説明

ガスタービン発電プラントの制御方法、ガスタービン発電プラント、炭素含有燃料ガス化炉の制御方法及び炭素含有燃料ガス化炉

【課題】炭素含有燃料ガス化炉で生成される生成ガスの発熱量を一定に維持することが可能なガスタービン発電プラントの制御方法、ガスタービン発電プラント、炭素含有燃料ガス化炉の制御方法及び炭素含有燃料ガス化炉を提供することを目的とする。
【解決手段】炭素を含有する燃料をガス化して生成ガスとする石炭ガス化炉本体3aと石炭ガス化炉本体3aに設けられて冷却媒体である水が導かれる水冷壁ダクト3bとを有する石炭ガス化炉3と、生成ガスを燃焼して燃焼ガスとするガスタービン燃焼器5aと、ガスタービン燃焼器5aにて生成された燃焼ガスによって回転駆動されるガスタービン5bと、ガスタービン5bが回転駆動することによって発電する発電機Gとを備え、石炭ガス化炉3は、水冷壁ダクト3bに導かれた冷却媒体の吸熱量に応じて、燃料の供給量が制御されることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に、炭素含有燃料ガス化炉で生成される生成ガスの発熱量を一定に維持することが可能なガスタービン発電プラントの制御方法、ガスタービン発電プラント、炭素含有燃料ガス化炉の制御方法及び炭素含有燃料ガス化炉に関するものである。
【背景技術】
【0002】
石炭をガスするガス化炉と、ガス化炉において石炭をガス化して得られる石炭ガス(生成ガス)を燃焼する燃焼器と、燃焼器から導出された燃焼ガスにより駆動するガスタービンと、ガスタービンが回転駆動することにより発電する発電機とを備えたガスタービン発電プラントが知られている。
【0003】
引用文献1には、燃焼器入口における石炭ガス中のガス成分の含有割合から石炭ガスの発熱量を求めて、ガス化炉において生成される石炭ガスの発熱量を一定に制御するガスタービン発電プラントが開示されている。
【0004】
引用文献2には、ガス化炉に供給される空気の供給量を略一定として、発電機の実際の出力値と目標とする発電機の出力設定値との差分から、ガス化炉に供給される石炭の供給量を調整することにより、ガス化炉から導出される石炭ガスの発熱量を一定に制御するガスタービン発電プラントが開示されている。
【0005】
特許文献3及び特許文献4には、ガス化炉においてガス化された石炭ガスの温度を計測して、ガス化炉における酸素と石炭供給量との比を補正することにより、石炭ガスの発熱量の変動を小さくして、ガスタービン発電プラント全体の運用性を向上させることが開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−18703号公報
【特許文献2】特開2010−285564号公報
【特許文献3】特開2002−167583号公報
【特許文献4】特開2002−146366号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1から特許文献4に記載の発明では、ガス化炉の後流における石炭ガスの性状や温度、発電機出力によってガス化炉に投入され石炭の供給量を制御しているため、ガス化炉の制御に時間遅れが生じることとなる。そのため、ガス化炉から導出される石炭ガスの発熱量が大きく変化した場合には、ガスタービンが失火するおそれがある。
【0008】
本発明は、このような事情に鑑みてなされたものであって、炭素含有燃料ガス化炉で生成される生成ガスの発熱量を一定に維持することが可能なガスタービン発電プラントの制御方法、ガスタービン発電プラント、炭素含有燃料ガス化炉の制御方法及び炭素含有燃料ガス化炉を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明のガスタービン発電プラントの制御方法、ガスタービン発電プラント、炭素含有燃料ガス化炉の制御方法及び炭素含有燃料ガス化炉は、以下の手段を採用する。
すなわち、本発明に係るガスタービン発電プラントの制御方法は、炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁とを有する炭素含有燃料ガス化炉と、前記生成ガスを燃焼して燃焼ガスとする燃焼器と、該燃焼器にて生成された前記燃焼ガスによって回転駆動されるガスタービンと、該ガスタービンが回転駆動することによって発電する発電手段とを備え、前記炭素含有燃料ガス化炉は、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて、前記燃料の供給量が制御されることを特徴とする。
【0010】
一般に、炭素を含有する燃料を熱分解によってガス化する炭素含有燃料ガス化炉においては、生成ガスの組成の変化すなわち生成ガスの発熱量の変化と、ガス化炉本体内の生成ガス温度の変化とに相関関係があることが知られている。また、ガス化炉本体に冷却媒体が導かれる冷却媒体壁によってガス化炉本体が覆われている炭素含有燃料ガス化炉の場合には、ガス化炉本体内の生成ガスの温度の変化に伴い、冷却媒体の吸熱量に変化が生じることも知られている。
