説明

イオン光学システム

多様な実施形態において、イオン光学システムが提供され、イオン光学システムは、対に配置された偶数個のイオンミラーを備えたイオン光学システムであって、イオン光学システムを出るイオンの軌道であって、イオンがイオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、イオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、偶数個のイオンミラーが配列されている。多様な実施形態において、イオン光学システムが提供され、イオン光学システムは、前記イオンミラーは、複数の対に配列されており、各対の第1の要素と第2の要素とは、その対の該第1の要素が、その対の該第2の要素の位置に対して、第1の平面に対して鏡面対称である位置を有するように、該第1の平面の対向する側に配置されている。

【発明の詳細な説明】
【背景技術】
【0001】
(導入)
飛行時間(TOF)の質量分析法(MS)は、広く使用される分析技術となった。質量分析法の装置性能の2つの重要な評価指標は、分解能および感度である。質量分析法において、測定値の質量分解能は、異なった質量電荷比(m/z)値のイオンを分離する能力と関係がある。質量分析法の装置の感度は、ソースから検出器へのイオン透過の効率およびイオン検出の効率と関係がある。TOF装置を含む多様な質量分光器において、感度を犠牲にして分解能を改良することは可能であり、逆もそうである。
【0002】
TOF質量解析器の分解能を本来的に制限し得るTOF MSの幾つかの局面がある。具体的には、イオンは、ソース領域において、異なる時間に、異なる位置で、異なる初速で、形成され得る。イオン形成時間、位置および速度におけるこれらの広がりは、同じm/zで異なった運動エネルギを達成する一部のイオン(および異なったm/zで同じ運動エネルギを達成する一部のイオン)という結果になり、なぜならイオンが電場を抽出する(extract)のに費やす時間の長さにおける相違、イオンが形成される電場の強さにおける相違、および/または異なる最初の運動エネルギのためである。結果として、TOF質量分析器装置の分解能および性能は、劣化され得る。
【0003】
質量分析器の質量の分解能は、比m/δmとして表現され得、ここに、mは、特定の一価のイオンの質量であり、δmは、質量単位におけるピークの幅である。伝統的なTOF装置においては、イオンは、検出器へのイオンの飛行時間tに従って分離され、ほとんどの場合には、質量/電荷比は、飛行時間の平方に比例する。それゆえ、分解能Rは、TOF装置においては、
【0004】
【数1】

