説明

ウェブの修正を伴ったベータ線の使用によるウェブの坪量などの特徴を測定するためのシステムおよび方法

【課題】 ウェブの修正を伴ったベータ線の使用によるウェブの坪量などの特徴を測定するためのシステムおよび方法を提供する。
【解決手段】 β線厚さ計による組成修正を複数の検出器(32)からの信号を使用して行うようにした。検出器は、その受理する放射線の割合が、放射線が検出器に到達する前に放射線が透過される物質の組成に依存するように配置されている。この放射線は検出器で測定され、受理された放射線の差を使用してβ線厚さ計の補償が行われ、組成の変動についての修正が行割れる。検出器のアレイ(A)は放射線(22b)の中央とほぼ整合した内方検出器(I)と、この内方検出器を少なくとも部分的に囲む外方検出器(O)の少なくとも1セットに分割されている。測定は、この内方検出器および少なくとも1セットの外方検出器を含むすべての含めて行われ、これら検出器による測定の差異を用いて全ての検出器によりなされたトータルの測定の補償が行われる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は製造時におけるウェブの特徴を測定することに係り、特に、製造の間にその原子組成が変化する可能性があるウェブをより良好に測定するためβ線厚さ計のオンライン補償についてのシステムおよび方法に関する。本願発明は様々な種類のウェブの製造に適用可能であるが、ここでは特に好適であって、最初に意図したところの製造中の巻取り紙の坪量の測定のためのβ線厚さ計を参照して説明する。
【背景技術】
【0002】
巻取り紙の坪量を測定するためのプロセス制御システムに使用されるセンサーは、多湿で、汚れた高温及び/又は湿気の多い環境で操作され、高速でひらひらしながら移動するウェブについて正確な測定情報を提供することが求められている。このようなセンサーは、通常、測定プラットフォーム上に装着され、この測定プラットフォームは、プロセスウェブ(巻取り紙)が処理方向に比較的迅速に移動する際において、これを横切る方向にこのセンサーをゆっくり走査させるようになっている。ベータ線器具(β線厚さ計)は、測定された材料の原子組成に対し比較的鈍感であるが、クレイ、白亜、二酸化チタン(TiO2)などの添加剤の含有量変化の条件下で紙の坪量を測定するのに使用したとき、その組成感度が大きいため、相関誤差を生じさせてしまう。ベータ線器具メーカーは、核拡散装置又は後方散乱発生装置などを利用してベータ線器具の組成感度を減少させる方法を開発している。しかし、ベータ線器具の組成感度をより小さくすると、それにより信号/ノイズ比も減少してしまう。
【発明の開示】
【発明が解決しようとする課題】
【0003】
従って、信号/ノイズ比を実質的に減少させることなく、製造中のウェブ中、例えば巻取り紙中の原子組成変化についてβ線厚さ計のオンライン補償を行うことができるシステムおよび方法の開発が求められている。
【課題を解決するための手段】
【0004】
本願発明はこの要望に対応するものであって、複数のディテクター(検出器)からの信号を処理するためのβ線厚さ計についての組成修正システムおよび方法を提供するものである。この検出器は、それにより受理されるβ線の割合が、検出器により受理される前にβ線を透過させる物質の組成に依存するように配置される。β線はこれら検出器で測定され、検出器により受理されたβ線との相違がβ線厚さ計を補償するのに使用され、組成変化についての修正を行うようになっている。本実施例では、検出器列(アレイ)が使用され、このアレイは、β線の中心部をほぼ整合するようにした内方検出器と、少なくとも部分的に内方検出器を囲むようにした外方検出器とに分割されている。この外方検出器は、1、2又はそれ以上のグループに構成させることができる。測定は全ての検出器(使用される全ての検出器)、すなわち内方検出器および外方検出器を含めて行われ、これら内方検出器および外方検出器によりなされた測定値間の相違は、全ての検出器(使用される全ての検出器)によりなされたトータル又は組合せの測定値を補償するのに使用される。
【発明を実施するための最良の形態】
【0005】
以下、図面を参照して説明するが、これら図面を通して同一部材は同一符号で示されている。まず、図1、2a、2bおよび3を参照すると、本願発明に従って形成、操作されるβ線厚さ計の1例が示されている。このβ線厚さ計は、ウェブ製品の特徴を測定するための従来のスキャナー10上に装着されている。本願発明は様々な種類のウェブ製品の測定に適用可能であるが、ここでは特に好適であって、最初に意図したところの巻取り紙12の製造に関連させて説明する。測定装置14は、β線源アッセンブリー20と、検出器アッセンブリー30と、処理システム40とを具備してなる。
【0006】