【0011】
そこで、本発明では、炭素含有燃料ガス化炉の運転負荷指令に対する冷却媒体の吸熱量に基づいてガス化炉内に設置されている冷却媒体壁に供給された冷却媒体の吸熱量の変化から生成ガスの発熱量の変化を求めて、炭素含有燃料ガス化炉に供給する燃料の供給量を制御することとした。これにより、炭素含有燃料ガス化炉から導出される生成ガスの組成や発電手段の出力により炭素含有燃料ガス化炉に供給される燃料の供給量を制御する従来の場合よりも、早い段階で炭素含有燃料ガス化炉から導出される生成ガスの発熱量の変化を検知することができる。そのため、炭素含有燃料ガス化炉に投入する燃料の供給制御の時間遅れを低減して、炭素含有燃料ガス化炉から導出され、ガスタービン燃焼器に導かれる生成ガスの発熱量を略一定にすることができる。したがって、ガスタービンの失火を防止して安定した運転を行い、ガスタービン発電プラントの運転の安定性を図ることができる。
【0012】
上記発明において、前記吸熱量の変化は、吸熱量と相関関係がある因子から求められることを特徴とする。
【0013】
冷却媒体壁に導かれる冷却媒体の吸熱量と相関関係がある因子から、冷却媒体の吸熱量の変化を求めることとした。これにより、ガス化炉内で生成ガスの発熱量の変化を捉えることができ、炭素含有燃料ガス化炉の後流に設けられるガスタービン燃焼器に生成ガスが到達する前に炭素含有燃料ガス化炉の制御を行うことができる。そのため、炭素含有燃料ガス化炉から導出される生成ガスの状態や発電手段の出力により炭素含有燃料ガス化炉に供給される燃料の供給量を制御する場合に生じる制御の時間遅れを低減することができる。したがって、炭素含有燃料ガス化炉から導出され、ガスタービン燃焼器に導かれる生成ガスの発熱量を略一定にして導出することができる。
【0014】
上記発明において、前記吸熱量と相関関係がある因子は、冷却媒体が導かれる前記冷却媒体壁の入口若しくは出口の冷却媒体流量の計測値、冷却媒体壁入口の冷却媒体温度、冷却媒体壁入口の冷却媒体圧力、冷却媒体壁出口の冷却媒体の温度又は冷却媒体壁出口の冷却媒体の圧力であることを特徴とする。
【0015】
冷却媒体が導かれる冷却媒体壁の入口若しくは出口の冷却媒体流量の計測値、並びに冷却媒体壁入口の冷却媒体温度、冷却媒体壁入口の冷却媒体圧力、冷却媒体壁出口の冷却媒体の温度及び冷却媒体壁出口の冷却媒体の圧力を吸熱量に相関関係がある因子として冷却媒体の吸熱量の変化を求めることとした。これにより、炭素含有燃料ガス化炉内で生成ガスの発熱量の変動を捉えることができ、炭素含有燃料ガス化炉に供給する燃料の供給量を制御することができる。したがって、炭素含有燃料ガス化炉から導出され、ガスタービン燃焼器に導かれる生成ガスの発熱量を略一定にして導出することができる。
【0016】
上記発明において、前記ガス化炉本体と接続される蒸気ドラムを有し、前記吸熱量と相関関係にある因子は、前記蒸気ドラムの入口給水流量又は出口蒸発流量の計測値、前記蒸気ドラムの入口及び出口の温度、並びに前記蒸気ドラムの入口及び出口の圧力であることを特徴とする。
【0017】
ガス化炉本体と蒸気ドラムとが接続されており、蒸気ドラムの入口給水流量又は出口蒸発流量の計測値、蒸気ドラムの入口及び出口の温度、並びに蒸気ドラムの入口及び出口の圧力を吸熱量に相関関係がある因子として冷却媒体の吸熱量の変化を求めることとした。
【0018】
上記発明において、前記蒸気ドラムの水位レベル及び圧力が制御され、前記蒸気ドラムの入口給水流量又は前記蒸気ドラムの出口蒸気流量を吸熱量として扱うことができることを特徴とする。
【0019】
蒸気ドラムにて水位レベルと圧力が制御されている場合、飽和温度が一定のため、蒸気ドラムの入口給水流量又は前記蒸気ドラムの出口蒸気流量を吸熱量として扱うことができる。
【0020】
上記発明において、前記石炭ガス化炉本体のガスの流路に冷却媒体が流れるガス化炉熱交換部を有し、前記吸熱量と相関関係にある因子は、前記ガス化炉熱交換部の入口の給水流量又は出口の蒸気流量、前記ガス化炉熱交換部の入口及び出口の温度、並びに前記ガス化炉熱交換部の入口及び出口の圧力であることを特徴とする。
【0021】
石炭ガス化炉本体のガスの流路には、ガス化炉熱交換部が設けられ、ガス化炉熱交換部の入口の給水流量又は出口の蒸気流量、前記ガス化炉熱交換部の入口及び出口の温度、並びに前記ガス化炉熱交換部の入口及び出口の圧力を吸熱量に相関関係がある因子として冷却媒体の吸熱量の変化を求めることとした。
【0022】
上記発明において、前記吸熱量の変化を該吸熱量の実測値と該吸熱量の設定値を比較及び演算によって検知し、発熱量補正係数を算出し、算出された発熱量補正係数に基づいて前記燃料の供給量が制御されることを特徴とする。
