説明

イオン質量分離方法及び装置

【課題】イオン質量分離装置から所望イオン種のイオンビームを安定して導出できるようにする。
【解決手段】中和電子供給体7の電流と、プラズマ発生装置8のアーク電流と、引出し電極9の引出し電流とを設定して出口部3から導出されるイオンビームのビーム電流密度が所定の照射要求密度になるように調節した状態において、空芯励磁電流路6の磁石電流を変化させることにより磁場強度を変化させ、磁場強度の変化時における出口部3から導出されるイオンビームのビーム電流密度を測定し、測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測し、計測した密度ピーク位置から基準磁石電流を計算して、磁石電流を設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はイオン質量分離方法及び装置に関し、特にイオン質量分離装置から所望イオン種のイオンビームを安定して導出できるようにしたイオン質量分離方法及び装置に関するものである。
【背景技術】
【0002】
従来より、電気的に活性な元素を半導体に添加したり、或いは基材に対して接着が困難な材料を接着するために接着材料の原子を基材に添加させるような場合には、イオンドーピング(注入)装置が用いられている。
【0003】
イオンドーピング装置では、プラズマ発生装置で材料ガスをプラズマ化し、プラズマのイオン(荷電粒子)を加速してそのイオンを被処理材に注入している。
【0004】
近年、液晶ディスプレイの大型化が進むにつれ、液晶製造用イオン注入装置に対しては大面積で且つ均一なイオン注入ができるものが求められている。通常、液晶ガラス基板にイオン注入する場合は、基板短辺より少し幅広の線状或いは長方形イオンビームを生成して、液晶ガラス基板の長手方向に相対移動(スキャン)させることにより大面積での注入を行う方式がとられている。
【0005】
また、液晶ディスプレイのTFT特性(Thin FiLm Transistor)の性能向上を図る目的で、液晶製造用イオン注入装置に対し、希望のイオン種のみを選択的に注入できる質量分離性能が求められている。特に材料ガスに含まれる水素を除去するために、永久滋石や電磁石を用いてイオン質量分離を行うようにしたものがある。
【0006】
イオンビームを発生するための材料ガスとしては、水素希釈のホスフィン(PH3)、ジボラン(B26)等が用いられるが、プラズマ発生装置では所望イオン種PHx、B2x以外に、Hx、P2x、BHx等の異なるイオン種の不要イオンも発生し、プラズマ発生装置からはこれらイオン種の混合ビームが引出される。
【0007】
このような所望イオン種以外の不要イオン種の存在は、イオンドーピングによるP、Bの注入深さ分布を不均一にする問題があり、更に、被処理材に余分な熱負荷を与えるといった問題があるため除去する必要がある。
【0008】
このため、大口径、特に幅広のイオンビームのイオン質量分離を行って安定したイオンビームを生成させるようにしたイオン質量分離装置が提案されている(例えば特許文献1参照)。
【0009】
図5は前記特許文献1におけるイオン質量分離装置1の概要を示す斜側面図、図6は図5の側面図であり、このイオン質量分離装置1は、両端に入口部2と出口部3を有して湾曲し内部に質量分離空間4を形成したイオン偏向ケーシング5を有し、該イオン偏向ケーシング5の外部に、前記入口部2と出口部3を通るようにイオン偏向ケーシング5の湾曲に沿ってイオン偏向ケーシング5の幅方向へ導体6xを巻いて空芯励磁電流路6を形成し、空芯励磁電流路6に磁石電流を供給することにより磁場を形成するようにしている。前記イオン偏向ケーシング5は、入口部2と出口部3が90゜の角度になるように大角度で湾曲している。また、前記イオン偏向ケーシング5の例えば幅方向端部の内面には、電子を供給して空間電荷効果(イオンを中和すること)によりイオンビームの移動を円滑に行わせるための中和電子供給体7としてフィラメントが内面に沿って配置されている。
【0010】
質量分離空間4に導入されたイオンビームは、ビーム自身の空間電荷効果により発散し、ビーム軌道が変化してビームを損失する可能性もある。このように空間電荷効果による悪影響が無視できない場合、空間電荷効果を中和させるために、電子等を質量分離空間4に供給する。この中和電子を供給する源として、一般的にフィラメント等が用いられる。
