ701、第10バルブ711、第11バルブ721および第12バルブ731を閉鎖させる。これによって、貯留タンク1の気相から導出されて第2配管62を流過した気体状のアンモニアは、第5配管65を流過して第3吸着塔23に導入され、第3吸着塔23から導出された気体状のアンモニアは、第8配管68、第13配管73および第14配管74を流過して第2吸着塔22に導入され、第2吸着塔22から導出された気体状のアンモニアは、第7配管67を流過して第15配管75に供給され、この第15配管75からコンデンサ3および分析時回収用コンデンサ51と連結される第17配管77に接続される第16配管76に、気体状のアンモニアが供給される。このような第6の制御パターンでは、気体状のアンモニアに含まれる高沸点不純物を、第2吸着塔22および第3吸着塔23で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。なお、第6の制御パターンでは、第1吸着塔21における吸着除去動作は実行されないので、この第1吸着塔21を再生処理することができる。
【0061】
第1吸着塔21、第2吸着塔22または第3吸着塔23から導出されて第16配管76に供給された気体状のアンモニアは、第17配管77に導入される。
【0062】
第17配管77は、一端部が分析時回収用コンデンサ51を介して貯留タンク1に接続され、他端部がフィルタ52を介してコンデンサ3に接続されている。この第17配管77には、第16配管76との接続部に対してコンデンサ3側に第14バルブ771が設けられ、分析時回収用コンデンサ51側に第15バルブ772が設けられている。また、第17配管77には、第14バルブ771と第15バルブ772との間に、第17配管77から分岐する第19配管79が接続されている。この第19配管79には、第16バルブ791が設けられ、分析手段53が接続されている。
【0063】
分析手段53は、吸着手段2から導出された気体状のアンモニアに含まれる不純物の濃度を分析する。本実施形態では、分析手段53は、キャビティリングダウン分光分析装置(CRDS)531と、ガスクロマトグラフ分析装置(GC−PDD:パルス放電型検出器)532とを含む。キャビティリングダウン分光分析装置531としては、たとえば、MTO−LP−HO(Tiger Optics社製)を挙げることができ、ガスクロマトグラフ分析装置532としては、たとえば、GC−4000(ジーエルサイエンス株式会社製)を挙げることができる。本実施形態のアンモニア精製システム100では、分析手段53の分析結果に基づいて、吸着手段2の第1吸着塔21、第2吸着塔22および第3吸着塔23の破過管理がされる。
【0064】
制御手段5の流路開閉制御部5aは、分析手段53による分析時には、第14バルブ771を閉鎖させた状態で、第15バルブ772および第16バルブ791を開放させる。これによって、吸着手段2から導出された気体状のアンモニアは、第19配管79を流過して分析手段53に導入される。また、分析手段53による分析が終了するまでの間に吸着手段2から導出された気体状のアンモニアは、第17配管77を流過して分析時回収用コンデンサ51に導入されて凝縮され、貯留タンク1に戻される。なお、分析時回収用コンデンサ51および分析手段53の稼動条件は、制御手段5の稼動条件制御部5bにより制御される。
【0065】
また、制御手段5の流路開閉制御部5aは、分析手段53による分析が終了し、その分析結果が、吸着手段2の第1吸着塔21、第2吸着塔22および第3吸着塔23が破過していないことを示す結果である場合には、第15バルブ772および第16バルブ791を閉鎖させた状態で、第14バルブ771を開放させる。これによって、吸着手段2から導出された気体状のアンモニアは、第17配管77を流過し、フィルタ52を介してコンデンサ3に導入される。
【0066】
フィルタ52は、吸着手段2から導出された気体状のアンモニアに含まれる重金属を除去する。本実施形態では、フィルタ52は、ポリプロピレン(PP)製の5μmフィルタと、ポリテトラフルオロエチレン(PTFE)/PP製の0.01μmフィルタとが直列に接続された2層構造を有する。なお、図1では、第17配管77に1つのフィルタ52を設ける構成を示したが、この構成に限定されるものではなく、複数のフィルタ52を第17配管77に並列に接続するようにしてもよい。例えば、2つのフィルタ52を第17配管77に並列に接続する構成とした場合、吸着手段2から導出された気体状のアンモニアに含まれる重金属を、一方のフィルタ52でろ過分離除去している間に、使用済みの他のフィルタ52の交換作業を行うことができる。
【0067】
第17配管77を流過してフィルタ52を通過した気体状のアンモニアは、コンデンサ3に導入される。
【0068】
コンデンサ3は、貯留タンク1で低沸点不純物が排出除去され、吸着手段2で高沸点不純物が吸着除去され、フィルタ52で重金属がろ過分離除去された精製後の気体状のアンモニアを凝縮して液体アンモニアとして回収する。コンデンサ3により凝縮されて回収された液体アンモニアは、第18配管78を介して回収タンク4に導入され、この回収タンク4に貯留される。コンデンサ3および回収タンク4における温度などの稼動条件は、制御手段5の稼動条件制御部5bにより制御される。