【0023】
吸熱量の変化が、吸熱量の実測値と吸熱量の設定値を比較及び演算によって検知され、発熱量補正係数が算出される。そして、算出された発熱量補正係数に基づいて燃料の供給量が制御される。
【0024】
上記発明において、前記吸熱量の設定値は、運転負荷に対する関数であることを特徴とする。また、上記発明において、前記運転負荷は、プラント負荷指令、発電手段出力指令又はガス化炉負荷指令であることを特徴とする。
【0025】
吸熱量設定値は、石炭ガス化炉3において生成される生成ガスの発熱量が安定した際の吸熱量と運転負荷との関係から決定される。
【0026】
また、本発明に係るガスタービン発電プラントは、炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁とを有する炭素含有燃料ガス化炉と、前記生成ガスを燃焼して燃焼ガスとする燃焼器と、該燃焼器にて生成された前記燃焼ガスにより回転駆動されるガスタービンと、該ガスタービンが回転駆動することによって発電する発電手段と、前記炭素含有燃料ガス化炉に供給される前記燃料の供給量を、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて制御する制御手段とを備えていることを特徴とする。
【0027】
また、本発明に係る炭素含有燃料ガス化炉の制御方法は、炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁とを有する炭素含有燃料ガス化炉を備え、前記炭素含有燃料ガス化炉は、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて、前記燃料の供給量が制御されることを特徴とする。
【0028】
また、本発明に係る炭素含有燃料ガス化炉は、炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁と、供給される前記燃料の供給量を、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて制御する制御手段とを備えることを特徴とする。
【発明の効果】
【0029】
炭素含有燃料ガス化炉の運転負荷指令に対する冷却媒体の吸熱量に基づいてガス化炉内に設置されている冷却媒体壁に供給された冷却媒体の吸熱量の変化から生成ガスの発熱量の変化を求めて、炭素含有燃料ガス化炉に供給する燃料の供給量を制御することとした。これにより、炭素含有燃料ガス化炉から導出される生成ガスの組成や発電手段の出力により炭素含有燃料ガス化炉に供給される燃料の供給量を制御する従来の場合よりも、早い段階で炭素含有燃料ガス化炉から導出される生成ガスの発熱量の変化を捉えることができる。そのため、炭素含有燃料ガス化炉に投入する燃料の供給制御の時間遅れを低減して、炭素含有燃料ガス化炉から導出され、ガスタービン燃焼器に導かれる生成ガスの発熱量を略一定にすることができる。したがって、ガスタービンの失火を防止して安定した運転を行い、ガスタービン発電プラントの運転の安定性を図ることができる。
【図面の簡単な説明】
【0030】
【図1】本発明の第一の実施形態に係る石炭ガス化炉を備えている石炭ガス化複合発電プラントの概略構成図である。
【図2】図1に示した石炭ガス化炉における生成ガスの発熱量補正方法を示したブロック図である。
【図3】石炭ガス化炉の運転負荷に対する熱交換部における冷却媒体の吸熱量の関係を示すグラフである。
【図4】本発明の第二の実施形態に係る石炭ガス化炉を備えている石炭ガス化複合発電プラントの概略構成図である。
【図5】本発明の第三の実施形態に係る石炭ガス化炉を備えている石炭ガス化複合発電プラントの概略構成図である。
【発明を実施するための形態】
【0031】
以下に、本発明に係る石炭ガス化炉本体を適用した石炭ガス化複合発電プラントの第一の実施形態について、図1を参照して説明する。
図1は、本実施形態に係る石炭ガス化炉本体を備えている石炭ガス化複合発電プラントの概略構成図である。
図1に示されているように、石炭ガス化複合発電プラント(IGCC;Integrated Coal Gasification Combined Cycle)1は、主として、石炭(炭素を含有する燃料)をガス化する石炭ガス化炉(炭素含有燃料ガス化炉)3と、石炭ガス化炉3から導出された生成ガスが導かれえるガスタービン設備5と、ガスタービン設備5のガスタービン5bと同一の回転軸5d上に接続される蒸気タービン(図示せず。)及びガスタービン5bが回転駆動することにより発電する発電機Gと、ガスタービン設備5を通過した燃焼ガスが導かれる排熱回収ボイラ(HRSG)11とを主に備えている。
【0032】