β線源アッセンブリー20はβ線源22を含み、コリメータ又は有孔プレート24を利用し、検出器アッセンブリー30内で検出器面30pに放射線を形づけるようになっている。例えば、円形の孔を有する有孔プレート24は検出器面30pに円形ビームを生じさせることになる。本願発明において、2つのソリッドステート放射線検出器を使用してもよく、これら検出器は検出器面30p内の放射線とほぼ同じ全体形状のものとすることができる。例えば、円形ビームについて、ソリッドステート放射線検出器は、円形中心検出器と、これを囲む外側リング形又は円環状検出器とを含む。
【0007】
高価なカスタム検出器の使用を避けるため、複数のソリッドステート放射線検出器32が本願発明で使用され、放射線の形状に近づけるようにしている。例えば、図2a,2bの例において、放射線検出器32は四角形のソリッドステートPIN放射線検出器の15x15アレイAを含み、これらはβ線を検出するのに使用される。β線検出器、例えば図2a,2bの放射線検出器32はMOXTEK社(Orem, UT)から市販されている。図2aにおいて、放射線検出器32は32aaないし32oo(最初の下付け文字はアレイAの列に相当し、二番目の下付け文字はアレイAの行に相当する)としてラベルされている。個々の放射線検出器32は、或るシステム構造に相当するように割り当てることができる。個々の信号は放射線検出器32により発生され、これらの信号は、放射線検出器32の選択された或るものを一緒に電気的に接続させることにより、若しくは処理システム40中のソフトウエアを使用して選択された信号が組合わせられる。例えば、第1又は内部信号は、ビームとほぼ整合し、アレイの中心にほぼ合わせた内方検出器から発生させることができ、少なくとも1つの第2又は外方信号は検出器の1又はそれ以上のグループ(本実施例では、内方検出器をほぼ囲むもの)から発生させることができる。当然ながら、又は明らかなように、測定システムの構造は、もしも検出器信号の選択されたグループの組合せが処理システム40内で行われ、そのようなソフトウエアの組合せが現状で好ましい場合は、容易に変更させることができる。
【0008】
図2aに示すように、15x15アレイAの個々の検出器の1つの割当てとして、40個の外方リング検出器Oが含まれる。すなわち、[32ea, 32fa, 32ga, 32ha, 32ia, 32ja, 32ka-最上行]、[32lb, 32mc, 32nd-対角]、[32oe, 32of, 32og, 32oh, 32oi, 32oj, 32ok-右側列]、[32nl, 32mm, 32ln-対角]、[32ko, 32jo, 32io, 32ho, 32go, 32fo, 32eo-最下行][32dn, 32cm, 32bl-対角]、[32ak, 32aj, 32ai, 32ah, 32ag, 32af, 32ae-左側列]および[32bd, 32cc, 32db‐対角]であり、外方環状検出器に近似するようにアレイAの外側の周りに配向されている。40の検出器内に配置された内方検出器Iは、内方円形検出器に近似している。図2および3に示すように、放射線検出器32のそれぞれは1.0mm x 1.0mmの活性領域30aを有し、1.35mmセンター30b上に配置されていてもよい。好ましくは、放射線検出器32の全てが実質的に同一寸法を有するものとする。
【0009】
本実施例において、個々の検出器32の配置、ソースビーム22bの強度、視準孔24aの形状及び/又はサイズ、および個々の検出器32の内方検出器I又は外方検出器Oに対する割当てが、全て整合されていて、ソースと検出器との間に何もない場合は、内方検出器Iが利用可能な信号のほぼ95%を検出し、外方検出器Oが利用可能なβ信号のほぼ5%を検出し得るようになっている。このように、外方検出器Oは、実質的に、入射光の最も外側のエッジに配置される。β信号のほぼ99%が内方検出器Iにより検出され、β信号のほぼ1%が外方検出器Oにより検出される構成から、β信号のほぼ70%が内方検出器Iにより検出され、β信号のほぼ30%が外方検出器Oにより検出される構成に至る範囲を提供するような、他の検出器、ソース、孔および検出器割当ての配置を使用することも本願発明は意図している。更に、外方検出器Oが内方検出器Iを完全に囲むように記述したが、外方検出器O内に1又はそれ以上の隙間が形成され、内方検出器Iが部分的に囲まれるようにしてもよい。
【0010】
本願発明は、検出器面30p内のβ粒子のエネルギー分布がウェブ12の組成と共に変化するという事実に依存するものである。特に、ウェブ12中に高い原子番号の元素が存在する場合、より高いエネルギーのβ粒子の分布は検出器32の最も外側のエッジ、すなわち、中央検出器である内方検出器Iとの関連において外方検出器Oで増大する。この変化する分布の測定に基づく計算を用い、修正信号を発生させ、これが放射線検出器32の組成感度についての補償に使用される。
【0011】
