説明

エポキシ樹脂材料及び多層基板

【課題】熱による寸法変化が小さく、かつ埋め込み性が良好な硬化物を得ることができるエポキシ樹脂材料を提供する。
【解決手段】本発明に係るエポキシ樹脂材料は、ビスフェノールS型エポキシ樹脂と、アミノトリアジン骨格を有する硬化剤と、無機フィラーと、フェノキシ樹脂とを含む。本発明に係るエポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分100重量%中、上記ビスフェノールS型エポキシ樹脂の含有量が40重量%以上、60重量%以下であり、かつ上記アミノトリアジン骨格を有する硬化剤の含有量が10重量%以上、20重量%以下である。本発明に係る多層基板11は、回路基板12と、回路基板12の回路が形成された表面12a上に配置された硬化物層13〜16とを備える。硬化物層13〜16は、上記エポキシ樹脂材料を硬化させることにより形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、多層基板において絶縁層を形成するために用いることができるエポキシ樹脂材料に関し、より詳細には、エポキシ樹脂と硬化剤と無機フィラーとフェノキシ樹脂とを含むエポキシ樹脂材料、並びに該エポキシ樹脂材料を用いた多層基板に関する。
【背景技術】
【0002】
従来、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。
【0003】
上記樹脂組成物の一例として、下記の特許文献1には、多官能エポキシ樹脂と、硬化剤と、フェノキシ樹脂及びポリビニルアセタール樹脂の内の少なくとも一方と、無機充填材とを含む樹脂組成物が開示されている。ここでは、上記無機充填材は、シラザン化合物で表面処理された後に、シランカップリグ剤でさらに表面処理されている。
【0004】
下記の特許文献2には、エポキシ樹脂と、活性エステル化合物と、脂環式構造含有フェノキシ樹脂とを含む樹脂組成物が開示されている。ここでは、樹脂組成物が無機充填材を含んでいてもよいことが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−168470号公報
【特許文献2】特開2010−111859号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
多層プリント配線板の絶縁層には、該絶縁層に積層される他の絶縁層又は回路などと剥離が生じ難いことが強く求められる。このため、上記絶縁層では、熱により寸法が大きく変化しないことが望まれる。すなわち、上記絶縁層の線膨張率が低いことが望ましい。
【0007】
また、近年、パッケージの高密度化に伴い、該パッケージに用いられている基板がそりやすくなっている。このため、基板のそりを小さくする要求が非常に高まっている。基板のそりを十分に抑制するためには、基板上に積層される上記絶縁層の線膨張率を低くする必要がある。
【0008】
しかしながら、特許文献1,2に記載のような従来の樹脂組成物を用いた場合には、該樹脂組成物の硬化物の熱による寸法変化を十分に小さくすることができないことがあり、上記絶縁層の線膨張率が比較的高くなることがある。
【0009】
本発明の目的は、熱による寸法変化が小さく、かつ埋め込み性が良好な硬化物を得ることができるエポキシ樹脂材料、並びに該エポキシ樹脂材料を用いた多層基板を提供することである。
【課題を解決するための手段】
【0010】
本発明の広い局面によれば、ビスフェノールS型エポキシ樹脂と、アミノトリアジン骨格を有する硬化剤と、無機フィラーと、フェノキシ樹脂とを含み、エポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分100重量%中、上記ビスフェノールS型エポキシ樹脂の含有量が40重量%以上、60重量%以下であり、かつ上記アミノトリアジン骨格を有する硬化剤の含有量が10重量%以上、20重量%以下である、エポキシ樹脂材料が提供される。
【0011】
本発明に係るエポキシ樹脂材料のある特定の局面では、該エポキシ樹脂材料に含まれている全固形分100重量%中、上記無機フィラーの含有量が50重量%以上、85重量%以下である。
【0012】
本発明に係るエポキシ樹脂材料の別の特定の局面では、上記ビスフェノールS型エポキシ樹脂及び上記アミノトリアジン骨格を有する硬化剤の重量平均分子量がそれぞれ1000以下である。
【0013】
本発明に係るエポキシ樹脂材料のさらに別の特定の局面では、硬化促進剤がさらに含まれている。
【0014】
本発明に係るエポキシ樹脂材料の他の特定の局面では、該エポキシ樹脂材料は、フィルム状に成形されたBステージフィルムである。
【0015】
本発明に係る多層基板は、回路基板と、該回路基板の表面上に配置された硬化物層とを備えており、該硬化物層が、本発明に従って構成されたエポキシ樹脂材料を硬化させることにより形成されている。
【発明の効果】
【0016】
本発明に係るエポキシ樹脂材料は、ビスフェノールS型エポキシ樹脂とアミノトリアジン骨格を有する硬化剤と無機フィラーとフェノキシ樹脂とを含み、更に上記エポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分100重量%中、上記ビスフェノールS型エポキシ樹脂の含有量が40重量%以上、60重量%以下であり、かつ上記アミノトリアジン骨格を有する硬化剤の含有量が10重量%以上、20重量%以下であるので、熱による寸法変化が小さく、かつ埋め込み性が良好な硬化物を得ることができる。
【図面の簡単な説明】
【0017】
【図1】図1は、本発明の一実施形態に係るエポキシ樹脂材料を用いた多層基板を模式的に示す部分切欠正面断面図である。
【発明を実施するための形態】
【0018】
以下、本発明の詳細を説明する。
【0019】
(エポキシ樹脂材料)
本発明に係るエポキシ樹脂材料は、ビスフェノールS型エポキシ樹脂と、アミノトリアジン骨格を有する硬化剤と、無機フィラーと、フェノキシ樹脂とを含む。
【0020】
上記組成の採用により、特に上記フェノキシ樹脂とともに用いられる熱硬化性樹脂及び硬化剤が上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤とであることによって、熱による寸法変化が小さい硬化物を得ることが可能になる。上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤とを併用した場合には、上記ビスフェノールS型エポキシ樹脂を用いていなかったり、上記アミノトリアジン骨格を有する硬化剤を用いていなかったりする場合と比較して、硬化物の熱による寸法変化を小さくすることができる。