として表現され得る。
【0005】
イオン源を含む簡易な線形のTOF装置において、イオン源でイオンが形成され最終エネルギーまで加速され、最終エネルギーは、実質的にイオンのm/z比に対して独立であり、飛行時間は、実効飛行距離に比例し、イオンエネルギの平方根に反比例し、および質量/電荷比の平方根に直接的に比例する。特定のm/zのイオンに対する運動エネルギまたは実効飛行時間のなんらかの変動は、飛行時間の変動および分解能における対応する減少を引き起こす。
【0006】
多くの場合に、分解能を制限する主要な要因は、イオンの運動エネルギにおける広がりであり得る。これらの場合に、イオンミラーが、しばしば、一次的および二次的に、飛行時間上での運動エネルギの影響を補償するために使用され、それによって、TOF装置の分解能を改良する。しかしながら、先行技術のイオンミラーの1つの特性は、イオンミラーがエネルギ分散を生成し、それによって、異なる運動エネルギのイオンは、特定の焦点面に時間収束され得るが、イオンの運動エネルギに従って該平面に平行な方向に変位される。多くの応用において、これは、問題にはなり得ないが、他の応用においては、質量解析器の分解能および感度の両方を制限し得る。例えば、単一段のTOF装置においては、このエネルギ分散によって、異なる運動エネルギのイオンを、検出器上の異なる地点に衝突させ得るが、該検出器が十分に大きく、検出器の平面が正確に焦点面と配列される場合には、分解能または感度のいずれかにおける損失は、実質的に生じない。しかしながら、イオンミラーがTOF−TOFシステムの第1段で使用される応用では、第1段におけるエネルギ分散は、装置の第2段において感度および分解能の両方にかなりの損失を引き起こし得る。
【発明の開示】
【課題を解決するための手段】
【0007】
(概要)
本教示は、質量解析システムのためのイオン光学システムに関する。
【0008】
イオンミラーは、イオンを、第1の焦点面(対物面)から第2の焦点面(像面)に反射させるために使用され得、その結果、第1の焦点面のイオンは、第2の焦点面に、第1の焦点面でこれらのイオンの間に存在した運動エネルギの相違にかかわらず、実質的に同じ時間で、到達する。本明細書中で我々は、異なった運動エネルギを有するイオンを、空間中の特定の平面に、実質的に同じ時間に持って来るプロセスを「エネルギ収束」として言及する。しかしながら、対物面でのイオン間の運動エネルギの相違にかかわららず、イオンは、像面に実質的に同時に到着させられ得るけれども、異なる運動エネルギを有するイオンは、像面上で同じ空間的位置に到着しない。むしろ、異なる運動エネルギを有するイオンの退出の軌道は、像面(または該像面に実質的に平行である平面)と、異なる空間的位置で交わり、異なる空間的位置は、一般的には、文字通りこのような平面に渡って分散される。このプロセスは、例えば、「エネルギ分散(energy dispersion)」として言及されてきた。なぜなら、例えば、このプロセスは、イオンの運動エネルギの相違の原因であるイオンの軌道の空間分散に言及するからである。
【0009】
当業者は、本明細書中で、エネルギ分散、エネルギ収束、対物面および像面という用語を使用して記載された概念は、異なる用語を使用して記載され得ることを理解する。イオンミラーは、異なる運動エネルギを有するイオンを、空間中の特定の平面に実質的に同時に持って来るために使用され得るので、このプロセスは、「エネルギ収束(energy focusing)」、「時間収束(time focusing)」および「一時的収束(temporal focusing)」を含む当業における幾つかの用語によって言及されてきた。さらに、例えば、「空間収束(space focus)」、「空間収束面(space focus plane)」、「空間焦点面(space focal plane)」、「時間収束(time focus)」および「時間収束面(space focus plane)」は、すべて、本明細書中で対物面および像面として言及されるもののうちの1つ以上に言及するために当業で使用されてきた。不幸にも、「エネルギ収束(energy focusing)」、「時間収束(time focusing)」、「一時的収束(temporal focusing)」、「空間収束(space focus)」、「空間収束面(space focus plane)」、「空間焦点面(space focal plane)」、「時間収束(time focus)」および「時間収束面(space focus plane)」はまた、イオンミラーのエネルギ収束とは本質的に異なるプロセスを記載するために飛行時間質量分析技術において使用されてきた。したがって、質量分析技術に見出される用語の複雑な使用が与えられるので、本明細書中で使用される「エネルギ分散(energy dispersion)」、「エネルギ収束(energy focusing)」、「対物面(object plane)」および「像面(image plane)」という用語は、説明における正確性および首尾一貫性のためにのみ選択され、本教示の文脈から記述された要旨を決して制限する意味にとってはならない。
【0010】
本教示は、2つ以上のイオンミラーを備えているイオン光学システムを提供する。多様な実施形態において、本教示は、イオンがイオン光学システムに入るときに有し得た運動エネルギの相違に起因した実質的な空間分散が、ないイオンのエネルギ収束を提供し得るイオン光学システムを提供する。イオンがイオン光学システムに入った後に生じ得る他のプロセス(例えば、空間電荷効果、イオンの断片化などを含むがこれに限定されない)に起因するイオンの運動エネルギにおける相違は、本教示によってイオンがイオン光学システムに入ったときに有する運動エネルギの相違とは考えられないことが理解されるべきである。多様な実施形態において、本教示に従うイオン光学システムのイオンミラーは、平面の回りに実質的に鏡面対称に配列される。
【0011】
イオンミラーの広く多様な配列は、本教示の範囲内に存在する。例えば、イオン光学システムから出るイオンの軌道は、イオン光学システムに入る対応するイオンの軌道と関連して、実質的に平行であり、実質的に反平行であり、または、その軌道間でほとんど任意の角度になるように、イオンミラーは、配列され得る。イオン光学システムに入るイオンの軌道およびイオン光学システムから出るイオンの軌道は、対称な平面の対向する側上にあり得る。
【0012】
多様な実施形態において、イオンミラーは、入ってくるイオン軌道と対応する出て行くイオン軌道との間で、横方向の変位を提供するか、または実質的に横方向の変位を提供しないように配列され得る。例えば、多様な実施形態において、イオン光学システムから出るイオンの軌道が、イオン光学システムに入るイオンの軌道と実質的に一致し、イオン光学システムに入るイオンの軌道に対して平行であるか、反平行であるように、イオンミラーは、配列され得る。
【0013】
多様な局面において、本教示は、偶数個のイオンミラーを備えたイオン光学システムであって、該イオン光学システムを出るイオンの軌道であって、該イオン光学システムに入るときにイオンが持っていたイオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わる該軌道が提供され得るように、該偶数個のイオンミラーが配列されている、イオン光学システムを提供する。多様な実施形態において、前記イオンミラーは、複数の対になって配列されており、各対の第1の要素と第2の要素とは、第1の平面の対向する側に配置されており、その結果、該対の該第1の要素は、該対の該第2の要素の位置に関して、該第1の平面に対して鏡面対称である位置を有することになる。
【0014】
多様な局面において、本教示は、第1のイオンミラーと、第2のイオンミラーとを備え、該第2のイオンミラーを出るイオンの軌道であって、該イオン光学システムに入るときにイオンが持っていたイオンの運動エネルギから実質的に独立した位置で、該第2のイオンミラーの像焦点面に実質的に平行である面と交わる該軌道が提供され得るように、該第1のイオンミラーと該第2のイオンミラーとが配列されている、イオン光学システムを提供する。多様な実施形態において、該第1のイオンミラーと該第2のイオンミラーとは、第1の平面に関して鏡面対称になるように、前記第1のイオンミラーと前記第2のイオンミラーとは、該第1の平面の対向する側に配置されている。したがって、多様な実施形態において、第1のイオンミラーの電場は、第2のイオンミラーの電場に関して第1の平面に対して実質的に鏡面対称である。
【0015】
多様な局面において、本教示は、イオン光学システムであって、イオンミラーの2つ以上の対を備え、イオンミラーの各対の該要素は、イオンミラーの対の該第1の要素が、該対の該第2の要素の位置に対して第1の平面に対して鏡面対称になるように、該第1の平面の対向する側に配置されている、イオン光学システムを提供する。多様な実施形態において、該イオン光学システムを出るイオンの軌道であって、該イオン光学システムの焦点面に実質的に平行である面と、該イオン光学システムに入るときに該イオンが持っていた該イオンの運動エネルギから実質的に独立した位置で交わる該軌道が、提供され得るように、イオンミラーが配列されている。
【0016】
多様な局面において、本教示は、4つのイオンミラーを備えたイオン光学システムであって第1のイオンミラーと第2のイオンミラーとは、該第1のイオンミラーは、該第2のイオンミラーの位置に対して、第1の平面に対して鏡面対称になる位置を有するように、該第1の平面の対向する側に配置されており、第3のイオンミラーと第4のイオンミラーとが、該第3のイオンミラーは、該第4のイオンミラーの位置に対して、第1の平面に対して実質的に鏡面対称になる位置を有するように、該第1の平面の対向する側に配置されている、イオン光学システムを提供する。多様な実施形態において、前記第4のイオンミラーを出るイオンの軌道であって、該第4のイオンミラーの像焦点面に実質的に平行である面と、該第1のイオンミラーに入るときに該イオンが持っていた、イオンの運動エネルギから実質的に独立した位置で交わる該軌道が、提供され得るように、該イオンミラーが配列されている。
【0017】
本教示のイオン光学システムの多様な実施形態において、イオン光学システムは、イオン源、イオンセレクタ、イオンフラグメンタ、イオン検出器の一つ以上を備えている。イオン光学システムは、さらに、イオンガイド(例えば、RF多極、、ガイドワイア)、イオン収束素子(例えば、エインゼルレンズ(einzel lens))およびイオン操縦素子(例えば、ディフレクタ板)のうちの1つ以上をさらに備えている。多様な実施形態において、イオンセレクタは、選択運動エネルギを有するイオンの透過を防止するためにイオン光学システムの2つのイオンミラーの間に配置される。このような配置は、イオン光学システムの少なくとも2つのイオンミラーの間に存在し得るエネルギ分散を利用し得る。適切なイオンセレクタは、イオンの位置に基づいてイオンの透過を防止し得る任意の構造を含む。
【0018】
多様な実施形態において、本教示のイオン光学システムは、第1のイオン光学システムおよび第2のイオン光学システムを備えている。多様な実施形態において、該第1のイオン光学システムは、偶数個のイオンミラーを備え、該第1のイオン光学システムを出るイオンの軌道であって、イオンの運動エネルギから実質的に独立した位置で、該第1のイオン光学システムの像焦点面に実質的に平行である面と交わる該軌道が提供され得るように、該偶数個のイオンミラーが配列されており;第2のイオン光学システムは、偶数個のイオンミラーを備え、該第2のイオン光学システムを出るイオンの軌道であって、イオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わる該軌道が提供され得るように、該偶数個のイオンミラーが配列されている。該第1のイオン光学システムのイオンミラー、該第2のイオン光学システムのイオンミラー、または両方のイオンミラーは、複数の対に配列されており、各対の第1の要素と第2の要素とは、その対の該第1の要素が、その対の該第2の要素の位置に対して、第1の平面に対して鏡面対称である位置を有するように、該第1の平面の対向する側に配置されている。
【0019】
多様な実施の形態において、イオンフラグメンタは、第1のイオン光学システムと第2のイオン光学システムとの間に配置される。一部の実施形態において、該イオンフラグメンタは、該イオンフラグメンタへの入口が、第1のイオン光学システムの像面(例えば、像平面)と実質的に一致するように配置される。一部の実施の形態において、該イオンフラグメンタは、該イオンフラグメンタの該出口が、該第2のイオン光学システムの焦点面(例えば、対物焦点面)に実質的に一致するように配置される。多様な実施形態において、イオンセレクタは、例えば、第1のイオン光学システムの2つのイオンミラーの間の選択運動エネルギを有するイオンの透過を防止するように、第1のイオン光学システムのイオンミラーの間に配置され得、それによって、第1のイオン光学システムによって透過されたイオン運動エネルギの範囲を選択する。したがって、多様な実施形態において、第1のイオン光学システムは、イオンフラグメンタへの導入のために、選択されたエネルギ範囲における運動エネルギを有する一次イオンを選択し、第2のイオン光学システムは、フラグメントイオンの少なくとも一部を透過するように構成されている。
【0020】
多様な局面において、本教示は、イオン光学システムと、一つ以上の質量分析器とを備えた質量分析器システムを提供する。一つ以上の質量分析器は、例えば、飛行時間、四重極、RF多極、磁気セクタ、静電セクタ、イオントラップ、およびイオン移動度分光計の少なくとも一つを備える。質量分析器システムは、一つ以上のイオンガイド(例えば、RF多極ガイド、ガイドワイヤ)、イオン収束素子(例えば、エインゼルレンズ)、イオン操縦素子(例えば、ディフレクタ板)、イオン源、イオンセレクタ、イオンフラグメンタ、およびイオン検出器をさらに備え得る。多様な実施形態において、本教示が提供し得る質量分析器システムは、タンデムTOF−TOF質量分析システムのための第1の飛行時間(TOF)質量セレクタ;およびTOF−TOF質量分析システムを含むが、それらに限定されるものではない。
【0021】
多様な実施形態において、本教示は、第1のイオン光学システムと第1の質量分析器を備えた質量分析器システムを提供する。第1のイオン光学システムは、偶数個のイオンミラーを備え、該イオン光学システムを出るイオンの軌道であって、該イオンが該第1のイオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わる該軌道が提供され得るように、該偶数個のイオンミラーが配列されており;第1の質量分析器は、飛行時間、四重極、RF多極、磁気セクタ、静電セクタ、イオントラップ、およびイオン移動度分光計の少なくとも1つを備えている。多様な実施形態において、第1のイオン光学システムは、イオンフラグメンタへの導入のための一次イオンを選択し、質量分析器は、フラグメントイオンスペクトルの少なくとも一部を分析する。
【0022】
多様な実施形態において、質量分析器システムは、1つ以上のセレクタを備える。多様な実施形態において、イオンセレクタは、イオン光学システムおよび質量分析器の間に配置され、イオン光学システムの2つのイオンミラーは、選択運動エネルギーを有するイオンの透過をさせるためのものであり、またはその両方である。例えば、多様な実施形態において、イオンセレクタは、イオンセレクタの位置が第1のイオン光学システムの像面(例えば、像平面)に実質的に一致するように、イオン光学システムと質量分析器との間に配置される。適切なイオンセレクタは、例えば、時限イオンセレクタを含む。多様な実施形態において、第1のイオン光学系からのイオンの軌道は、イオンセレクタの軸と実質的に同軸である。多様な実施形態において、イオンセレクタは、電力を通されて、選択されたm/z比の範囲内のイオンのみを、例えば、イオンフラグメンタに透過し、そのイオンフラグメンタは、イオンセレクタおよび質量分析器の間に配置されている。したがって、多様な実施形態において、イオンセレクタは、イオンフラグメンタの中への導入のために(イオン光学システムから透過されたイオンからの)一次イオンを選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するように構成される。
【0023】
多様な実施形態において、イオンセレクタは、選択運動エネルギを有するイオンの透過を避けるように第1のイオン光学システムの2つのイオンミラーの間に置かれる。そのような配置は、イオン光学システムの少なくとも2つのイオンミラーの間に存在し得るエネルギ分散を利用し得る。適切なイオンセレクタは、イオン位置に基づいてイオンの透過を避け得る任意の構造を含む。
【0024】
したがって、多様な実施形態において、イオンセレクタを有するイオン光学システムは、イオンセレクタの中への導入のために選択されたエネルギ範囲における運動エネルギを有する一次イオンを選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するように構成される。多様な実施形態において、イオンセレクタを有する第1のイオン光学システムは、フラグメンタの中にイオンを導入するために、選択されたエネルギ範囲における運動エネルギを有する一次イオンを選択し、第2のイオン光学システムは、透過のために選択されたエネルギ範囲の運度エネルギを有するフラグメントイオンの少なくとも一部を選択し、質量分析器は、選択されたフラグメントイオンの少なくとも一部を分析するように構成される。
【0025】
多様な実施形態において、本教示は、第1の質量分析器と、第1のイオン光学システムと、第2の質量分析器とを備えた質量分析器システムを提供し、第1のイオン光学システムは、偶数個のイオンミラーを備え、該第1のイオン光学システムを出るイオンの軌道であって、該イオンが第1のイオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、該第1のイオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されている。第1の質量分析器は、例えば、飛行時間、四重極、RF多極、磁気セクタ、静電セクタ、イオントラップ、およびイオン移動度分光計の少なくとも一つを備え、第2の質量分析器は、飛行時間、四重極、RF多極、磁気セクタ、静電セクタ、イオントラップ、およびイオン移動度分光計の少なくとも一つを備える。多様な実施形態において、第1および第2の質量分析器は、各々、飛行時間(例えば、実質的にゼロ電界領域)を備える。
【0026】
多様な実施形態において、イオンセレクタは、例えば、イオン光学システムの2つのイオンミラーの間で選択運動エネルギを有するイオンの透過を避けるように本教示のイオン光学システムのイオンミラーの間に配置され得、それによって、イオン光学システムによって透過されたイオン運動エネルギの範囲を選択する。したがって、多様な実施形態において、イオンセレクタを有するイオン光学システムは、イオンフラグメンタの中への導入のために選別されたエネルギ範囲での運動エネルギで、一次イオンを選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するように構成される。
【0027】
多様な実施形態において、イオンセレクタ(例えば、時限イオンセレクタ)は、第1のイオン光学システムおよび質量分析器との間に配置される。イオンセレクタは、一部の実施形態において、イオンセレクタの位置が、第1のイオン光学システムの像面(例えば、像平面)に実質的に一致するように配置される。多様な実施形態において、第1のイオン光学システムからのイオンの軌道は、イオンセレクタの軸と実質的に同軸である。一部の実施形態において、イオンセレクタは、電力を通されて、選択されたm/z範囲内のイオンのみを透過する。従って、多様な実施形態において、イオンセレクタは、イオンフラグメンタの中への導入のために一次イオン(イオン光学システムによって透過されたイオンから)を選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するよう構成される。
【0028】
多様な実施形態において、第1のイオンセレクタは、イオン光学システムによって透過されたイオン運動エネルギの範囲を選択するよう、イオン光学システムのイオンミラーの間に配置され得る。したがって、多様な実施形態において、イオンセレクタを有するイオン光学システムは、選択されたエネルギ範囲における運動エネルギを有するイオンを選択し、第2のイオンセレクタ(例えば、時間イオン選択)は、イオン光学システムおよび質量分析器の間に配置され、イオンフラグメンタの中へ導入するために一次イオンを選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するように構成される。
【0029】
多様な実施形態において、本教示の質量分析器システムは、第2のイオン光学システムをさらに備える。多様な実施形態において、第2のイオン光学システムは、偶数個のイオンミラーを備え、該第2のイオン光学システムを出るイオンの軌道であって、該イオンが該第2のイオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、該第2のイオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されている。第1のイオン光学システムのイオンミラー、第2のイオン光学システムのイオンミラー、または両方は、複数の対に配列され、各対の第1の要素と第2の要素とは、その対の該第1の要素が、その対の該第2の要素の位置に対して、第1の平面に対して鏡面対称である位置を有するように、該第1の平面の対向する側に配置され得る。
【0030】
多様な実施形態において、イオンセレクタは、第1のイオン光学システムと第2のイオン光学システムとの間に配置されている。イオンセレクタは、一部の実施形態において、イオンセレクタの位置が、第1のイオン光学システムの像面(例えば、像平面)に一致するように、配置され、第1のイオン光学システムからのイオンの軌道は、イオンセレクタの軸と実質的に同軸である。一部の実施形態において、イオンセレクタは、電力を通されて、選択されたm/z比の範囲内のイオンのみを透過する。したがって、多様な実施形態において、イオンセレクタは、フラグメンタの中にイオンを導入するために一次イオン(第1のイオン光学システムから透過されたイオンから)を選択し、第2のイオン光学システムは、フラグメントイオンの少なくとも一部を質量分析器に透過するように構成され、該質量分析器は、選択されたフラグメントイオンの少なくとも一部を分析するように構成される。
【0031】
イオンセレクタは、多様な実施形態において、例えば、選択運動エネルギを有するイオンの透過を避けるように、本教示のイオン光学システムのイオンミラーの間に配置され、質量分析器の一つ以上のイオン光学システムは、多様な実施形態において、イオン運動エネルギの選択範囲におけるイオンのみを実質的に透過するように構成される。
【0032】
前述の局面、および他の局面、実施形態、および本教示の特徴は、添付図面と関連して次の記述からより完全に理解し得る。図面において、類似の参照符号は、様々な図面を通して類似の特徴および構造的要素を参照する。図面は、縮尺を合わす必要がなく、その代わりに、強調が、教示の原理を例示することに置かれている。
【発明を実施するための最良の形態】
【0033】
当業者は、ここに記述された図面は、例示の目的のためのみであることを理解する。図面において、本教示は、単一段のイオンミラーを用いて例示されるが、本技術で知られた任意のイオンミラーは、各段で適用される異なった場を有する2つ以上の段を使用するグリッド(gridded)イオンミラーも、グリッドレス(gridles)イオンミラーも含むがこれに限定されずに使用され得る。図面は、本教示の範囲を決して限定することを意図されない。
【0034】
(多様な実施形態の説明)
本教示をより良く理解するために、一様な電場を使用する、従来の単一段のイオンミラーにおけるイオンの動作の実施例が提供され、一様な電場を使用する、2つのイオンミラーの従来の平行する配列におけるイオンの動作の実施例が提供される。
【0035】
(単一のイオンミラー)
本教示をより良く理解するために、一様な電場を使用する従来の単一段のイオンミラーにおけるイオンの動作の実施例は、図1Aで概略的に示され、この単一段のイオンミラーのイオン収束は、図1Bで示される。一般的な従来の単一段のイオンミラー100において、一様な電場を使用しており、イオンは、接地された入口電極102の開口部(一般的には格子)を通って、接地された入口電極102での電場に対する法線106に関して角度αで、軌道104に沿って、反射器の電場に入る。電位の勾配(gradient)の、入口電極102と、イオンミラー100の平行である端末電極108とに垂直な方向の成分は、入口および端末電極の間の距離dによって、加えられる電圧Vの差を、割り算したものである。この記述は、電極の、電場に平行な方向(図1Aにおける方向y、110)の範囲は、距離dに比べて十分大きく、その結果イオンによってサンプリングされる領域の電場が基本的に一様であり、図1Aにおけるx方向112と直交する方向の電場がゼロであることを、仮定している。図1Aの単一段のイオンミラーの電場におけるイオンの運動方程式は、
【0036】
【数2】