【0069】
図3は、本発明の第2実施形態に係るアンモニア精製システム200の構成を示す図である。本実施形態のアンモニア精製システム200は、前述のアンモニア精製システム100に類似し、対応する部分については同一の参照符号を付して説明を省略する。アンモニア精製システム200は、吸着手段201の構成が、前述の吸着手段2の構成と異なること以外は、アンモニア精製システム100と同様である。
【0070】
アンモニア精製システム200に備えられる吸着手段201は、貯留タンク1の気相から導出された気体状のアンモニアに含まれる高沸点不純物を吸着剤により吸着除去する。本実施形態では、吸着手段201は、複数の吸着部である第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014を含んで構成される。
【0071】
第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014は、前述の第1吸着塔21と同様に構成される。具体的には、第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014には、水分および炭化水素に対する吸着能を単独で有する吸着剤が充填されている。
【0072】
また、本実施形態のアンモニア精製システム200において、第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014は、制御手段5の稼動条件制御部5bにより、温度が0〜60℃に制御され、圧力が0.1〜1.0MPaに制御される。第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014の温度が0℃未満の場合には、不純物の吸着除去時に発生する吸着熱を除去する冷却が必要となってエネルギ効率が低下するおそれがある。第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014の温度が60℃を超える場合には、吸着剤による不純物の吸着能が低下するおそれがある。また、第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014の圧力が0.1MPa未満の場合には、吸着剤による不純物の吸着能が低下するおそれがある。第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014の圧力が1.0MPaを超える場合には、一定圧力に維持するために多くのエネルギが必要となり、エネルギ効率が低下するおそれがある。
【0073】
また、第1吸着塔2011、第2吸着塔2012、第3吸着塔2013および第4吸着塔2014における線速度(リニアベロシティ)は、単位時間あたりに気体状のアンモニアを、各吸着塔2011,2012,2013,2014に供給する量をNTPでのガス体積に換算し、各吸着塔2011,2012,2013,2014の空塔断面積で除算して求めた値の範囲が、0.1〜5.0m/秒であることが好ましい。線速度が0.1m/秒未満の場合には、不純物の吸着除去に長時間を要するので好ましくなく、線速度が5.0m/秒を超える場合には、不純物の吸着除去時に発生する吸着熱の除去が充分に行われずに、吸着剤による不純物の吸着能が低下するおそれがある。
【0074】
そして、本実施形態では、貯留タンク1の気相から導出された気体状のアンモニアが流過する第2配管62には、第2配管62から分岐する第20配管202および第21配管203が接続される。
【0075】
第20配管202は、第2配管62から分岐して第1吸着塔2011の塔頂部に接続される。この第20配管202には、第20配管202における流路を開放または閉鎖する第17バルブ2021が設けられている。第21配管203は、第2配管62から分岐して第3吸着塔2013の塔頂部に接続される。この第21配管203には、第21配管203における流路を開放または閉鎖する第18バルブ2031が設けられている。すなわち、本実施形態において第1吸着塔2011と第3吸着塔2013とは、第2配管62に並列接続されている。
【0076】
貯留タンク1の気相から導出された気体状のアンモニアの第1吸着塔2011への供給時には、制御手段5の流路開閉制御部5aは、第17バルブ2021を開放させ、第18バルブ2031を閉鎖させる。これによって、貯留タンク1から第1吸着塔2011に向けて第20配管202内を気体状のアンモニアが流過する。また、貯留タンク1の気相から導出された気体状のアンモニアの第3吸着塔2013への供給時には、制御手段5の流路開閉制御部5aは、第18バルブ2031を開放させ、第17バルブ2021を閉鎖させる。これによって、貯留タンク1から第3吸着塔2013に向けて第21配管203内を気体状のアンモニアが流過する。
【0077】
このように、吸着手段201が、並列接続される第1吸着塔2011および第3吸着塔2013を有することによって、貯留タンク1の気相から導出された気体状のアンモニアを、並列接続される第1吸着塔2011および第3吸着塔2013に対して、それぞれ区別した状態で導入することができるので、たとえば、第1吸着塔2011で吸着除去している間に、使用済みの第3吸着塔2013で再度吸着除去動作が可能なように、使用済みの第3吸着塔2013を再生処理することができる。
