説明

イソシアネート基変成炭素材料及びその製造方法

【課題】イソシアネート基で変成された炭素材料及びその製造方法を提供する。
【解決手段】ジイソシアネート化合物のイソシアネート基がグラフェンライク炭素材料に結合されているイソシアネート基変成炭素材料、並びにグラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で加熱攪拌させる、イソシアネート基変成炭素材料の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薄片化黒鉛などのグラフェンライク炭素材料をイソシアネート基により変成してなるイソシアネート基変成炭素材料及びその製造方法に関する。
【背景技術】
【0002】
従来、黒鉛、カーボンナノチューブまたはカーボン粒子などの炭素材料が、吸着剤、配線材料もしくは樹脂への補強材または充填剤として広く用いられている。また、近年、黒鉛を剥離することにより得られ、グラフェン積層数が黒鉛より少ない薄片化黒鉛が注目されている。
【0003】
上記のような炭素材料を利用する場合、溶媒や合成樹脂に分散させることが多い。ところが、薄片化黒鉛やカーボンナノチューブなどではアスペクト比が大きいため、分散性が低いという問題があった。下記の特許文献1には、グラフェンシート構造を有する炭素材料の分散性を高めた変成炭素材料が開示されている。特許文献1では、カルボキシル基を含有するアゾ系ラジカル重合開始剤をラジカル分解して得られたフラグメントを、グラフェンシート構造を有する炭素材料、例えば気相成長炭素繊維またはカーボンナノチューブに付加してなる変成炭素材料が開示されている。カルボキシル基により変成することにより、上記変成炭素材料では、水に対する分散性が高められている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−169112号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1では、カルボキシル基により変成された上記炭素材料が開示されている。近年、グラフェンや薄片化黒鉛などのグラフェンライク炭素材料に、さまざまな反応基を付加させることが試みられている。グラフェンライク炭素材料にさまざまな官能基を付加することにより、樹脂と炭素材料との複合材料の物性の改良を図ることができる。
【0006】
本発明の目的は、グラフェンライク炭素材料にイソシアネート基が付加されているイソシアネート基変成炭素材料及びその製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本願発明者らは、上記課題を達成すべく、鋭意検討した結果、ジイソシアネート化合物をグラフェンライク炭素材料と反応させることにより、イソシアネート基で変成された炭素材料を得ることができることを見出し、本発明を成すに至った。
【0008】
すなわち、本発明に係るイソシアネート基変成炭素材料では、ジイソシアネート化合物のイソシアネート基がグラフェンライク炭素材料に結合されている。
【0009】
上記グラフェンライク炭素材料としては、好ましくは、薄片化黒鉛が用いられる。薄片化黒鉛とは、通常の黒鉛を剥離することにより得られ、グラフェン積層数が数層〜200層程度、比表面積で600m/g〜2500m/g程度のグラフェンの積層体をいうものとする。
【0010】
グラフェンライク炭素材料が薄片化黒鉛である場合、比表面積が大きいため、少ない添加量で、樹脂の物性等を改善することができる。
【0011】
本発明に係るイソシアネート基変成炭素材料の製造方法では、グラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で加熱攪拌する。それによって、本発明のイソシアネート基変成炭素材料を得ることができる。
【0012】
本発明の製造方法においては、好ましくは、グラフェンライク炭素材料として薄片化黒鉛を用いる。この場合には、少ない添加量で、樹脂の物性等を改善し得る炭素材料を提供することができる。
【発明の効果】
【0013】