として書かれ得、ここに、記号mは、イオンの質量を表し;zは、イオンの電荷を表し;Vは、入口電極102と端末電極108との間の電位差を示し;dは、入口電極と端末電極との間の、方向xに沿った距離を表わし;αは、図1Aに示されるように、入口電極102での電場106に対する垂直線に関する入口のイオン軌道の角度を示し;tは、時間であり;Vは、単一段のイオンミラー100に入るときのイオンの速度であり;aは、図1Aのx方向112におけるイオンの加速度であり;aは、図1Aのy方向110におけるイオンの加速度であり;vは、図1Aのx方向112におけるイオンの速度であり;vは、図1Aのy方向110におけるイオンの速度であり;xは、図1Aのx方向112における時刻tでのイオンの位置であり、yは、図1Aのy方向110におけるイオンの位置である(ここに、t=0は、イオンが電場に入る時刻であり、図1Aのxおよびy座標系の原点は、示された座標の交点120である)。
【0037】
=0が時間tを与えるとき、すなわち電場への最大侵入に対応するとき、式(3)をtについて解いて、
【0038】
【数3】

式(5)および(6)におけるtに代入すると時刻tでのイオンの位置を与える:
【0039】
【数4】

【0040】
【数5】

ここに、
【0041】
【数6】

時刻2tで、イオンは、イオンミラーから出て(図1Aのイオンミラーに対して再度イオンの位置x=0のとき)、y方向におけるイオンの速度が変化されず、x方向のイオンの速度の大きさ(速さ)が、イオンの入口の速度に等しく、しかし、入口電極102から離れる向きに、入口電極102での電場106の垂直線に関してほぼ−αに等しい角度121である。y方向に時刻2tで進んだ距離は、
【0042】
【数7】

によって与えられ得る。
【0043】
イオンが、イオンミラーの中で電場がないときにx方向に時刻tで進む距離、すなわちx(eff)は、
【0044】
【数8】

によって与えられ得る。
【0045】
単一段におけるイオンミラーは、図1Aに概略的に示されるように、放物線状の軌道に従う。より低い運動エネルギ(E)を有するイオンは、軌道122に従い、軌道122は、より高い運動エネルギ(E)を有する軌道124よりもより浅い(例えば、より低いx(t)値を有する)。単一段のイオンミラーを通るイオンの飛行時間のエネルギ依存性と、単一段のイオンミラーから出るイオン軌道とを決定する目的のために、現実のイオン軌道は、仮想平面ミラーから反射することによって結果として生じる軌道によって置き換えられ得、該仮想平面ミラーは、入射するイオン軌道に関して角度αで傾斜されている。この場合、仮想平面ミラーは、単一段のイオンミラーに対する入口に関して実効距離d(eff)に配置される。該実効距離d(eff)は、
【0046】
【数9】

によって与えられ得る。
【0047】
式(10)および(13)から理解され得るように、図1Aに例示されているように、所定のm/z値を有するイオンに対し、より低い運動エネルギ(例えば、E)を有するイオンは、より高い運動エネルギ(例えば、E)を有するイオンより、より短いd(eff)を有しており、ここに、deff(E)<deff(E)である。
【0048】
一定の速度Vをもって進むイオンに対して、d(eff)を進むのに必要な時間は、
【0049】
【数10】

によって与えられ、時刻2tにy方向に進められた距離は、
【0050】
【数11】

によって与えられ得る。
【0051】
したがって、単一段のイオンミラーにおけるイオンの滞在時間、および単一段のイオンミラーから出たイオンの最終的な方向は、両方とも、平面鏡から弾性的に反射されたイオンの仮想的な場合と実質的に同一である。後者は、無限の加速を必要とするので、物理的には不可能であるが、後者は、誤差または近似を導入することなしに、例示するべきかつ試験されるべきミラーの組み合わせの効果を与える。
【0052】
単一段のイオンミラーにおいて、イオンミラーに入るときのイオンの運動エネルギの相違のために、y方向におけるイオンのエネルギ分散、空間分散は、エネルギVに関してyの微分係数によって与えられ得る。Vに関して式(15)を微分して
【0053】
【数12】

を与える。
【0054】
図1Aを再度参照して、エネルギ分散によって、より高いおよびより低いイオンのエネルギに対して最初の一致したイオンの軌道104が、空間的に分散させられ、結果として、イオンミラーを出るイオン軌道になり、そのイオン軌道は、イオンミラーに入るときにイオンが持っていた運動エネルギーに依存する。したがって、イオンミラーから出るより低いエネルギのイオンに対する軌道は、像面と実質的に平行な表面と位置126で交わり、位置126は位置128とは異なり、位置128でより高いエネルギのイオンの軌道が表面と交わる。
【0055】
図1Aの一様な電場を有する単一段のイオンミラーに対する焦点距離は、図1Bに示される。ゼロ電界領域で、速度vで距離離dffを進むために必要な時間は、
【0056】
【数13】

によって与えられ得る。ゼロ電界領域とイオンミラーからなる質量分析器システムに対して、全飛行時間t(total)は、
【0057】
【数14】

によって与えられ得る。
一次の時間収束のための条件は、速度に関するt(total)の微分係数がゼロにならなければならないことであり、すなわち、
【0058】
【数15】

である。
式(10)からvを代入し、dffに対して解けば、単一段のイオンミラーに対する時間収束条件を与え得る、
【0059】
【数16】

したがって、図1Bに示されるように、入って来るイオンの軌道154上で距離d152における焦点面、つまりイオンミラーの対物面でのイオンは、出て行くイオンの軌道158上でd156における像面で時間収束され(すなわち、イオンは全て実質上同じ時刻に距離dに到着する)、その結果、
【0060】
【数17】

