説明

イオン伝導膜

【課題】ポリマーが、低含水率で、かつ高イオン伝導度を兼ね備えたイオン伝導膜を提供する。
【解決手段】イオン伝導性を付与したポリスチレン部と膜の骨格を形成するポリエチレン部とがミクロ相分離構造を形成してなるイオン伝導膜。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、新規なイオン伝導膜に関し、さらに詳しくは低含水でかつ高イオン伝導度のイオン伝導膜に関する。
【背景技術】
【0002】
従来、陽イオン交換基を導入した高分子材料は古くから知られており、スルホン酸基を導入したミクロ相分離構造を有する芳香族高分子フィルムが提案された(特許文献1)。
【0003】
一方、固体高分子燃料電池などの用途に使用される高分子電解質膜としては、ナフィオン(Nafion)(登録商標、以下省略)に代表されるパーフルオロカーボンスルホン酸膜が広く検討されている。パーフルオロカーボンスルホン酸膜は、高いプロトン伝導度を有し、耐酸性、耐酸化性などの化学的安定性に優れている。しかしながらパーフルオロカーボンスルホン酸膜は、使用原料が高いなどのため非常に高価であり、また高含水率であることが知られている。
【0004】
この高分子電解質膜の高水含率は、プロトン輸送媒体として水分子が必要であることによる。そして、膜端面から反対面までのプロトン伝導に寄与しない水分子が多く存在することが知られている。これはプロトン伝導チャネルがいわゆる成り行きで形成されるためと考えられる。一方、膜全体が含水状態にないとプロトン伝導度は大幅に低下するため、常に含水率を高く保持する必要がある。そして、樹脂成分と水とを比較すると、水のガス透過係数は水素、酸素に対して高い、つまり含水状態の膜はガス透過が容易な状態にあるため、含水率が高いほどこのガス透過の問題が顕在化する。
【0005】
そして、高分子電解質膜が高含水率であることは、1)この材料を用いてMEAにしたときに電解質膜自体が膨潤して変形するため電極との密着性が低下してスタック内で不均一化し、2)高温での乾燥を避けるために比較的低い温度での運転を必要とし、全体の反応効率を高められない、3)あるいは高加湿条件での運転が必要であり、外部からの水の補給も必要になる可能性が高い、4)ガス透過性が高くなり、クロスオーバーしやすいことなどが指摘されている。
【0006】
このため、スルホン酸基が導入されるベースポリマーの化学構造について種々の提案がされている(特許文献2〜4)。
【0007】
【特許文献1】特開昭61−126105号公報
【特許文献2】特開2005−194517号公報
【特許文献3】特開2006−269279号公報
【特許文献3】特開2006−312739号公報
【0008】
上記の特開昭61−216514号公報には、スルホン化可能な芳香環を有する高分子とその他の高分子とのブロック共重合体のミクロ相分離構造へのスルホン酸基の導入によるイオン交換体が記載されている。そして、上記公報には、高分子を与えるモノマーとして多くのモノマーの一例としてエチレンおよびスチレンが記載されている。しかし、ポリエチレンとポリスチレンとを組み合わせたブロック共重合体についての記載はなく、またスルホン化ブロック共重合体と含水率との関係については示されていない。
【0009】
上記の特開2005−194517号公報には、スルホン酸基を有する多芳香環ポリマーセグメントとスルホン酸基を有しない多芳香環ポリマーセグメントとの互いのセグメントがミクロ相分離構造を有するプロトン伝導膜およびその製造方法が記載されている。しかし、プロトン伝導膜の含水率については記載されていない。
【0010】
上記の特開2006−269279号公報には、芳香族単位を有する熱可塑性エラストマーと芳香族単位がない高分子化合物との少なくとも2種の高分子化合物を必須単位として含む、高分子フィルム中の芳香族単位にプロトン伝導性基が導入された高分子電解質膜が記載されている。そして、芳香族単位を有する熱可塑性エラストマーとしてポリスチレンが、芳香族単位がない高分子化合物としてポリエチレンが例示されている。しかし、上記公報にはミクロ相分離構造については示されていない。また、高分子電解質膜の含水率については記載されていない。
【0011】