図4は、図2a中の検出器の全てが同一の重みで使用される場合の全体的センサー応答を示している。高い原子番号の添加剤(ハイアッシュ(high ash))(例えば、クレイ、炭酸カルシウム、二酸化チタン(TiO2))を有するサンプル()についての線形応答は、より大きい傾斜を有する。なぜならば、或る坪量について、センサーの応答は添加剤を有しないサンプル()についてのものよりも高いからである。このより大きい傾斜は、測定される材料の有効吸収係数のために生じる。純指数関数形吸収については、単一吸収係数が存在する。実際には、この吸収係数はプロセス重量と共に幾分変化し、サンプルを透過したβ信号の百分率(透過率)から重さを計算する高次のアルゴリズムが必要となる。しかし、良好な最初の第1の近似は材料のタイプに対応して吸収係数を割り当てることである。
【0012】
2つの材料が異なる吸収係数を有する場合、図4に示すように測定傾斜が明らかに異なることになる。有効吸収係数は、モニターされるべき材料の有効原子番号の関数として変化する(原子番号は一般にチタン(Z-22)のように元素に関連するが、しかし、紙は有効原子番号(又は原子量)が計算される元素の混合物である。(Tsoulfanidis, “Measurement and Detection of Radiation”ISBN:1560323175,130頁参照))。なぜならば、より高い原子番号を有する物質は、β線の単純な(核拡散装置又は後方散乱発生装置などにより補償されていない)視準ビームを使用して測定したとき若干増加した有効吸収係数を有するからである。この有効原子番号の増加および有効吸収係数の増加は、センサーの応答として、2つのサンプルが同一の坪量を有する場合であっても、2つのサンプルの内のより高い有効原子番号を有する方の第1のサンプルがより高い読みを生じさせるものとなる。
【0013】
図5は本願発明の補償修正システムの検量のための技法を説明するフローチャートである。この検量は以下に記載するサンプルを使用してシステムの製造の間に通常行われるものと考えられるが、検量はウェブ製造サイトで行うこともできる。この場合、比較サンプル又はウェブ製造サイトでユーザーにより発生させたサンプルが用いられる。或るユーザーにとっては、オンサイト検量が望ましいかもしれない。特に、クレイ、炭酸カルシウム、二酸化チタンを比較して通常とは異なる添加剤を含むウェブ(すなわち、製紙工業以外の平坦シートプロセス)を製造するユーザーにとって望ましいものとなる。図7を参照すると、これには本願発明で操作される全体システムのブロック図が示されている。明らかなように、図7における参照番号の多くは、検量のために図5に示された工程に対応するものである。
【0014】
ソース22と、検出器アッセンブリー30との間に材料が存在しないエアギャップでの工程101において最初の検量工程が行われる。上述のように、このシステムは、測定ビームおよび検出器割当て(ハードウエア電気検出器相互接続又はソフトウエアコンビネーション)を提供するために調整される。この場合、内方検出器Iがビームの約95%を検出し、外方検出器Oがビームの約5%を検出する。もちろん、内方検出器Iおよび外方検出器Oによる異なる率での検出も本発明において可能である。検出器パターンおよび検出率は、本実施例において検出器の選択により容易に変化させることができる。すなわち、内方検出器I又は外方検出器Oに含まれるアレイ中の異なる検出器を選択する。
【0015】
検出器32の残りの使用されないもの(例えば、図2aにおける32aa,32oa,32oo,32aoを参照のこと)、すなわち、内方検出器I又は外方検出器Oを画定するのに使用されない検出器は外方検出器O中の追加の検出器として含ませてもよいし、あるいは全ての検出器に基づく総合又は組合せアレイ信号の一部として使用することもできる。あるいは、特に円形対称ビームの場合はこれらを無視してもよい。これらの検出器は検出器アレイAに対し多様性を付加するものであり、内方検出器I又は外方検出器Oにより検出された信号の割合を細かに調和させることができる。或る用途においては、これらの検出器を除外し、検出器アッセンブリー30のコストを軽減することもできる。工程101は内方検出器I又は外方検出器Oに含まれる個々の検出器部材を調整したり、又は図3に示すコリメータ24を介してβ線の視準量を調整したりすることにより行うことができる。
【0016】
図5の標準化工程102において、3つの信号が測定される。すなわち、
ST0は図2のアレイAの全ての検出器32(使用されている全ての検出器)の測定値に基づくものである。
SO0は図2のアレイAの全ての外方検出器Oの測定値に基づくものである。
SI0は図2のアレイAの全ての内方検出器Iの測定値に基づくものである。もしも、使用されていない検出器が除外される場合は、ST0は全ての外方検出器Oおよび全ての内方検出器Iの測定値に基づくものとなる。
【0017】
工程103において、センサーによる測定は、高い原子番号の添加剤を有しない純粋な炭水化物である材料の検量サンプルの第1のアレイに対して行われる。この材料は純粋なセルロース又はMylar(登録商標)(ジュポン社製)のようなより耐久性の合成炭水化物出会っても良い。第1の検量サンプルのアレイは実験用坪量割当て(Wt(x))を有し、これは標準実験用重量分析法により決定される。以下の信号アレイは第1のサンプルアレイを使用して得られたものである。