となり、ここに、dは、図1Aに関して上述されたように、入口電極160と端末電極162との間の距離である。距離dにおける焦点面156は、像面として言及され得、距離dにおける焦点面152は、対物面として言及される。
【0061】
(平行なイオンミラー)
本教示をより良く理解するために、一様な電場を使用する2つのイオンミラー200の従来の平行である配列におけるイオンの動作の実施例が、図2に示される。図2を参照して、2つのイオンミラー202および203は、第1のイオンミラー202の入口電極204と背中合わせに配列され、第1のイオンミラー202の入口電極204は、第2のイオンミラー203の入口電極206に面し、第1のイオンミラー202の入口電極204と端末電極206との間の距離、および第2のイオンミラー203の入口電極205と端末電極207との間の距離は、実質的に同じであり、第1のイオンミラー202の入口電極204と端末電極206との間の電位差(V)は、第2のイオンミラー203の入口電極205と端末電極207との間の電位差と同じである。図2の2つのイオンミラーの組み合わせのイオン滞在時間、実効時間焦点距離、およびエネルギ分散は、2つのイオンミラーの合計に等しい長さを有するイオンミラーに対する式によって与えられ得る。図2の組み合わされたイオンミラーの焦点面dおよびdは、組み合わされたイオンミラーと関連して位置付けられ、例えば、対物面の距離d208は、入口から第1のイオンミラー202まで適切な入射するイオンの軌道に沿って決定され、像面の距離d209は、入口から第2のイオンミラー203まで適切な出てゆくイオンの軌道に沿って決定される。対物面208と像面209との間のゼロ電界領域であって、ミラー(204〜205)の間の場のない空間を含むゼロ電界領域におけるイオン経路の全長は、式(20)によって与えられた個々のミラーに対する全長の2倍に実質的に等しい。図2に示されるイオン軌道210、213、214および215は、イオンが平面ミラーから弾性的に反射される仮想的な場合に対する軌道であり、平面ミラーは、イオンミラー内でイオンの放物線の飛行経路を例示しないが、イオンミラーの外側で適切にイオン軌道を例示する。
【0062】
図2に示されるように、背中合わせの2つの平行であるイオンミラーを使用する1つの効果は、第2のイオンミラーから出るイオン軌道213および215は、第1のイオンミラーに入る対応するイオン軌道210および214に対して、平行でありかつ横に変位されることである。しかしながら、異なる入口運動エネルギを有するイオンの出口軌道における分散は、なお最終的なイオン軌道で生じる。より低い運動エネルギを有するイオンは、軌道210、213に従い、軌道210、213は、エネルギ分散のために、より高い運動エネルギを有するイオンの軌道214、215から横に変位される。
【0063】
(イオン光学システム)
広く多様なイオンミラーは、本教示のイオン光学システムにおいて使用され得、イオンミラーは、単一段、二段および多段のミラーを含むが、これらに限定されない。適切なイオンミラーにおける電位は、線形または非線形であり得る。図におけるイオンミラーは、概略的に示されていることが理解されるべきである。例えば、イオンミラーは、一般的には、その中に電場を確立するための多数の電極を備えており、浮遊電場がゼロ電界領域に入るのを防止するために保護電極を含み得る。適切なイオンミラーの電極は、格子を備え得、格子なしであり得、または格子と格子なしの電極との混合であり得る。さらに、入口電極の電位は、しばしばゼロと注記されるが、これは、純粋に本明細書中に現れる式における表記の便利さおよび簡潔さのためであることが理解されるべきである。当業者は、入口電極における電位が真の地面の接地電位にあることが本教示に必要ではないことを容易に認識する。例えば、入口電極における電位は、真の地面の接地より著しく(例えば、数千ボルト以上だけ)上(または下)にある「浮遊接地」であり得る。したがって、本明細書中におけるゼロまたは接地としての電位の記載は、地面の接地に関して、電位の値を制限すると、決して解釈されるべきではない。
【0064】
図1B〜9に概略的に示されるイオン軌道は、イオンが平面ミラーから弾性的に反射される仮想的な場合のためであり、図1B〜9は、イオンミラー内のイオンの放物線の経路を例示しないが、イオンミラーの外側でのイオン軌道を適切に例示している。
【0065】
図3を参照して、多様な実施形態において、イオン光学システム300であって、偶数個のイオンミラーを備え、偶数個のイオンミラーは、イオン光学システムに入るときにイオンが持っていた運動エネルギの相違のための空間分散が、実質的にない状態で、イオンがイオン光学システムを出るように、配列された2つのイオンミラーを備えたイオン光学システム300。多様な実施形態において、第1のイオンミラー302および第2のイオンミラー304は、イオンがイオン光学システム300に入るときに持っていた運動エネルギの相違のための空間分散が実質的にない状態でイオンが像面307に到着するように配列されている。
【0066】
図3に示される、2つのイオンミラー302、304の対称な配列は、イオン光学システム300に対するエネルギ分散が実質的にないが、滞在時間および実効時間の焦点距離が、2つのイオンミラーの結合された長さに等しい1つのイオンミラーに対する焦点距離と同一であるという特性を有する。エネルギ分散は、第1のイオンミラー302で発生するが、このエネルギ分散は、第2のイオンミラー304で実質的に補償され得ることにより、イオンは、最初の軌道310に沿って入射し、最後の軌道312に沿って出て行き、このことは、第1のイオンミラー302に入るとイオンが有する運動エネルギから実質的に独立している。
【0067】
多様な実施形態において、2つのイオンミラーは、第1の平面313(第1の平面とページの面との交線として図示される)の対向する側に配置されることにより、第1のイオンミラー302および第2のイオンミラー304は、第1の平面313に対して、実質的に鏡面対称に配列される。最初の軌道310と最後の軌道312との間の角度314は、第1のイオンミラーの入口電場への法線318に対する最初の軌道310の角度αの約4倍に等しい。
【0068】
入射するイオン軌道と入口電極の電場に対する法線との間の角度αは、任意の角度であり得る。この入射角は、例えば、入射するイオン軌道と出射するイオン軌道との間の望ましい角度に基づいて、選択され得る。実質的に平坦ではない入口電極の電場に対して、入射イオン軌道の交わる点または交わる領域における入口電極の電場に対する接平面は、入口電極の電場の平面として得られ得る。入射軌道と法線との間の角度は、いかなる値でもあり得るが、実施の理由で、最小の実施角度は、イオンミラー電圧からのゼロ電界領域において、イオンビーム(連続したビームまたはパルスビーム)を遮蔽するために使用される構造によって制限され得る。通常は、ゼロ電界距離に関連するイオンミラーの物理サイズは、入射角が増加すると、増加するが、所与の運動エネルギに対して印加される電圧は、角度の増加に伴い、通常減少する。
【0069】
図4を参照して、多様な実施形態において、本教示に従って、イオン光学システム400は、第1の平面406(第1の平面とページの平面との交線として図示される)の対向する側に配置された第1のイオンミラー402と第2のイオンミラー404とを備えていることにより、第1のイオンミラー402および第2のイオンミラー404は、第1の平面406に対して、実質的に鏡面対称に配列される。図4に図示されるイオン軌道は、入射するイオン軌道408、410に対するものであり、これは、入口電極の電場と、入口電極の電場の法線412に対して約22.5度の角度αで交わり、約90度の入射するイオン軌道408、410と、対応する出射するイオン軌道414、416との間の角度を結果として生じる。
【0070】
多様な実施形態において、第1のイオンミラーが配置されることにより、第1のイオンミラーの入口電極の電場の平面は、ほぼ角度βで第1の平面と交わる平面に実質的に位置し、第2のイオンミラーの入口電極の電場の平面は、ほぼ角度βで第1の平面と交わる平面に実質的に位置する。実質的に平坦ではない入口電極の電場に対して、入射イオン軌道の交わる点または交わる領域における入口電極の電場に対する接平面は、入口電極の電場の平面として得られ得る。
【0071】
例えば、図4を再び参照して、第1のイオンミラーの入口電極418の電場は、ほぼ角度β=α=22.5度で、第1の平面と交わる平面420内に実質的に位置し、第2のイオンミラーの入口電極の電場はまた、ほぼ角度β=α=22.5度で第1の平面406と交わる平面422内に実質的に位置する。
【0072】
第1のイオンミラー402に入る2つの異なるイオン運動エネルギEおよびEを有する(ここでE<E)イオンに対するイオン軌道の例はまた、図4に図示される。より低いエネルギEのイオンの軌道の入射部分408は、単に明確にするために、より高いエネルギのイオンEのイオンの軌跡の入射部分410からわずかな距離δ変位されている。図4から見られ得るように、第1のイオンミラーのエネルギ分散は、第1のイオンミラー402に存在するより低いエネルギのイオンの軌道436と、より高いエネルギのイオンの軌道438との間の空間的間隔における増加を引き起こす。第2のイオンミラー404が、第1のイオンミラー402に対して配置されることにより、第2のイオンミラーのエネルギ分散が、第1のイオンミラー402によって引き起こされたエネルギ分散を実質的に補償する。結果として、多様な実施形態において、第2のイオンミラーを出て行くより低いエネルギのイオン410およびより高いエネルギのイオン416の軌道は、エネルギ分散を実質的に示さないが、これらの軌道の任意の実際の元の変位δは、実質的に維持される。
【0073】
入射軌道の角度αおよび該角度βのうちの1つ以上は、約22.5度よりも大きくあり得る。例えば、図5を参照して、多様な実施形態において、イオン光学システム500は、第1の平面506(第1の平面とページの平面との交線)の対向する側に配置された第1のイオンミラー502と第2のイオンミラー504とを備えていることにより、第1のイオンミラー502および第2のイオンミラー504は、第1の平面506に対して実質的に鏡面対称に配列され、第1のイオンミラーの入口電極の電場507は、第1の平面506と約45度で交わる平面508に実質的に位置し、第2のイオンミラーの入口電極の電場509はまた、第1の平面506と約45度で交わる平面510に実質的に位置する。約45度という入射するイオン軌道の角度に対して、このようなイオン光学システムは、出力イオンを出射するイオン軌道520に沿って方向付けるために使用され、出射するイオン軌道520は、入射するイオン軌道522から180度(反平行)である。さらに、出射するイオン軌道は、2つのイオンミラー間の距離を選択することによって、(出力ビームに対するエネルギ分散を導入することなしに)入射するビームからの選択された距離Δ変位され得る。イオンミラー間の距離の増加が変位距離Δを増加させる。
【0074】
第1のイオンミラー502に入る2つの異なるイオン運動エネルギEおよびEを有するイオン軌道の例はまた、図5に図示される。より低いエネルギEのイオンの軌道の入射部分522は、単に明確にするために、より高いエネルギEのイオンの軌道の入射部分532からのわずかな距離δ変位されている。図5から見られ得るように、第1のイオンミラーのエネルギ分散は、第1のイオンミラー502を出て行くより低いエネルギのイオンの軌道534と、より高いエネルギのイオンの軌道536との間の空間的な間隔における増加を引き起こす。第2のイオンミラー504が、第1のイオンミラー502に対して配置されることにより、第2のイオンミラー504のエネルギ分散は、第1のイオンミラー502によって引き起こされたエネルギ分散に対して実質的に補償する。結果として、多様な実施形態において、第2のイオンミラーを出て行くより低いエネルギのイオン軌道520およびより高いエネルギのイオン軌道540は、第1のイオンミラーに入る際にイオンの運動エネルギの違いに起因する空間分散を実質的に示さないが、これらの軌道の任意の実際の元の変位δは、実質的に維持される。
【0075】
多様な実施形態において、イオンセレクタが第1のイオンミラーと第2のイオンミラーとの間に配置され、例えば、第1のイオンミラーから第2のイオンミラーまでの選択運動エネルギを有するイオンの透過を防ぐ。このような配置は2つのイオンミラー間の軌道のエネルギ分散を利用し得る。適切なイオンセレクタは、イオンの位置に基づいて、第1のイオンミラーと第2のイオンミラーとの間のイオンの透過を防ぎ得る任意の構造を含む。適切なイオンセレクタの例は、イオンディフレクタおよび1つ以上の開口部(例えば、スリット、アパーチャなど)を含む構造を含むがこれらに限定はされない。開口部は、一定または変更可能であり得る。1つ以上の開口部を含む適切な構造の例は、開口されたプレート、シャッタおよびチョッパ(例えば、ロータリーチョッパ)を含むがこれらに限定はされない。一部の実施形態において、イオンセレクタは、第1のイオンミラーと第2のイオンミラーとの間を通る対称面に配置されている。
【0076】
図3〜図5を参照すると、多様な実施形態において、イオンセレクタ360、460、560は、第1のミラー302、402、502と、第2のミラー304、404、504との間に配置され得、例えば、エネルギフィルタを有するイオン光学システムを提供し、これは、エネルギ分散を実質的に示さない出射するイオン軌道をさらに提供するイオンを選択するために、第1のイオンミラーのエネルギ分散を使用し得る。例えば、小さいアパーチャまたはスリットを有するプレートが第1の平面313、406、506に配置される場合には、狭い範囲の運動エネルギ内のイオンのみが第2のイオンミラーに透過される。
【0077】
多様な局面において、本教示は、2つ以上の対のイオンミラーを備えているイオン光学システムを提供し、ここでイオンミラーの各対の要素は、第1の平面の対向する側に配置されることにより、1対のイオンミラーの第1の要素が、第1の平面に対して、該対の第2の要素の位置に対して、実質的に鏡面対称な位置を有する。図6〜図10を参照して、多様な実施形態において、イオン光学システム600、700、800は、第1のイオンミラー602、702、802と、第1の平面606、706、806(第1の面とそれぞれの図のページの面との交線として図示される)の対向する側に配置された第2のミラー604、704、804とを、実質的に鏡面対称の関係性で備えており、第3のイオンミラー608、708、808と第1の平面606、706、806の対向する側に配置される第4のイオンミラー610、710、810とを、実質的に鏡面対称の関係性で備えている。
【0078】
