説明

ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子

【課題】 従来のようにセラミック膜を繰り返し積層しなくとも、高いバリア性能を達成できるガスバリアフィルムを得ることにあり、また該ガスバリアフィルムを有機エレクトロルミネッセンス用樹脂基材として用いることにあり、また、該有機エレクトロルミネッセンス用樹脂基材を用いて、ガスバリア性が高く、光取り出し効率が高い有機エレクトロルミネッセンス素子を得ることにある。
【解決手段】 樹脂フィルム上にセラミック膜を少なくとも1層以上有するガスバリアフィルムにおいて、該樹脂フィルムがポリシクロオレフィンフィルムであることを特徴とするガスバリアフィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主に食品や医薬品等の包装材料や電子デバイス等のパッケージ、または有機EL素子や液晶等のプラスチック基板といったディスプレイ材料に用いられる透明ガスバリアフィルム及びそガスバリアフィルムを用いた有機エレクトロルミネッセンス用樹脂基材、および有機エレクトロルミネッセンス素子に関する。
【背景技術】
【0002】
従来より、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、有機エレクトロルミネッセンス(EL)基板等で使用されている。
【0003】
この様な分野での包装材料としてアルミ箔等が広く用いられているが、使用後の廃棄処理が問題となっているほか、基本的には不透明であり、外から内容物を確認することができないという課題を抱えており、更に、ディスプレイ材料では透明性が求められており、全く適用することができない。
【0004】
特に、液晶表示素子、有機EL素子などへの応用が進んでいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重く割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めている。例えば、特開平2−251429号公報や特開平6−124785号公報には、有機エレクトロルミネッセンス素子の基板として、高分子フィルムを用いた例が開示されている。
【0005】
しかしながら、透明プラスチック等のフィルム基材はガラスに対しガスバリア性が劣るという問題がある。例えば、有機エレクトロルミネッセンス素子の基板として用いた場合、ガスバリア性が劣る基材を用いると、水蒸気や空気が浸透して有機膜が劣化し、発光特性あるいは耐久性等を損なう要因となる。また、電子デバイス用基板として高分子基板を用いた場合には、酸素が高分子基板を透過して電子デバイス内に浸透、拡散し、デバイスを劣化させてしまうことや、電子デバイス内で求められる真空度を維持できないといった問題を引き起こす。
【0006】
この様な問題を解決するためにフィルム基板上に金属酸化物薄膜を形成してガスバリア性フィルム基材とすることが知られている。包装材や液晶表示素子に使用されるガスバリア性フィルムとしてはプラスチックフィルム上に酸化珪素を蒸着したもの(特許文献1)や酸化アルミニウムを蒸着したもの(特許文献2)が知られており、いずれも2g/m2/day程度の水蒸気バリア性、あるいは2ml/m2/day程度の酸素透過性を有するにすぎないのが現状である。近年では、さらなるガスバリア性が要求される有機ELディスプレイや、液晶ディスプレイの大型化、高精細ディスプレイ等の開発により、フィルム基板へのガスバリア性能について水蒸気バリアで10-3g/m2/day程度まで要求が上がってきている。
【0007】
これら高い水蒸気遮断性の要望に応える方法の1つとして、緻密なセラミック層と、柔軟性を有し、外部からの衝撃を緩和するポリマー層とを交互に繰り返し積層した構成のガスバリア性フィルムが提案されている(例えば、特許文献3参照)。しかしながら、セラミック層とポリマー層とでは、一般に組成が異なるため、それぞれの接触界面部での密着性が劣化し、膜剥離等の品質劣化を引き起こすことがある。特に、この密着性の劣化は、高温高湿等の過酷な環境下や紫外線の照射を長期間にわたり受けた際に顕著に現れ、早急な改良が求められている。
【0008】