ST(x)は、検量サンプルの第1のアレイについての図2の検出器アレイAの全ての検出器32(使用されている全ての検出器)の信号値のアレイである。
SO(x)は、検量サンプルの第1のアレイについての図2の検出器アレイAの全ての外方検出器Oの信号値のアレイである。
SI(x)は、検量サンプルの第1のアレイについての図2の検出器アレイAの全ての内方検出器Iの信号値のアレイである。
ここで、実験用坪量割当て(Wt(x))を有する15の検量サンプルのアレイについて、x=1−15である。なお、使用されたサンプルの数、従ってサンプルアレイの範囲は15を上下させて変化させ、或る用途について必要な信頼レベルを満たすようにしてもよい。
【0018】
工程104において、上記信号アレイ、ST(x)、SO(x)およびSI(x)は透過率(fractional transmission)のアレイを計算するのに使用される(透過率は、t厚みTtを有するサンプルを通る透過値と、0厚みTを有するサンプルを通る透過値との比、すなわち、エアギャップである)。従って、以下のように、T= Tt/Tとなる。
【0019】
TT(x)= ST(x)/ST0
TO(x)= SO(x)/SO0
TI(x)= SI(x)/SI0
材料の透過率は材料の坪量が増加するにつれて減少する。
【0020】
工程105において、有効吸収係数アレイが、以下のようにして、検量サンプルの第1のアレイの各透過値および各実験値を用いて検量サンプルの第1のアレイの各サンプルについて計算される。
UT(x)= -ln(TT(x))/Wt(x)
UO(x)= -ln(TO(x))/Wt(x)
UI(x)= -ln(TI(x))/Wt(x)
Wt(x)は検量サンプルの第1のアレイについての実験室坪量アレイであり、
UT(x)、UO(x)およびUI(x)は検量サンプルの第1のアレイ中のサンプルに対応する有効吸収係数アレイである。例えば、x=1−15である。
【0021】
工程106において、予想される吸収係数をモデル化するため多重最小二乗曲線適合が行われる。純指数関数形吸収装置において、坪量が、測定透過信号および試料物質についての既知の吸収係数を使用して計算される。ベール‐ランベルトの法則によれば、透過率T=e-μwである。
ここで、Tは透過率(Tt/TO);
μは吸収係数(m2/g);
wは坪量(g/m2)である。
【0022】
坪量はベール‐ランベルトの法則(w=-lnT/μ)により求めることができる。しかし、β線透過の場合、ベール‐ランベルトの法則は単に近似に過ぎない。従って、μはTの関数として定義される。なぜならば、μは重量の変化と共に変化するからである。計算された坪量の誤差率を少なくするため、多重最小二乗曲線適合(multiple least-square-curve fit)を使用し、4次多項式に基づいて予想される吸収係数のモデル化が行われる。この場合、透過率Tの自然対数が独立変数として、吸収係数μが従属変数として用いられる。3つの曲線適合が行われる。すなわち、アレイ検出器の全て(使用される全ての検出器)、すなわち総計T検出器アレイについてのものと;内方検出器、すなわちI検出器アレイについてのものと;外方検出器、すなわちO検出器アレイについてのものである。各検出器アレイについて5つの検量係数を発生させるため、曲線適合に使用されたアレイが工程104ないし105を参照して先に規定されている。
【0023】
予想される吸収係数Up多項式曲線適合の式は以下の通りである。
UpZ(x)=KO+ K1*lnTz(x)+K2*(lnTz(x))2+K3*(lnTz(x))3+K4*(lnTz(x))4
ここで、zは工程104および105で示すT,O,又はIである。
【0024】
これは、測定された透過率を、任意の検出器アレイについてのセンサー計算坪量へ変換させるための一般式を生じさせる。すなわち、
SWt=-lnT/[KO+ K1*lnT+K2*(lnT)2+K3*(lnT)3+K4*(lnT)4] (式1)
ここで、
SWtはセンサー計算坪量;
Tは検出器アレイ(T, O又はI)の測定された透過率;
KO, K1, K2, K3, K4は上記の多重最小二乗曲線適合により見出された検量定数であり、各検出器アレイについての異なるセットである(T, OおよびI)。
【0025】
これらの手法は当業者にとって自明であるが、検量定数の一般化に関連する数学に関する更なる情報は、数学書又はテクニカル・コンピューティング・ソフトウエア・プログラム(例えば、MatLab, The Math Works of Natick, マサチューセット州)を参照することにより得ることができる。曲線適合(curve fit)および検量定数の発生は3つの信号アレイ(ST(x), SO(x)およびSI(x))の全てについて行われ、従って、センサー計算坪量、SWtT, SWtOおよびSWtIは以下の式に示すようなものとなる。
SWtT=-lnTT/[KTO+ KT1*lnTT+KT2*(lnTT)2+KT3*(lnTT)3+KT4*(lnTT)4]
SWtO=-lnTO/[KOO+ KO1*lnTO+KO2*(lnTO)2+KO3*(lnTO)3+KO4*(lnTO)4]