石炭ガス化炉3の上流側には、石炭ガス化炉3へと微粉炭(燃料)を供給する石炭供給設備(図示せず。)が設けられている。この石炭供給設備は、原料炭を粉砕して数μm〜数百μmの微粉炭にする粉砕機(図示せず。)を備えている。この粉砕機によって粉砕された微粉炭は、複数のホッパ(図示せず。)に貯留されるようになっている。
各ホッパに貯留された微粉炭は、一定量ずつ空気分離装置(図示せず。)から供給される窒素とともに石炭ガス化炉3へと搬送される。
【0033】
石炭ガス化炉3は、下方から上方へとガスが流されるように形成されている石炭ガス化炉本体(ガス化炉本体)3aと、石炭ガス化炉本体3aを内蔵している水冷壁ダクト(冷却媒体壁)3bとを備えている。なお、冷却媒体壁は、水冷壁ダクトに限られず、水冷ジャケットやガスの流路に熱交換器を備えた構成でも構わない。
【0034】
石炭ガス化炉本体3aは、冷却媒体として水が導かれる水冷壁ダクト3bに外周を覆われており、その下方から、コンバスタ13及びリダクタ14が設けられている。コンバスタ13は、微粉炭及びチャーの一部分を燃焼させ、残りは熱分解により揮発分(一酸化炭素、水素、低級炭化水素)として放出させる部分である。コンバスタ13には噴流床が採用されている。しかし、流動床式や固定床式であっても構わない。
【0035】
コンバスタ13及びリダクタ14には、それぞれ、コンバスタバーナー(図示せず。)及びリダクタバーナー(図示せず。)が設けられており、これらバーナーに対して石炭供給設備から微粉炭が供給される。
コンバスタバーナーには、図示しない空気昇圧機からの空気が、空気分離装置において分離された酸素とともにガス化剤(酸化剤)として供給されるようになっている。このようにコンバスタバーナーには酸素濃度が調整された空気が供給されるようになっている。
【0036】
リダクタ14では、コンバスタ13からの高温ガスによって微粉炭がガス化される。これにより、微粉炭から一酸化炭素や水素等の気体燃料となる石炭ガス化ガスである生成ガスが生成される。石炭ガス化反応は、微粉炭及びチャー中の炭素が高温ガス中の二酸化炭素及び水分と反応して一酸化炭素や水素を生成する吸熱反応である。
【0037】
石炭ガス化炉本体3aでは、微粉炭と、ガスタービン設備5に設けられている空気圧縮機5cから供給される供給空気とを反応させて生成ガス(石炭ガス化ガス)を生成する。具体的には、石炭ガス化炉本体3aの下流側には、熱交換部3cが設けられており、熱交換部3cには、複数の熱交換器(図示せず。)が設置されている。この熱交換部3cでは、リダクタ14から導かれた高温ガスから顕熱を得て、熱交換器に導かれた水を蒸気として発生させるようになっている。
【0038】
熱交換部3cを通過した生成ガスは、チャー回収装置9へと導かれる。このチャー回収装置9は、ポーラスフィルタ(図示せず。)を備えており、ポーラスフィルタを生成ガスが通過することによって生成ガスに混在しているチャーを捕捉して回収する。捕捉されえたチャーは、ポーラスフィルタに堆積してチャー層を形成している。チャー層には、生成ガスに含まれているNa分やK分が凝縮し、結果的にチャー回収装置9においてNa分及びK分も除去される。
【0039】
このように回収されたチャーは、空気分離装置において分離された窒素とともに石炭ガス化炉3のコンバスタバーナーへと返送されてリサイクルされる。なお、チャーとともにコンバスタバーナーへと返送されたNa分やK分は、最終的に溶融した微粉炭の灰とともに石炭ガス化炉本体3aの下方から排出される。溶融排出された灰は、水で急冷、粉砕されてガラス状のスラグとなる。
【0040】
チャー回収装置9を通過した生成ガスには、一酸化炭素や水素、硫化水素の他に硫化カルボニルといった硫黄化合物が含まれている。そこで、これら硫黄化合物を除去するために、生成ガスをガス精製装置10へと導いて精製する。ガス精製装置10において精製された生成ガスは、燃料ガスとしてガスタービン設備5のガスタービン燃焼器5aへと送られる。
【0041】
ガスタービン設備5は、燃料ガスである生成ガスが燃焼するガスタービン燃焼器5aと、ガスタービン燃焼器5aにおいて生成ガスが燃焼することにより生じる燃焼ガスによって回転駆動されるガスタービン5bと、ガスタービン燃焼器5aへと高圧空気を送り出す空気圧縮機5cとを備えている。ガスタービン5bと空気圧縮機5cとは、同一の回転軸5dによって接続されており、空気圧縮機5cにより圧縮された空気は、ガスタービン燃焼器5aとは別に、前述の空気昇圧機へも導かれるようになっている。ガスタービン5bを通過した燃焼ガスは、排熱回収ボイラ11へと導かれる。
【0042】
また、ガスタービン設備5と同じ回転軸5dには蒸気タービンが接続されており、いわゆる一軸式のコンバインドシステムとなっている。蒸気タービンには、石炭ガス化炉3及び排熱回収ボイラ11から高圧蒸気が供給される。なお、一軸式のコンバインドシステムに限らず、二軸式のコンバインドシステムであっても構わない。
【0043】
