説明

エポキシ化合物の製造方法及び触媒

【課題】炭素−炭素二重結合の酸化によるエポキシ化合物の製造方法において、触媒の除去が容易であり、かつ、該酸化反応に好適な酸化触媒を提供すること。
【解決手段】炭素−炭素二重結合を有する化合物を、タングステン酸類、4級アンモニウム塩、緩衝液及び過酸化水素を用いて酸化した後、タングステン酸類及び4級アンモニウム塩を含む触媒を析出させ、反応液から分離することを特徴とするエポキシ化合物の製造方法

【発明の詳細な説明】
【技術分野】
【0001】
本発明は炭素−炭素二重結合の酸化によるエポキシ化合物の製造方法、および、該酸化反応に好適な酸化触媒に関する。
【背景技術】
【0002】
エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。近年、特に半導体関連材料の分野においてはカメラ付き携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど軽・薄・短・小がキーワードとなるような電子機器があふれ、これによりエポキシ樹脂に代表されるパッケージ材料にも非常に高い特性が求められてきている。特に先端パッケージはその構造が複雑になり、液状封止でなくては封止が困難な物が増加している。例えばEnhancedBGAのようなキャビティーダウンタイプの構造になっているものは部分封止を行う必要があり、トランスファー成型では対応できない。このようなことから高機能な液状エポキシ樹脂の開発が求められている。
またコンポジット材、車の車体や船舶の構造材として、近年、その製造法の簡便さからRTMが使用されている。このような組成物においてはカーボンファイバー等への含浸のされやすさから低粘度のエポキシ樹脂が望まれている。
【0003】
また、オプトエレクトロニクス関連分野、特に近年の高度情報化に伴い、膨大な情報を円滑に伝送、処理するために、従来の電気配線による信号伝送に変わり、光信号を生かした技術が開発されていく中で、光導波路、青色LED、および光半導体等の光学部品の分野においては透明性に優れた樹脂の開発が望まれている。これらの要求に対し、脂環式のエポキシ樹脂が注目されている。具体的にはエポキシシクロヘキサン骨格を有するエポキシ樹脂群である。
【0004】
従来、その様な脂環式エポキシ樹脂は過酸(過酢酸等)によるシクロヘキセン構造を有する化合物の酸化反応により製造されてきた。しかしながら過酸はその安定性の悪さから取り扱いが困難であり、より安全に使用できる製造方法が求められてきた。
このような背景から近年、より安全な酸化剤として過酸化水素水を使用したエポキシ化の検討が行われている。一般的にはタングステン酸類やモリブデン酸類と4級アンモニウム塩を触媒とすることが知られている。しかしながら、本反応の問題点は使用する4級アンモニウム塩の脂溶性が強く、有機溶剤から4級アンモニウム塩を除去することが困難であり、製品に残存してしまうという問題があった。このような問題に対し、シリカゲル等に触媒を担持するなど触媒を不溶化すると言う手法が用いられている。しかしながらこのような触媒の場合、その活性が低いことが起因し、大量の触媒が必要となってしまう。
【特許文献1】特開2002−69079号公報
【特許文献2】特開2001−17863号公報
【特許文献3】特開2005−169363号公報
【特許文献4】特開2004−115455号公報
【特許文献5】特開平5−213919号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、炭素−炭素二重結合の酸化によるエポキシ化合物の製造方法において、触媒の除去が容易であり、かつ、該酸化反応に好適な酸化触媒を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
【0007】
すなわち本発明は
(1)
炭素−炭素二重結合を有する化合物を、タングステン酸類、4級アンモニウム塩、緩衝液及び過酸化水素を用いて酸化した後、タングステン酸類及び4級アンモニウム塩を含む触媒を析出させ、反応液から分離することを特徴とするエポキシ化合物の製造方法
(2)
4級アンモニウム塩が総炭素数30以上である上記(1に記載のエポキシ化合物の製造方法
(3)
上記(1)に記載の析出した触媒を再度使用することを特徴とするエポキシ化合物の製造方法
(4)
総炭素数30以上の4級アンモニウム塩とタングステン酸類からなるパーオキソメタレートであり、リン元素、アルカリ金属(あるいはアルカリ土類金属)元素を含有することを特徴とする炭素−炭素二重結合を有する化合物の酸化触媒
に関する。
【発明の効果】
【0008】
本発明によれば酸化によるエポキシ化反応を効率的に進行させることができるばかりか、触媒のリサイクルが可能となる。本製法により製造されたエポキシ化合物は、精製が容易であり、残存触媒の少ないエポキシ化合物であり、電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料などの広範囲に有用である。
【発明を実施するための最良の形態】
【0009】