【0021】
さらに、本発明に係るエポキシ樹脂材料では、該エポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分100重量%中、上記ビスフェノールS型エポキシ樹脂の含有量が40重量%以上、60重量%以下であり、かつ上記アミノトリアジン骨格を有する硬化剤の含有量が10重量%以上、20重量%以下であるので、硬化物の熱による寸法変化を効果的に小さくすることができる。
【0022】
本来フェノキシ樹脂を添加することでエポキシ樹脂材料の架橋密度が低下し、その結果硬化物の熱線膨張係数が増加するが、上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤とを併用することで硬化物の熱線膨張係数が低くなり、結果的に硬化物の熱による寸法変化を小さくすることができる。上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤との併用は、硬化物の熱寸法安定性の向上に大きく寄与する。
【0023】
また、エポキシ樹脂と硬化剤とを含むエポキシ樹脂材料において、シリカなどの無機フィラーを多く配合することにより、硬化物の熱による寸法変化をより一層小さくすることができ、すなわち線膨張率を低くすることができる。
【0024】
エポキシ樹脂と硬化剤と無機フィラーとを含む樹脂組成物において、溶剤を多く配合すると、樹脂組成物の粘度が低くなり、樹脂組成物を塗工したときに外観不良が発生しやすくなることがある。また、100μm以上の厚みに樹脂組成物を塗工することが困難である。これに対して、上記樹脂組成物がフェノキシ樹脂をさらに含むことにより、樹脂組成物の粘度が高くなり、樹脂組成物の製膜性及び塗工性が高くなり、更に樹脂組成物を塗工した時に外観不良が生じ難くなる。また、100μm以上の厚みに樹脂組成物を塗工することが容易になる。
【0025】
また、エポキシ樹脂と硬化剤と無機フィラーとを含むBステージフィルムにおいて、エポキシ樹脂及び硬化剤の内の一方又は双方の重量平均分子量が1000以下であると、Bステージフィルムの溶融粘度が低くなる。このため、基板上にBステージフィルムをラミネートしたときに、無機フィラーが不均一に存在しやすくなる。さらに、溶融粘度が低いと、硬化過程で、意図しない領域にBステージフィルムが濡れ拡がることがある。これに対して、エポキシ樹脂と硬化剤と無機フィラーとを含むBステージフィルムであって、エポキシ樹脂及び硬化剤の内の一方又は双方の重量平均分子量が1000以下であるBステージフィルムが、フェノキシ樹脂をさらに含むことにより、Bステージフィルムの溶融粘度が高くなる。この結果、基板上にBステージフィルムをラミネートしたときに、無機フィラーを均一に存在させることができる。さらに、硬化過程で、Bステージフィルムが意図せずに濡れ拡がるのを抑制できる。
【0026】
フェノキシ樹脂は、Bステージフィルムの溶融粘度を高くし、硬化物中での無機フィラーの分散性を高める役割を果たす。エポキシ樹脂及び硬化剤の内の一方又は双方の重量平均分子量が1000以下でない場合にも、フェノキシ樹脂は、Bステージフィルムの溶融粘度を高くし、硬化物中での無機フィラーの分散性を高める役割を果たす。
【0027】
また、エポキシ樹脂と硬化剤と無機フィラーとを含むBステージフィルムがフェノキシ樹脂などの高分子成分を含まない場合には、溶融粘度によらず、基板上にBステージフィルムをラミネートして、Bステージフィルムを硬化させたときに、硬化物の外観が悪くなりやすい。これに対して、エポキシ樹脂と硬化剤と無機フィラーとを含む樹脂組成物がフェノキシ樹脂を含む場合には、硬化物の外観が良好になる。
【0028】
上記のように、フェノキシ樹脂の使用には、多くの利点がある。本発明においては、フェノキシ樹脂を用いて上記多くの利点を得ることに加え、線膨張率の低い、すなわち熱による寸法変化の小さい硬化物を得ることができ、本発明はこのことに1つの大きな特徴を有する。
【0029】
本発明に係るエポキシ樹脂材料は、ペースト状であってもよく、フィルム状であってもよい。本発明に係るエポキシ樹脂材料は、樹脂組成物であってもよく、該樹脂組成物フィルム状に成形されたBステージフィルムであってもよい。
【0030】
以下、本発明に係るエポキシ樹脂材料に含まれているビスフェノールS型エポキシ樹脂、アミノトリアジン骨格を有する硬化剤、無機フィラー及びフェノキシ樹脂などの各成分の詳細を説明する。
【0031】
[ビスフェノールS型エポキシ樹脂]
上記エポキシ樹脂材料はエポキシ樹脂を含む。該エポキシ樹脂は、少なくとも1個のエポキシ基を有する有機化合物をいう。
【0032】
上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が存在する。
【0033】
これらの数多く知られたエポキシ樹脂の中で、本発明では、ビスフェノールS型エポキシ樹脂を選択して用いる。ビスフェノールS型エポキシ樹脂の使用により、硬化物の熱による寸法変化を小さくすることができ、かつ凹凸表面に埋め込まれたエポキシ樹脂材料の表面の平坦性を高めることができる。上記ビスフェノールS型エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0034】
また、従来のエポキシ樹脂を含む樹脂組成物において、硬化物の熱による寸法変化を小さくするためには、すなわち線膨張率を低くするためには、シリカなどの無機フィラーを多く配合する必要がある。また、多層プリント配線板などの多層基板では、硬化物の表面には平坦性が求められる一方で、導電層の密着性を高めたり、ビア内のスミアを除去したりするために硬化物の表面が粗化処理又はデスミア処理されることがある。硬化物の線膨張率を低くするために無機フィラーを多く配合すると、エポキシ樹脂材料の硬化物の表面を粗化処理又はデスミア処理したときに、表面の表面粗さが大きくなる。
【0035】
これに対して、ビスフェノールS型エポキシ樹脂の使用により、硬化物の熱による寸法変化を小さくすることができ、しかも粗化処理又はデスミア処理された硬化物の表面の表面粗さを小さくすることができる。上記ビスフェノールS型エポキシ樹脂の使用により、無機フィラーの含有量が多くなくても、硬化物の線膨張率が充分に低くなる。
【0036】
上記ビスフェノールS型エポキシ樹脂の市販品としては、DIC社製の「EXA−1514」及び「EXA−1517」、並びに三菱化学社製の「YL7487」及び「YL7459」等が挙げられる。