上記の特開2006−312739号号公報には、疎水性ブロックと親水性ブロックとからなりこれらがミクロ相分離モルホロジーを形成した酸性基を有するブロックポリマーが記載されている。そして、具体的には両ブロックとも多環の芳香族単位を有するブロックポリマーで、酸性基がホスホンの場合に水分吸収率(含水率)が7%で、80℃、26%RHでの導電率が0.0003S/cm、酸性基がスルホンの場合に水分吸収率(含水率)が70%で、80℃、26%RHでの導電率が0.00009S/cmであることが示されている。
【発明の開示】
【発明が解決しようとする課題】
【0012】
このように、従来公知の電解質膜においては、化学構造が複雑なポリマーであるものがほとんどであり、高イオン伝導度でかつ低含水率の電解質膜については知られていない。
つまり、これらの文献に記載の電解質膜によっては、低含水率で、かつ高イオン伝導度を兼ね備えたイオン伝導膜は達成されていないのである。
従って、この発明の目的は、低含水率で、かつ高イオン伝導度を兼ね備えたイオン伝導膜を提供することである。
【課題を解決するための手段】
【0013】
この発明は、イオン伝導性を付与したポリスチレン部と膜の骨格を形成するポリエチレン部とがミクロ相分離構造を形成してなるイオン伝導膜に関する。
【発明の効果】
【0014】
この発明によれば、低含水率で、かつ高イオン伝導度を兼ね備えたイオン伝導膜を得ることができる。
【発明を実施するための最良の形態】
【0015】
この発明における好適な態様を次に示す。
1)含水率が10%以下である前記のイオン伝導膜。
2)イオン伝導性がスルホン基によって付与された前記のイオン伝導膜。
3)ポリエチレン部がスチレンーブタジエンブロック共重合体のポリブタジエン部の水素還元によって得られるものである前記のイオン伝導膜。
【0016】
この発明におけるイオン伝導膜は、イオン伝導性を付与したポリスチレン部と膜の骨格を形成するポリエチレン部とが相分離構造を形成してなるものである。
前記のイオン伝導膜は、ポリスチレン部と膜の骨格を形成するポリエチレン部とがミクロ相分離構造を形成してなる膜形状のブロック共重合体のポリスチレン部にイオン伝導性を担うイオン源である置換基を導入することによって得ることができる。
【0017】
前記の膜形状のブロック共重合体は、好適にはスチレン−ブタジエンブロック共重合体のポリブタジエン部を水素還元(以下、単に水添という)することによって得ることができる。
前記のブロック共重合体は、ポリブタジエン部の水添によるポリエチレン化率が90%以上であることが好ましい。また、前記のポリエチレン部は結晶性ポリエチレンとなっている。結晶化することによって骨格の強度を高め、これによって形態安定性が図られ、結果として含水率が低く抑えられる。このように非晶性ブロック共重合体にはない骨格補強効果がある。結晶化度の範囲は5〜80%、好ましくは10〜50%がよい。結晶化度は密度法で算出できる。骨格保持性能からは結晶化度は高い方が望ましい。
また、前記のポリスチレン部とポリエチレン部とのブロック共重合体は、ポリエチレン部の分子量(質量平均)が30000〜100000、ポリスチレン部の分子量が20000〜80000程度となる割合であるものが好ましい。
また、前記の高分子体は、分子量分布が1.1以下であるものが好ましい。
【0018】
前記のスチレン−ブタジエンブロック共重合体は、スチレンとブタジエンとのリビングアニオン重合によって得ることができる。そして、スチレン−ブタジエンブロック共重合体のポリブタジエン部はビニル構造を実質的に含まないポリブタジエンであるものが好ましい。
前記のポリブタジエン部ブロックの水添反応は、触媒として水添に使用される任意の触媒、例えばブタジエンの重合触媒や、Co、Niの遷移金属と有機アルミニウムを組み合わせた水添触媒、あるいはチタノセン化合物と有機アルミニウムや有機リチウムとからなる水添触媒が使用される。水添条件はいずれも、反応温度が50〜150℃、水素圧力が常圧〜30気圧程度である。
【0019】
前記のイオン伝導のイオンとしては、移動可能なイオンであれば特に制限はなく、例えばH(プロトン)が挙げられる。
また、前記のイオン伝導膜におけるイオン伝導性を担うイオン源であるポリマー中の置換基としては、例えば−SOH、−SO、−COOH、−COO、−PO、−PO、−PO2−2+、−PO2−2+およびそれらの組み合わせ、(式中、Mはアルカリ金属、アルカリ土類金属、アンモニウム、又はアルキルアンモニウムである。)など、好適にはスルホン酸基を挙げることができる。