本発明に係るイソシアネート基変成炭素材料では、グラフェンライク炭素がイソシアネート基で変成されているため、イソシアネート基を加水分解して、アミン変成されたグラフェンライク炭素材料を容易に提供することができる。また、該イソシアネート基を水酸基と反応させてウレタン結合を形成させることもできる。従って、本発明のイソシアネート基変成炭素材料をジオールなどの水酸基を有する樹脂材料と反応させることにより、ウレタン樹脂の物性を有しつつ、かつグラフェンライク炭素により機械的強度等の特性が改善された複合材料を提供することができる。
【0014】
また、本発明に係るイソシアネート基変成炭素材料の製造方法によれば、上記のような従来得ることができなかった、本発明のイソシアネート基変成炭素材料を提供することができる。
【図面の簡単な説明】
【0015】
【図1】図1は、実施例1で得たイソシアネート基変成炭素材料及びヘキサメチレン−1,6−ジイソシアネートの熱分解ガスのクロマトグラムを示す図である。
【図2】図2(a),(b)は、実施例1で得たイソシアネート変成炭素材料及びヘキサメチレン−1,6−ジイソシアネートの熱分解ガスの保持時間4.52分における熱分解ガスの質量スペクトルを示す図である。
【発明を実施するための形態】
【0016】
以下、本発明の具体的な実施形態を説明する。
【0017】
本発明に係るイソシアネート基変成炭素材料を得るに際しては、グラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で加熱攪拌する。
【0018】
上記グラフェンライク炭素材料としては、グラフェンまたは複数のグラフェンが積層された薄片化黒鉛を好適に用いることができる。薄片化黒鉛とは、前述した通り、グラフェン積層数が数層〜200層程度の、通常の黒鉛よりもグラフェン積層数が薄い黒鉛である。薄片化黒鉛は、比表面積が通常の黒鉛よりも非常に大きく、前述した通り、600m/g以上、2500m/g以下である。従って、樹脂に少量添加するだけで、所望の補強効果や物性改善効果等を得ることができる。
【0019】
上記薄片化黒鉛としては、市販されている薄片化黒鉛を用いてもよい。また、黒鉛を剥離する様々な処理により薄片化黒鉛を得てもよい。
【0020】
上記のように薄片化黒鉛を得る方法としては特に限定されず、黒鉛を膨張して得られた膨張化黒鉛を剥離することにより得ることができる。黒鉛を膨潤し膨張化黒鉛とする工程としては、1)酸溶液中に層状黒鉛を浸漬し、層間に酸溶液を取り込む方法、及び2)電気分解法などを用いることができる。
【0021】
1)の方法では、硝酸や硫酸中に層状黒鉛を浸漬し、加熱し、硝酸イオンや硫酸イオンを層間にインターカレートする方法である。この場合、硝酸濃度及び硫酸濃度は、40重量%〜70重量%程度であることが望ましい。この範囲内であれば、硝酸イオンや硫酸イオンを確実に層間にインターカレートすることができる。また、必要に応じて溶液を撹拌したり加熱したりしてもよい。加熱温度については、溶液が水溶液の場合、20℃以上、95℃以下であることが好ましい。この範囲内の温度であれば、上記硝酸イオンや硫酸イオンを確実に層間にインターカレートすることができる。
【0022】
2)の電気分解法では、層状黒鉛を作用極とし、該作用極をPtなどからなる対照極と共に硝酸や硫酸中に浸漬し、電気分解する。それによって、層状黒鉛の層間すなわちグラフェン間に硝酸イオンや硫酸イオン等の電解質イオンをインターカレートすることができ、層間を広げることができる。
【0023】
次に、上記のようにして得られた膨張化黒鉛からなるシートを水等により洗浄し、低温で乾燥し、過剰な硝酸イオンや硫酸イオン等を除去する。このようにして、乾燥した膨張化黒鉛からなるシートを得ることができる。膨張化黒鉛を剥離して薄片化黒鉛を得るには、加熱、超音波を加える方法などを用いることができる。
【0024】
また、本発明におけるグラフェンライク炭素材料としては、グラフェンまたは薄片化黒鉛に限らず、カーボンナノチューブなどの表面にグラフェンシート構造を有する様々なグラフェンライク炭素材料を用いてもよい。
【0025】