SWtI=-lnTI/[KIO+ KI1*lnTI+KI2*(lnTI)2+KI3*(lnTI)3+KI4*(lnTI)4]
【0026】
すなわち、15の検量定数、KTO, KT1, KT2, KT3, KT4, KOO, KO1, KO2, KO3, KO4, KIO, KI1, KI2, KI3, KI4が、セルロース又はMylar(登録商標、以下同じ)のような100%有機炭水化物であるウェブサンプルについて発生する。検量サンプルの第1のアレイが再測定されると(各サンプルについて透過値が測定され、検量された重量計算が式1に従ってなされる)、次に3つの坪量測定アレイ(SWtT(x)、SWtO(x)およびSWtI(x))が発生する。この3つの坪量測定アレイは、検量サンプルの第1のアレイに割り当てられた実験室値(Wt(x))と実質的に一致し(僅かな量の実験不確実性および核ノイズが各読みに小さな相違を生じさせる)、かつ

。なお、検量サンプルの第1のアレイを再度測定する代わりに、検量サンプルの第1のアレイと同一の組成および重量範囲を有する異なる別の検量サンプルのアレイを測定して検量定数を実証してもよい。
【0027】
これらの検量定数、KTO−KI14が一旦、決定されると、他のMylarサンプルの更なる測定も、3つの測定のそれぞれについての実験室坪量測定のものと実質的に一致する坪量測定

に“迅速”未修正センサー測定信号として定義される。なぜならば、この信号はろ過されておらず、検出器時定数又はシステム・アナログ対デジタルサンプリング速度により定義される応答を有するからである。
【0028】
上述のように、15の定数KTO−KI4を得るために検量サンプルの第1のアレイを使用した後、検量サンプルの第2のアレイ(好ましくは、第1のサンプルのセットと同一数およびほぼ同一の実験室坪量範囲を有するもの)が工程108で測定され、工程109および110で処理される。この検量サンプルの第2のアレイは第1のサンプルのセットと比較してより高い有効原子番号を有し、二酸化チタン、炭酸カルシウム及び/又はクレイ、その他の物質又はこれらの物質の組合せを含むセルロースであってもよい。これらの一般に使用される物質の典型的充填値(fill value)に対し原子番号の変化が比較的小さいので、このサンプルの第2のセットは純アルミニウムから作られることが好ましい。より高い原子番号の他の材料を使用することができるが、アルミニウムは紙のモニターする目的において最も良好な結果を生じさせるものと現在考えられている。アルミニウムサンプルについて言うと、有効原子番号は100%炭酸カルシウム充填(fill)又は60%に酸化チタン充填を同一となる。第2の検量サンプルアレイは典型的実験室重量分析を使用して与えられる実験室坪量(Wt'(x))を有する。定数KTO−KI4および上記式1を使用する上記技法を使用して第2の検量サンプルアレイになされる坪量測定又は重量アレイ、S'WtT(x)、S'WtO(x)およびS'WtI(x)は、第2の検量サンプルアレイの実験室重量アレイWt'(x)と等しくはない。事実、これらは第2の検量セットの実験室重量アレイWt'(x)とは実質的に異なる、すなわち、Wt'(x)≠S'WtT(x)≠S'WtO(x)≠S'WtI(x))。
【0029】
図6を参照すると、S'WtI(x)とS'WtO(x)との差(修正信号アレイ、C(x)=S'WtI(x)−S'WtO(x)と呼ぶ)および計算された坪量アレイS'WtT(x)と、上記第2のセットについての実験室アレイWt'(x)との差(測定誤差アレイ、ME(x)=S'WtT(x)−Wt'(x)と呼ぶ)は組成修正アルゴリズムを決定するのに使用される。
【0030】
組成修正アルゴリズムは、合計T検出器アレイから計算される坪量から引き算された値を発生させ、正しい坪量値が得られる。第2の検量サンプルのアレイについての修正信号アレイC(x)と、測定誤差アレイME(x)との間の関係は図6において明らかである。ここで、C(x)はX軸にプロットされ、ME(x)はY軸にプロットされている。
【0031】
図6を参照すると、修正信号と、測定誤差との間の相関関係は直線的ではない。従って、非線状アルゴリズムが測定誤差の広い範囲に亘って、組成修正について得られる。この実施例において、3次多項式130を使用して、修正信号アレイC(x)を、第2の検量サンプルのアレイについて、測定誤差アレイME(x)に当てはめる。第2の検量サンプルのアレイにで得られた読みから得られるこれらのデータを使用して、曲線適合が以下のように行われる。
ME(x)=a+b*C(x)+c*C(x)2+d*C(x)3 (式2)
ここで、a, b, c およびdは曲線適合に基づく定数である。工程111において、補償又は修正領域又は坪量CWt'(x)判定は以下の式を使用してなされる。これは第2の検量サンプルの坪量測定アレイからのデータに基づくものである。
CWt'(x)=S'WtT(x)−ME(x)=S'WtT(x)−[a+b*C(x)+c*C(x)2+ d*C(x)3] (式3)