本発明の製造方法は、炭素−炭素二重結合を有する化合物を、タングステン酸類、4級アンモニウム塩、緩衝液、過酸化水素を用いて酸化した後、タングステン酸類及び4級アンモニウム塩を含む触媒を析出させ、反応液から分離、得られた溶液を精製し、溶剤を留去することによりエポキシ化合物を得る。また析出させた触媒は再利用可能であり、同様に酸化反応を進行させることができる。
【0010】
本発明において原料として使用する炭素−炭素二重結合を有する化合物としては、分子中に炭素−炭素二重結合を有する化合物であれば特に限定はされないが、本発明においては特に二重結合がシクロ環中にあることが好ましく、特に分子内にシクロヘキセン構造、さらにはシクロヘキセンカルボキシエステル構造を有するものが好ましい。具体的な化合物としてはシクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980))、あるいはシクロヘキセンアルデヒドのティシェンコ反応(特開2003−170059号公報、特開2004−262871号公報)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(特開2006−052187号公報)によっても製造できる。
アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトールなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられる。
【0011】
タングステン酸類とは、タングステン酸;12−タングスト燐酸、12−タングストホウ酸または18−タングスト燐酸等の燐タングステン酸;12−タングストケイ酸等のケイタングステン酸及びその塩等が挙げられる。
これらの塩のカウンターカチオンとしては4級アンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオンなどが挙げられる。
具体的にはテトラメチルアンモニウムイオン、ベンジルトリエチルアンモニウムイオン、トリデカニルメチルアンモニウムイオン、ジラウリルジメチルアンモニウムイオン、トリオクチルメチルアンモニウムイオン、トリアルキルメチル(オクチル基とデカニル基の混合タイプ)アンモニウムイオン、トリヘキサデシルメチルアンモニウムイオン、トリメチルステアリルアンモニウムイオン、テトラペンチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ベンジルトリブチルアンモニウムイオン、トリカプリルメチルアンモニウムイオン、ジセチルジメチルアンモニウムイオンなどの4級アンモニウムイオン、カルシウムイオンマグネシウムイオン等のアルカリ土類金属イオン、ナトリウム、カリウム、セシウム等のアルカリ金属イオンなどが挙げられるがこれらに限定されない。
使用量としては炭素−炭素二重結合を有する化合物の二重結合1モルに対し、金属元素換算(タングテン酸ならタングステン原子、モリブデン酸ならモリブデン原子のモル数)で1.0〜20ミリモル、好ましくは2.0〜20ミリモル、さらに好ましくは2.5〜10ミリモルである。
【0012】
4級アンモニウム塩としては、総炭素数が30以上の4級アンモニウム塩が使用できる。特にそのアルキル鎖が全て脂肪族鎖であるものが好ましく、特にジアルキルジメチルアンモニウム塩(アルキルは同一または異なり少なくとも2以上の炭素数からなる)またはトリアルキルメチルアンモニウム塩(アルキルの定義は同上)が好ましい。
具体的にはジセチルジメチルアンモニウム塩、トリセチルメチルアンモニウム塩、ジペンタデシルジメチルアンモニウム塩、トリペンタデシルメチルアンモニウム塩、ジオクタデシルジメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩、ジテトラデシルジメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、ジ硬化牛脂アルキルジメチルアンモニウム塩などが挙げられるがこれらに限定されない。
またこれらのアニオン種に特に限定はなく、具体的にはハロゲン化物イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、アセテートイオン、炭酸イオン、等が挙げられるが、これらに限定されない。
これらアンモニウム塩のうち、市場の入手のし易さから考えると、得にトリセチルメチルアンモニウムクロライド、ジ牛脂アルキルジメチルアンモニウムクロライド、ジ牛脂アルキルジメチルアンモニウムアセテートなどが好ましいものとして挙げられる。
タングステン酸類と4級アンモニウムのカルボン酸塩の使用量は使用するタングステン酸類の価数倍の1.1〜10倍当量が好ましい。より好ましくは1.2〜6.0倍当量であり、さらに好ましくは1.3〜4.5倍当量である。
例えば、タングステン酸であればHWOで2価であるので、タングステン酸1モルに対し、4級アンモニウムのカルボン酸塩は2.2〜20モルの範囲が好ましい。またタングストリン酸であれば3価であるので、同様に3.3〜20モル、ケイタングステン酸であれば4価であるので4.4〜40モルが好ましい。