【0011】
前記入口部2の外部前方にはプラズマ発生装置8が設けてあり、該プラズマ発生装置8はアーク用フィラメント15により材料ガスをプラズマ化してイオンを生成させる。また、入口部2とプラズマ発生装置8との間における入口部2の導体6aと重なる位置には引出し電極9が配置してあり、該引出し電極9は、前記プラズマ発生装置8のイオンを質量分離に必要な速度に加速してイオン偏向ケーシング5の幅方向(図6の紙面と直角方向)に広い幅を有するイオンビームとして導体6a間を通して前記質量分離空間4に導入するようにしている。
【0012】
質量分離空間4に導入されたイオンビームは、空芯励磁電流路6による磁場の作用によってイオンの質量に応じて湾曲させられ、所望イオン種のイオンビームは前後方向(図6の左右方向)中心部に収束されて出口部3に設けた導体6b間から導出される。図5では水素希釈のホスフィン(PH3)を材料ガスとした場合を示しており、所望イオン(PH+)は収束されて出口部3に導かれ、他の質量が小さいH+、H2+、H3+等の不要イオンは速く曲げられてイオン偏向ケーシングの内壁にぶつかることにより中性化し、また、所望イオン種より質量が大きいP2+の不要イオンは曲り切れずにイオン偏向ケーシングの内壁にぶつかることにより中性化される。
【0013】
前記出口部3の前後両側部(図6では左右両側部)には遮蔽部材10を設けて前後中央部にイオン取出口11を形成しており、これにより、前記収束された所望イオンからなるイオンビームは出口部3のイオン取出口11から導出されるようになっている。
【0014】
更に、収束されてイオン取出口11から取り出されたイオンビームは、長方形の大口径単口電極である加速電極12によってイオンドーピングに必要な速度に加速される。前記イオン質量分離装置1で分離され更に導体6bと加速電極12によって加速されたイオンビームは、イオン質量分離装置1の質量分離空間4と連通しているプロセス室13内に配置した被処理材14に注入される。
【0015】
前記イオン質量分離装置1において、空芯励磁電流路6の磁場強度はプラズマ発生装置8のプラズマから引出し電極9によってイオン偏向ケーシング5内に取り込むイオンビームのビームエネルギやイオン質量から計算により求め、所望イオン種のイオンビームが出口部3の中心位置から導出されるように磁場強度を設定している。
【特許文献1】特開2002−203805号公報
【発明の開示】
【発明が解決しようとする課題】
【0016】
しかし、イオン質量分離装置1は、前記空芯励磁電流路6の磁場強度を所定値に設定して運転しても、イオンビームのビームエネルギやビーム電流量、空間電荷効果中和電子の供給量等が変化することがあり、これらが変化すると、質量分離後のビーム電流密度やイオン種比率等のビーム特性が変化してしまう問題がある。
【0017】
即ち、所望イオン種のイオンビームが出口部3から好適に導出されるように空芯励磁電流路6の磁石電流を所定値に設定し、且つ中和電子供給体7に供給する電流、及びプラズマ発生装置8のアーク用フィラメント15に供給するアーク電流、及び引出し電極9に供給する引出し電流の夫々を所定値に設定しても、中和電子供給体7は例えばフィラメントの場合には消耗するために中和電子の供給量が経時的に変わり、そのためにイオン偏向ケーシング5内でのイオンビームの空間電荷効果の大きさが変わってイオンビームの軌道が変化してしまう。また、プラズマ発生装置8の原料ガスの性状や温度が変化したり、或いは引出し電極9に生成化合物等が付着して汚れることにより、出口部3から導出されるイオンビームのビーム電流密度やビームエネルギが変化してしまう。このようにイオンビームの特性が変化すると、被処理材14に対するドーピンク量が変化して再現性が悪化するといった問題を生じる。
【0018】
また、上記したように、イオンビームの特性が変化した場合に、初期の状態に調整するために時間が掛かり、そのために被処理材にイオンビームを照射する際の作業能率が低下するという問題がある。
【0019】
本発明は、上記実情に鑑みてなしたもので、イオン質量分離装置から所望イオン種のイオンビームを安定して導出できるようにしたイオン質量分離方法及び装置を提供することを目的としてなしたものである。
【課題を解決するための手段】
【0020】