【0020】
この発明のイオン伝導膜は、好適には前記のポリスチレン部とポリエチレン部とのブロック共重合体を製膜し、得られた膜を好適には120〜190℃程度の温度で溶融状態にした後、冷却して、好適には約50〜100℃程度の温度に10分間以上、特に1〜72時間程度保持した後室温まで冷却して、ポリエチレン部を結晶化処理することによる共連続構造の相分離形態化と、イオン源付与工程を組み合わせることによって得ることができる。
【0021】
前記のブロック共重合体の製膜は、ブロック共重合体の製膜を溶融、流延する溶融流延法、あるいはブロック共重合体を溶媒に溶解し、流延し、溶媒を乾燥除去する溶液流延法、好適には溶液流延法によって製膜することができる。
前記の溶媒としては、トルエン、キシレンなどの芳香族炭化水素を挙げることができる。
【0022】
前記のイオン源付与工程は、予めブロック共重合体にイオン源を付与した後に製膜する方法、あるいは製膜後にイオン源を導入する方法のいずれの方法によってもよいが、製膜後にイオン源を導入する方法が好ましい。
この発明のイオン伝導膜はイオン化度(イオン源がスルホン基の場合はスルホン化度)が90%以上、特に100%であることが好ましい。前記のイオン化度とはポリスチレン部のベンゼン環の付加されていない5つの位置のうち1つがすべてイオン化された場合をイオン化度100%という。
前記の方法において、製膜後の溶融、冷却が必要であり、これによってポリエチレン部を結晶化処理して共連続構造の相分離形態を形成することが可能となり、低含水率が達成される。製膜後に溶融、冷却して共連続構造の相分離形態を形成しないで、フィルムに単にイオン源を付与しても低含水率化が達成されない。
【0023】
前記のイオン源を付与する方法としては、前記のイオン源を与える物質を含む溶媒中で前記のブロック共重合体を0〜100℃の温度、好適には10〜30℃で0.5時間以上、好適には1〜100前時間反応させる方法が挙げられる。
前記の溶媒としては、ハロゲン化炭化水素、例えばジクロロエタン、1−クロロプロパン、1−クロロブタン、2−クロロブタン、1,4−ジクロロブタン、1−クロロヘキサン、クロロシクロヘキサンなどが挙げられる。
【0024】
前記のイオン源がスルホン酸基である態様の場合の1例において、例えば次のようにしてスルホン酸基が導入される。
例えば、前記の製膜後のブロック共重合体の相分離形態を形成した膜又は製膜前のブロック共重合体を、クロロスルホン酸、発煙硫酸、三酸化硫黄−トリエチルフォスフェート、濃硫酸、トリメチルシリルクロロサルフェートなどのスルホン化剤、好適にはクロロスルホン酸の前記溶媒溶液に投入して、前記の反応条件で処理しることによって行うことができる。
前記のスルホン化剤は、溶媒中の濃度が0.01〜1モル/l程度、0.1〜1モル/l程度であることが好ましい。
【0025】
以下、この発明について、この発明のイオン伝導膜の1例のモルフォロジーを示す断面写真である図1を用いて説明する。
図1において、イオン伝導膜はイオン伝導性を付与したポリスチレン部と膜の骨格を形成するポリエチレン部とがミクロ相分離構造を形成してなる。共連続網目構造の各網目のサイズ(幅)は約30ナノメートル程度の大きさである。このような共連続構造は単なるポリエチレン単品とポリスチレン単品同士のブレンドでは達成し得ないレベルのミクロ相分離である。単品ブレンドでは一般に1μm以上のサイズとなる。
【0026】
この発明によれば、多芳香族環を有するモノマーを使用することなく、低含水率で、かつ高イオン伝導度を兼ね備えたイオン伝導膜を得ることができる。
【実施例】
【0027】
以下、この発明の実施例を示す。
以下の各例において、イオン伝導膜は以下に記載の方法によって求めた。
1.分子量測定および分子量分布
スルホン化処理前のポリエチレン部およびポリスチレン部の数平均分子量、質量平均分子量をGPS(ゲルろ過クロマトグラフィー)を用いて測定した。
試薬としてポリマーソース社のポリスチレン−b−エチレン(M 5.4×10−6.7×10,M/M=1.07)を用いた。
分子量分布を質量平均分子量/数平均分子量から計算により求めた。
2.スルホン化度
スルホン化度(%)=(スルホン化処理によって置換したスルホン酸基モル数/ベンゼン環モル数)×100