4級アンモニウムのカルボン酸塩の量が、タングステン酸類の価数倍の1.1倍当量よりも低い場合、エポキシ化反応が進行しづらい(場合によっては反応の進行が早くなる)、また副生成物ができやすいという問題が生じる。10倍当量よりも多い場合、過剰の4級アンモニウムのカルボン酸塩の処理が大変であるばかりか、反応を抑制する働きがあり、好ましくない。
【0013】
本発明においては緩衝液を使用する。緩衝液としてはいずれも用いることができるが、本反応においては燐酸塩水溶液を用いることが好ましい。また、場合によっては先のタングステン酸類を組み合わせて緩衝液としてもかまわない。そのpHとしてはpH2〜6の間に調整されたものが好ましく、より好ましくはpH3〜5である。pH2以下の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH6以上である場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
緩衝液の使用法は、例えば好ましい緩衝液である燐酸−燐酸塩水溶液の場合は過酸化水素に対し、0.1〜10モル当量の燐酸(あるいは燐酸二水素ナトリウム等の燐酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられる。ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。また、リン酸二水素ナトリウム、リン酸水素二ナトリウムなどを用いて調整することも可能である。好ましい燐酸塩の濃度は0.1〜60重量%、好ましくは5〜45重量%である。
【0014】
本反応は過酸化水素を用いてエポキシ化を行う。本反応に使用する過酸化水素としては、その取扱いの簡便さから過酸化水素濃度が10〜40重量%である水溶液が好ましい。この濃度が40重量%を超える場合、取扱いが難しくなる他、生成したエポキシ化合物の分解反応も進行しやすくなることから好ましくない。
酸化反応におけるタングステン酸類の使用量は、通常炭素-炭素二重結合を有する化合物1モルに対し、タングステン原子が0.1〜2.0モル%、好ましくは、0.1〜1.5モル%、さらに好ましくは0.1〜1.0モル%である。
また、緩衝液の使用量は、原料の炭素-炭素二重結合を有する化合物100重量部に対し、通常0.5〜150重量部、好ましくは0.5〜100重量部であるが、緩衝液の使用量によって反応は大幅には変化はしない。
【0015】
本反応は有機溶剤を使用する。使用する有機溶剤の量としては、反応基質である炭素−炭素二重結合を有する化合物1に対し、重量比で0.3〜10であり、好ましくは0.3〜5、より好ましくは0.5〜2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が使用できる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、アセトニトリル等の二トリル化合物なども使用可能である。
【0016】
以下に具体的に本発明の製法について記載する。
具体的な反応操作方法としては、炭素−炭素二重結合を有する化合物、過酸化水素、タングステン酸類、緩衝液、4級アンモニウム塩及び有機溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無い。過酸化水素の添加時に発熱する場合が多いことから、各成分を添加した後に過酸水素を徐々に添加する方法でも構わない。
【0017】
反応温度は特に限定されないが30〜90℃が好ましく、さらに好ましくは35〜75℃、特に35℃〜60℃が好ましい。反応温度が高すぎる場合、加水分解反応が進行しやすく、反応温度が低いと反応速度が極端に遅くなる。また反応の濃度にもよるが触媒が析出し、反応が進行しにくい場合がある。
【0018】
また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1〜48時間、好ましくは3〜36時間、さらに好ましくは4〜24時間である。
【0019】
反応終了後、水層を破棄、あるいは破棄しないで触媒を析出させる。触媒を析出させる方法としては、冷却をする、あるいは触媒の貧溶媒を加える、もしくはそれらの併用が挙げられるが、これらに限定されない。冷却する場合、30℃以下、好ましくは25℃以下にすることが好ましく、少量でも水が系に残存する方が結晶の析出は促進される。貧溶媒としては触媒によっても異なるので一概に言えないが、極性の高いアルコールやケトン類など、具体的にはメタノールや、アセトン等の比較的、水への親和性が良いものが好適である。
【0020】
析出した触媒は結晶、あるいはオイルの形状をとる。ろ過、あるいは分液により、析出した触媒を除去することで粗精製のできたエポキシ化合物溶液が得られる。除去した触媒は再利用が可能であり、その詳細については後述する。
【0021】
反応終了後、あるいは触媒析出後に、過剰な過酸化水素のクエンチ処理を行う。クエンチ処理は、塩基性化合物を使用して行なうことが好ましい。塩基性化合物によってクエンチを行なうことで、触媒の残存量を更に低減できる。また、還元剤と塩基性化合物を併用することも好ましい。