請求項1に係る発明は、湾曲したイオン偏向ケーシングの一端の入口部と他端の出口部とを通るようにイオン偏向ケーシングの外周に湾曲に沿って幅方向へ導体を巻いた空芯励磁電流路により磁場を形成し、プラズマ発生装置においてアークにより生成したプラズマから引出し電極によりイオンビームを引出して前記イオン偏向ケーシングの入口部に導入し、前記磁場によりイオンビームを質量に応じて湾曲させると同時に、イオン偏向ケーシング内の中和電子供給体により中和電子を供給して所望イオン種のイオンビームを前記出口部から導出するようにしているイオン質量分離方法であって、中和電子供給体の電流と、プラズマ発生装置のアーク電流と、引出し電極の引出し電流とを設定して前記出口部から導出されるイオンビームのビーム電流密度が所定の照射要求密度になるように調節した状態において、空芯励磁電流路の磁石電流を変化させることにより磁場強度を変化させ、磁場強度の変化時における前記出口部から導出されるイオンビームのビーム電流密度を測定し、測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測し、計測した密度ピーク位置から基準磁石電流を求め、磁石電流を設定することを特徴とするイオン質量分離方法である。
【0021】
請求項2に係る発明は、前記イオン質量分離装置の運転時における所定期間ごとに前記所望イオン種の密度ピーク位置を計測し、計測した密度ピーク位置が基準磁石電流の許容範囲を外れた場合には、前記密度ピーク位置が前記基準磁石電流の許容範囲内になるように中和電子供給体の電流を制御することを特徴とする請求項1に記載のイオン質量分離方法である。
【0022】
請求項3に係る発明は、前記計測した密度ピーク位置が前記基準磁石電流の許容範囲内になるように中和電子供給体の電流を制御することに加え、前記ビーム電流密度の密度最大値が前記照射要求密度の許容範囲内になるようにプラズマ発生装置のアーク電流又は引出し電極の引出し電流の少なくとも1つを制御することを特徴とする請求項2に記載のイオン質量分離方法である。
【0023】
請求項4に係る発明は、一端に入口部を有し他端に出口部を有して湾曲したイオン偏向ケーシングと、該イオン偏向ケーシングの入口部と出口部とを通るようにイオン偏向ケーシングの外周に湾曲に沿って幅方向へ導体を巻いた空芯励磁電流路と、プラズマ発生装置と、該プラズマ発生装置で生成したプラズマからイオンビームを引出して前記イオン偏向ケーシングの入口部に導入する引出し電極と、前記イオン偏向ケーシングの内部に備えた中和電子供給体とを有し、前記空芯励磁電流路の磁場によりイオンビームを質量に応じて湾曲させて所望イオン種のイオンビームを前記出口部から導出するようにしているイオン質量分離装置であって、前記出口部から導出されるイオンビームのビーム電流密度を測定するファラデーカップと、該ファラデーカップで測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測する演算制御装置と、該演算制御装置で演算した密度ピーク位置から計算して、前記空芯励磁電流路の磁石電流を設定する磁石電流設定器とを含む、イオンビームの特性を調節するビーム特性調整装置を備えたことを特徴とするイオン質量分離装置である。
【0024】
請求項5に係る発明は、前記ビーム特性調整装置が、中和電子供給体の電流を変化させる中和電流調節器を含むことを特徴とする請求項4に記載のイオン質量分離装置である。
【0025】
請求項6に係る発明は、前記ビーム特性調整装置が、プラズマ発生装置のアーク電流を変化させるアーク電流調節器を含むことを特徴とする請求項4に記載のイオン質量分離装置である。
【0026】
請求項7に係る発明は、前記ビーム特性調整装置が、引出し電極の引出し電流を変化させる引出し電流調節器を含むことを特徴とする請求項4に記載のイオン質量分離装置である。
【発明の効果】
【0027】
空芯励磁電流路の磁石電流を変化させて磁場強度を変化させた時の出口部から導出されるイオンビームのビーム電流密度を測定し、測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測し、計測した密度ピーク位置から基準磁石電流を求めて、磁石電流を設定するので、イオン質量分離装置から所望イオン種のイオンビームを安定して導出することができ、よって被処理材に対するドーピンク量を安定させ、再現性を向上できる効果がある。
【0028】