多様な実施形態において、イオンミラーが配列されることにより、イオン光学システムを出て行くイオンの軌道620、720、820(すなわち、イオンが出て行くイオン光学システムの最後のミラー610、710、804の焦点面)が、第4のイオンミラー610、710、810の焦点面622、722、822(例えば、焦点面(focul plane))に実質的に平行な表面に、イオン光学システムに入る際に(例えば、第1のイオンミラー602、702、802に入る際に)イオンが有する運動エネルギから実質的に独立する位置において交わるように提供され得る。
【0079】
イオンミラーは、入射するイオン軌道と入口電極の電場に対する法線との間の選択された角度αを提供するように配列され得る。図6〜図9において、角度αは、入射するイオン軌道と、第1のイオンミラーの入口電極の電場に対する法線との間の角度である。実質的に平坦ではない入口電極の電場に対して、入射するイオン軌道の交わる点または交わる領域における入口電極の電場に対する接平面は、入口電極の電場の平面として得られ得る。入射する軌道と法線との間の角度は、任意の値であり得るが、実践的な理由で、最小および最大の実践角が制限され得る。
【0080】
多様な実施形態において、イオンミラーは配列されることにより、イオン光学システムを出て行くイオン軌道が、イオン光学システムに入る対応するイオン軌道と実質的に反平行(180度)である。例えば、図6において、光学システム600を出て行くイオン軌道620は、イオン光学システムに入る対応するイオン軌道に実質的に反平行である。多様な実施形態において、イオンミラーは配列されることにより、イオン光学システムを出て行くイオン軌道が、イオン光学システムに入る対応するイオン軌道に実質的に平行である。例えば、図7において、イオン光学システム700から出て行くイオン軌道720は、イオン光学システムに入る対応するイオン軌道723と実質的に平行である。
【0081】
多様な実施形態において、図6および図7のイオン光学システムは、第1の平面に対して実質的に鏡面対称に配置された図4のイオン光学システムに実質的に類似する2つのイオン光学システムの組み合わせである。例えば、図6のイオン光学システムは、第1のイオン光学システムであって、該第1のイオン光学システムは、(第1のイオンミラーと第3のイオンミラーとを備えている)第1の対のイオンミラーを備え、第1の平面606に対して、第2のイオン光学システムに対して実質的に鏡面対称に配置された第1のイオン光学システムと、該第2のイオン光学システムとの組み合わせとして見られ得、該第2のイオン光学システムは、(第2のイオンミラーと第4のイオンミラーとを備えている)第2の対のイオンミラーを備えている。さらに、図6のイオン光学システムは、追加の配列として見られ得る。なぜならば、図6のイオン光学システムに入るイオン軌道は、イオン光学システムに入る対応するイオン軌道に対する約180度の角度を形成するからである(このことは、図4のイオン光学システムにおいてイオンが出て行く軌道と入射するイオン軌道との間で形成された約90度の角度の加算である)。
【0082】
同様に、図7のイオン光学システムは第1のイオン光学システムであって、該第1のイオン光学システムは、(第1のイオンミラーと第2のイオンミラーとを備えている)第1の対のイオンミラーを備え、第2のイオン光学システムに対して、第1の平面706に対して実質的に鏡面対称配置された第1のイオン光学システムと該第2のイオン光学システムとの組み合わせとして見られ得、該第2のイオン光学システムは、(第3のイオンミラーと第4のイオンミラーとを備えている)第2の対のイオンミラーを備え、減算的配列(subtractive arrangement)により配列されている。なぜならば、図7のイオン光学システムを出て行くイオン軌道は、イオン光学システムに入る対応するイオン軌道に対して約0度の角度を形成するからである。
【0083】
図6および図7のイオン光学システムに対する出射するイオン軌道はまた、複数の対のイオンミラー間(例えば、図4のイオン光学システムに実質的に対応する上記の第1の対と第2の対との間)の距離を選択することによって、(出力ビームに対してエネルギ分散を導入することなしに)入射ビームから選択された距離Δ変位され得る。
【0084】
第1のイオンミラー602、702に入る際に2つの異なるイオン運動エネルギEおよびE(ここでE<E)を有するイオンに対するイオン軌道の例はまた、図6および図7に図示される。より低いエネルギEのイオンの軌道の入射部分623、723は、単に明確にするために、より高いエネルギEのイオンの軌道の入射部分624、724からわずかな距離δ変位されている。図面から見られ得るように、エネルギ分散は、軌道に沿った多様な位置625、626、725、726におけるより低いエネルギのイオンの軌道とより高いエネルギのイオンの軌道との空間的な間隔における増加を引き起こす。イオンミラーは、エネルギ分散を実質的に補償するように互いに対して配置される。結果として、多様な実施形態において、第4のイオンミラーに入るより低いエネルギのイオンの軌道620、720およびより高いエネルギのイオンの軌道627、727は、第1のイオンミラーに入る際のイオンの運動エネルギにおける違いに起因する実質的に空間分散を示さないが、これらの軌道の任意の実際の元の変位δは実質的に維持される。
【0085】
再び図6を参照して、多様な実施形態において、イオン光学システムはイオンセレクタをさらに備え得る。実施形態は、第1のイオンミラー602と第3のイオンミラー608との間に配置されたイオンセレクタ630、第2のイオンミラー604と第4のイオンミラー610との間に配置されたイオンセレクタ632、またはその両方を含むがこれらに限定はされない。例えば、多様な実施形態において、イオンセレクタ630は、第1と第3のイオンミラーとの間に配置され得、イオンセレクタ632は、第2と第4のイオンミラーとの間に配置され得、イオンフラグメンタ640は、第3と第4のイオンミラーとの間に配置される。一部の実施形態において、このような配列は、例えば、一次イオンの運動エネルギの選択および娘イオンの運動エネルギ分布の確認が可能なTOF−TOFを提供し得る。
【0086】
多様な実施形態において、イオンセレクタ660(例えば、時限のイオンセレクタ)は、第3と第4のイオンミラーとの間に配置され得る。イオンセレクタ660は配置され得ることにより、一部の実施形態において、イオンセレクタの位置は、第1のイオン光学システム(例えば、第1のイオンミラー602と第3のイオンミラー608を共に得る)の像面(例えば、像平面)、対称平面606またはその両方と実質的に一致する。多様な実施形態において、第1のイオン光学システムからのイオンの軌道は、イオンセレクタの軸に実質的に同軸である。一部の実施形態において、イオンセレクタは活性化されることにより、選択されたm/z値の範囲内のイオンのみを透過させる。従って、多様な実施形態において、イオンセレクタは、(イオン光学システムによって透過されたイオンからの)一次イオンをフラグメンタ640の中に導入するために選択する。多様な実施形態において、第2のイオン光学システム(例えば、第2のイオンミラー604および第4のイオンミラー610が共に得られる)は、透過処理のために選択されたエネルギ範囲内の運動エネルギを有するフラグメントイオンの少なくとも一部を選択するように構成されている。
【0087】
図7および図9を参照すると、多様な実施形態において、イオン光学システムは、イオンセレクタをさらに備え得る。実施形態は、第1のイオンミラー702と第2のイオンミラー704との間に配置されたイオンセレクタ730;第3のイオンミラー708と第4のイオンミラー710との間に配置されるイオンセレクタ732;またはその両方を含むがこれらに限定はされない。例えば、多様な実施形態において、イオンセレクタ730は、第1と第2のイオンミラーとの間に配置され得、イオンセレクタ732は、第3と第4のイオンミラーとの間に配置され得、イオンフラグメンタ740は、第2と第3のイオンミラーとの間に配置される。一部の実施形態において、このような配列は、例えば、一次イオンの運動エネルギの選択および娘イオンの運動エネルギの分散の確認が可能なTOF−TOFを提供し得る。
【0088】
多様な実施形態において、イオンセレクタ760(例えば、時限のイオンセレクタ)は、第2と第3のイオンミラーとの間に配置され得る。一部の実施形態において、イオンセレクタ760が配置されることにより、イオンセレクタの位置が、第1のイオン光学システム(例えば、第1のイオンミラー702と第2のイオンミラー704が共に得られる)の像面(例えば、像平面)、対称平面706またはそれら両方と実質的に一致する。多様な実施形態において、第1のイオン光学システムからのイオンの軌道は、イオンセレクタの軸と実質的に同軸である。一部の実施形態において、イオンセレクタは活性化され、選択されたm/z値の範囲内のイオンのみが透過される。従って、多様な実施形態において、イオンセレクタは、イオンフラグメンタ740への導入のために、一次イオン(イオン光学システムによって透過されたイオン)を選択する。多様な実施形態において、第2のイオン光学システム(例えば、第3のイオンミラー708と第4のイオンミラー710が共に得られる)は、透過のための選択されたエネルギ範囲内の運動エネルギを有するフラグメントイオンの少なくとも一部を選択するように構成されている。
【0089】
再び図8および図10を参照すると、多様な実施形態において、第1の平面の同一の側のイオンミラーのセットは、共通の入口電極を利用し得る。例えば、一部の実施形態において、第1のイオンミラー802および第3のイオンミラー808は、共通の入口電極840を利用し得るが、個別の出口電極842、844を利用し得、第2のイオンミラー804および第4のイオンミラー810は、共通の入口電極850を利用し得るが、個別の出口電極852、854を利用し得る。多様な実施形態において、入口電極840、850は、接地電位において維持され(これは浮遊接地であり得る)、異なる電圧が出口電極842、844、852、854に印加され、イオンを、イオンミラーのセットの入口から、イオンミラーのセットからの出口までの放物線状の経路内を進ませる。
【0090】
第1のイオンミラー802の入口上の2つの異なる運動エネルギEおよびE(ここでE<E)を有するイオンに対するイオン軌道の例が、図8に図示される。図8において、より低いエネルギEのイオンの軌道の入射部分856は、より高いエネルギのイオンの軌道の入射部分856に対して変位されない。図8から見られ得るように、第1および第3のイオンミラーのエネルギ分散は、第3のイオンミラー808を出て行くより低いエネルギのイオンの軌道860とより高いエネルギのイオンの軌道862との間の空間的な間隔における増加を引き起こす。第2および第4のイオンミラーが、第1および第3のイオンミラーに関して配置されることにより、第1および第3のイオンミラーによって引き起こされたエネルギ分散は、第2および第4のイオンミラーによって実質的に補償される。結果として、多様な実施形態において、第2のイオンミラー804を出て行くより低いエネルギのイオン軌道およびより高いエネルギのイオン軌道は、第1のイオンミラー802に入る際にイオンが有する運動エネルギにおける違いに起因する空間分散を実質的に示さない。
【0091】
多様な実施形態において、イオンミラーは、イオン光学システムを出て行くイオン軌道が、イオン光学システムに入る対応するイオン軌道と実質的に一致し、実質的に平行か、または実質的に反平行かのいずれかであるように配列され得る。例えば、図8において、イオン光学システム800を出て行くイオン軌道820は、イオン光学システムに入る対応するイオン軌道856に実質的に平行である。イオン光学システム800から出て行くイオン軌道820はまた、イオン光学システムに入る対応するイオン軌道856と実質的に一致し得る。例えば、図8において、出射するイオン軌道820は、入射するイオン軌道856に実質的に垂直な方向に実質的に変位されない。すなわち、変位距離Δは、実質的にゼロに等しい。
【0092】
図8および図10を参照すると、多様な実施形態において、イオンセレクタ880は、第3のイオンミラー808と第4のイオンミラー810との間に配置され得ることにより、例えば、エネルギフィルタを有するイオン光学システムを提供し、これは、エネルギ分散を実質的に示さない出射するイオン軌道を提供するイオンを選択するために第1および第3のイオンミラーの結合されたエネルギ分散を使用し得る。例えば、小さいアパーチャまたはスリットを有するプレートが第1の平面806に配置される場合には、運動エネルギの狭い範囲内のイオンのみが、第4のイオンミラー810まで透過される。
【0093】
多様な局面において、本教示は、第1のイオン光学システムと、イオン源、イオンセレクタ、イオンフラグメンタ、イオン検出器のうちの1つ以上と、イオンガイド、イオン収束エレメント、イオン操縦エレメントおよび1つ以上の質量分析器(例えば、飛行時間型、四重極、RF多極、磁気セクタ、静電気セクタ、イオントラップおよびイオン移動度分光測定器のうちの1つ以上)を備えている質量分析器システムを提供する。偶数のイオンミラーを備えている第1のイオン光学システムが配列されることにより、第1のイオン光学システムを出て行くイオンの軌道が、イオン光学システムの像焦点面に実質的に平行な平面を、第1のイオン光学システムに入る際にイオンが持っていた運動エネルギから実質的に独立する位置で交わるように提供され得る。多様な実施形態において、第1のイオン光学システムのイオンミラーは、第1の要素を有する対で配列され、各対の第2の要素は、第1の平面の対向する側に配置されることにより、各対の第1の要素は、第1の平面に対して、該組の第2の要素の位置に関して実質的に鏡面対称な位置を有する。質量分析器システムは、1つ以上のイオンガイド(例えば、RF多極ガイド、ガイドワイア)、イオン収束エレメント(例えば、エインゼルレンズ)およびイオン操縦エレメント(そらせ板)をさらに備え得る。
【0094】
適切なイオン源は、電子衝撃(EI)イオン化、電気スプレーイオン化(ESI)およびマトリクス支援レーザ脱離イオン化(MALDI)供給源を含むがこれらには限定されない。適切なイオン検出器は、電子増倍管、チャネルトロン(channeltron)、マイクロチャネルプレート(MCP)および電荷結合素子(CCD)を含むがこれらに限定されない。
【0095】
適切なフラグメンタは、衝突誘起解離(CID、衝突支援解離(CAD)とも呼ばれる)、光誘起解離(PID)、表面誘起解離(SID)、ポストソース分解またはそれらを組み合わせた原理で動作するフラグメンタを含むがこれらに限定はされない。適切なイオンフラグメンタの例は、衝突セル(ここにおいて、イオンは、イオンを中性の気体分子と衝突させることによって断片化される)、光解離セル(ここにおいて、イオンは、イオンを光子ビームに照射させることによって断片化される)、表面解離フラグメンタ(ここにおいて、イオンは、イオンを固体表面または液体表面に衝突させることによって、断片化される)を含むがこれらには限定されない。
【0096】