好ましい処理方法としては塩基性化合物でpH6〜8に調整後、還元剤を用い、残存する過酸化水素をクエンチする。pHが6以下の場合、過剰の過酸化水素を還元する際の発熱が大きく、生成しているエポキシ化合物を部分的に加水分解してしまう場合がある。またpHが8以上の場合もエポキシ化合物の加水分解、さらにはエステル結合の加水分解を引き起こしてしまう可能性がある。
【0022】
還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸などが挙げられる。還元剤の使用量としては過剰分の過酸化水素もモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。
【0023】
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類など、各種溶剤)に溶解するものであれば、過剰分の過酸化水素のモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。これらは水、あるいは前述の有機溶剤の溶液として添加しても単体で添加しても構わない。
水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1〜1000倍の量を使用することが好ましい。より好ましくは10〜500倍、さらに好ましくは10〜300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
【0024】
過酸化水素のクエンチ後(もしくは触媒の析出、除去後)、有機層と水層を分離する。この際、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して操作を行い、水層より反応生成物の抽出を行う。この際使用する有機溶剤は得られる原料の炭素−炭素二重結合を有する化合物に対し、重量比で0.5〜10倍、好ましくは0.5〜5倍である。この操作を必要により数回繰り返した後分離した有機層を、必要に応じて水洗して精製する。
得られた有機層は必要に応じてイオン交換樹脂や金属酸化物、活性炭、複合金属塩、粘土鉱物等により、不純物を除去し、さらに水洗、ろ過等を行った後、溶剤を留去し、目的とするエポキシ化合物を得る。
【0025】
得られたエポキシ化合物は、例えばエポキシアクリレートおよびその誘導体、オキサゾリドン系化合物、環状カーボネート化合物等の各種樹脂原料として使用できる。
【0026】
以下、本発明の触媒について記載する。本発明の触媒は、前記のようにな炭素−炭素二重結合を有する化合物の酸化反応の工程で得られる。
酸化反応終了後、得られる触媒は、規則正しい結晶構造は持たないものの、部分的にパーオキソメタレート系の構造を有する(マススペクトルにより検出可能)。またそれらは、4級アンモニウムイオンと塩結合をした状態でも存在している。さらには元素分析等により解析すると、使用した緩衝液に使用しているアルカリ金属イオン(あるいはアルカリ土類金属イオン)も導入された形となっている。本発明の触媒の構成元素としてはタングステン元素、リン元素、アルカリ金属元素(あるいはアルカリ土類金属元素)、窒素、酸素、炭素である。
【0027】
本発明の触媒は、更に炭素−炭素二重結合を有する化合物の酸化(エポキシ化)触媒として可能である。
具体的には、炭素−炭素二重結合を有する化合物、本発明の触媒、緩衝液、有機溶剤、過酸化水素、並びに必要に応じてタングステン酸類及び4級アンモニウム塩を使用して上記と同様に反応する。各成分の使用量は前記のとおりでかまわない。
例えば、燐酸ナトリウム緩衝液、トルエンの二層液に本発明の触媒を添加後、さらに炭素−炭素二重結合を有する化合物を加え、攪拌する。ここに過酸化水素水を徐々に滴下し、反応を行う。反応終了後、塩基性物質、還元剤で過酸化水素をクエンチした後、吸着材等で触媒を除去後、水洗し、溶剤回収を行うことで目的とするエポキシ化合物が得られる。
【0028】
以下、上記のようにして得られたエポキシ化合物(本発明のエポキシ化合物という)を含む硬化性樹脂組成物(本発明の硬化性樹脂組成物という)について説明する。
本発明の硬化性樹脂組成物は本発明のエポキシ化合物を含有する。本発明の硬化性樹脂組成物においては、硬化剤による熱硬化(硬化性樹脂組成物A)と酸を硬化触媒とするカチオン硬化(硬化性樹脂組成物B)の二種の方法が適応できる。
【0029】
硬化性樹脂組成物Aと硬化性組樹脂成物Bにおいて本発明のエポキシ化合物は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ化合物の全エポキシ樹脂(本発明のエポキシ化合物と他のエポキシ樹脂;以下同様)中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。ただし、本発明のエポキシ化合物を硬化性樹脂組成物の改質剤として使用する場合は、1〜30重量%の割合で添加する。
【0030】