また、イオン質量分離装置の運転時における所定期間ごとに所望イオン種の密度ピーク位置を計測して、計測した密度ピーク位置が基準磁石電流の許容範囲内になるように中和電子供給体の電流を制御するので、常に所望イオン種のイオンビームを確実に導出できる効果がある。
【0029】
また、中和電子供給体の電流を制御することに加えて、ビーム電流密度が照射要求密度の許容範囲内になるようにプラズマ発生装置のアーク電流又は引出し電極の引出し電流の少なくとも1つを制御することにより、常にビーム電流密度が安定したイオンビームを導出できる効果がある。
【0030】
上記制御を自動的に短時間で行うことができ、よって被処理材にイオンビームを照射する作業の能率を向上できる効果がある。
【発明を実施するための最良の形態】
【0031】
以下、本発明の実施の形態を添付図面を参照して説明する。
【0032】
図1は本発明のイオン質量分離装置の一例を示す概略側面図であり、図中図5、図6と同様の構成部分には同じ符号を付して説明は省略する。図1に示す如く、イオン偏向ケーシング5の出口部3の下部には被処理材14が移動可能に備えられており、該被処理材14の移動経路の下部には、ファラデーカップ16が設けられている。
【0033】
ファラデーカップ16は、前記イオン偏向ケーシング5の出口部3から導出されるイオンビームのビーム電流密度を測定するためのものであり、ファラデーカップ16は例えば左右前後に配された多数の検出部(図示せず)を有しており、イオンビームを受けることによって各検出部に流れるビーム電流(ビーム電流密度)を電流計17で測定するようになっている。
【0034】
図1中、23は、前記出口部3から取り出されるイオンビームのビーム電流密度等の特性を調節するビーム特性調整装置であり、前記電流計17で測定した各検出部のビーム電流は、前記ビーム特性調整装置23を構成するパーソナルコンピュータ等の演算制御装置18に入力される。該演算制御装置18は測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測するようにしている。即ち、前記空芯励磁電流路6の磁場強度はイオンの質量数に換算することができるので、演算制御装置18では前記測定したビーム電流密度(各イオン種の電流密度)の分布から密度ピーク位置を計測している。
【0035】
図1はプラズマ発生装置8の材料ガスとしてジボラン(B26)を用いた場合を示しており、この場合において、図2に示す如く磁石電流を変化していくと、出口部3から導出されるイオンビームには、磁場強度(磁石電流)の低い方からHx、BHx、所望イオン種であるB2xの順にビーム電流密度の複数のピークが現われた分布が計測される。従って、演算制御装置18では図2の分布に基づいて所望イオン種であるB2xの密度ピーク位置20を測定することができる。
【0036】
図1中、19は、前記ビーム特性調整装置23の一部を構成するもので、前記演算制御装置18からの信号によって空芯励磁電流路6の磁石電流を設定するようにした磁石電流設定器である。該磁石電流設定器19により磁石電流を設定するには、まず、前記空芯励磁電流路6の磁石電流を変化させることにより磁場強度を変化させ、その時に出口部3から導出されるイオンビームのビーム電流密度をファラデーカップ16を用いて測定し、前記変化させた磁石強度でのビーム電流密度の分布から図2に示す所望イオン種の密度ピーク位置20を計測する。そして、計測した密度ピーク位置20から磁石電流設定器19による基準磁石電流21を計算し、磁石電流設定器19の磁石電流を設定する。また、基準磁石電流21には、図2に示すように許容範囲22を設けている。
【0037】
前記ビーム特性調整装置23は、前記磁石電流を設定する磁石電流設定器19の他に、中和電子供給体7の電流を調節する中和電流調節器24と、プラズマ発生装置8のアーク用フィラメント15のアーク電流を調節するアーク電流調節器25と、引出し電極9の引出し電流を調節する引出し電流調節器26を備えており、各調節器24,25,26も演算制御装置18からの信号によって制御されるようになっている。
【0038】