【0078】
第2吸着塔2012は、第22配管204を介して第1吸着塔2011と直列に接続されている。すなわち、第22配管204において、一端部は第1吸着塔2011の塔底部に接続され、他端部は第2吸着塔2012の塔頂部に接続されている。これによって、貯留タンク1の気相から導出され、第1吸着塔2011に導入された気体状のアンモニアは、第22配管204を流過して第2吸着塔2012に導入される。このように、吸着手段201が、直列接続される第1吸着塔2011および第2吸着塔2012を有することによって、貯留タンク1の気相から導出された気体状のアンモニアに含まれる高沸点不純物を、第1吸着塔2011および第2吸着塔2012で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。
【0079】
第2吸着塔2012から導出された気体状のアンモニアは、第24配管206を流過して、第16配管76と接続される第26配管208に供給される。第24配管206には、第24配管206における流路を開放または閉鎖する第19バルブ2061が設けられている。第2吸着塔2012から導出された気体状のアンモニアの第26配管208への供給時には、第19バルブ2061が開放されて、第2吸着塔2012から第26配管208に向けて第24配管206内を気体状のアンモニアが流過する。
【0080】
第4吸着塔2014は、第23配管205を介して第3吸着塔2013と直列に接続されている。すなわち、第23配管205において、一端部は第3吸着塔2013の塔底部に接続され、他端部は第4吸着塔2014の塔頂部に接続されている。これによって、貯留タンク1の気相から導出され、第3吸着塔2013に導入された気体状のアンモニアは、第23配管205を流過して第4吸着塔2014に導入される。このように、吸着手段201が、直列接続される第3吸着塔2013および第4吸着塔2014を有することによって、貯留タンク1の気相から導出された気体状のアンモニアに含まれる高沸点不純物を、第3吸着塔2013および第4吸着塔2014で吸着除去することができるので、高沸点不純物に対する吸着除去能力を向上することができる。
【0081】
第4吸着塔2014から導出された気体状のアンモニアは、第25配管207を流過して、第16配管76と接続される第26配管208に供給される。第25配管207には、第25配管207における流路を開放または閉鎖する第20バルブ2071が設けられている。第4吸着塔2014から導出された気体状のアンモニアの第26配管208への供給時には、第20バルブ2071が開放されて、第4吸着塔2014から第26配管208に向けて第25配管207内を気体状のアンモニアが流過する。
【実施例】
【0082】
以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
【0083】
<粗アンモニア>
貯留タンクに貯留する粗アンモニアとして、表1に示す不純物濃度を示す液体状の粗アンモニアを用いた。なお、不純物濃度は、炭化水素濃度、水素、酸素、および一酸化炭素濃度については、ガスクロマトグラフ分析装置(GC−4000、ジーエルサイエンス株式会社製)で分析し、水分濃度については、キャビティリングダウン分光分析装置(MTO−LP−HO、Tiger Optics社製)で分析した。
【0084】
【表1】

【0085】
(実施例1)
図1に示したアンモニア精製システム100を用いて、粗アンモニアの精製を行った。まず、第2バルブ631、第3バルブ641および第4バルブ651を閉鎖させた状態で、第1バルブ611を、5回にわたって開放および閉鎖させることで、貯留タンク1の気相から低沸点不純物を排出させた。次に、貯留タンク1の気相から導出された気体状のアンモニアを、吸着剤として、水分および炭化水素に対する吸着能を単独で有する合成ゼオライトMS−13Xを充填した円筒管状の第1吸着塔(長さ50cm、内径2cm)に、温度25℃、圧力0.4MPa、線速度1.7Nm/sの条件下で通過させた。このようにして第1吸着塔を通過した後の気体状のアンモニアについて、不純物濃度を分析した。分析結果を表2に示す。
【0086】
(実施例2)
貯留タンク1の気相から導出された気体状のアンモニアを、直列接続された第1吸着塔および第2吸着塔に通過させたこと以外は実施例1と同様にし、第1吸着塔および第2吸着塔を通過した後の気体状のアンモニアについて、不純物濃度を分析した。分析結果を表2に示す。
【0087】
(比較例1)
第1バルブ611の開閉動作を行わず、第1バルブ611を閉鎖させた状態で維持したこと以外は、実施例1と同様にし、第1吸着塔を通過した後の気体状のアンモニアについて、不純物濃度を分析した。分析結果を表2に示す。
【0088】
(比較例2)
第1バルブ611の開閉動作を行わず、第1バルブ611を閉鎖させた状態で維持したこと以外は、実施例2と同様にし、第1吸着塔および第2吸着塔を通過した後の気体状のアンモニアについて、不純物濃度を分析した。分析結果を表2に示す。
【0089】
【表2】

【0090】