上記ジイソシアネート化合物としては、ヘキサメチレンジイソシアネート(HMDI)、トリレンジイソシアネート、イソホロンジシアネート、キシレンジイソシアネートなどを用いることができる。
【0026】
上記グラフェンライク炭素材料をイソシアネートで変成する方法としては、上記グラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で混合し、加熱する方法を用いることができる。具体的な例としては、ヘキサメチレンジイソシアネートと、グラフェンライク炭素材料とを溶媒、例えばトルエンに分散させ、80℃温度で加熱することにより、下記の式(1)で示すように、本発明のイソシアネート基変成炭素材料を得ることができる。
【0027】
【化1】

【0028】
上記式(1)で示すように、薄片化黒鉛などのグラフェンライク炭素材料は、表面に水酸基やカルボキシル基を有する。この水酸基やカルボキシル基が、ジイソシアネート化合物のイソシアネート基と反応し、グラフェンライク炭素材料に結合することとなる。それによって、イソシアネート基を有するグラフェンライク炭素材料すなわち、本発明のイソシアネート基変成グラフェンライク炭素材料を得ることができる。
【0029】
上記グラフェンライク炭素材料と、ジイソシアネート化合物とを反応させる割合としては、好ましくは、グラフェンライク炭素材料100重量部に対し、ジイソシアネート化合物を100〜1000重量部の範囲とすればよい。この範囲内であれば、グラフェンライク炭素材料を、ジイソシアネート化合物を確実に反応させることができる。
【0030】
上記溶媒としては、トルエン、キシレン、シクロヘキサノン、メチルエチルケトンなどの様々な溶媒を用いることができる。また、加熱温度については、上記ジイソシアネート化合物が水酸基及び/またはカルボキシキ基と反応する温度であればよく、ジイソシアネート化合物の種類に応じて適宜選択すればよい。通常この加熱温度は、50℃〜90℃程度の範囲である。
【0031】
本発明により得られるイソシアネート基変成炭素材料は、上記のようにグラフェンライク炭素材料とジイソシアネート化合物とを溶媒中で加熱攪拌し、反応させることにより得られる。このようにして得られたイソシアネート基変成炭素材料は、表面にイソシアネート基を有する。従って、イソシアネート基の反応性を利用してさまざまな変成炭素材料や複合材料を得ることができる。
【0032】
例えば、イソシアネート基変成炭素材料を加水分解し、アミノ基変成炭素材料を得ることができる。一例を挙げると、前述した式(1)の右辺で得られたイソシアネート基変成炭素材料を加水分解することにより、下記の式(2)で示すようにアミノ基変成されたグラフェンライク炭素材料を得ることができる。
【0033】
【化2】

【0034】
また、上記イソシアネート基変成炭素材料をジオールなどの水酸基含有化合物と反応させることにより、ウレタン結合を形成することができる。従って、グラフェンライク炭素材料による補強効果を得ることができるだけでなく、上記グラフェンライク炭素材料とウレタン系樹脂マトリックスとの密着性に優れた複合材料を提供することができる。
【0035】
次に、具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
【0036】
(実施例1)
原料の黒鉛シートとして東洋炭素社製、品番:PF100−UHPを用意した。この黒鉛シートと同じ製法で、圧延処理時の圧延倍率を下げて密度0.7、厚み1mmの低密度黒鉛シートを用意した。
【0037】
上記のようにして得られた密度0.7の黒鉛シートを5cm×5cmの大きさに切断し、電極材料としての黒鉛シートを得た。この黒鉛シートに、2本のスリットを、スリットの長さが1cmとなるようにカッターナイフにより切削し、形成した。上記2本のスリットが形成された黒鉛シートに、Ptからなる電極を挿入した。このようにして用意した黒鉛シートを作用極(陽極)として、Ptからなる対照極(陰極)及び、Ag/AgClからなる参照極とともに60重量%濃度の硝酸水溶液中に浸漬した。浸漬に際しては、5cm×5cmの黒鉛シートの下端から4cmの高さの位置までの黒鉛シート部分を硝酸水溶液中に浸漬し、黒鉛シートの上方部分は硝酸水溶液中に浸漬させなかった。直流電圧を印加し電気化学処理を行った。このようにして、作用極として用いたもとの黒鉛シートの内、硝酸水溶液中に浸漬されていた部分を膨張化黒鉛とした。