多様な実施形態において、本教示のイオン光学システム、質量分析器システム、またはその両方が、イオンセレクタを備えている。TOF質量分析器の多くのアプリケーションにおいて、それは通常、イオン源によって生成されたエネルギ範囲内のイオンの全てを透過させることが望ましいが、一部のアプリケーションにおいては、イオンの運動エネルギの選択範囲のみが、関心がある。異なった運動エネルギを有するイオン源において、直接生成されたイオンに加えて、例えば、イオン源加速場またはイオン源に続くゼロ電界スペースにおける生成の後のイオンの断片化に起因するエネルギの損失によって、より低い運動エネルギを示すイオンがあり得る。多様な実施形態において、これらのイオンは、イオンセレクタを、本教示のイオン光学システムにおけるエネルギフィルタとして用いることによって取り除かれ得る。
【0097】
適切なイオンセレクタの例は、イオンディフレクタ、1つ以上の開口部(例えば、スリット、アパーチャなど)を含む構造を含むが、これらには限定されない。開口部は、一定または変更可能であり得る。1つ以上の開口部を含む適切な構造の例は、開口されたプレート、シャッタおよびチョッパ(例えば、ロータリチョッパ)を含むが、これらに限定はされない。
【0098】
イオン光学システム内にイオンセレクタを備えている多種の実施形態の多種のアプリケーションにおいて、異なった質量のイオンの運動エネルギ分布を決定することが所望され得る。このことは、多様な実施形態において、イオンミラーの間に狭いスリットまたはアパーチャを配置することによって達成され得、ここにわずかなエネルギの増分の範囲内のイオンのみが透過されるように、運動エネルギの差に起因してイオン軌道が空間的に分散される。例えば、イオン検出器において、イオンの信号の強度をイオンミラーに印加される電圧の関数として測定することによって、検出されるイオンの全てに対するエネルギ分布が、イオン検出器に、異なる時間で到着する様々な質量のイオンを用いて、測定され得る。
【0099】
多様な実施形態において、質量分析器システムは、イオン源と、イオン光学システムと、イオン検出器と、1つ以上の質量分析器と(例えば、飛行時間として提供され得る、実質的にゼロ電界の領域)を備えており、ここでイオン光学システムは、偶数個のイオンミラーを備えたイオン光学システムであって、該イオン光学システムを出るイオンの軌道であって、該イオンが該イオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されている。
【0100】
例えば、パルスイオン源、イオン検出器、質量分析器(例えば、ゼロ電界領域)を、図3〜図8に図示される任意の構成に追加することは、TOF質量分析器システムを提供し得る。図9は、TOF質量分析器システム900の多様な実施形態を、図7の1つ以上の構成に基づいて概略的に描く一方で、図10は、TOF質量分析器システム1000の多様な実施形態を、図8の1つ以上の構成に基づいて概略的に描く。
【0101】
図9を参照すると、多様な実施形態において、第1のイオンミラー702に印加された電圧が変更され(停止され)得ることにより、第1のイオンミラー702を介して電界ゼロ領域を生成し、イオンが、単純な線形のTOFにある場合には、イオン源902からイオン検出器904までを進むことを可能にする。あるいは、多様な実施形態において、適切な電圧がイオンミラーに印加されると、イオンは、イオンミラー702、704、708、710内の放物線状の経路に沿って進み、イオン検出器904まで到達し、質量分析器システムは、従来の反射TOF分析器におけるものと同一の機能の1つ以上を達成するために使用され得るが、入射する軌道908に実質的に平行で、第1のセットのイオンミラー914に対する第2のセットのイオンミラー912の変位によって決定された量910だけ変位される、出射するイオン軌道906をも提供し得、そして、第1のイオンミラーに入るイオンの運動エネルギにおける差に起因する空間分散を実質的に有さない出射するイオン軌道906を提供し得る。質量分析器は、例えば、イオン源とイオン光学システムとの間の領域920、イオン検出器とイオン光学システムとの間の領域922またはそれらの両方において提供され得る。質量分析器は、例えば、飛行時間質量分析器として役立ち得る実質的にゼロ電界領域であり得る。
【0102】
図10を参照すると、多様な実施形態において、質量分析器1000はまた、イオンミラー802、804、808、810の電圧を、ゼロ電界領域の電圧に設定することによって、線形のTOFとして動作され得、ゼロ電界領域は、イオンミラーを介して作成され得、イオンがイオンミラー電極を直接通過することを可能にし、イオンがイオン源1002からイオン検出器1004までを進むことを可能にする。正確な電圧がイオンミラー802、804、808、810に印加されると、イオンは、図10に概略的に示される効果的な経路1006、1007、1008を進み、質量分析器システムは、従来の反射TOF分析器におけるものと同一の機能のうちの1つ以上を達成するために使用され得るが、出射するイオン軌道1008も提供し得、出射するイオン軌道1008は、イオンが第1のイオンミラーに入るときに持っていた運動エネルギの相違に起因する空間分散を実質的に有さないで、入射するイオン軌道1006と実質的に平行である。質量分析器は、例えば、イオン源とイオン光学システムとの間の領域1020、イオン検出器とイオン光学システムとの間の領域1022またはそれらの両方に提供され得る。質量分析器は、例えば、飛行時間質量分析器として役立ち得る実質的にゼロ電界領域であり得る。
【0103】
多様な局面において、本教示は、イオン光学システムと質量分析器とを備えている質量分析器システムを提供する。イオン光学システムは、偶数個のイオンミラーを備え、該イオン光学システムを出るイオンの軌道であって、該イオンが該第1のイオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されており;質量分析器は、飛行時間型、イオントラップ、四重極、RF多極、磁気セクタ、静電気セクタおよびイオン移動度分光測定器の少なくとも1つを備えている。
【0104】
多様な実施形態において、イオンフラグメンタは、イオン光学システムと質量分析器との間に配置される。イオンフラグメンタは、一部の実施形態において、イオンフラグメンタの入口が実質的にイオン光学システムの像面(例えば、像平面)と実質的に一致するように配置される。一部の実施形態において、イオンフラグメンタは、イオンフラグメンタの出口が、質量分析器の焦点面(例えば、対物焦点面)と実質的に一致するように配置される。
【0105】
多様な実施形態において、イオンセレクタは、第1のイオン光学システムのイオンミラーの間に配置され得ることにより、例えば、第1のイオン光学システムの2つのイオンミラーの間の選択運動エネルギを有するイオンの透過を防ぎ、それによって、第1のイオン光学システムによって透過されるイオン運動エネルギの範囲を選択する。従って、多様な実施形態において、第1のイオン光学システムは、イオンフラグメンタへの導入のための選択されたエネルギ範囲内の運動エネルギを有する一次イオンを選択し、質量分析器は、フラグメントイオンスペクトルの少なくとも一部を分析するように構成されている。
【0106】
図9および図10を再び参照すると、多様な実施形態において、イオンセレクタ985、1085(例えば、時限イオンセレクタ)は、イオン光学システム(図9における第1〜第4のイオンミラー702、704、708、710全体として、図10における802,804、808、810全体として)と質量分析器(例えば、イオン光学システムとイオン検出器との間の領域922、1022に配置される)との間に配置される。イオンセレクタは、一部の実施形態において、イオンセレクタの位置がイオン光学システムの像表面(例えば、像平面)と実質的に一致するように配置される。多様な実施形態において、イオン光学システムからのイオンの軌道は、イオンセレクタの軸と実質的に同軸である。一部の実施形態において、イオンセレクタは活性化されることにより、選択されたm/z値の範囲内のイオンのみを透過させる。従って、多様な実施形態において、イオンセレクタ985、1085は、イオンフラグメンタ990、1090への導入のために一次イオンを(イオン光学システムによって透過されたイオンから)選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するように構成されている。
【0107】
図9を参照すると、多様な実施形態において、1つ以上のイオンセレクタ730、732は、イオン光学システムのイオンミラーの間に配置され得ることにより、イオン光学システムによって透過されたイオン運動エネルギの範囲を選択する。従って、多様な実施形態において、イオンセレクタ(例えば、730、732)を有するイオン光学システムは、選択されたエネルギ範囲内の運動エネルギを有するイオンを選択し、イオン光学システムと質量分析器との間に配置される第2のイオンセレクタ985(例えば、時限イオンセレクタ)は、イオンフラグメンタ990へ導入するための一次イオンを選択し、質量分析器は、フラグメントイオンの少なくとも一部を分析するように構成されている。
【0108】
多様な実施形態において、イオン光学システムは、質量分析器のゼロ電界領域に配置され得、エネルギ分散を実質的に有さないイオンビームを提供する。例えば、図3〜図8に図示される任意のイオン光学システム構成を、TOF質量分析器のゼロ電界に追加することは、TOF質量分析器システムを提供し得る。イオン光学システムへの挿入の例は、変更されたTOF質量分析器の概略的な位置エネルギダイアグラム1100として、図11に図示され、ここでx座標1102は、イオン軌道に沿った位置を表し、y座標1104は、イオンエネルギを表す。多様な実施形態において、本教示のイオン光学システム1106は、TOF−TOF質量分析器の第1のゼロ電界領域1108に配置され得ることにより、TOF−TOF質量分析器システムを提供する。多様な実施形態において、イオンは、エネルギV1100を有するパルスイオン源から生成され、供給源の動作条件は、特定のm/z値のイオンが時限イオンセレクタ(TIS)において時間どおりに収束され、TISは、TISの到達時間、従ってm/z値に基づいてイオンを選択するように配置される。時限イオンセレクタは、イオン源1112から距離Dにおける第1のゼロ電界領域1108またはイオン源1116から距離Dにおける第2のゼロ電界領域1114のいずれかに位置され得る。イオン源とイオン光学システム1106との間の第1のゼロ電界領域の一部は、多様な実施形態において、飛行時間分析器として役立ち得る。多様な実施形態において、イオン源は、遅延型抽出パルスイオン源であり、イオン光学システムの対物平面は、イオン源の焦点(例えば、タイムラグ焦点)に配置される。
【0109】
(例えば、イオンフラグメンタを用いて)第2のゼロ電界領域において生成された選択されたイオンおよびそのフラグメントは、それらが追加のエネルギVcc1120を提供する第2のイオン加速器1118によって追加の距離Dを進んだ後で、さらに加速され得る。多様な実施形態において、選択されたイオンおよびそのフラグメントは、第2のイオン加速器1118の入口から距離Fで収束され得る。加速されたイオンおよびフラグメントは、第2の質量分析器1122において分離され得、かつ分析され得る。距離Fは、第2の質量分析器1122の焦点面までの距離であり得る。時限イオンセレクタは、第1のゼロ電界領域1108および第2のゼロ電界領域1122と共に、タンデムのTOF−TOF質量分析器を備えており、ここにおいて、イオンを選択するための分析器の第1の段は、線形TOF(第1のゼロ電界領域1108)であり、ここでフラグメント分析のための分析器の第2の段(第2のゼロ電界領域1122)は、線形または反射分析器であり得る。
【0110】
しかしながら、このような機器の第1の段における線形の分析器の使用は、イオン源が、同一のm/z値を有するが、異なった運動エネルギを有するイオンを提供する状況において、解像度を減少させ得る。例えば、MALDI供給源によって生成されたエネルギ分布は、典型的に、レーザフルエンス、MALDIマトリクスの特性および他の変量に依存することによって、時限イオンセレクタへの特定のm/z値のイオンの到着時間分布は、制御されない様式で変更し得る。従来の反射分析器は、第1の段に対して解像度を向上させるために使用され得るが、従来の反射分析器の出射する軌道は、入射するイオンが非常に小さい直径のビームに制限され得る場合でも、入射するイオンの運動エネルギに依存する。このようなエネルギ分散は、効率的に収束され得ないイオンビームを作成し、典型的なTOF−TOF機器の残りを介してより高い透過効率を可能にする。多様な実施形態において、第1のゼロ電界領域に挿入された本教示に従ったイオン光学システムの使用は、この問題を克服することを促進する。
【0111】
例えば、(偶数個のイオンミラーを備えた第1のイオン光学システムであって、該第1のイオン光学システムを出るイオンの軌道であって、該イオンが該第1のイオン光学システムに入るときに持っていたイオンの運動エネルギから実質的に独立した位置で、該第1のイオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されている)第1のイオン光学システム1106は、TOF−TOFシステムの第1のゼロ電界領域1108に挿入され得る。この構成において、第1のイオン光学システム1106に対する時間焦点にイオン源に対する時間焦点を加算したものが選択されることにより、選択された質量のイオンが時限イオンセレクタ(TIS)において時間通りに収束され得る。通常は、第1のイオン光学システム1106に対する焦点距離は、イオン源に対する焦点距離よりも十分に長くなるように選択されることにより、焦点上の供給源の条件の効果を減少し得る。
【0112】
本教示の局面、実施形態および特性は、以下の実施例からさらに理解され得、これはいかなる場合においても本教示の範囲を制限するものとして解釈されるべきではない。
【実施例】
【0113】
実施例1および2は、第1のゼロ電界領域と図12Aおよび12Bに図示されるイオン光学システム(これは図8のイオン光学システムに概略的、実質的に類似する)に実質的に類似するイオン光学システムとを含むように変更された(850 Lincoln Centre Drive,Foster City,CA 94404,U.S.A.のApplied Biosystemsによって販売された)Applied Biosystems(登録商標)4700 Proteomics Analyzerを用いて取得された結果を示す。
【0114】