ガスタービン5b及び蒸気タービンによって駆動される回転軸5dには、電気を出力する発電機Gが設けられている。なお、発電機Gの配置位置については、回転軸5dから電力が得られるようであればどの位置であっても構わない。
【0044】
ガスタービン5bを通過した燃焼ガスは、排熱回収ボイラ11へと導かれて蒸気タービンに供給される蒸気を発生する。蒸気を発生させた燃焼ガスは、排熱回収ボイラ11から煙突12へと導かれて、煙突12から大気へと放出される。
【0045】
次に、上記構成の石炭ガス化炉3を備えている石炭ガス化複合発電プラント(ガスタービン発電プラント)1の動作について説明する。
原料炭は、粉砕機で粉砕された後、ホッパへと導かれて貯留される。ホッパに貯留された微粉炭は、空気分離装置において分離された窒素とともに、石炭ガス化炉3のリダクタバーナー及びコンバスタバーナーへと供給される。さらに、コンバスタバーナーには、微粉炭だけではなく、チャー回収装置9において回収されたチャーが供給される。
【0046】
コンバスタバーナーの燃焼用気体としては、ガスタービン設備5に設けられている空気圧縮機5cから抽気された圧縮空気を空気昇圧機によって更に昇圧した圧縮空気に、空気分離装置において分離された酸素が添加された空気が使用される。コンバスタ13では、微粉炭及びチャーが燃焼用空気によって部分燃焼させられ、残部は、揮発分(一酸化炭素、水素、低級炭化水素)へと熱分解される。
【0047】
リダクタ14では、リダクタバーナーから供給された微粉炭及びコンバスタ13内で揮発分を放出したチャーが、コンバスタ13から上昇してきた高温ガスによりガス化され、一酸化炭素や水素などの可燃性の生成ガスが生成される。
【0048】
リダクタ14を通過した生成ガスは、石炭ガス化炉3の水冷壁ダクト3bを流れる水によってその熱が吸熱されて、石炭ガス化炉本体3aの下流側に設けられている熱交換部3cへと導かれる。熱交換部3cに導かれた生成ガスは、各熱交換器にその顕熱を与えて蒸気を発生させる。熱交換部3cで発生した蒸気は、主として、蒸気タービンを駆動するために用いられる。熱交換部3cを通過した生成ガスは、チャー回収装置9へと導かれてチャーが回収される。生成ガス中のNa分及びK分は、ここで凝縮されてチャーに取り込まれる。回収されたNa分及びK分を含んでいるチャーは、石炭ガス化炉本体3aへと返送される。
【0049】
チャー回収装置9を通過した生成ガスは、ガスタービン設備5に設けられているガスタービン燃焼器5aへと導かれ、空気圧縮機5cから供給される圧縮空気と共に燃焼される。この燃焼によって生じた燃焼ガスによってガスタービン5bが回転駆動して、回転軸5dが駆動する。
【0050】
ガスタービン5bを通過した燃焼ガスは、排熱回収ボイラ11へと導かれて、この燃焼ガスの排熱を利用することによって蒸気が発生させられる。排熱回収ボイラ11において発生した蒸気は、主として、蒸気タービンの回転駆動のために用いられる。
【0051】
蒸気タービンは、石炭ガス化炉3からの蒸気及び排熱回収ボイラ11からの蒸気によって回転駆動させられて、ガスタービン設備5の回転軸5dを駆動する。蒸気タービンによる回転軸5dの回転力は、発電機Gによって電気出力へと変換される。
【0052】
次に、本発明に係る石炭ガス化炉本体を適用した石炭ガス化複合発電プラントの第二の実施形態について、図4を参照して説明する。
図4は、石炭ガス化炉3の構成を示している。この第二の実施形態は、図1に示した第一の実施形態のうち石炭ガス化炉3に蒸気ドラム3dを有する構成としたものである。その他の構成は、図1に示した第一の実施形態と同一であるので、同一構成要素には同一符号を付しその説明は省略する。
【0053】
石炭ガス化炉3に蒸気ドラム3dを有する構成では、冷却媒体である水は蒸気ドラム3dに供給され、蒸気ドラム3dと水冷壁ダクト3b及び熱交換部3cとを循環し、水冷壁ダクト3b及び熱交換部3cにおいて生成ガスの顕熱を得て発生した蒸気のみが蒸気ドラム3dから後流へと導かれ、発生した蒸気は、主として、蒸気タービンを駆動するために用いられる。
【0054】
次に、本発明に係る石炭ガス化炉本体を適用した石炭ガス化複合発電プラントの第三の実施形態について、図5を参照して説明する。
図5は石炭ガス化炉3の構成を示している。この第三の実施形態は、図1に示した第一の実施形態のうち石炭ガス化炉本体3aのガスの流路に冷却媒体である水が流れるガス化炉熱交換部3eを有する構成としたものである。なお、ガス化炉熱交換部3eには複数の熱交換器(図示せず。)が設置されている。また、石炭ガス化炉3は水冷壁ダクト3bを有していても構わない。その他の構成は、図1に示した第一の実施形態と同一であるので、同一構成要素には同一符号を付しその説明は省略する。
【0055】
次に、上述した石炭ガス化複合発電プラント1における石炭ガス化炉3の制御方法について、図1から図5を参照して説明する。