本発明のエポキシ化合物と併用できる他のエポキシ樹脂のとしては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4'−ビフェノール、2,2'−ビフェノール、3,3',5,5'−テトラメチル−[1,1'−ビフェニル]−4,4'−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4'−ビス(クロルメチル)−1,1'−ビフェニル、4,4'−ビス(メトキシメチル)−1,1'−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類またはアルコール類から誘導される、それらのグリシジルエーテル化物;脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
【0031】
以下、それぞれの硬化性樹脂組成物について説明する。
硬化剤による熱硬化(硬化性樹脂組成物A)
本発明の硬化性樹脂組成物Aが含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノール樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4'−ビフェノール、2,2'−ビフェノール、3,3',5,5'−テトラメチル−[1,1'−ビフェニル]−4,4'−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4'−ビス(クロロメチル)−1,1'−ビフェニル、4,4'−ビス(メトキシメチル)−1,1'−ビフェニル、1,4'−ビス(クロロメチル)ベンゼン、1,4'−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
【0032】
本発明の硬化性樹脂組成物Aにおいて硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
【0033】
本発明の硬化性樹脂組成物Aにおいては、硬化剤とともに硬化促進剤を併用しても差し支えない。用い得る硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤を用いる場合は、エポキシ樹脂100重量部に対して0.1〜5.0重量部が必要に応じ用いられる。
【0034】
本発明の硬化性樹脂組成物Aには、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1〜0.6(重量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
【0035】
さらに本発明の硬化性樹脂組成物Aには、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05〜50重量部、好ましくは0.05〜20重量部が必要に応じて用いられる。
【0036】
本発明の硬化性樹脂組成物Aには、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物A中において0〜95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
【0037】
本発明の硬化性樹脂組成物Aは、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物Aは従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ化合物と硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物を溶融後注型あるいはトランスファー成型機などを用いて成型し、さらに80〜200℃で2〜10時間加熱することにより本発明の硬化物を得ることができる。
【0038】
また本発明の硬化性樹脂組成物Aをトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物Aの硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物Aと該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
【0039】
また本発明の硬化性樹脂組成物Aをフィルム型組成物の改質剤としても使用できる。具体的にはB−ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物を得る場合は、このようなフィルム型の樹脂組成物は、本発明の硬化性樹脂組成物Aを前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
【0040】
更に、本発明の硬化性樹脂組成物Aは、エポキシ樹脂等の熱硬化性樹脂が使用される一般の用途に用いることができ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
【0041】
接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
【0042】
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
【0043】
酸性硬化触媒によるカチオン硬化(硬化性樹脂組成物B)