またセラミック膜についても、単にセラミックの膜であればよいというものではなく、密度が高く、また、割れ等を起こしにくい膜でなければならず、また、基材となる樹脂フィルムにも一定の性質が要求されることが判ってきた。
【特許文献1】特公昭53−12953号公報
【特許文献2】特開昭58−217344号公報
【特許文献3】米国特許第6,268,695号明細書
【発明の開示】
【発明が解決しようとする課題】
【0009】
従って、本発明の目的は、従来のようにセラミック膜を繰り返し積層しなくとも、高いバリア性能を達成できるガスバリアフィルムを得ることにあり、また該ガスバリアフィルムを有機エレクトロルミネッセンス用樹脂基材として用いることにあり、また、該有機エレクトロルミネッセンス用樹脂基材を用いて、ガスバリア性が高く、光取り出し効率の高い有機エレクトロルミネッセンス素子を得ることにある。
【課題を解決するための手段】
【0010】
本発明の上記課題は以下の手段により達成されるものである。
【0011】
請求項より
1.樹脂フィルム上にセラミック膜を少なくとも1層以上有するガスバリアフィルムにおいて、該樹脂フィルムがポリシクロオレフィンフィルムであることを特徴とするガスバリアフィルム。
【0012】
2.前記セラミック膜の残留応力が0.01以上20MPa以下であることを特徴とする前記1記載のガスバリアフィルム。
【0013】
3.前記セラミック膜を構成する物質が、酸化珪素又は酸化窒化珪素又は窒化珪素又は酸化アルミニウムの何れか又はそれらの混合であることを特徴とする前記1または2記載のガスバリアフィルム。
【0014】
4.前記1〜3のいずれか1項記載のガスバリアフィルム上に、透明導電性薄膜が形成されていることを特徴とする有機エレクトロルミネッセンス用樹脂基材。
【0015】
5.樹脂フィルム上にセラミック膜および透明導電性薄膜が形成された、前記4記載の有機エレクトロルミネッセンス用樹脂基材上に、燐光発光有機エレクトロルミネッセンス材料及び陰極となる金属膜をコーティングし、更に樹脂ラミネート済み金属箔を接着剤で貼り付け封止したことを特徴とする有機エレクトロルミネッセンス素子。
【0016】
6.前記セラミック膜は、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を励起した前記ガスに晒すことにより基材上に薄膜を形成する薄膜形成方法により、樹脂フィルム上に形成されたことを特徴とする前記5記載の有機エレクトロルミネッセンス素子。
【発明の効果】
【0017】
本発明により、高いガスバリア性能を達成できるガスバリアフィルムを得ることができ、有機エレクトロルミネッセンス(EL)用樹脂基材として有用なガスバリアフィルム、および該基材を用いて、光取り出し効率の改善された長寿命の有機エレクトロルミネッセンス(EL)素子を得ることができる
【発明を実施するための最良の形態】
【0018】
以下、本発明を実施するための最良の形態について説明するが、本発明はこれにより限定されるものではない。
【0019】
本発明におけるガスバリアフィルムは、ポリシクロオレフィン樹脂フィルム基材上に、残留応力の小さい緻密なセラミック膜がコーティングされており、従来のようなセラミック膜を繰り返し樹脂フィルム基材上に積層しなくとも、高いガスバリア性能を有するガスバリアフィルムである。
【0020】
本発明におけるガスバリアフィルムは、樹脂フィルム上にセラミック膜を少なくとも1層以上有する積層フィルムであって、このセラミック膜としては、残留(内部)応力が圧縮応力で0.01MPa以上、20MPa以下である。この様な緻密な膜を形成することで、耐久性の高い、ガスバリア性に優れたガスバリアフィルムが得られる。
【0021】
この様な、残留応力の小さい緻密なセラミック膜と前記の樹脂フィルム基材との組み合わせにより、JIS K7129 B法に従って測定した水蒸気透過率が、10-5g/m2/day以下、好ましくは10-6g/m2/day以下であり、酸素透過率が0.01ml/m2/day以下、好ましくは0.001ml/m2/day以下であるガスバリア性に優れた樹脂フィルムを基材とするフィルムが得られる。
【0022】