図2は、図1、図4及び図5に示す石炭ガス化炉3にて生成される生成ガスの発熱量補正方法を示したブロック図である。図3は、縦軸に石炭ガス化炉3の水冷壁ダクト3bを通過する水の吸熱量を示し、横軸に石炭ガス化炉3の運転負荷指令を示すグラフである。ここで、図3の吸熱量設定値は、石炭ガス化炉3において生成される生成ガスの発熱量が安定した際の吸熱量と運転負荷との関係を示している。
【0056】
石炭ガス化炉3に供給される微粉炭は、石炭ガス化炉3へと微粉炭を供給する供給配管(図示せず。)上に設けられた、石炭ガス化炉3への微粉炭投入量(燃料供給量)を調節する微粉炭流量弁(図示せず。)によって、微粉炭投入量が調節される。
【0057】
この微粉炭流量弁は、石炭ガス化炉3に設けられている制御器(図示せず。)によって、石炭ガス化炉3に供給する微粉炭の投入量が、石炭ガス化炉3の水冷壁ダクト3bに導かれた水の吸熱量に応じて制御されるようになっている。
【0058】
具体的には、発電機Gの出力設定値によって制御器(制御手段)が、図2に示すように、石炭ガス化炉入力指令値(ガス化炉入力指令値)を算出する。また、石炭ガス化炉3の運転負荷指令に対する水の吸熱量設定値である冷却媒体吸熱量設定値を図3のグラフから求める。
【0059】
さらに、図1に示す第一の実施形態では、石炭ガス化炉3の水冷壁ダクト3bの入口の給水流量計又は出口の蒸気流量計、水冷壁ダクト3bの入口及び出口の水の温度、水冷壁ダクト3bの入口及び出口の圧力が計測される。
【0060】
ここで、図4に示す第二の実施形態のように、石炭ガス化炉3が蒸気ドラム3dを有する構成においては、蒸気ドラム3dの入口の給水流量又は出口の蒸気流量、蒸気ドラム3dの入口及び出口の温度、蒸気ドラム3dの入口及び出口の圧力が計測される。
【0061】
また、図5に示す第三の実施形態のように、石炭ガス化炉本体3aのガスの流路に冷却媒体である水が流れるガス化炉熱交換部3eを有する構成においては、ガス化炉熱交換部3eの入口の給水流量又は出口の蒸気流量、ガス化炉熱交換部3eの入口及び出口の温度、ガス化炉熱交換部3eの入口及び出口の圧力が計測される。
【0062】
これら計測された水の出入口温度差、水の入口又は出口の流量、水の出入口圧力、比熱を用いて、図2に示される水の実際の吸熱量である冷却媒体吸熱量を算出する。すなわち、吸熱量は、エンタルピの変化量に流量を掛けることで算出する。そのエンタルピ変化量を求めるには、入口、出口のエンタルピをそれぞれ求める必要があるため、出入口の温度、出入口の圧力、比熱が必要である。そして、流量に関しては、入口又は出口のいずれか一方でよい。但し、蒸気ドラム3dを有する構成で、蒸気ドラム3dの水位レベル及び圧力を制御している場合は、飽和温度が一定のため、蒸気ドラム3dの入口給水流量又は蒸気ドラム3dの出口蒸気流量を吸熱量として扱うことができる。この算出された冷却媒体吸熱量と、図3のグラフから求められた冷却媒体吸熱量設定値とを比較することによって、吸熱量の変化が検知されることから、吸熱量の実測値と吸熱量の設定値を比較及び演算によって発熱量補正係数を算出する。
【0063】
このようにして求められた発熱量補正係数によって、前述した石炭ガス化炉入力指令値を補正して石炭ガス化炉3に投入される微粉炭の投入量を算出する。微粉炭流量弁は、石炭ガス化炉3に、算出された微粉炭投入量が投入されるようにその開度が制御される。
【0064】
以上の通り、本実施形態に係る石炭ガス化複合発電プラント1及びその制御方法によれば、以下の作用効果を奏する。
石炭ガス化炉(炭素含有燃料ガス化炉)3の運転負荷指令に対する石炭ガス化炉3の水冷壁ダクト(冷却媒体壁)3bに導かれた水(冷却媒体)の吸熱量に基づいて水冷壁ダクト3bに供給された水の吸熱量の変化から生成ガスの発熱量の変化を求めて、石炭ガス化炉3に供給する微粉炭の投入量を制御することとした。これにより、石炭ガス化炉3から導出される生成ガスの組成や発電機(発電手段)Gの出力により石炭ガス化炉3に供給される微粉炭の投入量を制御する従来の場合よりも、早い段階で石炭ガス化炉3から導出される生成ガスの発熱量の変化を捉えることができる。そのため、石炭ガス化炉3に投入する微粉炭の投入制御の時間遅れを低減して、石炭ガス化炉3から導出される生成ガスの組成やガスタービン設備5のガスタービン燃焼器5aに導かれる生成ガスの発熱量を略一定にすることができる。したがって、ガスタービン5bの失火を防止して安定した運転を行い、石炭ガス化複合発電プラント(ガスタービン発電プラント)1の運転の安定性を図ることができる。
【0065】