本発明の硬化性樹脂組成物を酸性硬化触媒で硬化させる場合には、本発明の硬化性樹脂組成物には、光重合開始剤あるいは熱重合開始剤を含有させる。さらに、硬化性樹脂組成物Bは、必要に応じて、希釈剤、重合性モノマー、重合性オリゴマー、重合開始補助剤、光増感剤、無機充填剤、顔料、紫外線吸収剤、酸化防止剤、安定剤、シランカップリング材、離型剤、各種熱硬化性樹脂等の各種公知の化合物、材料等を含有していてもよい。
【0044】
更に、本発明の硬化性樹脂組成物Bが必要に応じて含有する無機充填剤及び離型剤の具体例としては、硬化性樹脂組成物Aと同様なもの等が挙げられる。
硬化性樹脂組成物Bでは、カチオン重合が好ましく、光カチオン重合が特に好ましい。カチオンの触媒(以下、単に「光カチオン重合開始剤」という)としてはヨードニウム塩、スルホニウム塩、ジアゾニウム塩等のオニウム塩が挙げられ、これらは単独または2種以上で使用することができる。該光カチオン重合開始剤の使用量は、全エポキシ樹脂100重量部に対して、好ましくは、0.01〜50重量部であり、より好ましくは、0.1〜10重量部である。
【0045】
更に、これらの光カチオン重合開始剤と公知の重合開始補助剤および光増感剤の1種または2種以上を同時に使用することが可能である。重合開始補助剤の例としては、例えば、ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノールプロパン−1−オン、N,N−ジメチルアミノアセトフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−tert−ブチルアントラキノン、1−クロロアントラキノン、2−アミルアントラキノン、2−イソプロピルチオキサトン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、アセトフェノンジメチルケタール、ベンゾフェノン、4−メチルベンゾフェノン、4,4'−ジクロロベンゾフェノン、4,4'−ビスジエチルアミノベンゾフェノン、ミヒラーズケトン等の光ラジカル重合開始剤が挙げられる。光ラジカル重合開始剤等の重合開始補助剤の使用量は、光ラジカル可能な成分100重量部に対して、0.01〜30重量部であり、好ましくは0.1〜10重量部である。
【0046】
光増感剤の具体例としては、アントラセン、2−イソプロピルチオキサトン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、アクリジン オレンジ、アクリジン イエロー、ホスフィンR、ベンゾフラビン、セトフラビンT、ペリレン、N,N−ジメチルアミノ安息香酸エチルエステル、N,N−ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。光増感剤の使用量は、全エポキシ樹脂成分100重量部に対して、0.01〜30重量部であり、好ましくは0.1〜10重量部である。
【0047】
本発明の硬化性樹脂組成物Bは、各成分を均一に混合することにより得られる。またポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に溶解させ、均一とした後、乾燥により溶剤を除去して使用することも可能である。この際の溶剤は、本発明の硬化性樹脂組成物Bと該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。本発明の硬化性樹脂組成物Bは紫外線照射することにより硬化できるが、その紫外線照射量については、硬化性樹脂組成物により変化するため、それぞれの硬化条件によって、決定される。光硬化型硬化性樹脂組成物が硬化する照射量であれば良く、硬化物の接着強度が良好である硬化条件を満たしていれば良い。この硬化の際、光が細部まで透過することが必要であることから本発明のエポキシ化合物、および硬化性樹脂組成物Bにおいては透明性の高いものが望まれる。また、これらエポキシ樹脂系の光硬化では光照射のみでは完全に硬化することが難しく、耐熱性が求められる用途においては光照射後に加熱により完全に硬化を終了させる必要がある。
【0048】
前記、光照射後の加熱は通常の硬化性樹脂組成物Bの硬化温度域で良い。例えば常温〜150℃で30分〜7日間の範囲が好適である。硬化性樹脂組成物Bの配合により変化するが、特に高い温度域であればあるほど光照射後の硬化促進に効果があり、短時間の熱処理で効果がある。このような熱アフターキュアすることで、エージング処理になるという効果も出る。
【0049】
また、これら硬化性樹脂組成物B硬化させて得られる硬化物の形状も用途に応じて種々とりうるので特に限定されないが、例えばフィルム状、シート状、バルク状などの形状とすることもできる。成形する方法は適応する部位、部材によって異なるが、例えば、キャスト法、注型法、スクリーン印刷法、スピンコート法、スプレー法、転写法、ディスペンサー方式などの成形方法を適用することができるなどが挙げられるが、これらに限定されるものではない。成形型は研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を適用することができる。また、成形型との離型性を向上させるためポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム等を適用することができる。