【0028】
3.含水率
測定試料を水中、室温(25℃)で一晩置いて飽和含水状態としたフィルムの重量および25〜60℃で、1晩真空乾燥後のフィルムの重量を測定し、下記の式より含水率を求めた。
含水率(%)=(F−F)x100/F
:飽和含水状態のフィルムの重量
:乾燥時のフィルムの重量
4.プロトン伝導度の測定
交流インピーダンス法により測定
バイアス電圧 0V
交流振幅 300mV
測定周波数 1〜2×10Hz
5.イオン交換容量(E
スルホン化後の数平均分子量、原料に用いたブロック共重合体中のスチレンユニット数から、下記の式から計算により求めた。
EW=スルホン酸基1個当たりの分子量
【0029】
実施例1
スチレン−ブタジエンブロック共重合体のポリブタジエン部を水添して得られたポリエチレン−ポリスチレンブロック共重合体(ポリブタジエン部のポリエチレン化率:90%以上、分子量がPE部67000、PS部54000で、分子量分布1.04)をp−キシレンに1質量%濃度、130℃で溶解した。室温下、シャーレに溶液を流し込み、溶媒を乾燥除去してフィルムを作成した。
得られたフィルムを180℃で溶融後、約90℃で72時間保持した後、室温まで冷却して、厚み25μmの膜を得た。
この膜について透過型電子顕微鏡(TEM)で観察した。TEM観察では、ポリスチレン部と膜の骨格を形成するポリエチレン部とが形成されていることが確認された。この膜の結晶化度は密度法で42.5%であった。
【0030】
得られた膜をクロルスルホン酸のジクロロエタン溶液(0.2mol/l)に浸漬し、室温で20時間処理した。処理膜をクロロホルム、アセトン、イオン交換水で順次洗浄し、残存反応液を除去した後、6時間以上、室温下、減圧乾燥を行って、イオン(プロトン)伝導膜を得た。
この膜について透過型電子顕微鏡(TEM)で観察した。TEM観察では、イオン伝導性基を含むポリスチレン部と膜の骨格を形成するポリエチレン部とが相分離構造を形成していることが確認された。さらに、ポリエチレン部からなるドメインと、イオン導電性基を導入したポリスチレン部からなるドメインはマトリックスをなし、共連続網目構造としてネットワーク状に連結し、共連続していることが観察された。
また、このプロトン伝導膜について評価した。結果を次に示す。
【0031】
プロトン伝導膜の評価結果
含水率(%) 6.5%
プロトン伝導度(50℃、90%RH) 0.09S/cm
スルホン化度 100%
イオン交換容量(E) 313
スルホン化度が100%であることから、スルホン化処理されるのはポリスチレン部位のみであることが分かる。ポリエチレン成分がスルホン化処理後でも変質しないことは骨格としての機能を保持する上で理想的な材料であることを意味する。
【0032】
比較例1
市販のパーフルオロカーボンスルホン酸膜について評価した。結果を次に示す。
プリトン伝導膜の評価結果
含水率(%) 30%
プロトン伝導度(50℃、90%RH) 0.1S/cm
イオン交換容量(E) 1000
【図面の簡単な説明】
【0033】
【図1】図1は、この発明のイオン伝導膜の1例のモルフォロジーを示す断面写真である。

【特許請求の範囲】
【請求項1】
イオン伝導性を付与したポリスチレン部と膜の骨格を形成するポリエチレン部とがミクロ相分離構造を形成してなるイオン伝導膜。
【請求項2】
含水率が10%以下である請求項1に記載のイオン伝導膜。
【請求項3】
イオン伝導性がスルホン基によって付与された請求項1に記載のイオン伝導膜。
【請求項4】
ポリエチレン部がスチレンーブタジエンブロック共重合体のポリブタジエン部の水素還元によって得られるものである請求項1に記載のイオン伝導膜。
【請求項5】
イオン伝導部と非イオン伝導部が共連続構造を成している請求項1に記載のイオン伝導膜。

【図1】
image rotate


【公開番号】特開2008−248116(P2008−248116A)
【公開日】平成20年10月16日(2008.10.16)
【国際特許分類】
【出願番号】特願2007−91969(P2007−91969)
【出願日】平成19年3月30日(2007.3.30)
【出願人】(504145364)国立大学法人群馬大学 (352)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】