前記中和電流調節器24は、中和電子供給体7による中和電子の供給量を調節することによって、イオン偏向ケーシング5内でのイオンビームの空間電荷効果の中和度合を変化させ、主にイオンビームの軌道を変化することができる。また、アーク電流調節器25は、プラズマ発生装置8でのプラズマの発生を調節することによって、主にイオンビームのビーム電流密度(図2における所望イオン種の計測した密度ピーク位置20における密度最大値27)を変化することができる。また、引出し電流調節器26はイオンビームの引出しを調節することによって、イオンビームのビーム電流密度やビームエネルギを変化することができる。また、引出し電流調節器26では、イオンビームの引出し速度を変化させるためにイオンビームの軌道も変化させることができる。尚、図2中、28は前記所望イオン種の密度ピーク位置20における照射要求密度であり、該照射要求密度28には許容範囲29が設けられている。
【0039】
次に、本発明のイオン質量分離方法について説明する。
【0040】
イオン質量分離装置1の運転に先立ち、図3に示す初期設定を行う。
【0041】
まず、ビーム特性の設定Iを実施する。即ち、ビーム特性の設定Iは、出口部3から被処理材14に照射されるイオンビームのビーム電流密度が被処理材14に応じた所定の照射要求密度28になるように、中和電流調節器24による電流と、アーク電流調節器25によるアーク電流と、引出し電流調節器26による引出し電流の夫々を、計算値及び経験値を入力することによって設定する(S1)。
【0042】
続いて、空芯励磁電流路6の基準磁石電流を設定するためのスペクトル測定IIをステップS2〜S5のように実施する。即ち、スペクトル測定IIは、磁石電流設定器19により空芯励磁電流路6の磁石電流を変化(S2)させることによって磁場強度を変化させ、その時に出口部3から導出されるイオンビームのビーム電流密度をファラデーカップ16を用いて演算制御装置18により測定する(S3)。変化させた磁石強度でのビーム電流密度の分布から図2に示す所望イオン種の密度ピーク位置20を計測(S4)した後、計測した密度ピーク位置20から磁石電流設定器19の基準磁石電流21を計算して、磁石電流設定器19の磁石電流を設定する(S5)。上記スペクトル測定IIは、演算制御装置18によって自動的に行うことができる。上記設定が終了することによりイオン質量分離装置1の運転が行われる。
【0043】
次に、前記イオン質量分離装置1の運転中において、所定期間ごとに図4に示す経時制御をステップS1〜S6のように実施する。即ち、前記イオン質量分離装置1の運転時における所定期間ごとに前記演算制御装置18によって前記スペクトル測定IIを実施(S1)することにより、所望イオン種の密度ピーク位置20を計測する(S2)。そして、計測した密度ピーク位置20が前記基準磁石電流21の許容範囲22を外れた場合には、前記密度ピーク位置20が前記基準磁石電流21の許容範囲22内になるように、磁石電流設定器19により中和電子供給体7の電流を自動で制御する。
【0044】
また、上記したように中和電子供給体7の電流の制御によって密度ピーク位置20が前記基準磁石電流21の許容範囲22内に調節された後、演算制御装置18により図2のビーム電流密度の分布から密度最大値27が測定(S4)され、測定した密度最大値27が前記照射要求密度28の許容範囲29内になるように、アーク電流調節器25によるプラズマ発生装置8のアーク用フィラメント15へのアーク電流の制御、及び、引出し電流調節器26による引出し電極9の引出し電流の制御の一方又は両方を実施する(S5)。その後、再び密度最大値27の測定(S6)を実施して、測定した密度最大値27が前記照射要求密度28外の場合は再びステップS5を実施する。
【0045】
上記図4に示す経時制御は、前記イオン質量分離装置1の運転中において、被処理材14がファラデーカップ16の上部を通過していない時に、前記演算制御装置18にプログラムされた指令に基づいて、自動的に実施することができる。
【0046】
なお、本発明のイオン質量分離方法及び装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【図面の簡単な説明】
【0047】
【図1】本発明のイオン質量分離装置の一例を示す概略側面図である。
【図2】磁石電流を変化した場合に導出されるイオンビームにおけるビーム電流密度のピークが現われた分布を示す線図である。
【図3】イオン質量分離装置の運転に先立つ初期設定を示すフローチャートである。
【図4】イオン質量分離装置の運転中において所定期間ごとに行う経時制御のフローチャートである。