【0032】
式3を使用して、実験室坪量と良好に相関する補償された坪量を求めることができる。この場合、各測定において核統計(nuclear statistics)のため、多少の残留実験室誤差又は不確実性を伴う。従って、

【0033】
この式は原子番号4ないし22を有する添加剤について、原子組成の異なる広範な範囲に対し良好に当てはまる。より高い原子数の添加剤を含むプロセスにおいて、第2の検量サンプルのアレイの原子組成を変更し、より高い原子数の添加剤とよく適合するようにし、新たな定数a, b, c およびdが決定される。信号処理コンセプト全体のブロック図が図7に示されている。
【0034】
組成修正曲線を発生させる前にウエブ測定信号をろ過したり、平均化してもよく、あるいはウエブ測定信号S'WtTに適用される前に、得られた修正信号をろ過したり、平均化してもよい(図7の112参照)。ノイズを除くための修正信号のろ過(S’WtTを修正する前に)は許容し得るものである。なぜならば、典型的なウエブ製造プロセス(例えば製紙プロセス)において組成変化は非常にゆっくりと進行するからである。平均化により、修正信号でのランダムなノイズは、例えば核統計のために、減少する。
【0035】
図5のフロー図の検量工程が或る器具について一旦行われると、このシステムは上記方法により補償されたβ線厚さ計の読みに基づいてウエブの正しい坪量を提供する。
【0036】
上記の開示は、各検出器が1mm平方の四角形セルである15x15のアレイサイズの検出器アレイの使用に基づいているが、このアレイおよび検出器の双方のサイズおよび形状はこれに限定されるものでなくとも、本発明を実施することができる。例えば、円形のセンサーが、円形の内方検出器を有し、それが円環状の外方検出器により部分的又は全体的に囲まれた構造のものでもよい。検出器面で異なる空間位置で透過された放射線を別々に検出するようにしたソリッドステートPIN放射線検出器を使用する全ての構成は本願発明の範疇に包含されるものである。
【0037】
2又はそれ以上の外方検出器を設けてもよい。例えば、図8に示す実施例において、3セットの外方検出器が設けられている。すなわち、外方検出器Oの当初のセットと;この当初の外方検出器O内に配置された検出器Xの外側セットと;この当初の外方検出器Oの外側に配置される検出器Yの外側セット(それぞれ、符号・で示されている)とである。もちろん、外方検出器の追加セットは全て当初の外方検出器Oの外側に配置させたり、あるいはその他の配置も可能であり、これは当業者に自明であろう。図8に示すように、検出器Xの外側セットおよび当初の外方検出器Oを使用することにより、補償、修正領域又は坪量CW"(x)判定には、2つの修正因子が含まれる。その1つは上述のような検出器Xの外側セットを使用して判定されるものであり、他方のものは上述のような外方検出器Oの当初のセットを使用して判定されるものである。従って、第2の検量サンプルの坪量測定アレイからのデータに基づく以下の式が得られる。
【0038】
CWt"(x)=S"WtT(x)−ME"(x)
CWt"(x)=S"WtT(x)−[a+b*C(x)+c*C(x)2+ d*C1(x)3+e*C2(x)+f*C2(x)2+ g*C2(x)3]
ここで、Cは、全T検出器アレイおよび外側検出器Xのセットに基づくものであり、C2は全T検出器アレイおよび外方検出器Oの当初のセットに基づくものである。従って、外側検出器のセット数は、補償された重量の値に対し更なる改良がもたらされることがなくなるまで拡張することができる。本願発明のこの形態は特に紙のウエブ以外の用途に特に適している。例えば、平坦なシート状金属ウエブでの合金補償に適用される。
【0039】
本発明を或る種の具体例に基づいて説明したが、特許請求の範囲の趣旨を逸脱しない範囲において種々の変更も可能である。
【図面の簡単な説明】
【0040】
【図1】本発明により操作されるウェブ製品の坪量を測定するための装置を示す斜視図。
【図2a】本発明で使用されるソリッドステート放射線検出器のアレイの受理面を示す図。
【図2b】図2aのソリッドステート放射線検出器のアレイの側面を示す図。
【図3】図2aおよび図2bのソリッドステート放射線検出器のアレイを含む本願発明のシステムの側面図。
【図4】図2の検出器の全てを同一の重みで使用した場合の全体的センサー応答を示すグラフ図。
【図5】本発明の装置の検量についての一例を示すフローチャート。
【図6】本発明による組成修正を示すグラフ図。
【図7】本発明に従って操作可能な全体システムを示すブロック図。
【図8】本発明で使用されるソリッドステート放射線検出器のアレイの受理面の別の例を示す図であって、3セットの外方検出器が含まれている。
【符号の説明】
【0041】
10 スキャナー
12 巻取り紙
14 測定装置
20 β線源アッセンブリー
22 β線源
24 コリメータ又は有孔プレート
30 検出器アッセンブリー
30p 検出器面
40 処理システム



【特許請求の範囲】
【請求項1】