【0050】
例えばカチオン硬化性のレジストに使用する際においては、まず、ポリエチレングリコールモノエチルエーテル、シクロヘキサノン、あるいはγブチロラクトン等の有機溶剤に溶解させた光カチオン硬化性樹脂組成物Bを、銅張積層板、セラミック基板またはガラス基板等の基板上に、スクリーン印刷、スピンコート法などの手法によって、5〜160μmの膜厚で本発明の組成物を塗布し、塗膜を形成する。そして、該塗膜を60〜110℃で予備乾燥させた後、所望のパターンの描かれたネガフィルムを通して紫外線(例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、レーザー光等)を照射し、ついで、70〜120℃で露光後ベーク処理を行う。その後ポリエチレングリコールモノエチルエーテル等の溶剤で未露光部分を溶解除去(現像)した後、さらに必要があれば紫外線の照射及び/または加熱(例えば100〜200℃で0.5〜3時間)によって十分な硬化を行い、硬化物を得る。このようにしてプリント配線板を得ることも可能である。
【0051】
本発明の硬化性樹脂組成物Aおよび硬化性樹脂組成物Bを硬化してなる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
【0052】
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
【0053】
光学用材料の他の用途としては、硬化性樹脂組成物Aが使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。
【0054】
接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
【0055】
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。
【0056】
本発明の硬化性樹脂組成物Aおよび硬化性樹脂組成物Bは、光半導体装置にも適用することが可能である。かかる光半導体装置は、本発明の硬化性樹脂組成物で光半導体素子(光半導体チップ)を封止することによって製造することができる。その封止法としてはキャスティングやポッティングあるいは印刷等の方法で光半導体素子を封止する封止樹脂を成形(注型及び硬化)する方法が採用できる。成形条件は従来から行われている硬化性樹脂組成物による半導体素子の封止成形における成形条件をそのまま採用することができ、光半導体封止用硬化性樹脂組成物の組成等により適宜設定すればよい。
【実施例】
【0057】
次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K−7236、粘度は25℃においてE型粘度計を使用して測定を行った。
【0058】
実施例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら10重量%燐酸2水素ナトリウム水溶液30部、12−タングストリン酸1.6部を仕込み、10重量%燐酸水素2ナトリウム水溶液でpHを5.0に調整した。更にトルエン150部を加え攪拌しながらジ牛脂アルキルジメチルアンモニウムクロライド3.0部(ライオン・アクゾ製 イソプロパノール10重量%含有フレーク 総炭素数34〜38:商品名 アーカド2HPフレーク)を加え、40℃で15分攪拌し、リンタングステン酸の4級アンモニウム塩を生成させた。ここに、式(1)
【0059】
【化1】

【0060】
で表される化合物を110部を加えた後、この溶液を50℃に昇温し、攪拌しながら、35重量%過酸化水素水106部を徐々に加え、後反応として50℃でさらに6時間攪拌した。反応終了後、20度まで反応液を冷却し、そのまま12時間置いた。
ついで析出した触媒をろ過により分離した。得られた触媒は白色の結晶であり、ろ過後乾燥し、実施例3で使用した。ここで有機層の残存タングステン濃度を測定したところ、600ppmであった。その後、反応液に1重量%水酸化ナトリウム水溶液を用いて水層のpH7.5とした後、水層を廃棄、さらに20重量%チオ硫酸ナトリウム水溶液50部を加え1時間攪拌を行い、静置した。その後、2層に分離した有機層を取り出した。
得られた有機層にベントナイト(ホージュン製 ベンゲルSH)を5部、活性炭(味の素ファインテクノ製 CP2)5部を加え、室温で2時間撹拌した後、窒素加圧濾過を行い、さらにトルエン100部で固形物を洗浄し、先に得られた溶液と混合した。この溶液について水洗を水100部で3回行い、ロータリーエバポレータを用い、有機溶剤を留去することで、目的とするエポキシ化合物(EP1)112部を得た。得られたエポキシ化合物は淡黄色であり、エポキシ当量は131g/eq.、粘度は235mPa・sであった。また残存タングステン量は13ppmであった。
【0061】
実施例2
実施例1においてジ牛脂アルキルジメチルアンモニウムクロライド3.0部(アーカド2HPフレーク)を、ジ牛脂アルキルジメチルアンモニウムアセテート6.0部(ライオン・アクゾ製 濃度50重量% ヘキサン溶液 総炭素数34〜38:商品名 アーカド2HTアセテート)を使用した以外は同様にして反応を行った。
反応終了後に析出した触媒はオイル状(樹脂状)であり、有機層をデカンテーションで取り除き、ろ紙を通液させ、余分な触媒を除去した。液が混在している部分においては別途取り出し、アセトン50部を加え、触媒を析出させ、有機層のみ再度デカンテーションで取り出した。ここで有機層の残存タングステン濃度を測定したところ、940ppmであった。
実施例1と同様に処理した後、得られたエポキシ化合物(EP2)は、淡黄色の液状であり、エポキシ当量は130g/eq.、粘度は224mPa・sであった。また残存タングステン量は11ppmであった。
【0062】
比較例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら10%燐酸2水素ナトリウム水溶液30部、12−タングストリン酸1.6部を仕込み、10%燐酸水素2ナトリウム水溶液でpHを5.0に調整した。更にトルエン150部を加え攪拌しながらジ牛脂アルキルジメチルアンモニウムクロライド3.0部(ライオン・アクゾ製 イソプロパノール10重量%含有フレ−ク 総炭素数34〜38)を加え、40℃で15分攪拌し、リンタングステン酸の4級アンモニウム塩を生成させた。ここで、前記式(1)の化合物110部を加えた後、この溶液を50℃に昇温し、攪拌しながら、35%過酸化水素水106部を徐々に加え、後反応として50℃でさらに6時間攪拌した。反応液中のタングステンは6400ppmであった。得られた反応液に1重量%水酸化ナトリウム水溶液を用いて水層のpH7.5とした後、水層を廃棄、さらに20重量%チオ硫酸ナトリウム水溶液50部を加え1時間攪拌を行い、静置した。その後、2層に分離した有機層を取り出した。
得られた有機層にベントナイト(ホージュン製 ベンゲルSH)を5部、活性炭(味の素ファインテクノ製 CP2)5部を加え、室温で2時間撹拌した後、窒素加圧濾過を行い、さらにトルエン100部で固形物を洗浄し、先に得られた溶液と混合した。この溶液について水洗を水100部で3回行い、ロータリーエバポレータを用い、有機溶剤を留去することで、比較のエポキシ化合物(EP3)108部を得た。得られたエポキシ化合物は淡黄色であり、エポキシ当量は132g/eq.、粘度は233mPa・sであった。また残存タングステン量は65ppmであった。
【0063】
実施例3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら10重量%燐酸2水素ナトリウム水溶液6部、10重量%燐酸水素2ナトリウム水溶液、タングステン酸ナトリウム2水和物0.1部、でpHを5.0に調整した。更にトルエン30部を加え攪拌しながら実施例1で得られた本発明の触媒0.3部を加え、40℃で15分攪拌した。ここに前記式(1)の化合物22部を加えた後、50℃に昇温し、攪拌しながら、35重量%過酸化水素水21.2部を徐々に加え、後反応として50℃でさらに6時間攪拌した。得られた反応液に1重量%水酸化ナトリウム水溶液を用いて水層のpH7.5とした後、水層を廃棄、さらに20重量%チオ硫酸ナトリウム水溶液10部を加え1時間攪拌を行い、静置した。その後、2層に分離した有機層を取り出した。
得られた有機層にベントナイト(ホージュン製 ベンゲルSH)を1部、活性炭(味の素ファインテクノ製 CP2)1部を加え、室温で2時間撹拌した後、窒素加圧濾過を行い、さらにトルエン30部で固形物を洗浄し、先に得られた溶液と混合した。この溶液について水洗を水30部で3回行い、ロータリーエバポレータを用い、有機溶剤を留去することで、目的とするエポキシ化合物(EP4)20部を得た。得られたエポキシ化合物は淡黄色であり、エポキシ当量は130g/eq.、粘度は229mPa・sであった。また残存タングステン量は39ppmであった。
【0064】
本発明によれば、触媒を析出させることにより、同じ量の吸着剤であっても、製品への触媒の残存をより少なくできたばかりか、析出した触媒を使用し、再度エポキシ化反応を行うことができる。

【特許請求の範囲】
【請求項1】
炭素−炭素二重結合を有する化合物を、タングステン酸類、4級アンモニウム塩、緩衝液及び過酸化水素を用いて酸化した後、タングステン酸類及び4級アンモニウム塩を含む触媒を析出させ、反応液から分離することを特徴とするエポキシ化合物の製造方法。
【請求項2】
4級アンモニウム塩が総炭素数30以上である請求項1に記載のエポキシ化合物の製造方法。
【請求項3】
請求項1に記載の析出した触媒を再度使用することを特徴とするエポキシ化合物の製造方法。
【請求項4】
総炭素数30以上の4級アンモニウム塩とタングステン酸類からなるパーオキソメタレートであり、リン元素、アルカリ金属(あるいはアルカリ土類金属)元素を含有することを特徴とする炭素−炭素二重結合を有する化合物の酸化触媒。

【公開番号】特開2010−83836(P2010−83836A)
【公開日】平成22年4月15日(2010.4.15)
【国際特許分類】
【出願番号】特願2008−257017(P2008−257017)
【出願日】平成20年10月2日(2008.10.2)
【出願人】(000004086)日本化薬株式会社 (921)
【Fターム(参考)】