石炭ガス化炉3に導かれた水の吸熱量と相関関係がある因子から水の吸熱量の変化を求めることとした。これにより、石炭ガス化炉3の後流に設けられているガスタービン燃焼器5aに生成ガスが到達する前に石炭ガス化炉3の制御を行うことができる。そのため、石炭ガス化炉3から導出される生成ガスの状態や発電機Gの出力により石炭ガス化炉3に供給される微粉炭の投入量を制御する場合に生じる制御の時間遅れを低減することができる。したがって、石炭ガス化炉3から導出され、ガスタービン燃焼器5aに導かれる生成ガスの発熱量を略一定にして導出することができる。
【0066】
石炭ガス化炉3の水冷壁ダクト3bの入口の給水流量計又は出口の蒸気流量計、水冷壁ダクト3bの入口及び出口の水の温度、水冷壁ダクト3bの入口及び出口の圧力を吸熱量と相関関係がある因子として水の吸熱量を求めることとした。これにより、石炭ガス化炉3から導出される生成ガスの発熱量の変動を早い段階で捉え、石炭ガス化炉3に投入される微粉炭の投入量を制御することができる。したがって、石炭ガス化炉3から導出され、ガスタービン燃焼器5aに導かれる生成ガスの発熱量を略一定にして導出することができる。
【0067】
ただし、図4に示す第二の実施形態のように、石炭ガス化炉3が蒸気ドラム3dを有する構成においては、蒸気ドラム3dの入口の給水流量又は出口の蒸気流量、蒸気ドラム3dの入口及び出口の温度、蒸気ドラム3dの入口及び出口の圧力を吸熱量と相関関係がある因子として吸熱量を求められる。さらに、蒸気ドラム3d有する構成で、蒸気ドラム3dの水位レベル及び圧力を制御している場合は、飽和温度が一定のため、蒸気ドラム3dの入口給水流量又は蒸気ドラム3dの出口蒸気流量にて吸熱量として扱うことができる。
【0068】
また、図5に示す第三の実施形態のように、石炭ガス化炉本体3aのガスの流路に水が流れるガス化炉熱交換部3eを有する構成においては、ガス化炉熱交換部3eの入口の給水流量又は出口の蒸気流量、ガス化炉熱交換部3eの入口及び出口の温度、ガス化炉熱交換部3e入口及び出口の圧力を吸熱量と相関関係がある因子として吸熱量を求められる。
【0069】
なお、本実施形態の図3で示した石炭ガス化炉3の運転負荷に対する冷却媒体の吸熱量の関係を示すグラフは、石炭(微粉炭)の性状(種類)や石炭ガス化炉3に供給されるガス化剤の投入量に応じて補正できるようにしてもよい。
また、石炭ガス化炉3の運転負荷の代わりにガスタービン5bの出力や石炭ガス化複合発電プラント1全体の運転負荷としてもよい。
さらに、本実施形態では、燃料として石炭(微粉炭)を用いて説明したが、炭素を含有するごみや廃タイヤであってもよい。
【符号の説明】
【0070】
1 石炭ガス化複合発電プラント(ガスタービン発電プラント)
3 石炭ガス化炉(炭素含有燃料ガス化炉)
3a 石炭ガス化炉本体(ガス化炉本体)
3b 水冷壁ダクト(冷却媒体壁)
3c 熱交換部
3d 蒸気ドラム
3e ガス化炉熱交換部
5 ガスタービン設備
5a ガスタービン燃焼器(燃焼器)
5b ガスタービン
5c 空気圧縮機
5d 回転軸
9 チャー回収装置
10 ガス精製装置
11 排熱回収ボイラ
12 煙突
13 コンバスタ
14 リダクタ
G 発電機(発電手段)



【特許請求の範囲】
【請求項1】
炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁とを有する炭素含有燃料ガス化炉と、
前記生成ガスを燃焼して燃焼ガスとする燃焼器と、
該燃焼器にて生成された前記燃焼ガスによって回転駆動されるガスタービンと、
該ガスタービンが回転駆動することによって発電する発電手段と、
を備え、
前記炭素含有燃料ガス化炉は、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて、前記燃料の供給量が制御されることを特徴とするガスタービン発電プラントの制御方法。
【請求項2】
前記吸熱量の変化は、吸熱量と相関関係にある因子から求められることを特徴とする請求項1に記載のガスタービン発電プラントの制御方法。
【請求項3】
前記吸熱量と相関関係にある因子は、前記冷却媒体が導かれる前記冷却媒体壁の入口又は出口の前記冷却媒体流量の計測値、前記冷却媒体壁の入口及び出口の温度、並びに前記冷却媒体壁の入口及び出口の圧力であることを特徴とする請求項2に記載のガスタービン発電プラントの制御方法。
【請求項4】
前記ガス化炉本体と接続される蒸気ドラムを有し、
前記吸熱量と相関関係にある因子は、前記蒸気ドラムの入口給水流量又は出口蒸発流量の計測値、前記蒸気ドラムの入口及び出口の温度、並びに前記蒸気ドラムの入口及び出口の圧力であることを特徴とする請求項2に記載のガスタービン発電プラントの制御方法。
【請求項5】
前記蒸気ドラムの水位レベル及び圧力が制御され、
前記蒸気ドラムの入口給水流量又は前記蒸気ドラムの出口蒸気流量を吸熱量として扱うことができることを特徴とする請求項4に記載のガスタービン発電プラントの制御方法。
【請求項6】
前記石炭ガス化炉本体のガスの流路に冷却媒体が流れるガス化炉熱交換部を有し、