ウエブ(12)を透過させたβ線ビーム(22b)を検出することによりウエブの特徴を測定するための装置(14)であって;
検出されるべきβ線ビームをほぼ整合させた第1の検出器(I)であって、該第1の検出器により受理されたβ線ビームの第1の部分を表す第1の信号を発生させるようにしたものと;
上記第1の検出器を少なくとも部分的に囲むようにして設けられた第2の検出器(O)であって、該第2の検出器により受理されたβ線ビームの第2の部分を表す第2の信号を発生させるようにしたものと;
上記第1および第2の信号を受理し、第1の信号から第1の特徴信号を発生させ、第2の信号から第2の特徴信号を発生させ、第1および第2の信号の組合せから第3の特徴信号を発生させるコントローラ(40)であって、β線ビームが透過した上記ウエブの組成の変化のため、上記第1および第2の特徴信号が上記第3の特徴信号を補償するのに使用するようにしたことを特徴とする装置。
【請求項2】
上記第1の検出器(I)および第2の検出器(O)を少なくとも部分的に囲む第3の検出器(Y)を更に具備し、該第3の検出器により受理されたβ線ビーム(22b)の第3の部分を表す第3の信号を発生させ、上記コントローラ(40)が上記第3の信号を受理し、この第3の信号から第4の特徴信号を発生させ、上記第1、第2、第3の信号が上記第3の特徴信号を発生させるのに使用され、上記第4の特徴信号が上記第3の特徴信号を更に補償するのに使用するようにした請求項1記載の装置。
【請求項3】
上記特徴がウエブ(12)の坪量である請求項1記載の装置。
【請求項4】
上記第1の検出器(I)が第1の複数のβ線検出器(32)を含み、上記第2の検出器(O)が第2の複数のβ線検出器(32)を含む請求項1記載の装置。
【請求項5】
上記第1および第2の検出器(I、O)がβ線検出器(32)のアレイ(A)を含む請求項1記載の装置。
【請求項6】
上記第1の検出器(I)がアレイ(A)の内方部分(I)の複数のβ線検出器(32)を含み、上記第2の検出器(O)がアレイ(A)の外方部分(O)の複数のβ線検出器(32)を含む請求項5記載の装置。
【請求項7】
アレイ(A)の外方部分(O)の複数のβ線検出器(32)がアレイ(A)の内方部分(I)の複数のβ線検出器(32)を少なくとも部分的に囲むようにした請求項6記載の装置。
【請求項8】
アレイ(A)の外方部分(O)の複数のβ線検出器(32)がアレイ(A)の内方部分(I)の複数のβ線検出器を囲むようにした請求項7記載の装置。
【請求項9】
ウエブ(12)を透過させたβ線ビーム(22b)を検出することによりウエブの特徴を測定するための方法であって;
第1の検出器(I,O)により受理されたβ線ビームの第1の部分を表す第1の信号を発生させる工程と;
第2の検出器(0,I)により受理されたβ線ビームの第2の部分を表す第2の信号を発生させる工程と;
上記第1の信号から第1の特徴信号を発生させる工程と;
上記第2の信号から第2の特徴信号を発生させる工程と;
第1および第2の信号の組合せから第3の特徴信号を発生させる工程と;
β線ビームが透過した上記ウエブの組成の変化のため、上記第1および第2の特徴信号を使用して上記第3の特徴信号を補償するようにしたことを特徴とする方法。
【請求項10】
少なくとも第3の検出器(Y)により受理されたβ線ビーム(22b)の第3の部分を表す第3の信号を発生させる工程と;
第3の信号から第4の特徴信号を発生させる工程と;
上記第1、第2の信号の組合せからの第3の特徴信号の発生が上記第1、第2、第3の信号の組合せからの第3の特徴信号の発生を含むものと;
β線ビームが透過した上記ウエブの組成の変化のため、上記第1、第2および第4の特徴信号を使用して、上記第3の特徴信号を補償するようにした請求項9記載のウエブ(12)の特徴を測定するための方法。
【請求項11】
上記第1の検出器(I)を上記β線ビーム(22b)とほぼ整合させ、上記第2の検出器(O)により上記第1の検出器を少なくとも部分的に囲むようにした請求項9記載のウエブ(12)の特徴を測定するための方法。
【請求項12】
上記第1の検出器(I)を第1の複数の検出器(32)として形成する工程と;
上記第2の検出器(O)を第2の複数の検出器(32)として形成する工程と;
を具備してなる請求項9記載のウエブ(12)の特徴を測定するため方法。
【請求項13】
複数の検出器(32)を提供する工程と;
上記第1の検出器(I)を複数の検出器の第1の部分(I)として画成する工程と;
上記第2の検出器(O)を複数の検出器の第2の部分(O)として画成する工程と;
を具備してなる請求項9記載のウエブ(12)の特徴を測定するため方法。
【請求項14】
複数の検出器(32)の上記第1の部分(I)を上記β線ビーム(22b)とほぼ整合させ;
上記第2の検出器(O)により複数の検出器の上記第1の部分を少なくとも部分的に囲むようにした請求項13記載のウエブ(12)の特徴を測定するため方法。
【請求項15】
ウエブ(12)を透過させたβ線ビーム(22b)を検出することによりウエブの特徴を測定するための方法であって;