図12Aおよび12Bを参照すると、挿入されたイオン光学システム1200は、実質的に鏡面対称の関係性で第1の平面1206の対向する側に配置された第1の単一段のイオンミラー1202と第2の単一段のイオンミラー1204;および実質的に鏡面対称の関係性で第1の平面の対向する側に配置された第3の単一段のイオンミラー1208と第4の単一段のイオンミラー1210を備えている。変更されていない4700Proteomics Analyzerの動作を、イオン光学システム1200が挿入されたものと比較するために、イオンミラー1202、1204、1208、1210の電位は、ゼロ電界領域の電気電位に設定され、それぞれミラー1202および1204の出口電極における開口部1212および1214は、イオンがイオン光学システムを介して透過されることを可能にした。図12Aを参照して、この「変更されていない4700Proteomics Analyzer」動作モードにおいて、時限イオンセレクタおよび第2の質量分析器に進む前に、イオン源領域1230から、挿入されたイオン光学システム1200によって変更されていない飛行経路を有するゼロ電界領域を介してイオン軌道1232に沿って、遮蔽チューブ1234、1236を通って、イオンは進む。
【0115】
図12Bを参照して、挿入されたイオン光学システム1200が利用される場合には、時限イオンセレクタおよび第2の質量分析器に進む前に、イオン源領域1230からイオンミラー1202、1204、1208、1210および(遮蔽チューブによって、浮遊電場から保護される)ゼロ電界領域1242、1244、1246を介して、イオン軌道1240に沿って、イオンは進む。多様な実施形態において、イオンセレクタは、第3のイオンミラー1208と第4のイオンミラー1210との間のゼロ電界領域に配置され得、例えば、エネルギフィルタを提供する。
【0116】
(実施例1:TOF測定)
この実施例は、「変更されていない4700Proteomics Analyzer」動作モードおよび挿入されたイオン光学システム1200を利用するモードにおけるTOF質量分析器として動作される上記の変更された4700Proteomics Analyzerを用いて取得された実験データを示す。図13A〜16Bにおいて、変更されていない4700Proteomics Analyzer動作モードのデータは、「4700線形スペック」として記され、挿入されたイオン光学システム1200を利用するモードにおける動作に対するデータは、「4700リフレクタスペック」として記される。これらのデータは、変更されていない4700Proteomics Analyzerにおける時限イオンセレクタの位置の近くに配置されるイオン検出器を用いて取得された。
【0117】
図13A〜Dは、2つの異なるレーザフルエンス;低いレーザフルエンス(図13A、13B)および高いレーザフルエンス(図13C、13D)に対して取得されるマトリクスダイマ(m/z 379.1)のMALDI−TOF測定値を比較し、「変更されていない4700Proteomics Analyzer」動作モード(図13A、13C)において取得されたスペクトルを、挿入されたイオン光学システム1200を利用するモード(図13B、13D)における動作に対するスペクトルと比較する。
【0118】
図14A〜Dは、2つの異なるレーザフルエンス;低いレーザフルエンス(図14A、14B)および高いレーザフルエンス(図14C、14D)に対して取得されるdes−Argブラジキニン(m/z 379.1)の測定値を比較し、「変更されていない4700Proteomics Analyzer」動作モード(図14A、14C)において取得されたスペクトルを、挿入されたイオン光学システム1200を利用するモード(図14B、14D)における動作に対するスペクトルと比較する。
【0119】
図15Aは、挿入されたイオン光学システム1200を利用する高いレーザ強度において取得されたdes−Argブラジキニン、アンギオテンシンIおよびgluIフィブリノペプチドタイン(fibrinopeptidtein)を含む標準のペプチドの混合物に対するMALDI−TOF質量スペクトルを描き、図15B〜15Dは、それぞれ約904、1296および1570という基準m/z値におけるプロトン化された分子イオンの領域における図15Aの拡大された部分を描く。
【0120】
図16Aは、図15Aのスペクトルの一部の拡大図を描き、16Bは、より低いレーザフルエンスにおいて取得された類似の結果である。
【0121】
図13、14および16における垂線は、TOF−TOF機器における前駆体選択に対する適用に対する、これらの実施例における検出器の位置に配置された時限イオンセレクタに対して選択され得る時間ウィンドウを表す。図16Aにおいて、例えば、質量904.46を透過させるように設定された時限イオンセレクタに対する19ナノ秒のウィンドウの使用は、m/z904.46の約96%が、高いレーザ強度においてm/z905.46の隣接するピークの1%未満の透過を用いて透過されることを可能にする。このことは、挿入されるイオン光学システム1200を利用しない図14Cと比較され得、ここで隣接するピークは、時限イオンセレクタの任意の設定を用いて分離され得ない。
【0122】
(実施例2:TOF−TOF測定値)
この実施例は、挿入されたイオン光学システム1200を利用する「4700 Proteomics Analyzer」TOF−TOF質量分析器として動作される上記の変更された4700 Proteomics Analyzerを用いて取得された実験データを示す。TOF−TOF動作モード(またはMS/MSモード)において、イオンは、4700 Proteomics Analyzerの時限イオンセレクタを用いる解析の第2段に対して選択される。
【0123】
図17Aおよび17Bは、3つの合成ペプチド:APLAVGATK(m/z827.5;配列番号1);AVLAVGATK(m/z829.5;配列番号2);およびATLAVGATK(m/z831.5;配列番号3)の混合物に対するMALDI−TOF質量スペクトルの分子イオン領域を描く。図17Aにおいて、時限イオンセレクタは、相対的に広いm/z範囲を透過させるように設定されることにより、3つ全部のペプチドに対する前駆体イオンが透過し、図17Bにおいて、時限イオンセレクタは、m/z値827.5を糖化させるように設定される。
【0124】
図18Aおよび18Bは、それぞれ、図17Aおよび17Bにおいて描かれるスペクトルに対する、フラグメントイオンを含む完全なスペクトルを描く。
【0125】
図19Aおよび19Bは、それぞれ、図18Aおよび18Bの拡大された部分を描く。
【0126】
図17A〜21におけるフラグメントイオンは、当該分野において公知の従来技術に従ってラベルされ、ここにおいてC付着端上の電荷とのペプチド結合の分割から形成されたフラグメントは、yイオンとしてラベルされ、N付着端上の電荷とのペプチド結合の分割から形成されたフラグメントは、bイオンとしてラベルされる。両方の場合において、数字はフラグメント内のアミノ酸残基の数を示し、括弧内の数字は、電荷状態である。このテスト混合物に存在するペプチドに対して、y8よりも小さいyイオンは、全部で3つのペプチドに共通であり、b2よりも大きいbイオンは、それぞれ、プロリン(P)、バリン(V)、スレオニン(T)の質量差に対応する約2質量単位だけ異なる。図17A〜20Cにおいて、N付着端からの第2の位置においてPを有する質量827.5のフラグメントがラベルされる。質量827.5の選択に対応する、図18Bおよび19Bにおいて、質量827.5のフラグメントに対応して実質的に全てのフラグメントのピークが検出され、ラベルされた。対照的に、図18Aおよび19Aにおいて、全部で3つの成分のより低い解像度の選択に対応して、質量827.5からのbイオンは、その他の2つの成分からのよりより高い質量のbフラグメントによって付随される。
【0127】
図20A〜20Cは、時限イオンセレクタによって選択されたm/z831.5で、図15Aの3つのペプチドの同一の混合物に対して取得されたMALDI−TOF質量スペクトルを描く。図20A〜20Cにおいて、ラベルされたbフラグメントは、アミノ酸スレオニン(T)を含むフラグメントに対応し、混合物中のその他のペプチドからの、よりより低い質量のbフラグメントは検出されない。
【0128】
図21は、全部で3つのペプチドに共通なフラグメントイオン、y4の強度を、時限イオンセレクタによって選択されたm/z値の関数として描く。これらの結果は、フラグメントイオンに対する解像度が、対応する前駆体イオンに対する解像度と本質的に同一であることを示す。
【0129】
本出願において引用された全ての文献および類似する資料は、このような文献および類似する資料のフォーマットにかかわらず、特許、特許出願、記事、書籍、論文およびウェブページを含むが、これらに限定はされず、それらの全体が、参考として明確に援用される。援用された文献および類似する資料のうちの1つ以上が、定義される用語、用語の使用、記載される技術などを含むがこれらに限定はされない本出願と異なる、または該出願を否定する場合には、本出願が支配する。
【0130】
本明細書で使用されるセクションの見出しは、構成上の目的のみのためであり、記載される対象事項をいかなる方法においても制限するものと解釈されるべきではない。
【0131】
本教示は、多様な実施形態および実施例と関連して記載されているが、本教示がこのような実施形態または実施例に制限されることは意図されない。反対に、本教示は、当業者によって認識されるように多様な代替物、変更物および均等物を包含する。
【0132】
特許請求の範囲は、その効果に対して述べられない限り、記載される順序またはエレメントに制限されるように読まれるべきではない。添付される特許請求の範囲から逸脱することなく、形態および詳細における多様な変更がなされ得ることが理解されるべきである。例として、任意の開示された特徴が任意の他の開示された特徴と組合わされ得ることにより、本教示に従ったイオン光学システムまたは質量分析器システムを提供する。例えば、イオン光学システムの任意の多様な開示された実施形態は、イオン源、イオンセレクタ、イオンフラグメンタおよびイオン検出器のうちの1つ以上、イオンガイド、イオン収束エレメント、イオン操縦エレメント、別のイオン光学システムならびに1つ以上の質量分析器(例えば、飛行時間、イオントラップ、四重極、RF多極、磁気セクタ、静電気セクタおよびイオン移動度分光測定器)を組み合わせ得ることにより、本教示に従った、質量分析器および質量分析器システムを提供する。結果として、添付する特許請求の範囲およびその均等物の範囲および精神の範囲内の全ての実施形態が主張される。
【図面の簡単な説明】
【0133】
【図1A】図1Aは、単一段のイオンミラーおよび異なる運動エネルギを有するイオンの代表的なイオン軌道を概略的に描写する。
【図1B】図1Bは、図1Aの単一段のイオンミラーのイオン収束を概略的に描写する。
【図2】図2は、2つの単一段のイオンミラーおよび2つの異なる運動エネルギを有するイオンの代表的なイオン軌道を概略的に描写する。
【図3】図3は、2つの対称的に配列されたイオンミラーおよび代表的なイオン軌道を備えたイオン光学システムの多様な実施形態を概略的に描写する。
【図4】図4は、2つの対称的に配置されたイオンミラーおよび異なる運動エネルギを有する代表的なイオン軌道を備えたイオン光学システムの多様な実施形態を概略的に描写し、ここに、該イオン光学システムから出るイオンの軌道は、該イオン光学システムに入る対応するイオン軌道に実質的に垂直である。
【図5】図5は、2つの対称的に配置されたイオンミラーおよび異なる運動エネルギを有する代表的なイオン軌道を備えているイオン光学システムの多様な実施形態を概略的に描写し、ここに、該イオン光学システムから出るイオンの軌道は、該イオン光学システムに入る対応するイオン軌道に実質的に反平行である。
【図6】図6は、4つの対称的に配置されたイオンミラーおよび異なる運動エネルギを有する代表的なイオン軌道を備えているイオン光学システムの多様な実施形態を概略的に描写し、ここに、該イオン光学システムから出るイオンの軌道は、該イオン光学システムに入る対応するイオン軌道に実質的に反平行である。
【図7】図7は、4つの対称的に配置されたイオンミラーおよび異なる運動エネルギを有する代表的なイオン軌道を備えているイオン光学システムの多様な実施形態を概略的に描写し、ここに、該イオン光学システムから出るイオンの軌道は、該イオン光学システムに入る対応するイオン軌道に実質的に平行であるが、そこから横に変位される。
【図8】図8は、4つの対称的に配置されたイオンミラーおよび異なる運動エネルギを有する代表的なイオン軌道を備えているイオン光学システムの多様な実施形態を概略的に描写し、ここに、該イオン光学システムから出るイオンの軌道は、該イオン光学システムに入る対応するイオン軌道に実質的に平行である。
【図9】図9は、図7で概略的に描写されるイオン光学システムを備えた質量解析器システムを概略的に描写する。
【図10】図10は、図8で概略的に描写されるイオン光学システムを備えた質量解析器システムを概略的に描写する。
【図11】図11は、実質的に図8で概略的に描写されるようなイオン光学システムを組み込んでいる質量解析器システムの電位のダイアグラムを概略的に描写する。
【図12A】図12Aおよび図12Bは、4つの対称的に配列されたイオンミラーを備たイオン光学システムを有する質量解析器システムの一部分の断面図である。
【図12B】図12Aおよび図12Bは、4つの対称的に配列されたイオンミラーを備たイオン光学システムを有する質量解析器システムの一部分の断面図である。
【図13】図13は、本教示に従ってイオン光学システムを使用し、および使用しないで獲得されたMALDI−TOF質量スペクトルを比較する実施例1の実験データを描写する。
【図14】図14は、本教示に従ってイオン光学システムを使用し、および使用しないで獲得されたMALDI−TOF質量スペクトルを比較する実施例1の実験データを描写する。
【図15】図15は、本教示に従ってイオン光学システムを使用し、および使用しないで獲得されたMALDI−TOF質量スペクトルを比較する実施例1の実験データを描写する。
【図16】図16は、本教示に従ってイオン光学システムを使用し、および使用しないで獲得されたMALDI−TOF質量スペクトルを比較する実施例1の実験データを描写する。
【図17】図17は、本教示に従ってイオン光学システムを使用して獲得されたMALDI−TOF−TOF質量スペクトルを比較した実施例2の実験データを描写する。
【図18】図18は、本教示に従ってイオン光学システムを使用して獲得されたMALDI−TOF−TOF質量スペクトルを比較した実施例2の実験データを描写する。
【図19】図19は、本教示に従ってイオン光学システムを使用して獲得されたMALDI−TOF−TOF質量スペクトルを比較した実施例2の実験データを描写する。
【図20】図20は、本教示に従ってイオン光学システムを使用して獲得されたMALDI−TOF−TOF質量スペクトルを比較した実施例2の実験データを描写する。
【図21】図21は、選択された前駆体の機能として実施例2の3つのペプチドすべてに共通である断片の透過を描写する。