表2の結果から明らかなように、貯留タンク1における第1バルブ611の開閉動作を行った後に、吸着塔による吸着除去動作を行った実施例1,2のアンモニアの精製方法では、メタン、エタン、プロパン、水素、酸素、一酸化炭素等の低沸点不純物、および、水分、ブタン、ペンタン、ヘキサン等の高沸点不純物の濃度が低減されている。これは、実施例1,2のアンモニアの精製方法では、第1バルブ611の開閉動作によって、貯留タンク1の気相から低沸点不純物を排出することができ、さらに、吸着塔によって高沸点不純物を吸着除去することができたためである。
【0091】
これに対して、比較例1,2のアンモニアの精製方法では、水分、ブタン、ペンタン、ヘキサン等の高沸点不純物の濃度が低減されているものの、メタン、エタン、プロパン、水素、酸素、一酸化炭素等の低沸点不純物の濃度が充分に低減されていない。これは、比較例1,2のアンモニアの精製方法では、第1バルブ611の開閉動作を行っていないので、貯留タンク1の気相から低沸点不純物を排出除去することができなかったためである。
【符号の説明】
【0092】
1 貯留タンク
2,201 吸着手段
3 コンデンサ
4 回収タンク
21,2011 第1吸着塔
22,2012 第2吸着塔
23,2013 第3吸着塔
51 分析時回収用コンデンサ
52 フィルタ
53 分析手段
61 第1配管
62 第2配管
100,200 アンモニア精製システム
611 第1バルブ
631 第2バルブ
641 第3バルブ
651 第4バルブ
2014 第4吸着塔

【特許請求の範囲】
【請求項1】
不純物が含まれる粗アンモニアを精製するアンモニア精製システムであって、
気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれるアンモニアよりも沸点の低い低沸点不純物を前記気相に分配し、前記気相から気体状のアンモニアを導出する貯留手段と、
前記貯留手段から導出された気体状のアンモニアに含まれるアンモニアよりも沸点の高い高沸点不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着手段と、
前記貯留手段の前記気相と外部とを連通し、前記気相に分配された低沸点不純物を外部に排出する流路となる第1配管と、
前記貯留手段と前記吸着手段とを接続し、前記貯留手段から導出された気体状のアンモニアが前記吸着手段に向けて流過する流路となる第2配管と、
前記第1配管における流路を開放または閉鎖する第1流路開閉手段と、
前記第2配管における流路を開放または閉鎖する第2流路開閉手段と、
前記第1流路開閉手段および前記第2流路開閉手段のそれぞれの開閉動作を制御することで、前記貯留手段の前記気相に分配された低沸点不純物を外部に排出する排出動作と、前記吸着手段における高沸点不純物の吸着除去動作とを制御する制御手段と、を含み、
前記制御手段は、
前記第2流路開閉手段を閉鎖させた状態で、前記第1流路開閉手段を開放させることで、前記排出動作の制御を行い、
前記第1流路開閉手段を閉鎖させた後に前記第2流路開閉手段を開放させることで、前記吸着除去動作の制御を行うことを特徴とするアンモニア精製システム。
【請求項2】
前記吸着手段は、前記貯留手段から導出された気体状のアンモニアに含まれる高沸点不純物を吸着除去する複数の吸着部であって、直列または並列に接続される複数の吸着部を有することを特徴とする請求項1に記載のアンモニア精製システム。
【請求項3】
前記制御手段は、前記第2流路開閉手段を閉鎖させた状態で、前記第1流路開閉手段を複数回にわたって開放および閉鎖させることで、前記排出動作の制御を行うことを特徴とする請求項1または2に記載のアンモニア精製システム。
【請求項4】
前記吸着手段が用いる前記吸着剤は、多孔質の合成ゼオライトであることを特徴とする請求項1〜3のいずれか1つに記載のアンモニア精製システム。
【請求項5】
前記合成ゼオライトが、5〜9Åの細孔径を有する合成ゼオライトであることを特徴とする請求項4に記載のアンモニア精製システム。
【請求項6】
不純物が含まれる粗アンモニアを精製する方法であって、
気相を形成するように液体状の粗アンモニアを貯留することで、粗アンモニアに含まれるアンモニアよりも沸点の低い低沸点不純物を前記気相に分配する貯留工程と、
前記貯留工程において前記気相に分配された低沸点不純物を外部に排出する排出工程と、
前記排出工程において低沸点不純物を外部に排出した後の前記気相から気体状のアンモニアを導出する導出工程と、
前記導出工程で導出された気体状のアンモニアに含まれる、アンモニアよりも沸点の高い高沸点不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着工程と、を含むことを特徴とするアンモニアの精製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−153545(P2012−153545A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−11443(P2011−11443)
【出願日】平成23年1月21日(2011.1.21)
【出願人】(000195661)住友精化株式会社 (352)