【0037】
硬化物の熱による寸法変化をより一層小さくし、かつ粗化処理又はデスミア処理された硬化物の表面の表面粗さをより一層小さくする観点からは、上記ビスフェノールS型エポキシ樹脂は、2官能以上のビスフェノールS型エポキシ樹脂であることが好ましい。
【0038】
粗化処理又はデスミア処理された硬化物の表面の表面粗さをより一層小さくする観点からは、上記ビスフェノールS型エポキシ樹脂のエポキシ当量は、好ましくは90以上、より好ましくは100以上、好ましくは1000以下、より好ましくは800以下である。
【0039】
上記ビスフェノールS型エポキシ樹脂の重量平均分子量は1000以下であることが好ましい。この場合には、エポキシ樹脂材料における無機フィラーの含有量を多くすることができる。さらに、無機フィラーの含有量が多くても、流動性が高いエポキシ樹脂材料である樹脂組成物を得ることができる。一方で、重量平均分子量が1000以下であるビスフェノールS型エポキシ樹脂と、フェノキシ樹脂との併用により、エポキシ樹脂材料であるBステージフィルムの溶融粘度の低下を抑制できる。このため、Bステージフィルムを基板上にラミネートした場合に、無機フィラーを均一に存在させることができる。
【0040】
上記エポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分(以下、上記全固形分Bと略記することがある)100重量%中、上記ビスフェノールS型エポキシ樹脂の含有量は40重量%以上、好ましくは45重量%以上、60重量%以下、好ましくは55重量%以下である。上記ビスフェノールS型エポキシ樹脂の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、溶融粘度を調整することができるために無機フィラーの分散性を良好にすることができ、かつ硬化過程で、意図しない領域にBステージフィルムが濡れ拡がることを防止できる。さらに、硬化物の熱による寸法変化をより一層抑制できる。また、上記ビスフェノールS型エポキシ樹脂の含有量が上記下限未満であると、樹脂組成物又はBステージフィルムの回路基板の穴又は凹凸に対する埋め込みが困難になり、さらに無機フィラーが不均一に存在しやすくなる傾向がある。また、上記ビスフェノールS型エポキシ樹脂の含有量が上記上限を超えると、溶融粘度が低くなりすぎて硬化過程で、意図しない領域にBステージフィルムが濡れ広がりやすくなる傾向がある。「全固形分B」とは、上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤と上記フェノキシ樹脂と必要に応じて配合される他の固形分との総和をいう。全固形分Bには、無機フィラーは含まれない。「固形分」とは、不揮発成分であり、成形又は加熱時に揮発しない成分をいう。
【0041】
特に、本発明では、上記全固形分100重量%中、上記ビスフェノールS型エポキシ樹脂の含有量が40重量%以上、60重量%以下であるので、熱による寸法変化が小さく、かつ埋め込み性が良好な硬化物を得ることができる。
【0042】
[硬化剤]
上記エポキシ樹脂材料は硬化剤を含む。該硬化剤としては、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物及び酸無水物等が存在する。
【0043】
これらの数多く知られた硬化剤の中で、本発明では、アミノトリアジン骨格を有する硬化剤を選択して用いる。アミノトリアジン骨格を有する硬化剤の使用により、硬化物の熱による寸法変化を小さくすることができる。
【0044】
上記アミノトリアジン骨格を有する硬化剤として、アミノトリアジン骨格を有するフェノール化合物(フェノール硬化剤)を用いてもよく、アミノトリアジン骨格を有するアミン化合物(アミン硬化剤)を用いてもよく、アミノトリアジン骨格を有するチオール化合物(チオール硬化剤)を用いてもよく、アミノトリアジン骨格を有するイミダゾール化合物を用いてもよく、アミノトリアジン骨格を有するホスフィン化合物を用いてもよい。上記アミノトリアジン骨格を有する硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0045】
上記アミノトリアジン骨格を有する硬化剤の市販品としては、フェノール化合物の例としてDIC社製「LA1356」及び「LA3018−50P」等が挙げられ、アミン化合物の例として三井化学工業製「メラミン」等が挙げられる。
【0046】
熱による寸法変化がより一層小さい硬化物を得る観点からは、上記アミノトリアジン骨格を有する硬化剤は、アミン化合物又はフェノール化合物であることが好ましい。上記アミノトリアジン骨格を有する硬化剤は、アミン化合物であることが好ましく、フェノール化合物であることも好ましい。上記アミノトリアジン骨格を有する硬化剤は、上記ビスフェノールS型エポキシ樹脂のエポキシ基と反応可能な官能基を有することが好ましい。
【0047】
粗化処理又はデスミア処理された硬化物の表面粗さをより一層小さくし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記アミノトリアジン骨格を有する硬化剤は、フェノール化合物又はアミン化合物又はであることが好ましい。
【0048】
上記フェノール化合物及びアミン化合物の使用により、硬化物と金属層との密着性をより一層高めることができる。また、上記フェノール化合物及びアミン化合物の使用により、例えば、樹脂組成物の硬化物の表面上に設けられた銅の表面を黒化処理又はCz処理することにより、硬化物と銅との密着性をより一層高めることができる。
【0049】
上記フェノール化合物は特に限定されない。該フェノール化合物として、従来公知のフェノール化合物を使用可能である。上記フェノール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0050】
上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。
【0051】
上記アミン化合物は特に限定されない。該アミン化合物として、従来公知のアミン化合物を使用可能である。上記アミン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0052】
上記アミン化合物としては、メラミン、グアナミン、ベンゾグアナミン及びアセトグアナミン等が挙げられる。
【0053】
粗化処理又はデスミア処理された硬化物の表面の表面粗さをより一層小さくし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記フェノール化合物は、ビフェニルノボラック型フェノール、又はアラルキル型フェノール化合物であることが好ましい。
【0054】
熱による寸法変化を効果的に小さくし、かつ埋め込み性が良好な硬化物を得る観点からは、上記アミノトリアジン骨格を有する硬化剤は、アミノトリアジン骨格を有するフェノール化合物であることが特に好ましい。
【0055】
粗化処理又はデスミア処理された硬化物の表面粗さをより一層小さくし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化剤により良好な絶縁信頼性を付与する観点からは、上記アミノトリアジン骨格を有する硬化剤は、当量が250以下であるアミノトリアジン骨格を有する硬化剤を含むことが好ましい。上記アミノトリアジン骨格を有する硬化剤の当量は、例えば、上記アミノトリアジン骨格を有する硬化剤がフェノール化合物である場合にはフェノール性水酸基当量を示し、上記アミノトリアジン骨格を有する硬化剤がアミン化合物である場合にはアミン基当量を示す。
【0056】
上記アミノトリアジン骨格を有する硬化剤の重量平均分子量は1000以下であることが好ましい。この場合には、エポキシ樹脂材料における無機フィラーの含有量を多くすることができ、無機フィラーの含有量が多くても、流動性が高いエポキシ樹脂材料である樹脂組成物を得ることができる。一方で、重量平均分子量が1000以下であるアミノトリアジン骨格を有する硬化剤と、フェノキシ樹脂との併用により、エポキシ樹脂材料であるBステージフィルムの溶融粘度の低下を抑制できる。このため、Bステージフィルムを基板上にラミネートした場合に、無機フィラーを均一に存在させることができる。
【0057】
上記全固形分B100重量%中、上記アミノトリアジン骨格を有する硬化剤の含有量は10重量%以上、好ましくは13重量%以上、20重量%以下、好ましくは18重量%以下である。上記アミノトリアジン骨格を有する硬化剤の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、溶融粘度を調整することができるために無機フィラーの分散性を良好にすることができ、かつ硬化過程で、意図しない領域にBステージフィルムが濡れ拡がることを防止できる。さらに、硬化物の熱による寸法変化をより一層抑制できる。また、上記アミノトリアジン骨格を有する硬化剤の含有量が上記下限未満であると、樹脂組成物又はBステージフィルムの回路基板の穴又は凹凸に対する埋め込みが困難になり、さらに無機フィラーが不均一に存在しやすくなる傾向がある。また、上記アミノトリアジン骨格を有する硬化剤の含有量が上記上限を超えると、溶融粘度が低くなりすぎて硬化過程で、意図しない領域にBステージフィルムが濡れ広がりやすくなる傾向がある。
【0058】
特に、本発明では、上記全固形分100重量%中、上記アミノトリアジン骨格を有する硬化剤の含有量が10重量%以上、20重量%以下であるので、熱による寸法変化が小さく、かつ埋め込み性が良好な硬化物を得ることができる。
【0059】
上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤との配合比は特に限定されない。上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤との配合比は、上記全固形分B100重量%中の上記ビスフェノールS型エポキシ樹脂の含有量と上記アミノトリアジン骨格を有する硬化剤の含有量とがそれぞれ上述した範囲内であれば、適宜変更可能である。
【0060】
[無機フィラー]
上記エポキシ樹脂材料に含まれている無機フィラーは特に限定されない。該無機フィラーとして、従来公知の無機フィラーを使用可能である。上記無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0061】
上記無機フィラーとしては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム及び窒化ホウ素等が挙げられる。粗化処理又はデスミア処理された硬化物の表面粗さを小さくし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機フィラーは、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の線膨張率をより一層低くすることができ、かつ粗化処理又はデスミア処理された硬化物の表面の表面粗さを効果的に小さくすることができる。シリカの形状は略球状であることが好ましい。
【0062】
上記無機フィラーの平均粒子径は、好ましくは0.1μm以上、好ましくは20μm以下、より好ましくは1μm以下である。上記無機フィラーの平均粒子径として、50%となるメディアン径(d50)の値が採用される。上記平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定できる。
【0063】
上記無機フィラーは、表面処理されていることが好ましく、カップリング剤により表面処理されていることがより好ましい。これにより、粗化処理又はデスミア処理された硬化物の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができ、かつ硬化物により良好な配線間絶縁信頼性及び層間絶縁信頼性を付与することができる。
【0064】
上記カップリング剤としては、シランカップリング剤、チタネートカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、アミノシラン、イミダゾールシラン、エポキシシラン及びビニルシラン等が挙げられる。
【0065】
上記無機フィラーの含有量は特に限定されない。上記エポキシ樹脂材料に含まれている全固形分(以下、全固形分Aと略記することがある)100重量%中、上記無機フィラーの含有量は好ましくは50重量%以上、好ましくは85重量%以下、より好ましくは80重量%以下である。上記無機フィラーの含有量が上記下限以上及び上記上限以下であると、粗化処理又はデスミア処理された硬化物の表面の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができると同時に、この無機フィラー量であれば金属銅並に硬化物の熱線膨張係数を低くすることも可能である。「全固形分A」とは、上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤と上記無機フィラーと上記フェノキシ樹脂と必要に応じて配合される固形分との総和をいう。「固形分」とは、不揮発成分であり、成形又は加熱時に揮発しない成分をいう。
【0066】
上記全固形分A中の上記無機フィラーの含有量が50重量%以上である場合に、硬化物の熱による寸法変化がより一層小さくなり、更に上記ビスフェノールS型エポキシ樹脂と上記アミノトリアジン骨格を有する硬化剤との併用により、硬化物の熱寸法安定性の向上効果が特に大きくなる。
【0067】
[フェノキシ樹脂]
本発明に係るエポキシ樹脂材料は、フェノキシ樹脂を含む。該フェノキシ樹脂の使用により、溶融粘度を調整することができるために無機フィラーの分散性を良好にすることができ、かつ硬化過程で、意図しない領域にBステージフィルムが濡れ拡がることを防止できる。またフェノキシ樹脂の添加量を所定の範囲内にすることで、樹脂組成物又はBステージフィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化や、無機フィラーの不均一化を生じ難くすることができる。
【0068】
上記フェノキシ樹脂は特に限定されず、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0069】
上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、及びナフタレン骨格などの骨格を有するフェノキシ樹脂等が挙げられる。上記フェノキシ樹脂の重量平均分子量は、好ましくは5000以上、好ましくは100000以下である。
【0070】
上記フェノキシ樹脂の市販品としては、例えば、東都化成社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」などが挙げられる。
【0071】
硬化物の表面を粗化処理又はデスミア処理した後に、金属層をめっきした場合に、硬化物と金属層との接着強度を高めることができるので、上記フェノキシ樹脂は、ビフェニル骨格を有することが好ましく、ビフェノール骨格を有することがより好ましい。
【0072】
上記フェノキシ樹脂は、イミド骨格を有するフェノキシ樹脂を含有することが好ましい。この場合に、本発明に係るエポキシ樹脂材料に含まれているフェノキシ樹脂は、イミド骨格を有するフェノキシ樹脂に加えて、イミド骨格を有するフェノキシ樹脂ではない他のフェノキシ樹脂を含んでいてもよい。
【0073】
一般的なフェノキシ樹脂は、硬化剤と反応することがある。このため、エポキシ樹脂材料の硬化物の架橋密度が低下して、硬化物の線膨張率が高くなることがある。これに対して、上記イミド骨格を有するフェノキシ樹脂の使用により、エポキシ樹脂材料の硬化物の架橋密度の低下を抑制でき、硬化物の熱による寸法変化を効果的に小さくすることができ、硬化物の線膨張率を低くすることができる。上記イミド骨格を有するフェノキシ樹脂の使用により、硬化物の熱寸法安定性がかなりよくなる。
【0074】
上記イミド骨格を有するフェノキシ樹脂としては、具体的には、三菱化学社製の「YL7600DMAcH25」等が挙げられる。
【0075】
樹脂組成物の硬化物の表面を粗化処理した後に、金属層を形成するためにめっき処理した場合に、硬化物と金属層との接着強度を高めることができるので、上記他のフェノキシ樹脂は、ビフェニル骨格を有することが好ましく、ビフェノール骨格を有することがより好ましい。
【0076】
上記フェノキシ樹脂の含有量は特に限定されない。上記エポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分B100重量%中、上記フェノキシ樹脂の含有量は、好ましくは1重量%以上、好ましくは15重量%以下、より好ましくは10重量%以下である。上記フェノキシ樹脂の含有量が上記下限以上及び上記上限以下であると、硬化物の熱による寸法変化をより一層抑制できる。また、樹脂組成物又はBステージフィルムの回路基板の穴又は凹凸に対する埋め込み性が良好になる。
【0077】
上記フェノキシ樹脂がイミド骨格を有するフェノキシ樹脂とイミド骨格を有さない上記他のフェノキシ樹脂を含む場合には、上記エポキシ樹脂材料に含まれている上記無機フィラーを除く全固形分B100重量%中、上記他のフェノキシ樹脂の含有量は、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは3重量%以下である。
【0078】
[他の成分及びエポキシ樹脂材料の詳細]
上記エポキシ樹脂材料は、必要に応じて硬化促進剤を含んでいてもよい。硬化促進剤の使用により、硬化速度をより一層速くすることができる。エポキシ樹脂材料を速やかに硬化させることで、硬化物の架橋構造を均一にすることができると共に、未反応の官能基数を減らすことができ、結果的に架橋密度を高くすることができる。該硬化促進剤は特に限定されず、従来公知の硬化促進剤を用いることができる。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0079】
上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。
【0080】
上記イミダゾール化合物としては、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール及び2−フェニル−4−メチル−5−ジヒドロキシメチルイミダゾール等が挙げられる。
【0081】
上記リン化合物としては、トリフェニルホスフィン等が挙げられる。
【0082】
上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4−ジメチルアミノピリジン等が挙げられる。
【0083】
上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。
【0084】
硬化物の絶縁信頼性を高める観点からは、上記硬化促進剤は、イミダゾール化合物であることが特に好ましい。
【0085】
上記硬化促進剤の含有量は特に限定されない。エポキシ樹脂材料を効率的に硬化させる観点からは、上記全固形分B100重量%中、上記硬化促進剤の含有量は好ましくは0.01重量%以上、好ましくは3重量%以下である。
【0086】
耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、エポキシ樹脂材料には、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及び上述した樹脂以外の他の樹脂等を添加してもよい。
【0087】
上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。
【0088】
上記カップリング剤の含有量は特に限定されない。上記全固形分B100重量%中、上記カップリング剤の含有量は0.01重量%以上、5重量%以下であることが好ましい。
【0089】
上記他の樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。
【0090】
(Bステージフィルムであるエポキシ樹脂材料)
上記樹脂組成物をフィルム状に成形する方法としては、例えば、押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、樹脂組成物を有機溶剤等の溶剤に溶解又は分散させた後、キャスティングしてフィルム状に成形するキャスティング成形法、並びに従来公知のその他のフィルム成形法等が挙げられる。なかでも、薄型化を進めることができるので、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。
【0091】
上記樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば90〜200℃で10〜180分間加熱乾燥させることにより、Bステージフィルムを得ることができる。
【0092】
上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。
【0093】
上記Bステージフィルムは、半硬化状態にある半硬化物である。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。
【0094】
上記樹脂組成物は、基材と、該基材の一方の表面に積層されたBステージフィルムとを備える積層フィルムを形成するために好適に用いることができる。積層フィルムのBステージフィルムが、上記樹脂組成物により形成される。
【0095】
上記積層フィルムの上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、ポリイミド樹脂フィルム、銅箔及びアルミニウム箔などの金属箔等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。
【0096】
上記エポキシ樹脂材料を回路の絶縁層として用いる場合、エポキシ樹脂材料により形成された層の厚さは、回路を形成する導体層の厚さ以上であることが好ましい。上記エポキシ樹脂材料により形成された層の厚さは、好ましくは5μm以上、好ましくは200μm以下である。
【0097】
(プリント配線板)
上記エポキシ樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。
【0098】
上記プリント配線板は、例えば、上記樹脂組成物により形成されたBステージフィルムを用いて、該Bステージフィルムを加熱加圧成形することにより得られる。
【0099】
上記Bステージフィルムに対して、片面又は両面に金属箔を積層できる。上記Bステージフィルムと金属箔とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記Bステージフィルムを金属箔に積層できる。
【0100】
(銅張り積層板及び多層基板)
上記エポキシ樹脂材料は、銅張り積層板を得るために好適に用いられる。上記銅張り積層板の一例として、銅箔と、該銅箔の一方の表面に積層されたBステージフィルムとを備える銅張り積層板が挙げられる。この銅張り積層板のBステージフィルムが、本発明に係るエポキシ樹脂材料により形成される。
【0101】
上記銅張り積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1〜50μmの範囲内であることが好ましい。また、エポキシ樹脂材料を硬化させた硬化物層と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。
【0102】
また、本発明に係るエポキシ樹脂材料は、多層基板を得るために好適に用いられる。上記多層基板の一例として、回路基板と、該回路基板の表面上に積層された硬化物層とを備える多層基板が挙げられる。この多層基板の硬化物層が、上記エポキシ樹脂材料を硬化させることにより形成される。上記硬化物層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記硬化物層の一部は、上記回路間に埋め込まれていることが好ましい。
【0103】
上記多層基板では、上記硬化物層の上記回路基板が積層された表面とは反対側の表面が粗化処理又はデスミア処理されていることが好ましく、粗化処理されていることがより好ましい。
【0104】
粗化処理方法は、従来公知の粗化処理方法を用いることができ特に限定されない。上記硬化物層の表面は、粗化処理の前に膨潤処理されていてもよい。
【0105】
また、上記多層基板は、上記硬化物層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。
【0106】
また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された硬化物層と、該硬化物層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える回路基板が挙げられる。上記硬化物層及び上記銅箔が、銅箔と該銅箔の一方の表面に積層されたBステージフィルムとを備える銅張り積層板を用いて、上記Bステージフィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。
【0107】
上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の硬化物層とを備える回路基板が挙げられる。上記複数層の硬化物層の内の少なくとも1層がが、上記エポキシ樹脂材料を硬化させることにより形成される。上記多層基板は、上記エポキシ樹脂材料を硬化させることにより形成されている上記硬化物層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。
【0108】
図1に本発明の一実施形態に係るエポキシ樹脂材料を用いた多層基板を模式的に部分切欠正面断面図で示す。
【0109】
図1に示す多層基板11では、回路基板12の上面12aに、複数層の硬化物層13〜16が積層されている。硬化物層13〜16は、絶縁層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の硬化物層13〜16のうち、回路基板12側とは反対の外側の表面に位置する硬化物層16以外の硬化物層13〜15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と硬化物層13の間、及び積層された硬化物層13〜16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。
【0110】
多層基板11では、硬化物層13〜16が、本発明に係るエポキシ樹脂材料を硬化させることにより形成されている。本実施形態では、硬化物層13〜16の表面が粗化処理又はデスミア処理されているので、硬化物層13〜16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層基板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層基板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。
【0111】
(粗化処理及び膨潤処理)
本発明に係るエポキシ樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
【0112】
本発明に係るエポキシ樹脂材料を予備硬化させることにより得られた予備硬化物の表面に微細な凹凸を形成するために、予備硬化物は粗化処理されることが好ましい。粗化処理の前に、予備硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、予備硬化物は、必ずしも膨潤処理されなくてもよい。
【0113】
上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、予備硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30〜85℃で1〜30分間、予備硬化物を処理することにより行なわれる。上記膨潤処理の温度は50〜85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との粗化接着強度が低くなる傾向がある。
【0114】
上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。
【0115】
上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。
【0116】
上記粗化処理の方法は特に限定されない。上記粗化処理の方法として、例えば、30〜90g/L過マンガン酸又は過マンガン酸塩溶液及び30〜90g/L水酸化ナトリウム溶液を用いて、処理温度30〜85℃及び1〜30分間の条件で、1回又は2回、予備硬化物を処理する方法が好適である。上記粗化処理の温度は50〜85℃の範囲内であることが好ましい。
【0117】
デスミア処理又は粗化処理された硬化物の表面の算術平均粗さRaが、50nm以上、350nm以下であることが好ましい。この場合には、硬化物と金属層又は配線との接着強度を高くすることができ、更に硬化物層の表面により一層微細な配線を形成することができる。
【0118】
(デスミア処理)
また、本発明に係るエポキシ樹脂材料を予備硬化させることにより得られた予備硬化物又は硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60〜80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
【0119】
上記スミアを除去するために、硬化物層の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。
【0120】
上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。
【0121】
上記デスミア処理の方法は特に限定されない。上記デスミア処理の方法として、例えば、30〜90g/L過マンガン酸又は過マンガン酸塩溶液及び30〜90g/L水酸化ナトリウム溶液を用いて、処理温度30〜85℃及び1〜30分間の条件で、1回又は2回、予備硬化物又は硬化物を処理する方法が好適である。上記デスミア処理の温度は50〜85℃の範囲内であることが好ましい。
【0122】
本発明に係るエポキシ樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さを十分に小さくすることができる。
【0123】
以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
【0124】
(エポキシ樹脂)
ビスフェノールS型エポキシ樹脂(DIC社製「EXA−1517」、重量平均分子量1000以下)
ジシクロペンタジエン骨格含有エポキシ樹脂(日本化薬社製「XD−1000」、重量平均分子量1000以下)
ビスフェノールF型エポキシ樹脂(DIC社製「830S」、エポキシ当量168、重量平均分子量500以下)
【0125】
(硬化剤)
アミノトリアジン骨格クレゾールノボラック硬化剤含有液(DIC社製「LA3018−50P」、重量平均分子量1000以下、固形分50重量%とプロピレングリコールモノメチルエーテル含有溶剤50重量%とを含む)
【0126】
(硬化促進剤)
イミダゾール化合物(2−フェニル−4−メチルイミダゾール、四国化成工業社製「2P4MZ」)
【0127】
(フェノキシ樹脂)
イミド骨格含有フェノキシ樹脂含有液(三菱化学社製「YL7600DMAcH25」、固形分25重量%とジメチルアセトアミド37.5重量%とシクロヘキサノン37.5重量%とを含む)
【0128】
(無機フィラー)
シリカ含有スラリー(アドマテックス社製「SC2050HNF」、平均粒子径0.5μmの溶融シリカを含む、固形分70重量%とシクロヘキサノン30重量%とを含む)
【0129】
(実施例1)
上記ビスフェノールSエポキシ樹脂(DIC社製「EXA−1517」)50重量部、ジシクロペンタジエン骨格含有エポキシ樹脂(日本化薬社製「XD−1000」)25重量部、アミノトリアジン骨格クレゾールノボラック硬化剤含有液(DIC社製「LA3018−50P」)を固形分で15重量部(溶剤を含めて30重量部)、イミダゾール化合物(四国化成工業社製「2P4MZ」)0.2重量部、イミド骨格含有フェノキシ樹脂含有液(三菱化学社製「YL7600DMAcH25」)を固形分で10重量部(溶剤を含めて40重量部)、シリカ含有スラリーを固形分で344重量部(溶剤を含めて492重量部)を混合し、均一な液となるまで常温で攪拌し、樹脂組成物ワニスを得た。
【0130】
離型処理された透明なポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET5011 550」、厚み50μm)を用意した。このPETフィルム上にアプリケーターを用いて、乾燥後の厚みが50μmとなるように、得られた樹脂組成物ワニスを塗工した。次に、100℃のギアオーブン内で2分間乾燥して、縦200mm×横200mm×厚み50μmの樹脂シートの未硬化物(Bステージフィルム)とポリエチレンテレフタレートフィルムとの積層フィルムを作製した。次に、積層フィルムからポリエチレンテレフタレートフィルムを剥がし、樹脂シートの未硬化物を180℃のギアオーブン内で80分間加熱して、樹脂シートの一次硬化物を作製した。
【0131】
(実施例2及び比較例1〜4)
使用した材料の種類及び配合量(固形分重量部)を下記の表1に示すように変更したこと以外は実施例1と同様にして、積層フィルム及び樹脂シートの一次硬化物を作製した。
【0132】
(評価)
(1)平均線膨張率
得られた樹脂シートの一次硬化物を、190℃で3時間加熱し、更に硬化させ、硬化物Aを得た。得られた硬化物Aを、3mm×25mmの大きさに裁断した。線膨張率計(セイコーインスツルメンツ社製「TMA/SS120C」)を用いて、引張り荷重3.3×10−2N、昇温速度5℃/分の条件で、裁断された硬化物Aのガラス転移温度以下での平均線膨張率(α1)を測定した。
【0133】
(2)エポキシ樹脂材料の最低溶融粘度
Rheometer装置(TAインスツルメント社製「AR−2000」)を用いて、歪み21.6%及び周波数1Hzの条件で、得られた樹脂シートの未硬化物(Bステージフィルム)の50〜150℃の温度領域での粘度を測定し、粘度が最も低くなる値を最低溶融粘度とした。
【0134】
(3)ラミネート性(埋め込み性)
銅張り積層板(厚さ150μmのガラスエポキシ基板と厚さ25μmの銅箔との積層体)を用意した。銅箔をエッチング処理し、L/Sが50μm/50μm及び長さが1cmである銅パターンを26本作製し、凹凸基板を得た。
【0135】
実施例及び比較例で得られた樹脂シートの未硬化物(厚さ50μm)を凹凸基板の凹凸表面に重ねて、名機製作所製真空加圧式ラミネーター機(型番MVLP−500)を用い、ラミネート圧0.4MPa及びラミネート温度90℃で20秒、更にプレス圧力0.8MPa及びプレス温度90℃で20秒の各条件で、ラミネート及びプレスした。このようにして、凹凸基板上に樹脂シートの未硬化物が積層されている積層体を得た。
【0136】
得られた積層体において、樹脂シートの未硬化物を180℃のギアオーブン内で80分間加熱して、硬化物Cを得た。
【0137】
[ラミネート性の評価]
硬化物Cを、各銅パターンの長手方向に直交する方向に切断し、硬化物Cの断面を露出させた。
【0138】
次に、各銅パターン間の銅パターンが形成されていない部分(凹部)に対応する硬化物C部分の状態を、光学顕微鏡を用いて観察した。銅パターンが形成されていない部分(凹部)に対応する硬化物C部分25箇所中、埋め込みができていない箇所の数T1を計測し、凹凸表面に対する硬化物Cの密着性(埋め込み性)を評価した。
【0139】
さらに、光学顕微鏡を用いて、銅パターン(凸部)に対応する硬化物C部分26箇所の各厚みを測定した。
【0140】
ラミネート性を下記の判定基準で判定した。
【0141】
[ラミネート性の判定基準]
○○:埋め込みができていない箇所の数T1が0かつ各パターン26箇所全てのパターンにおいて最小厚みが42μm以上
○:埋め込みができていない箇所の数T1が0かつ各パターン26箇所全てのパターンにおいて最小厚みが35μm以上42μm未満
×:埋め込みができていない箇所の数T1が1以上又は各パターン26箇所全てのパターンにおいて最小厚みが35μm未満
【0142】
なお、硬化物Cの埋め込み性及び厚みは、ラミネート後のエポキシ樹脂材料の埋め込み性及び厚みと相関がある。
【0143】
結果を下記の表1に示す。下記の表1において、「全固形分A」は、上記エポキシ樹脂材料に含まれている全固形分を示し、「全固形分B」は、上記エポキシ樹脂材料に含まれている無機フィラーを除く全固形分を示す。
【0144】
【表1】

【符号の説明】
【0145】
11…多層基板
12…回路基板
12a…上面
13〜16…硬化物層
17…金属層(配線)

【特許請求の範囲】
【請求項1】
ビスフェノールS型エポキシ樹脂と、アミノトリアジン骨格を有する硬化剤と、無機フィラーと、フェノキシ樹脂とを含み、
エポキシ樹脂材料に含まれている前記無機フィラーを除く全固形分100重量%中、前記ビスフェノールS型エポキシ樹脂の含有量が40重量%以上、60重量%以下であり、かつ前記アミノトリアジン骨格を有する硬化剤の含有量が10重量%以上、20重量%以下である、エポキシ樹脂材料。
【請求項2】
エポキシ樹脂材料に含まれている全固形分100重量%中、前記無機フィラーの含有量が50重量%以上、85重量%以下である、請求項1に記載のエポキシ樹脂材料。
【請求項3】
前記ビスフェノールS型エポキシ樹脂及び前記アミノトリアジン骨格を有する硬化剤の重量平均分子量がそれぞれ1000以下である、請求項1又は2に記載のエポキシ樹脂材料。
【請求項4】
硬化促進剤をさらに含む、請求項1〜3のいずれか1項に記載のエポキシ樹脂材料。
【請求項5】
フィルム状に成形されたBステージフィルムである、請求項1〜4のいずれか1項に記載のエポキシ樹脂材料。
【請求項6】
回路基板と、
前記回路基板の表面上に配置された硬化物層とを備え、
前記硬化物層が、請求項1〜5のいずれか1項に記載のエポキシ樹脂材料を硬化させることにより形成されている、多層基板。

【図1】
image rotate


【公開番号】特開2013−23667(P2013−23667A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−162393(P2011−162393)
【出願日】平成23年7月25日(2011.7.25)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【Fターム(参考)】