前記吸熱量と相関関係にある因子は、前記ガス化炉熱交換部の入口の給水流量又は出口の蒸気流量、前記ガス化炉熱交換部の入口及び出口の温度、並びに前記ガス化炉熱交換部の入口及び出口の圧力であることを特徴とする請求項2に記載のガスタービン発電プラントの制御方法。
【請求項7】
前記吸熱量の変化を該吸熱量の実測値と該吸熱量の設定値を比較及び演算によって検知し、発熱量補正係数を算出し、算出された前記発熱量補正係数に基づいて、前記燃料の供給量が制御されることを特徴とする請求項1に記載のガスタービン発電プラントの制御方法。
【請求項8】
前記吸熱量の設定値は、運転負荷に対する関数であることを特徴とする請求項7に記載のガスタービン発電プラントの制御方法。
【請求項9】
前記運転負荷は、プラント負荷指令、発電機出力指令又はガス化炉負荷指令であることを特徴とする請求項8に記載のガスタービン発電プラントの制御方法。
【請求項10】
炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁とを有する炭素含有燃料ガス化炉と、
前記生成ガスを燃焼して燃焼ガスとする燃焼器と、
該燃焼器にて生成された前記燃焼ガスによって回転駆動されるガスタービンと、
該ガスタービンが回転駆動することによって発電する発電手段と、
前記炭素含有燃料ガス化炉に供給される前記燃料の供給量を、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて制御する制御手段と、
を備えることを特徴とするガスタービン発電プラント。
【請求項11】
炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁とを有する炭素含有燃料ガス化炉を備え、
前記炭素含有燃料ガス化炉は、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて、前記燃料の供給量が制御されることを特徴とする炭素含有燃料ガス化炉の制御方法。
【請求項12】
前記吸熱量の変化は、吸熱量と相関関係にある因子から求められることを特徴とする請求項11に記載の炭素含有燃料ガス化炉の制御方法。
【請求項13】
前記吸熱量と相関関係にある因子は、前記冷却媒体が導かれる前記冷却媒体壁の入口又は出口の前記冷却媒体流量の計測値、前記冷却媒体壁の入口及び出口の温度、並びに前記冷却媒体壁の入口及び出口の圧力であることを特徴とする請求項12に記載の炭素含有燃料ガス化炉の制御方法。
【請求項14】
前記ガス化炉本体と接続される蒸気ドラムを有し、
前記吸熱量と相関関係にある因子は、前記蒸気ドラムの入口給水流量又は出口蒸発流量の計測値、前記蒸気ドラムの入口及び出口の温度、並びに前記蒸気ドラムの入口及び出口の圧力であることを特徴とする請求項12に記載の炭素含有燃料ガス化炉の制御方法。
【請求項15】
前記蒸気ドラムの水位レベル及び圧力が制御され、
前記蒸気ドラムの入口給水流量又は前記蒸気ドラムの出口蒸気流量を吸熱量として扱うことができることを特徴とする請求項14に記載の炭素含有燃料ガス化炉の制御方法。
【請求項16】
前記石炭ガス化炉本体のガスの流路に冷却媒体が流れるガス化炉熱交換部を有し、
前記吸熱量と相関関係にある因子は、前記ガス化炉熱交換部の入口の給水流量又は出口の蒸気流量、前記ガス化炉熱交換部の入口及び出口の温度、並びに前記ガス化炉熱交換部の入口及び出口の圧力であることを特徴とする請求項12に記載の炭素含有燃料ガス化炉の制御方法。
【請求項17】
前記吸熱量の変化を該吸熱量の実測値と該吸熱量の設定値を比較及び演算によって検知し、発熱量補正係数を算出し、算出された前記発熱量補正係数に基づいて、前記燃料の供給量が制御されることを特徴とする請求項11に記載の炭素含有燃料ガス化炉の制御方法。
【請求項18】
前記吸熱量の設定値は、運転負荷に対する関数であることを特徴とする請求項17に記載の炭素含有燃料ガス化炉の制御方法。
【請求項19】
前記運転負荷は、プラント負荷指令、発電機出力指令又はガス化炉負荷指令であることを特徴とする請求項18に記載の炭素含有燃料ガス化炉の制御方法。
【請求項20】
炭素を含有する燃料をガス化して生成ガスとするガス化炉本体と該ガス化炉本体に設けられて冷却媒体が導かれる冷却媒体壁と、
供給される前記燃料の供給量を、前記冷却媒体壁に導かれた前記冷却媒体の吸熱量に応じて制御する制御手段と、
を備えることを特徴とする炭素含有燃料ガス化炉。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−87702(P2013−87702A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−229854(P2011−229854)
【出願日】平成23年10月19日(2011.10.19)
【出願人】(000006208)三菱重工業株式会社 (10,378)