【図5】従来のイオン質量分離装置の概要を示す斜側面図である。
【図6】図5の側面図である。
【符号の説明】
【0048】
1 イオン質量分離装置
2 入口部
3 出口部
5 イオン偏向ケーシング
6 空芯励磁電流路
7 中和電子供給体
8 プラズマ発生装置
9 引出し電極
15 アーク用フィラメント
16 ファラデーカップ
18 演算制御装置
19 磁石電流設定器
20 密度ピーク位置
21 基準磁石電流
22 許容範囲
23 ビーム特性調整装置
24 中和電流調節器
25 アーク電流調節器
26 引出し電流調節器
27 密度最大値
28 照射要求密度
29 許容範囲

【特許請求の範囲】
【請求項1】
湾曲したイオン偏向ケーシングの一端の入口部と他端の出口部とを通るようにイオン偏向ケーシングの外周に湾曲に沿って幅方向へ導体を巻いた空芯励磁電流路により磁場を形成し、プラズマ発生装置においてアークにより生成したプラズマから引出し電極によりイオンビームを引出して前記イオン偏向ケーシングの入口部に導入し、前記磁場によりイオンビームを質量に応じて湾曲させると同時に、イオン偏向ケーシング内の中和電子供給体により中和電子を供給して所望イオン種のイオンビームを前記出口部から導出するようにしているイオン質量分離方法であって、中和電子供給体の電流と、プラズマ発生装置のアーク電流と、引出し電極の引出し電流とを設定して前記出口部から導出されるイオンビームのビーム電流密度が所定の照射要求密度になるように調節した状態において、空芯励磁電流路の磁石電流を変化させることにより磁場強度を変化させ、磁場強度の変化時における前記出口部から導出されるイオンビームのビーム電流密度を測定し、測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測し、計測した密度ピーク位置から基準磁石電流を求め、磁石電流を設定することを特徴とするイオン質量分離方法。
【請求項2】
前記イオン質量分離装置の運転時における所定期間ごとに前記所望イオン種の密度ピーク位置を計測し、計測した密度ピーク位置が基準磁石電流の許容範囲を外れた場合には、前記密度ピーク位置が前記基準磁石電流の許容範囲内になるように中和電子供給体の電流を制御することを特徴とする請求項1に記載のイオン質量分離方法。
【請求項3】
前記計測した密度ピーク位置が前記基準磁石電流の許容範囲内になるように中和電子供給体の電流を制御することに加え、前記ビーム電流密度の密度最大値が前記照射要求密度の許容範囲内になるようにプラズマ発生装置のアーク電流又は引出し電極の引出し電流の少なくとも1つを制御することを特徴とする請求項2に記載のイオン質量分離方法。
【請求項4】
一端に入口部を有し他端に出口部を有して湾曲したイオン偏向ケーシングと、該イオン偏向ケーシングの入口部と出口部とを通るようにイオン偏向ケーシングの外周に湾曲に沿って幅方向へ導体を巻いた空芯励磁電流路と、プラズマ発生装置と、該プラズマ発生装置で生成したプラズマからイオンビームを引出して前記イオン偏向ケーシングの入口部に導入する引出し電極と、前記イオン偏向ケーシングの内部に備えた中和電子供給体とを有し、前記空芯励磁電流路の磁場によりイオンビームを質量に応じて湾曲させて所望イオン種のイオンビームを前記出口部から導出するようにしているイオン質量分離装置であって、前記出口部から導出されるイオンビームのビーム電流密度を測定するファラデーカップと、該ファラデーカップで測定したビーム電流密度の分布から所望イオン種の密度ピーク位置を計測する演算制御装置と、該演算制御装置で演算した密度ピーク位置から計算して、前記空芯励磁電流路の磁石電流を設定する磁石電流設定器とを含む、イオンビームの特性を調節するビーム特性調整装置を備えたことを特徴とするイオン質量分離装置。
【請求項5】
前記ビーム特性調整装置が、中和電子供給体の電流を変化させる中和電流調節器を含むことを特徴とする請求項4に記載のイオン質量分離装置。
【請求項6】
前記ビーム特性調整装置が、プラズマ発生装置のアーク電流を変化させるアーク電流調節器を含むことを特徴とする請求項4に記載のイオン質量分離装置。
【請求項7】
前記ビーム特性調整装置が、引出し電極の引出し電流を変化させる引出し電流調節器を含むことを特徴とする請求項4に記載のイオン質量分離装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate