Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
カルシウム受容体活性化剤
説明

カルシウム受容体活性化剤

【課題】生体への安全性が高く、高活性なカルシウム受容体活性化剤を提供すること。
【解決手段】γ−Glu−Val−Gly、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Cys(SNO)−Glyおよびγ−Glu−Cys(S−Me)−Glyから選択される1種または2種以上を含有してなるカルシウム受容体活性化剤。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はD−Cys、ペプチドを含有するカルシウム受容体活性化剤及び該カルシウム受容体活性化剤を有効成分として含有する医薬組成物、並びに該カルシウム受容体活性化剤を用いた、カルシウム受容体活性化阻害物質のスクリーニング方法に関する。
【背景技術】
【0002】
カルシウム受容体は、カルシウムセンシング受容体(Calcium Sensing Receptor:CaSR)とも呼ばれ、7回膜貫通型受容体(G蛋白質結合型受容体;GPCR)のクラスCに分類されるアミノ酸1078個からなる受容体である。このカルシウム受容体は、1993年に遺伝子のクローニングが報告され(非特許文献1)、カルシウム等で活性化されると細胞内カルシウム上昇等を介して様々な細胞応答を引き起こすことが知られている。ヒトカルシウム受容体の遺伝子配列はGenBank Accession No NM_000388として登録されており、動物間でよく保存されている。
【0003】
上記カルシウム受容体は、生体内機能に促進的にはたらく場合もあれば、抑制的にはたらく場合もある。このため、現在、神経疾患、肝臓疾患、循環器疾患、消化器疾患、その他の疾患において、カルシウム受容体に対する活性化剤作用の治療薬と抑制剤作用の治療薬が病態に応じて使い分けられている。例えば、カルシウム受容体は、副甲状腺において血中カルシウム濃度の上昇を感知し、副甲状腺ホルモン(PTH)の分泌を抑制し、血中カルシウム濃度を是正する働きを有する。従って、カルシウム受容体活性化剤は血中カルシウム濃度を低下させる効果が期待される。実際に、カルシウム受容体活性化剤を血液透析患者の続発性副甲状腺機能亢進症の治療に用いたとき、カルシウム濃度やリン濃度は上昇させずにPTH濃度を低下させることが明らかになっている。
【0004】
カルシウム受容体の機能解析は、主としてカルシウムホメオスタシスに関して行われてきたため、今日までの応用研究もカルシウム調節が関わる骨代謝性疾患が中心であった。しかし、遺伝子発現解析などの結果から、カルシウム受容体が副甲状腺や腎臓以外の生体内に広く分布していることが明らかになり(非特許文献2、3)、様々な生体機能、疾患病因に関わっている可能性が提起された。例えば、カルシウム受容体が、肝臓、心臓、肺、消化管、リンパ球、膵臓、の機能に関わることが推測されている。本発明者もラットの各組織から抽出したRNAを材料とした、RT−PCRによる解析から、生体内において広範囲の組織に発現していることを確認した。上記観点から、現在、カルシウム受容体の活性化剤や阻害剤の応用価値が急速に高まっている。
【0005】
また、カルシウム受容体活性化剤としてはカルシウムの他に、ガドリニウムなどのカチオン、ポリアルギニンなどの塩基性ペプチド、スペルミンなどのポリアミン、フェニルアラニンなどのアミノ酸、などが報告されている(非特許文献4)。
これまでカルシウム受容体活性化剤として、上記の如く多くの特異的活性化剤が開発されているが、生体内に存在する化合物は少なく、また、生体内に存在する化合物である場合はその活性が極めて低かった。そのため、これらの活性化剤を含有してなる各種疾患に対する治療薬は、副作用、透過性及び活性の点で大きな問題があった。例えば、カルシウム受容体にアミノ酸が作用することが知られているが、活性が極めて弱いので活性化剤として具体的な応用は困難と考えられていた。また、上述の如くポリアルギニンのような巨大分子が活性化剤として報告されているが、不定構造である多荷カチオンとしての作用に
よるものと推測されている。すなわち、特定の構造を持ったペプチドがカルシウム受容体活性化剤として有用であることは知られていない。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】Nature. 1993 Dec 9;366(6455):575-80.
【非特許文献2】J Endocrinol. 2000 May;165(2):173-7.
【非特許文献3】Eur J Pharmacol. 2002 Jul 5;447(2-3):271-8.
【非特許文献4】Cell Calcium. 2004 Mar;35(3):209-16.
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、生体への安全性が高く、高活性なカルシウム受容体活性化剤を提供することを課題とする。また、本発明は、カルシウム受容体の活性化阻害物質をスクリーニングする方法を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明者は、カルシウム受容体の活性化剤を探索した結果、グルタチオンを含む低分子ペプチドにカルシウム受容体を活性化する働きがあることを見出した。これらの知見に基づいて本発明を完成させた。すなわち、本発明は以下のとおりである。
【0009】
(1)γ−Glu−Val−Gly、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Cys(SNO)−Glyおよびγ−Glu−Cys(S−Me)−Gly(以下、本発明に用いられるペプチド及びアミノ酸ともいう)から選択される1種または2種以上を含有してなるカルシウム受容体活性化剤。
(2)カルシウム受容体活性化作用を有する他の化合物を、更に1種または2種以上含有するものである、(1)に記載のカルシウム受容体活性化剤。
(3)前記カルシウム受容体活性化作用を有する他の化合物の少なくとも1種はカチオンである、(2)に記載のカルシウム受容体活性化剤。
(4) (1)〜(3)のいずれか一に記載のカルシウム受容体活性化剤を有効成分として含有する、医薬組成物。
(5) (1)〜(3)のいずれか一に記載のカルシウム受容体活性化剤を用いることを特徴とする、カルシウム受容体の活性化阻害物質をスクリーニングする方法。
(6) 本発明に用いられるペプチド及びアミノ酸から選択される物質のカルシウム受容体活性化剤としての使用。
(7) 本発明に用いられるペプチド及びアミノ酸から選択される物質をカルシウム受容
体と接触させることを含む、カルシウム受容体の活性化方法。
【発明の効果】
【0010】
本発明により、生体への安全性が高く、高活性なカルシウム受容体活性化剤が提供される。また、本発明により、カルシウム受容体の活性化阻害物質をスクリーニングする方法が提供される。
【図面の簡単な説明】
【0011】
【図1】カルシウム受容体に対するカルシウムの作用を示す図。 アフリカツメガエル卵母細胞にヒトのカルシウム受容体cRNAをマイクロインジェクションした。任意の濃度の塩化カルシウム溶液を添加した時に、流れる細胞内応答電流値を記録した。細胞内電流の最大値を応答電流値とした。コントロールとして、蒸留水をマイクロインジェクションした卵母細胞では応答しないことを確認した。
【図2】カルシウム受容体に対するL型アミノ酸の作用を示す図。 アフリカツメガエル卵母細胞にヒトのカルシウム受容体cRNAをマイクロインジェクションした。10mMのL型アミノ酸溶液を添加した時に、流れる細胞内応答電流値を記録した。細胞内電流の最大値を応答電流値とした。コントロールとして、蒸留水をマイクロインジェクションした卵母細胞では応答しないことを確認した。
【図3】カルシウム受容体に対するD型アミノ酸の作用を示す図。 アフリカツメガエル卵母細胞にヒトのカルシウム受容体cRNAをマイクロインジェクションした。10mMのD型アミノ酸溶液を添加した時に、流れる細胞内応答電流値を記録した。細胞内電流の最大値を応答電流値とした。コントロールとして、蒸留水をマイクロインジェクションした卵母細胞では応答しないことを確認した。
【図4】カルシウム受容体に対するペプチドの作用を示す図。アフリカツメガエル卵母細胞にヒトのカルシウム受容体cRNAをマイクロインジェクションした。任意の濃度のペプチド溶液を添加した時に、流れる細胞内応答電流値を記録した。細胞内電流の最大値を応答電流値とした。コントロールとして、蒸留水をマイクロインジェクションした卵母細胞では応答しないことを確認した。
【発明を実施するための形態】
【0012】
以下、本発明を詳細に説明する。
本発明のカルシウム受容体活性化剤は、γ−Glu−Cys−Gly、γ−Glu−Cys(SNO)−Gly、γ−Glu−Ala、γ−Glu−Gly、γ−Glu−Cys、γ−Glu−Met、γ−Glu−Thr、γ−Glu−Val、γ−Glu−Orn、Asp−Gly、Cys−Gly、Cys−Met、Glu−Cys、Gly−Cys、Leu−Asp、D−Cys、γ−Glu−Met(O)、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Val−NH2、γ−Glu−Val−ol、γ−Glu−Ser、γ−Glu−Tau、γ−Glu−Cys(S−Me)(O)、γ−Glu−Leu、γ−Glu−Ile、γ−Glu−t−Leu、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−Me)、γ−Glu−Abu−Gly、γ−Glu−Cys(S−Me)−Gly、およびγ−Glu−Val−Glyから選ばれる1種または2種以上を含有してなる。尚、本明細書中において各アミノ酸及び各ペプチドを構成するアミノ酸は、特に断わらない限りいずれもL−体である。
本明細書においてアミノ基残基の略号は以下のアミノ酸を意味する。
(1)Gly:グリシン
(2)Ala:アラニン
(3)Val:バリン
(4)Leu:ロイシン
(5)Ile:イソロイシン
(6)Met:メチオニン
(7)Phe:フェニルアラニン
(8)Tyr:チロシン
(9)Trp:トリプトファン
(10)His:ヒスチジン
(11)Lys:リジン
(12)Arg:アルギニン
(13)Ser:セリン
(14)Thr:トレオニン
(15)Asp:アスパラギン酸
(16)Glu:グルタミン酸
(17)Asn:アスパラギン
(18)Gln:グルタミン
(19)Cys:システイン
(20)Pro:プロリン
(21)Orn:オルニチン
(22)Sar:サルコシン
(23)Cit:シトルリン
(24)N−Val:ノルバリン
(25)N−Leu:ノルロイシン
(26)Abu:α−アミノ酪酸
(27)Tau:タウリン
(28)Hyp:ヒドロキシプロリン
(29)t−Leu:tert−Leucine
(30)Cys(S−Me):、S−メチルシステイン
(31)Cys(S−allyl):S−アリルシステイン
(32)Val−NH2:バリンアミド
(33)Val−ol:バリノール(2−アミノ−3−メチル−1−ブタノール)
尚、上記γ−Glu−Cys(SNO)−Glyは下記の構造式を有するものであり、上記γ−Glu−Met(O)およびγ−Glu−Cys(S−Me)(O)式中の(O)はスルフォキシド構造であることを意味する。γ−Gluの(γ)とは、グルタミン酸のγ位のカルボキシ基を介して他のアミノ酸が結合していることを意味する。
【0013】
【化1】

【0014】
本明細書中において「カルシウム受容体」とは、カルシウムセンシング受容体もしくはCalcium Sensing Receptor(CaSR)と呼ばれる、7回膜貫通型受容体のクラスCに属するものを指す。また、本明細書中において「カルシウム受容体活性化剤」とは、上記カルシウム受容体に作用し、カルシウム受容体を活性化し、カルシウム受容体を発現している細胞の機能を調節するものをいう。また、本明細書中において「カルシウム受容体を活性化する」とは、カルシウム受容体にリガンド(活性化剤)が結合し、グアニンヌクレオチド結合タンパク質を活性化して、シグナルを伝達することを意味する。
【0015】
γ−Glu−Cys−Gly、γ−Glu−Cys(SNO)−Gly、γ−Glu−Ala、γ−Glu−Gly、γ−Glu−Cys、γ−Glu−Met、γ−Glu−Thr、γ−Glu−Val、γ−Glu−Orn、Asp−Gly、Cys−Gly、Cys−Met、Glu−Cys、Gly−Cys、Leu−Asp、D−Cys、γ−Glu−Met(O)、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Val−NH2、γ−Glu−Val−ol、γ−Glu−Ser、γ−Glu−Tau、γ−Glu−Cys(S−Me)(O)、γ−Glu−Leu、γ−Glu−Ile、γ−Glu−t−Leu、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−Me)、γ−Glu−Abu−Gly、γ−Glu−Cys(S−Me)−Gly、およびγ−Glu−Val−Glyがカルシウム受容体を活性化することが本発明者らによって示された。したがって、γ−Glu−Cys−Gly、γ−Glu−Cys(SNO)−Gly、γ−Glu−Ala、γ−Glu−Gly、γ−Glu−Cys、γ−Glu−Met、γ−Glu−Thr、γ−Glu−Val、γ−Glu−Orn、Asp−Gly、Cys−Gly、Cys−Met、Glu−Cys、Gly−Cys、Leu−Asp、D−Cys、γ−Glu−Met(O)、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Val−NH2、γ−Glu−Val−ol、γ−Glu−Ser、γ−Glu−Tau、γ−Glu−Cys(S−Me)(O)、γ−Glu−Leu、γ−Glu−Ile、γ−Glu−t−Leu、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−Me)、γ−Glu−Abu−Gly、γ−Glu−Cys(S−Me)−Gly、およびγ−Glu−Val−Gly(以下、本発明に用いられるペプチド又はアミノ酸ともいう)はカルシウム受容体の活性化剤として用いることができる。本発明において、本発明に用いられるペプチド又はアミノ酸は単独で用いてもよく、また任意の2種又は3種以上を混合して用いることもできる。
上記ペプチド及びアミノ酸は、市販されているものであれば、市販品を用いることが可能である。また、ペプチドは、(1)化学的に合成する方法、又は(2)酵素的な反応により合成する方法等の公知手法を適宜用いることによって取得することができる。本発明において用いられるペプチドは、含まれるアミノ酸の残基数が2〜3残基と比較的短いので、化学的に合成する方法が簡便である。化学的に合成する場合は、該オリゴペプチドをペプチド合成機を用いて合成あるいは半合成することにより行うことができる。化学的に合成する方法としては、例えばペプチド固相合成法が挙げられる。そのようにして合成したペプチドは通常の手段、例えばイオン交換クロマトグラフィー、逆相高速液体クロマトグラフィー、アフィニティークロマトグラフィー等によって精製することができる。このようなペプチド固相合成法、およびそれに続くペプチド精製はこの技術分野においてよく知られたものである。
【0016】
また、本発明において用いられるペプチドを、酵素的な反応により生産することも出来る。例えば、国際公開パンフレットWO 2004/011653号に記載の方法を用いることが出来る。即ち、一方のアミノ酸又はジペプチドのカルボキシル末端をエステル化又はアミド化したアミノ酸又はジペプチドと、アミノ基がフリーの状態であるアミノ酸(例えばカルボキシル基が保護されたアミノ酸)とを、ペプチド生成酵素の存在下において反応せしめ、生成したジペプチド又はトリペプチドを精製することによっても生産することもできる。ペプチド生成酵素としては、ペプチドを生成する能力を有する微生物の培養物、該培養物より分離した微生物菌体、又は、該微生物の菌体処理物、又は、該微生物に由来するペプチド生成酵素が挙げられる。
【0017】
本発明において用いられるペプチド及びアミノ酸は塩の形態をも包含する。本発明のペプチド及びアミノ酸が塩の形態を成し得る場合、その塩は薬理学的に許容されるものであればよく、例えば、式中のカルボキシル基等の酸性基に対しては、アンモニウム塩、ナト
リウム、カリウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩、アルミニウム塩、亜鉛塩、トリエチルアミン、エタノールアミン、モルホリン、ピロリジン、ピペリジン、ピペラジン、ジシクロへキシルアミン等の有機アミンとの塩、アルギニン、リジン等の塩基性アミノ酸との塩を挙げることができる。式中に塩基性基が存在する場合の塩基性基に対しては、塩酸、硫酸、リン酸、硝酸、臭化水素酸などの無機酸との塩、酢酸、クエン酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸、タンニン酸、酪酸、ヒベンズ酸、パモ酸、エナント酸、デカン酸、テオクル酸、サリチル酸、乳酸、シュウ酸、マンデル酸、リンゴ酸等の有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等の有機スルホン酸との塩を挙げることができる。
【0018】
上記カルシウム受容体としては、GenBank Accession No NM_000388で登録されているヒトカルシウム受容体遺伝子によってコードされるヒトカルシウム受容体が好ましく例示できる。尚、カルシウム受容体は、上記配列の遺伝子によってコードされるタンパク質に制限されず、カルシウム受容体機能を有するタンパク質をコードする限りにおいて、上記配列と60%以上、好ましくは80%以上、より好ましくは90%以上の相同性を有する遺伝子によってコードされるタンパク質であってもよい。GPRC6A受容体や5.24受容体もまたカルシウム受容体のサブタイプとして知られており、本発明において利用可能である。なお、カルシウム受容体機能はこれらの遺伝子を細胞に発現させ、カルシウム添加時の電流の変化や細胞内カルシウムイオン濃度の変化を測定することによって調べることができる。
【0019】
本発明のカルシウム受容体活性化剤は、上記ヒトのカルシウム受容体のみならず、各種カルシウム受容体、例えば、マウス、ラット、イヌなど含めた動物由来のカルシウム受容体を活性化するものであってもよい。
【0020】
本発明に用いられるペプチド又はアミノ酸が、カルシウム受容体を活性化することは、カルシウム受容体又はその断片を発現した生きた細胞、カルシウム受容体又はその断片を発現した細胞膜、カルシウム受容体又はその断片のタンパク質を含むインビトロの系などを利用して確認することが出来る。
以下に生きた細胞を用いた一例を示すが、この一例に限定されるものではない。
カルシウム受容体は、アフリカツメガエル卵母細胞やハムスター卵巣細胞やヒト胎児腎臓細胞等の培養細胞に発現させる。これは外来遺伝子を保持するプラスミドにカルシウム受容体遺伝子をクローニングしたものを、プラスミドの状態もしくはそれを鋳型にしたcRNAを導入することで可能となる。反応の検出には電気生理学的手法や細胞内カルシウム上昇の蛍光指示試薬を用いることができる。
カルシウム受容体の発現は、初めにカルシウムもしくは特異的活性化剤による応答で確認する。5mM程度の濃度のカルシウムに対して、細胞内電流が見られた卵母細胞もしくは蛍光指示試薬の蛍光が見られた培養細胞を使用する。カルシウムの濃度を変えて濃度依存性を測定する。次に、ペプチドを1μM〜1mM程度に調製し、卵母細胞もしくは培養細
胞に添加することで、ペプチド等がカルシウム受容体に対して活性化剤として作用するかを測定する。
【0021】
また、本発明のカルシウム受容体活性化剤は、上記γ−Glu−Cys−Gly、γ−Glu−Cys(SNO)−Gly、γ−Glu−Ala、γ−Glu−Gly、γ−Glu−Cys、γ−Glu−Met、γ−Glu−Thr、γ−Glu−Val、γ−Glu−Orn、Asp−Gly、Cys−Gly、Cys−Met、Glu−Cys、Gly−Cys、Leu−Asp、D−Cys、γ−Glu−Met(O)、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Val−NH2、γ−Glu−Val−ol、γ
−Glu−Ser、γ−Glu−Tau、γ−Glu−Cys(S−Me)(O)、γ−Glu−Leu、γ−Glu−Ile、γ−Glu−t−Leu、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−Me)、γ−Glu−Abu−Gly、γ−Glu−Cys(S−Me)−Gly、およびγ−Glu−Val−Glyから選ばれる1種または2種以上に加えて、更に、カルシウム受容体活性化作用を有する化合物を1種または2種以上含むものであってもよい。
【0022】
上記カルシウム受容体活性化作用を有する既存の化合物としては、カルシウム及びカドリニウムなどのカチオン、ポリアルギニン、ポリリジンなどの塩基性ペプチド、プトレッシン、スペルミン、スペルミジンなどのポリアミン、プロタミンなどのタンパク質、フェニルアラニンなどのアミノ酸、シナカルセットなどが挙げられるが、これらに限定されない。本発明において、上記既存のカルシウム受容体活性化作用を有する化合物は単独で加えてもよく、また任意の2種又は3種以上を混合して加えることも可能である。上記既存のカルシウム受容体活性化作用を有する化合物のうち、カルシウム及びガドリニウムなどのカチオンが好ましく、カルシウムがより好ましい。すなわち、更に加えられる既存のカルシウム受容体活性化剤の少なくとも1種はカチオンであることが好ましい。
【0023】
上記既存のカルシウム受容体活性化作用を有する化合物が共存することによって、カルシウム受容体のより強い活性化が見られる。本発明のカルシウム受容体活性化剤における本発明に用いられるペプチド及びアミノ酸の合計と既存のカルシウム受容体活性化作用を有する化合物の合計の割合はカルシウム受容体のより強い活性化が可能である限り特に制限されないが、例えば、既存のカルシウム受容体活性化作用を有する化合物の合計と本発明に用いられるペプチド及びアミノ酸の合計の質量比が1:100〜100:1とすることが好ましい。
【0024】
カルシウム受容体は様々な組織で発現しており、様々な生理作用を担っている。また、カルシウム受容体の活性化剤が内科系疾患の治療薬として既に開発されている(例えば、高カルシウム血症の治療薬:Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4040-5.)。
【0025】
カルシウム調節以外でも、脂肪細胞では、成熟脂肪細胞、未分化脂肪細胞ともにカルシウム受容体が発現しており、分化抑制に関わっていること(Endocrinology. 2005 May;146(5):2176-9.、Exp Cell Res. 2004 Dec 10;301(2):280-92.)、骨髄細胞では赤芽球、巨核球、血小板で発現しており造血調節に関わっていること(J Bone Miner Res. 1997 Dec;12(12):1959-70.)、胃壁細胞に発現しており、胃酸分泌に関わっていること(J Clin Endocrinol Metab. 2005 Mar;90(3):1489-94.)が報告されている。上記以外にも、十二指腸、空腸、回腸(Am J Physiol Gastrointest Liver Physiol. 2002 Jul;283(1):G240-50.)、大腸(Am J Physiol Gastrointest Liver Physiol. 2002 Jul;283(1):G240-50.)、表皮角化細胞(Cell Calcium. 2004 Mar;35(3):265-73.)、肝臓細胞(J Biol Chem. 2001 Feb 9;276(6):4070-9.)、水晶体上皮(Biochem Biophys Res Commun. 1997 Apr 28;233(3):801-5.)、膵臓ランゲルハンス氏島β細胞(Endocrine. 1999 Dec;11(3):293-300.)、肺(J Clin Endocrinol Metab. 1998 Feb;83(2):703-7.)、単球性細胞(J Clin Invest. 2000 May;105(9):1299-305.)、骨芽細胞(Endocrinology. 2004 Jul;145(7):3451-62.、Am J Physiol Endocrinol Metab. 2005 Mar;288(3):E608-16. Epub 2004 Nov 16.)などに発現しており、これらの組織の機能調節に関わっていることが示唆されている。
【0026】
したがって、本発明のカルシウム受容体活性化剤はカルシウム受容体が関与する疾患を予防又は治療するための医薬組成物の有効成分として用いることができる。カルシウム受容体が関与する疾患としては、内科系疾患、外科系疾患、小児科系疾患、整形外科系疾患、形成外科系疾患、脳神経外科系疾患、皮膚科系疾患、泌尿器科系疾患、産婦人科系疾患、眼科系疾患、耳鼻咽喉科系疾患、歯科口腔外科系疾患などが挙げられる。
【0027】
本発明のカルシウム受容体活性化剤を有効成分として含有する医薬組成物の適用方法としては、特に制限されず、経口投与あるいは注射等を利用した浸襲的投与あるいは座薬投与あるいは経皮投与を採用することが出来る。有効成分を経口、注射などの投与方法に適した固体または液体の医薬用無毒性担体と混合して、慣用の医薬製剤の形態で投与することが出来る。このような製剤としては例えば、錠剤、顆粒剤、散剤、カプセル剤などの固形剤の形態、溶液剤、懸濁剤、乳剤などの液剤の形態、凍結乾燥剤などの形態が挙げられる。これらの製剤は製剤上の常套手段により調製することができる。
【0028】
上記医薬用無毒性担体としては、例えば、グルコース、乳糖、ショ糖、澱粉、マンニトール、デキストリン、脂肪酸グリセリド、ポリエチレングリコール、ヒドロキシエチルデンプン、エチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ゼラチン、アルブミン、アミノ酸、水、生理食塩水などが挙げられる。また、必要に応じて、安定化剤、湿潤剤、乳化剤、結合剤、等張化剤などの慣用の添加剤を適宜添加することもできる。
【0029】
本発明の医薬組成物の投与量は治療や予防に有効な量であればよく、患者の年齢、性別、体重、症状などに応じて適宜調節されるが、例えば、経口投与の場合、本発明に用いられるペプチド及びアミノ酸の合計量として、1回の投与において1kg体重あたり、0.01g〜10gが好ましく、1kg体重あたり、0.1g〜1gがより好ましい。投与回数は特に制限されず、1日あたり1回〜数回投与することができる。
【0030】
本発明のカルシウム受容体活性化剤はまた、カルシウム受容体が関与する疾患の治療や予防に効果を有する飲食品として用いることもできる。例えば、容器や包装に上記のようなカルシウム受容体が関与する疾患に対する治療効果や予防効果がある旨を表示した飲食品とすることができる。
【0031】
本発明のカルシウム受容体活性化剤は、カルシウム受容体の活性化阻害物質をスクリーニングすることができる。以下にスクリーニング方法を例示するが、これらに限定されるものではない。
【0032】
カルシウム受容体を発現させたアフリカツメガエル卵母細胞や哺乳動物由来培養細胞に、本発明に用いられるペプチド又はアミノ酸及び試験物質を添加して細胞内の電流値や細胞内カルシウム濃度を測定し、本発明に用いられるペプチド又はアミノ酸による細胞内の電流値やカルシウム濃度の上昇を阻害する化合物を選択することにより、カルシウム受容体
の活性化阻害物質をスクリーニングすることができる。
スクリーニングに用いる上記試験物質には、低分子化合物、糖類、ペプチド、タンパク質などを用いることができる。
以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれら実施例に限定されるものではない。
【実施例1】
【0033】
<遺伝子(cRNA)の調製>
カルシウム受容体の遺伝子の調製は以下のように行った。NCBIに登録されたDNA
配列(カルシウム受容体:NM_000388)を元に、PCRに使う合成オリゴDNA(フォワードプライマー(N)、及びリバースプライマー(C))を設計した(表1)(配列番号1及び2)。
【0034】
【表1】

【0035】
ヒト腎臓由来のcDNA(Clontech社製)を材料として、表1(hCASR_N:配列番号1及びhCASR_C:配列番号2)に示すプライマーを合成し、Pfu ultra DNA Polymerase(Stratagene社製)を用い、以下の条件でPCRを実施した。94℃で3分の後、94℃で30秒、55℃で30秒、72℃で2分を35回繰り返した後、72℃で7分の反応をした。PCRによって増幅がなされたかをアガロース電気泳動法を行い、DNA染色試薬で染色した後、紫外線照射によって検出した。同時に電気泳動したサイズ既知のDNAマーカーと比較することで、PCR産物の鎖長を確認した。プラスミドベクターpBR322を制限酵素EcoRV(Takara社製)によって切断した。その切断部位にPCRによって増幅された各遺伝子断片をLigation Kit(Promega社製)を用いて連結した。この反応溶液でエシェリヒア・コリDH5α株を形質転換し、PCR増幅産物がクローニングされたプラスミドを保持する形質転換体を選抜した。PCR増幅産物をDNA塩基配列解析によって確認した。この組換えプラスミドを鋳型とし、cRNA作製キット(Ambion社)を用いてカルシウム受容体遺伝子のcRNAを作製した。
【実施例2】
【0036】
<各種試料の調製>
L型アミノ酸試料として、各々特級グレードのアラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、オルニチン、タウリン(上記、味の素株式会社)、ヒドロキシプロリン(ナカライテスク株式会社)の23種類を用いた。D−CysおよびD−Trp(ナカライテスク株式会社)並びに塩化カルシウムは特級グレードのものを用いた。また、ペプチド試料として、γ−Glu−Cys−Gly(シグマアルドリッチジャパン株式会社)、γ−Glu−Cys(SNO)−Gly(株式会社同仁化学研究所)、γ−Glu−Ala(Bachem Feinchemikalien AG)、γ−Glu−Gly(Bachem Feinchemikalien AG)、γ−Glu−Cys(シグマアルドリッチジャパン株式会社)、γ−Glu−Met(Bachem Feinchemikalien AG)、γ−Glu−Abu−Gly(Abu:α−アミノ酪酸、Bachem Feinchemikalien AG)、γ−Glu−Thr(国産化学株式会社)、γ−Glu−Val(国産化学株式会社)、γ−Glu−Leu(受託合成品)、γ−Glu−Ile(受託合成品)、γ−Glu−Orn(国産化学株式会社)、Asp−Gly(受託合成品)、Cys−Gly(受託合成品)、Cys−Met(受託合成品)、Glu−Cys(受託合成品)、Gly−Cys(受託合成品)、Leu−Asp(受託合成品)、γ−Glu−Val−Val(受託合成品)、γ−Glu−Val−Glu(受託合成品)、γ−Glu−Val−Lys(受託合成品)、γ−Glu−γ−Glu−Val(受託合成品)、γ−Glu−Gly−Gly(受託合成品)、γ−Glu−Val−Phe(受託合成品)、γ−Glu−Val−Ser(受託合成品)、γ−Glu−Val−Pro(受託合成品)、γ−Glu−Val−Arg(受託合成品)、γ−Glu−Val−Asp(受託合成品)、γ−Glu−Val−Met(受託合成品)、γ−Glu−Val−Thr(受託合成品)、γ−Glu−Val−His(受託合成品)、γ−Glu−Val−Asn(受託合成品)、γ−Glu−Val−Gln(受託合成品)、γ−Glu−Val−Cys(受託合成品)、γ−Glu−Val−Orn(受託合成品)、γ−Glu−Ser−Gly(受託合成品)を用いた。グルタミン、システインは用事調製し、他の試料は調製後、−20℃に保存した。ペプチドは純度90%以上のものを用いた。γ−Glu−Cysのみ純度80%以上のものを用いた。各試料を溶解した後、pHが酸性、アルカリ性のものについては、NaOH、HClを用いて中性前後に調整した。アミノ酸、ペプチドの溶解液、アフリカツメガエル卵母細胞の調製用の溶液、卵母細胞の培養用の溶液は、以下の組成のものを使用した。NaCl 96mM / KCl 2mM / MgCl2 1mM / CaCl2 1.8mM / Hepes 5mM / pH=7.2。
【実施例3】
【0037】
<γ−Glu−Val−Glyの合成>
Boc−Val−OH(8.69 g, 40.0 mmol)とGly−OBzl・HCl(8.07 g, 40.0 mmol)を塩化メチレン(100 ml)に溶解し、溶液を0℃に保った。トリエチルアミン(6.13 ml, 44.0 mmol)、HOBt(1−Hydroxybenzotriazole, 6.74 g, 44.0 mmol)及びWSC・HCl(1−Ethyl−3−(3−dimethylaminopropyl)carbodiimide Hydrochloride, 8.44 g, 44.0 mmol)を溶液に加え、室温で一夜撹拌した。反応液を減圧濃縮し、残渣を酢酸エチル(200 ml)に溶解した。溶液を水(50 ml)、5%クエン酸水溶液(50 ml x 2回)、飽和食塩水(50 ml)、5%炭酸水素ナトリウム水溶液(50 ml x 2回)、飽和食塩水(50 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、硫酸マグネシウムを濾過して除き、濾液を減圧濃縮した。残渣を酢酸エチル−n−ヘキサンから再結晶してBoc−Val−Gly−OBzl(13.2 g, 36.2 mmol)を白色結晶として得た。
Boc−Val−Gly−OBzl(5.47 g, 15.0 mmol)を4N−HCl/ジオキサン溶液(40 ml)に加え、室温で50分撹拌した。ジオキサンを減圧濃縮で除き、残渣にn−ヘキサン(30 ml)を加え減圧濃縮した。この操作を3回繰り返し、H−Val−Gly−OBzl・HClを定量的に得た。
上記H−Val−Gly−OBzl・HCl及びZ−Glu−OBzl(5.57 g, 15.0 mmol)を塩化メチレン(50 ml)に溶解し、溶液を0℃に保った。トリエチルアミン(2.30 ml, 16.5 mmol)、HOBt(1−Hydroxybenzotriazole, 2.53 g, 16.5 mmol)及びWSC・HCl(1−Ethyl−3−(3−dimethylaminopropyl)carbod
iimide Hydrochloride, 3.16 g, 16.5mmol)を溶液に加え、室温で二夜撹拌した。反応液を減圧濃縮し、残渣を加熱した酢酸エチル(1500 ml)に溶解した。溶液を水(200 ml)、5%クエン酸水溶液(200 ml x 2回)、飽和食塩水(150 ml)、5%炭酸水素ナトリウム水溶液(200 ml x 2回)、飽和食塩水(150 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、硫酸マグネシウムを濾過して除き、濾液を減圧濃縮した。析出した結晶を濾取、減圧乾燥してZ−Glu(Val−Gly−OBzl)−OBzl(6.51 g,10.5 mmol)を白色結晶として得た。
上記Z−Glu(Val−Gly−OBzl)−OBzl(6.20 g, 10.0
3 mmol)をエタノール(200 ml)に懸濁し、10%パラジウム炭素(1.50
g)を加え、水素雰囲気下に55℃で5時間還元反応を行った。この間、全量で100 mlの水を徐々に加えた。触媒を桐山ロートで濾過して除き、濾液を半分に減圧濃縮した。反応液を更にメンブランフィルターで濾過し、濾液を減圧濃縮した。残渣を少量の水に溶かした後にエタノールを加えて結晶を析出させ、結晶を濾過して集め減圧乾燥してγ−Glu−Val−Glyの白色粉末(2.85 g, 9.40 mmol)を得た。
ESI−MS:(M+H)+=304.1.
1H−NMR(400MHz, D2O)δ(ppm):0.87 (3H, d, J=6.8 Hz), 0.88 (3H, d, J=6.8 Hz), 1.99−2.09 (3H, m), 2.38−2.51 (2H, m), 3.72 (1H,t, J=6.35 Hz), 3.86 (1H, d, J=17.8 Hz),3.80 (1H, d, J=17.8 Hz), 4.07 (1H, d, J=6.8 Hz).
【実施例4】
【0038】
<γ−Glu−Cys(S−Me)−Glyの合成[Cys(S−Me):S−メチルシステイン]>
還元型グルタチオン(15.0 g, 48.8 mmol)を水(45 ml)に加え、窒素を吹き込みながら水酸化ナトリウム(4.52 g, 2.2当量, 107 mmol)を少しずつ加えた。ヨウ化メチル(4.56 ml, 1.5当量, 73 mmol)を加え、密栓して室温で2時間撹拌した。濃塩酸で反応液のpHを2〜3に調整し、エタノール(150 ml)を加え冷蔵庫に一夜保存した。油状物が分離したので、上澄みを除いた。残った油状物を水に溶かしエタノールを徐々に加えると、一部結晶を伴う油状物が析出したので再度上澄みを除いた。残渣を水(300 ml)に溶解し、イオン交換樹脂(Dowex 1−acetate, 400 ml)を充填したカラムに吸着させ、水洗した後に1N−酢酸水溶液で溶出した。溶出液を減圧濃縮し、水−エタノールから再沈殿させ、γ−Glu−Cys(S−Me)−Glyの白色粉末(5.08 g, 15.8 mmol)を得た。
FAB−MS:(M+H)+=322.
1H−NMR(400MHz, D2O)δ(ppm):2.14 (3H, s), 2.15−2.22 (2H, m), 2.50−2.58 (2H, m), 2.86 (1H, dd, J=9.0 Hz, J=14.0 Hz), 3.03 (1H, dd, J=5.0 Hz, J=14.0 Hz), 3.84 (1H, t, J=6.5 Hz), 3.99 (2H, s), 4.59 (1H, dd,J=5.0 Hz, J=9.0 Hz).
【実施例5】
【0039】
<その他ペプチドの合成>
γ−Glu−Met(O)、γ−Glu−Val−NH2、γ−Glu−Val−ol、γ−Glu−Ser、γ−Glu−Tau、γ−Glu−Cys(S−Me)(O)、γ−Glu−t−Leu、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Cys(S−Me)、は実施例3および実施例4に準じて合成した。
【実施例6】
【0040】
<カルシウム受容体の活性化作用の評価>
カルシウム受容体の活性化作用の評価には、アフリカツメガエル卵母細胞発現系を用いたCa濃度イオン依存性Clイオン電流測定法を用いた。カルシウム受容体を発現させたアフリカツメガエル卵母細胞に、各活性化剤を添加すると、細胞内のCaイオンが増加する。次にCa濃度イオン依存性Clチャネルが開き、イオン電流として細胞内電流値が変
化する。この細胞内電流値の変化を測定することで、カルシウム受容体の活性化作用の有無を知り得ることができる。
【0041】
具体的には、アフリカツメガエル腹部を切開し、卵塊を取り出した後、1%コラゲナーゼ溶液により20℃で2時間処理することで個々の卵母細胞を得た。1個あたりの卵母細胞に、マイクロガラスキャピラリーを用いて50nlの1μg/μl受容体cRNAもしくは50nlの滅菌水を導入し、18℃で2〜3日培養した。培養時には、実施例2で示した溶液に2mMピルビン酸と10U/mlペニシリンと10μg/mlストレプトマイシンを加えたものを使用した。培養後、cRNAを注入した卵母細胞もしくは滅菌水を注入した卵母細胞に対し、試験溶液を添加した。電気生理学的測定は、増幅器Geneclamp500(Axon社製)および記録用ソフトAxoScope9.0(Axon社製)を用いて行った。卵母細胞を2電極膜電位固定法により−70mVに膜電位固定し、Ca濃度イオン依存性Clイオンを介した細胞内電流を測定した。細胞内電流の最大値を応答電流値とした。
【実施例7】
【0042】
<カルシウム受容体に対するカルシウムの活性化作用の評価>
実施例6に記載した方法を用い、カルシウム受容体に対するカルシウムの活性化作用を評価した。すなわち、カルシウム受容体のcRNAもしくは滅菌水を注入した卵母細胞を調製し、2電極膜電位固定法により−70mVに膜電位固定した。膜電位固定された卵母細胞に、カルシウム(2mM、5mM、10mM、20mM)を添加し、Ca濃度イオン依存性Cl応答電流を測定した。結果は図1に示した。この結果より、卵母細胞に注入したカルシウム受容体のcRNAが機能的に発現していることが確認された。また、水を注入した卵母細胞は、高い濃度のカルシウムにも反応していないことから、卵母細胞自身にはカルシウム受容体が発現していないことが確認された。
【実施例8】
【0043】
<カルシウム受容体に対するL型アミノ酸の活性化作用の評価>
実施例6に記載した方法を用い、カルシウム受容体に対するL型アミノ酸の活性化作用を評価した。すなわち、カルシウム受容体のcRNAもしくは滅菌水を注入した卵母細胞を調製し、2電極膜電位固定法により−70mVに膜電位固定した。膜電位固定された卵母細胞に、アラニン(10mM)、アルギニン(10mM)、アスパラギン(10mM)、アスパラギン酸(10mM)、システイン(10mM)、グルタミン(10mM)、グルタミン酸(10mM)、グリシン(10mM)、ヒスチジン(10mM)、イソロイシン(10mM)、ロイシン(10mM)、リジン(10mM)、メチオニン(10mM)、フェニルアラニン(10mM)、プロリン(10mM)、セリン(10mM)、トレオニン(10mM)、トリプトファン(10mM)、チロシン(10mM)、バリン(10mM)、オルニチン(10mM)、タウリン(10mM)、又はヒドロキシプロリン(10mM)を添加し、Ca濃度イオン依存性Cl応答電流を測定した。結果は図2に示した。この結果より、システイン、ヒスチジン、フェニルアラニン、トリプトファン、チロシンがカルシウム受容体に対する明瞭な活性化作用を有することが示された。なお、上記アミノ酸についてはProc Natl Acad Sci U S A. 2000 Apr 25;97(9):4814-9で活性化作用が報告されている。
【実施例9】
【0044】
<カルシウム受容体に対するD−システインの活性化作用の評価>
実施例6に記載した方法を用い、カルシウム受容体に対するD−システインの活性化作用を評価した。すなわち、カルシウム受容体のcRNAもしくは滅菌水を注入した卵母細胞を調製し、2電極膜電位固定法により−70mVに膜電位固定した。膜電位固定された卵母細胞に、D−システイン(10mM)、L−システイン(10mM)、D−トリプトファン(10mM)又はL−トリプトファン(10mM)を添加し、Ca濃度イオン依存
性Cl応答電流を測定した。結果は図3に示した。この結果より、D−システインがカルシウム受容体に対する明瞭な活性化作用を有することが示された。
【実施例10】
【0045】
<カルシウム受容体に対するペプチドの活性化作用の評価>
実施例6に記載した方法を用い、カルシウム受容体に対するペプチドの活性化作用を評価した。すなわち、カルシウム受容体のcRNAもしくは滅菌水を注入した卵母細胞を調製し、2電極膜電位固定法により−70mVに膜電位固定した。膜電位固定された卵母細胞に、γ−Glu−Cys−Gly(50μM)、γ−Glu−Cys(SNO)−Gly(50μM)、γ−Glu−Ala(50μM)、γ−Glu−Gly(500μM)、γ−Glu−Cys(50μM)、γ−Glu−Met(500μM)、γ−Glu−Thr(50μM)、γ−Glu−Val(50μM)、γ−Glu−Orn(500μM)、Asp−Gly(1mM)、Cys−Gly(1mM)、Cys−Met(1mM)、Glu−Cys(50μM)、Gly−Cys(500μM)、Leu−Asp(1mM)を添加し、Ca濃度イオン依存性Cl応答電流を測定した。結果は図4に示した。この結果より、上記ペプチドは、カルシウム受容体に対する活性化作用を有することが示された。
【実施例11】
【0046】
<カルシウム受容体に対するペプチドの活性化作用の評価>
実施例10と同様に、カルシウム受容体に対するペプチドの活性化作用を評価した。膜に電位固定された卵母細胞に、表2の各ペプチドについて、1000μM、300μM、100μM、30μM、10μM、3μM、1μM、0.3μM、0.1μMを添加し、Ca濃度イオン依存性Cl応答電流を測定した。電流が検出された最低濃度を表2に活性として示した。この結果より、これら32種類のペプチドは、カルシウム受容体に対する活性化作用を有することが明らかとなった。
【0047】
【表2】

【実施例12】
【0048】
<カルシウム受容体の生体内分布>
カルシウム受容体の生体内分布を示すために、ラットから得たRNAを材料として、定量的RT−PCR法を用い、カルシウム受容体の組織発現を以下のように調べた。
ラット組織からのRNA調製は以下のように行った。15週令の雄F344ラットから、大脳、小脳、肺、心臓、肝臓、腎臓、副腎、甲状腺、副甲状腺、膵臓、脾臓、食道、胃上部、胃底部、十二指腸、空腸、回腸、盲腸、結腸、直腸、精巣、副精巣、膀胱、骨髄、ヒフク筋、ヒラメ筋、骨格筋、脂肪、前立腺、舌、舌下腺、胸腺を単離した。Total RNAの調製はIsogen(日本ジーン社製)を用いて行った。Fast Prep(BIO101)またはポリトロンホモジェナイザーを用いて各組織をホモジェナイズし、ホモジェネートからTotal RNAを抽出した。Total RNAをテンプレートとし、OligodTプライマー、SuperscriptIII 逆転写酵素(Invitrogen社製)を用いてcDNA合成を行った。カルシウム受容体のRT−PCRは、表1に示すプライマー(rCASR_f:配列番号3及びrCASR_r:配列番号4)を合成し、以下のように行った。各組織のcDNAをテンプレートとし、SYBR Green Realtime PCR Master Mix(TOYOBO社製) 、ABI PRISM 7700 Sequence Detectorを用いた定量PCR法により、カルシウム受容体遺伝子の発現量を解析した。組織発現分布を表3に示した。なお、膵臓のみヒトトータルRNA(Stratagene社製)を用いた。
この結果より、カルシウム受容体が副甲状腺および腎臓だけではなく、生体内に広く発
現していることが確認された。このことから、カルシウム受容体が副甲状腺および腎臓の機能だけではなく、末梢組織、末梢臓器の様々な生理機能に関わっていることが示唆され
た。
【0049】
【表3】

【実施例13】
【0050】
<カルシウム受容体活性化剤の動物薬理試験>
ペプチドの薬理効果を動物実験で確認した。副甲状腺ホルモン(parathyroid hormone ; PTH)は、カルシウムホメオスタシスに関与する主要なタンパク質である。PTHの量が増減する事に起因する直接的な疾患として、副甲状腺機能亢進症及び副甲状腺機能低下症が知られている。PTHは副甲状腺のC細胞より分泌されるが、カルシウム受容体が活性化されると、PTHの分泌阻害が起こることが知られている。動物は、Sprague-Dawley系統ラットの10週齢の雄を用いた。PTHの測定は、Immutopics社の「Rat Intact PTH ELISA Kit」を用い、使用手順書に従って実施した。生理的食塩水にγGlu-Val-Glyペプチドを100mg/mlに溶解し、ラット体重100g当り0.1mlを尾静脈より注入した。比較には、生理的食塩水をラット体重100g当り0.1mlを尾静脈より注入した。右鎖骨下静脈より採血し、遠心分離によりラット血清を得た。各群3匹で実施し、PTHの変化は以下に、平均値±標準誤差で示した。ペプチド投与群では、投与前が148±72.5pg/ml、投与15分後が9.44±2.94pg/mlであった。生理的食塩水投与群では、投与前が89.4±49.5pg/ml、投与15分後が41.1±11.6pg/mlであった。この結果、ペプチド投与によってPTHが減少する事が認められた。
【産業上の利用可能性】
【0051】
GPCR(Gタンパク質共役型受容体)に対する受容体活性化剤は各種疾患の治療薬として普遍的に応用できる。現在までに上市もしくは研究中の治療薬の代表例をあげると、アセチルコリン受容体活性化剤(アルツハイマー病治療)、アドレナリン受容体活性化剤(気管支喘息治療、肥満治療)、オピオイド受容体活性化剤(疼痛病治療)、受容体活性化剤(疼痛病治療)、カルシトニン受容体活性化剤(骨粗鬆症治療)、コレシストキニン受容体活性化剤(糖尿病治療)、セロチニン受容体活性化剤(片頭痛治療)、ドーパミン受容体活性化剤(パーキンソン病治療、鎮静剤)、メラトニン受容体活性化剤(原発性不眠症治療)、メラノコルチン受容体活性化剤(肥満治療)などがある。
GPCRに属するカルシウム受容体の活性化剤の治療薬応用の範囲は、実施例12、表3に示すように、カルシウム受容体が広範な組織に分布していることから、幅広い疾患に対して適用可能であることが予見される。
本発明は、好ましい実施形態を参照して詳細に説明されているが、本発明の範囲から逸脱しないかぎり、多様な変更、均等物の使用が可能であることは当業者にとって明らかである。本明細書における全ての引用文献は本明細書の一部として参考のために示す。

【特許請求の範囲】
【請求項1】
γ−Glu−Val−Gly、γ−Glu−Val−Val、γ−Glu−Val−Glu、γ−Glu−Val−Lys、γ−Glu−γ−Glu−Val、γ−Glu−Gly−Gly、γ−Glu−Val−Phe、γ−Glu−Val−Ser、γ−Glu−Val−Pro、γ−Glu−Val−Arg、γ−Glu−Val−Asp、γ−Glu−Val−Met、γ−Glu−Val−Thr、γ−Glu−Val−His、γ−Glu−Val−Asn、γ−Glu−Val−Gln、γ−Glu−Val−Cys、γ−Glu−Val−Orn、γ−Glu−Ser−Gly、γ−Glu−Cys(S−allyl)−Gly、γ−Glu−Cys(SNO)−Glyおよびγ−Glu−Cys(S−Me)−Glyから選択される1種または2種以上を含有してなるカルシウム受容体活性化剤。
【請求項2】
カルシウム受容体活性化作用を有する他の化合物を、更に1種または2種以上含有するものである、請求項1に記載のカルシウム受容体活性化剤。
【請求項3】
前記カルシウム受容体活性化作用を有する他の化合物の少なくとも1種はカチオンである、請求項2に記載のカルシウム受容体活性化剤。
【請求項4】
請求項1〜3のいずれか1項に記載のカルシウム受容体活性化剤を有効成分として含有する医薬組成物。
【請求項5】
請求項1〜3のいずれか1項に記載のカルシウム受容体活性化剤を用いることを特徴とする、カルシウム受容体の活性化阻害物質をスクリーニングする方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−211142(P2012−211142A)
【公開日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2012−120831(P2012−120831)
【出願日】平成24年5月28日(2012.5.28)
【分割の表示】特願2008−523061(P2008−523061)の分割
【原出願日】平成18年11月8日(2006.11.8)
【出願人】(000000066)味の素株式会社 (887)
【Fターム(参考)】