第1の検出器(I,O)により受理されたβ線ビームの第1の部分(I,O)を表す第1の信号を発生させる工程と;
第2の検出器(0,I)により受理されたβ線ビームの第2の部分(0,I)を表す第2の信号を発生させる工程と;
第1の検出器により第1の検量サンプルのアレイの特徴を測定する工程と;
第2の検出器により第1の検量サンプルのアレイの特徴を測定する工程と;
第1および第2の検出器の組合せにより第1の検量サンプルのアレイの特徴を測定する工程と;
第1の検出器、第2の検出器および第1および第2の検出器の組合せを検量し、第1の検出器、第2の検出器および第1および第2の検出器の組合せのそれぞれにより第1の検量サンプルのアレイの特徴を正確に測定する工程と;
第2の検量サンプルのアレイの特徴を上記第1の検出器で測定する工程であって、上記第2の検量サンプルのアレイが上記第1の検量サンプルのアレイよりも高い原子番号を有するものと;
第2の検出器により第2の検量サンプルのアレイの特徴を測定する工程と;
第1および第2の検出器の組合せにより第2の検量サンプルのアレイの特徴を測定する工程と;
第1および第2の検出器の組合せによる第2の検量サンプルのアレイの特徴の測定値と、第2の検量サンプルのアレイの実験室値との間の差異に等しい測定誤差アレイを判定する工程と;
上記第1の検出器による特徴測定値と、上記第2の検出器による特徴測定値との差に等しい修正信号アレイを判定する工程と;
上記測定誤差アレイを上記修正信号アレイと相関させ、第1および第2の検出器の組合せで行われた特徴測定から引き算されるべき測定誤差を判定する工程と;
上記第1および第2の検出器の組合せでなされた測定値から上記測定誤差を差し引き、上記特徴の補償された測定値を判定する工程と;
を具備してなることを特徴とする方法。
【請求項16】
上記測定誤差アレイを上記修正信号アレイと相関させ、第1および第2の検出器の組合せで行われた特徴測定から引き算されるべき測定誤差を判定する工程を、上記修正信号アレイを上記測定誤差アレイに対し曲線適合(106)させることからなる請求項15記載のウエブ(12)の特徴を測定するため方法。
【請求項17】
上記曲線適合(106)が3次多項式(130)を用いて上記修正信号アレイを上記測定誤差アレイに適合させることからなる請求項16記載のウエブ(12)の特徴を測定するため方法。
【請求項18】
ウエブ(12)を透過させたβ線ビーム(22b)を検出することによりウエブ(12)の特徴を測定するための装置であって;
検出されるべきβ線ビームをほぼ整合させた内方検出器(I)であって、該内方検出器により受理されたβ線ビームの内側部分を表す内部信号を発生させるようにしたものと;
上記内方検出器を少なくとも部分的に囲むようにして設けられた少なくとも1つの外方検出器(O)であって、該少なくとも1つの外方検出器により受理されたβ線ビームの外側部分を表す対応する外部信号を発生させるようにしたものと;
上記内部および外部信号を受理し、内側信号から内側特徴信号を発生させ、外部信号から外側特徴信号を発生させ、内側および外側信号の組合せから組合せ特徴信号を発生させるコントローラ(40)であって、β線ビームが透過した上記ウエブの組成の変化のため、外側および内側特徴信号が上記組合せ特徴信号を補償するのに使用するようにしたことを特徴とする装置。
【請求項19】
少なくとも第1および第2の外方検出器(O,Y)を具備してなる請求項18記載のウエブ(12)の特徴を測定するための装置。
【請求項20】
ウエブ(12)を透過させたβ線ビーム(22b)を検出することによりウエブの特徴を測定するための方法であって;
内方検出器(I)により受理されたβ線ビームの内側部分を表す内部信号を発生させる工程と;
外方検出器(O)により受理されたβ線ビームの対応部分を表す少なくとも1つの外側信号を発生させる工程と;
上記内側信号から内側特徴信号を発生させる工程と;
上記外側信号から少なくとも1つの外側特徴信号を発生させる工程と;
上記の内側および外側信号の組合せから組合せの特徴信号を発生させる工程と;
β線ビームが透過した上記ウエブの組成の変化のため、上記内側および外側特徴信号を使用して上記組合せ特徴信号を補償するようにしたことを特徴とする方法。



【図1】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2007−500846(P2007−500846A)
【公表日】平成19年1月18日(2007.1.18)
【国際特許分類】
【出願番号】特願2006−521938(P2006−521938)
【出願日】平成16年7月23日(2004.7.23)
【国際出願番号】PCT/US2004/023748
【国際公開番号】WO2005/012888
【国際公開日】平成17年2月10日(2005.2.10)
【出願人】(502234606)エイビービー インコーポレイテッド (4)
【氏名又は名称原語表記】ABB INC.
【住所又は居所原語表記】579 EXECUTIVE CAMPUS, WESTERVILEE,OHIO 43082,USA
【Fターム(参考)】