【特許請求の範囲】
【請求項1】
偶数個のイオンミラーを備えたイオン光学システムであって、該イオン光学システムを出るイオンの軌道であって、イオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されている、イオン光学システム。
【請求項2】
前記イオンミラーは、複数の対に配列されており、各対の第1の要素と第2の要素とは、その対の該第1の要素が、その対の該第2の要素の位置に対して、第1の平面に対して鏡面対称である位置を有するように、該第1の平面の対向する側に配列されている、請求項1に記載のイオン光学システム。
【請求項3】
第1のイオンミラーと、
第2のイオンミラーとを備え、
該第2のイオンミラーを出るイオンの軌道であって、イオンの運動エネルギから実質的に独立した位置で、該第2のイオンミラーの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該第1のイオンミラーと該第2のイオンミラーとが配列されている、イオン光学システム。
【請求項4】
前記第1のイオンミラーと前記第2のイオンミラーとは、該第1のイオンミラーと該第2のイオンミラーとが、第1の平面に対して鏡面対称になるように、該第1の平面の対向する側に配列されている、請求項3に記載のイオン光学システム。
【請求項5】
前記第1のイオンミラーと前記第2のイオンミラーとの間に配置されたイオンセレクタをさらに備えた、請求項3に記載のイオン光学システム。
【請求項6】
前記第1のイオンミラーと前記第2のイオンミラーとは、該第2のイオンミラーを出るイオンの軌道が該第1のイオンミラーに入る該イオンの軌道と実質的に垂直となるように、配列されている、請求項3に記載のイオン光学システム。
【請求項7】
前記第1のイオンミラーと前記第2のイオンミラーとは、該第2のイオンミラーを出るイオンの軌道が該第1のイオンミラーに入る該イオンの軌道と実質的に反平行になるように、配列されている、請求項3に記載のイオン光学システム。
【請求項8】
前記第1のイオンミラーと前記第2のイオンミラーとは、該第2のイオンミラーを出るイオンの軌道が該第1のイオンミラーに入る該イオンの軌道から、該第1のイオンミラーに入る該軌道と実質的に垂直となる方向に変位されるように、配列されている、請求項7に記載のイオン光学システム。
【請求項9】
第1のイオンミラーと、
第2のイオンミラーであって、該第1のイオンミラーと該第2のイオンミラーとは、該第1のイオンミラーが、該第2のイオンミラーの位置に対して、第1の平面に対して鏡面対称になるように、該第1の平面の対向する側に配置されている、第2のイオンミラーと、
第3のイオンミラーと、
第4のイオンミラーであって、該第3のイオンミラーと該第4のイオンミラーとは、該第3のイオンミラーが、該第4のイオンミラーの位置に対して、第1の平面に対して実質的に鏡面対称になるように、該第1の平面の対向する側に配置されている、該第4のイオンミラーとを備えた、イオン光学システム。
【請求項10】
前記イオン光学システムを出るイオンの軌道であって、イオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、前記第1のイオンミラーと前記第2のイオンミラーと前記第3のイオンミラーと前記第4のイオンミラーとが配列されている、請求項9に記載のイオン光学システム。
【請求項11】
前記第1のイオンミラーと前記第2のイオンミラーと前記第3のイオンミラーと前記第4のイオンミラーとは、前記イオン光学システムを出るイオンの軌道が、該イオン光学システムに入る該イオンの軌道と実質的に平行になるように、配列されている、請求項9記載のイオン光学システム。
【請求項12】
前記イオン光学システムを出るイオンの前記軌道は、該イオン光学システムに入る該イオンの該軌道と実質的に一致する、請求項11に記載のイオン光学システム。
【請求項13】
前記第1のイオンミラーと前記第2のイオンミラーと前記第3のイオンミラーと前記第4のイオンミラーとは、前記イオン光学システムを出るイオンの前記軌道が、該イオン光学システムに入る前記イオンの該軌道から、該イオン光学システムに入る該軌道と実質的に垂直である方向に変位されるように、配列されている、請求項11に記載のイオン光学システム。
【請求項14】
前記第1のイオンミラーと前記第2のイオンミラーと前記第3のイオンミラーと前記第4のイオンミラーとは、前記イオン光学システムを出るイオンの軌道が、該イオン光学システムに入る該イオンの軌道と実質的に垂直になるように、配列されている、請求項9に記載のイオン光学システム。
【請求項15】
前記第1のイオンミラーと前記第2のイオンミラーと前記第3のイオンミラーと前記第4のイオンミラーとは、前記イオン光学システムを出るイオンの軌道が、該イオン光学システムに入る該イオンの軌道と実質的に反平行になるように、配置されている、請求項9に記載のイオン光学システム。
【請求項16】
前記第1のイオンミラーと前記第2のイオンミラーと前記第3のイオンミラーと前記第4のイオンミラーとは、前記イオン光学システムを出るイオンの前記軌道が、該イオン光学システムに入る該イオンの該軌道から、該イオン光学システムに入る該軌道と実質的に垂直である方向に変位されるように、配列されている、請求項15に記載のイオン光学システム。
【請求項17】
前記イオン光学システムの前記イオンミラーの2つの間に配置されたイオンセレクタをさらに備えた、請求項9に記載のイオン光学システム。
【請求項18】
イオン光学システムであって、
イオンミラーの2つ以上の対であって、イオンミラーの各対は、第1の要素と第2の要素とを備えたイオンミラーの該2つ以上の対を備え、
イオンミラーの各対の該要素は、イオンミラーの対の該第1の要素が、該対の該第2の要素の位置に対して、該第1の平面に対して鏡面対称になるように、該第1の平面の対向する側に配置されており、
イオンミラーの該2つ以上の対は、該イオン光学システムを出るイオンの軌道であって、該イオン光学システムに入る該イオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、配列されている、イオン光学システム。
【請求項19】
イオンミラーの前記2つ以上の対は、前記イオン光学システムを出るイオンの軌道が、該イオン光学システムに入る該イオンの軌道と実質的に平行になるように、配列されている、請求項18に記載のイオン光学システム。
【請求項20】
前記イオン光学システムを出るイオンの前記軌道は、該イオン光学システムに入る該イオンの該軌道と実質的に一致する、請求項19に記載のイオン光学システム。
【請求項21】
イオンミラーの前記2つ以上の対は、前記イオン光学システムを出るイオンの前記軌道が、該イオン光学システムに入る該イオンの該軌道から、該イオン光学システムに入る該軌道と実質的に垂直である方向に変位されるように、配列されている、請求項19に記載のイオン光学システム。
【請求項22】
イオンミラーの前記2つ以上の対は、前記イオン光学システムを出るイオンの軌道が、該イオン光学システムに入る該イオンの軌道と実質的に垂直になるように、配列されている、請求項18に記載のイオン光学システム。
【請求項23】
イオンミラーの前記2つ以上の対は、前記イオン光学システムを出るイオンの軌道が、該イオン光学システムに入る該イオンの軌道と実質的に反平行になるように、配列されている、請求項18に記載のイオン光学システム。
【請求項24】
イオンミラーの前記2つ以上の対は、前記イオン光学システムを出るイオンの前記軌道が、該イオン光学システムに入る該イオンの該軌道から、該イオン光学システムに入る該軌道と実質的に垂直である方向に変位されるように、配列されている、請求項23に記載のイオン光学システム。
【請求項25】
前記イオン光学システムの前記イオンミラーの2つの間に配置されたイオンセレクタをさらに備えた、請求項18に記載のイオン光学システム。
【請求項26】
質量分析器システムであって、
偶数個のイオンミラーを備えたイオン光学システムであって、
該イオン光学システムを出るイオンの軌道であって、イオンの運動エネルギから実質的に独立した位置で、該イオン光学システムの像焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、該偶数個のイオンミラーが配列されている、イオン光学システムと、
質量分析器システムであって、該質量器分析システムは、該イオン光学システムを出るイオンの少なくとも一部を受け取るように配置された質量分析器システムと、
を備えた、質量分析器システム。
【請求項27】
前記イオンミラーは、複数の対になって配列されており、各対の第1の要素と第2の要素とは、その対の該第1の要素が、その対の該第2の要素の位置に対して、第1の平面に対して鏡面対称である位置を有するように、該第1の平面の対向する側に配置されている、請求項26に記載の質量分析器システム。
【請求項28】
イオンのパルスを提供し得るイオン源であって、前記イオン光学システムは、該イオン源によって提供されるイオンのパルスの少なくとも一部を受け取るように配置されているイオン源と、
イオン検出器であって、該イオン検出器は、前記質量分析器を出るイオンのパルスの少なくとも一部を受け取るように配置されているイオン検出器とを
備えた、請求項26に記載の質量分析器システム。
【請求項29】
前記質量分析器は、四重極、RF多極、イオントラップ、飛行時間(TOF)およびそれらの組み合わせの1つ以上を備えている、請求項26に記載の質量分析器システム。
【請求項30】
前記イオン光学システムと前記質量分析器との間に配置されるイオンセレクタおよびイオンフラグメンタのうちの1つ以上を備えている、請求項26に記載の質量分析器システム。
【請求項31】
イオン源、イオンセレクタ、イオンフラグメンタ、イオン検出器、イオンガイド、イオン収束素子、イオン案内素子、およびそれらの組み合わせをさらに備えている、請求項26に記載の質量分析器システム。
【請求項32】
質量分析器システムであって、
イオン光学システムであって、該イオン光学システムは、
イオンミラーの2つ以上の対を備え、イオンミラーの各対は、第1の要素と第2の要素とを備え、イオンミラーの各対の該要素は、イオンミラーの対の該第1の要素が、その対の該第2の要素の位置に対して、第1の平面に対して鏡面対称になるように、該第1の平面の対向する側に配置されている、イオン光学システムと、
質量分析器システムであって、該質量器分析システムは、該イオン光学システムを出るイオンの少なくとも一部を受け取るように配置された質量分析器システムと
を備えた質量分析器システム。
【請求項33】
イオンミラーの該2つ以上の対は、該イオン光学システムを出るイオンの軌道であって、該イオンの運動エネルギから実質的に独立した位置で、焦点面に実質的に平行である面と交わるイオンの軌道が提供され得るように、配列されている、請求項32に記載の質量分析器システム。
【請求項34】
イオンのパルスを提供し得るイオン源であって、前記イオン光学システムは、該イオン源によって提供されるイオンのパルスの少なくとも一部を受け取るように配置されているイオン源と、
イオン検出器であって、該イオン検出器は、前記質量分析器を出るイオンのパルスの少なくとも一部を受け取るように配置されているイオン検出器とを
さらに備えた、請求項32に記載の質量分析器システム。
【請求項35】
前記質量分析器は、四重極、RF多極、イオントラップ、飛行時間(TOF)およびそれらの組み合わせの1つ以上を備えている、請求項32に記載の質量分析器システム。
【請求項36】
前記イオン光学システムと前記質量分析器との間に、1つ以上のイオンセレクタおよびイオンフラグメンタを備えている、請求項32に記載の質量分析器システム。
【請求項37】
イオン源、イオンセレクタ、イオンフラグメンタ、イオン検出器、イオンガイド、イオン収束素子、イオン案内素子、およびそれらの組み合わせをさらに備えている、請求項32に記載の質量分析器システム。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公表番号】特表2008−529221(P2008−529221A)
【公表日】平成20年7月31日(2008.7.31)
【国際特許分類】
【出願番号】特願2007−552350(P2007−552350)
【出願日】平成18年1月24日(2006.1.24)
【国際出願番号】PCT/US2006/002338
【国際公開番号】WO2006/081204
【国際公開日】平成18年8月3日(2006.8.3)
【出願人】(505123697)アプレラ コーポレイション (21)
【出願人】(506183133)エムディーエス インコーポレーテッド (7)
【Fターム(参考)】