【0038】
次に、得られた膨張化黒鉛を低温で乾燥し、1cm角に切断し、その1つをカーボンるつぼに入れて電磁誘導加熱処理を行った。誘導加熱装置はSKメディカル社製MU1700Dを用い、アルゴンガス雰囲気下で最高到達温度550℃となるように14Aの電流量で行った。電磁誘導加熱により膨張化黒鉛は薄片化され、得られた薄片化黒鉛の粉末を島津製作所(株)の比表面積測定装置ASAP−2000で窒素ガスを用いて測定したところ、1回測定で1296m/gの比表面積を示した。
【0039】
上記のようして得た薄片化黒鉛(比表面積1296m/g)1gに対してヘキサメチレン−1,6−ジイソシアネート5mLを添加し、窒素雰囲気下で200mLのトルエン中とともに80℃にて8時間加熱撹拌することにより、薄片化黒鉛にイソシアネート基を導入した。
【0040】
上記ヘキサメチレン−1,6−ジイソシアネートと、上記のようにして得られたイソシアネート基が導入された薄片化黒鉛の赤外スペクトル(熱分解GC−MS)を図1に示す。
【0041】
図1は、実施例1で得たイソシアネート基変成炭素材料及びヘキサメチレン−1,6−ジイソシアネートの熱分解ガスのクロマトグラムを示す図である。図1より、ヘキアンメチレン−1,6−ジイソシアネートとイソシアネート基変成炭素材料の熱分解ガスには、保持時間4.52分に共通の熱分解ガスの生成が認められた。また、図2(a),(b)は、実施例1で得たイソシアネート変成炭素材料及びヘキサメチレン−1,6−ジイソシアネートの熱分解ガスの保持時間4.52分における熱分解ガスの質量スペクトルを示す図である。図2より、ヘキサメチレン−1,6−ジイソシアネートとイソシアネート基変成炭素材料の保持時間4.52分における熱分解ガスの質量スペクトルは完全に一致することから、イソシアネート基を有するフラグメントが薄片化黒鉛に付加されていることがわかる。
【0042】
また、JIS K8006に規定されたイソシアネート基の定量法により、上記のようにして得たイソシアネート基変成薄片化黒鉛におけるイソシアネート基の量を測定した。その結果、薄片化黒鉛1gに対し、イソシアネート基が0.10等量の割合で結合されていることが確かめられた。
【0043】
(実施例2)
炭素材料として、薄片化黒鉛を酸化黒鉛に変更したこと以外は実施例1と同様にして、イソシアネート基変成薄片化黒鉛を得た。
【0044】
また、上記のようにして得たイソシアネート基変成薄片化黒鉛におけるイソシアネート基の割合を実施例1と同様にして求めた。その結果、薄片化黒鉛1gに対し、イソシアネート基の割合は0.01等量であった。



【特許請求の範囲】
【請求項1】
ジイソシアネート化合物のイソシアネート基がグラフェンライク炭素材料に結合されている、イソシアネート基変成炭素材料。
【請求項2】
前記グラフェンライク炭素材料が薄片化黒鉛である、請求項1に記載のイソシアネート基変成炭素材料。
【請求項3】
グラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で加熱攪拌させる、イソシアネート基変成炭素材料の製造方法。
【請求項4】
前記グラフェンライク炭素材料として、薄片化黒鉛を用いる、請求項3に記載のイソシアネート基変成炭素材料の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−112590(P2013−112590A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−262157(P2011−262157)
【出願日】平成23年11月30日(2011.11.30)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【出願人】(304027279)国立大学法人 新潟大学 (310)
【Fターム(参考)】