本発明のガスバリアフィルムを有機ELディスプレイや高精彩カラー液晶ディスプレイ等、高度の水蒸気バリア性が必要となる用途に用いる場合、特に有機ELディスプレイ用途の場合には、極わずかであっても、成長するダークスポットが発生し、ディスプレイの表示寿命が極端に短くなる場合があるため、JIS K7129 B法に従って測定した水蒸気透過度は前記の値以下であることが好ましい。
【0023】
本発明におけるセラミック膜は、前記の残留応力を有し、酸素及び水蒸気の透過を阻止する膜であれば、その組成等は特に限定されるものではないが、本発明のセラミック膜(層)を構成する材料として具体的には、無機酸化物が好ましく、酸化珪素、酸化アルミニウム、酸化窒化珪素、酸化窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等のセラミック膜を挙げることができる。
【0024】
また、これら樹脂フィルム上に形成されるセラミック膜の残留応力は圧縮応力で、0.01MPa以上、20MPa以下である。
【0025】
以下、セラミック膜中の内部応力の測定について述べる。
【0026】
種々の方法、例えば、蒸着法、CVD法、ゾルゲル法等により形成したセラミック膜を有する樹脂フィルムは、一定条件に放置したとき、プラスカール、マイナスカールをその基材フィルムとセラミック膜の膜質との関係で生じる。このカールは、前記セラミック膜中に発生する応力によって、生じるもので、カールの大きいもの(プラスカール)ほど、圧縮応力が大きいということが出来る。
【0027】
セラミック膜中の内部応力は、以下の方法により測定する。即ち、測定膜と同じ組成、厚みのセラミック膜を、幅10mm、長さ50mm、厚み0.1mmの石英基板上に同じ方法により厚み1μmとなるよう製膜し、作製したサンプルに生じるカールをサンプルの凹部を上に向けて、NEC三栄社製、薄膜物性評価装置MH4000にて測定して得ることができる。一般に圧縮応力により基材にたいし膜側が縮むプラスカールの場合プラスの応力とし、逆に、引っ張り応力によりマイナスカールを生じる場合マイナスの応力と表現する。
【0028】
本発明において、この応力値としてはプラスの領域であり、前記のとおり20MPa以下にあることが必要であり0.01MPa以上、20MPa以下の範囲である。
【0029】
例えば、樹脂フィルム上に形成された酸化珪素膜の残留応力は、酸化珪素膜を、例えば、真空蒸着法により作製するとき、真空度を調整することで、調整できる。図1は幅10mm、長さ50mm、厚み0.1mmの石英基板上に、真空蒸着法により酸化珪素膜を1μm形成したときのチャンバーの真空度と、形成される酸化珪素膜の前記の方法により測定した残留(内部)応力との関係を示す。0よりも大きく、20MPa程度までの残留応力をもつ積層フィルムが好ましい。応力が小さすぎるときには部分的に引っ張り応力になっている場合もあり、膜にひびや、亀裂が入りやすく、耐久性のない膜となり、大きすぎる場合には割れ易い膜となる。
【0030】
例えばゾルゲル法等を用いた湿式法により形成されたセラミック膜においては、残留応力の微調整、特に細かな制御が難しく、この範囲に調整出来ないことが多い。
【0031】
本発明においてガスバリア層となるセラミック膜の製造方法は、特に限定されるものではないが、例えばゾルゲル法等を用いるスプレー法やスピンコート法等の湿式法を用いて形成されたものは、前記のような残留応力の調製や、分子レベル(nmレベル)の平滑性を得ることが難しく、また溶剤を使用するため、後述する基材が有機材料であることから、使用可能な基材または溶剤が限定されるという欠点がある。そこで、本発明においては、スパッタリング法、イオンアシスト法、後述するプラズマCVD法、後述する大気圧または大気圧近傍の圧力下でのプラズマCVD法等を適用して形成されたものであることが好ましく、特に大気圧プラズマCVDによる方法は、減圧チャンバー等が不要で、高速製膜ができ生産性の高い製膜方法であり好ましい。上記ガスバリア層をプラズマCVDにより形成することで、均一かつ表面の平滑性を有し、更に内部応力も非常に少ない(前記0.01〜20MPa)膜を比較的容易に形成することが可能となる。
【0032】
本発明におけるこれらのセラミック膜の厚さは、用いられる材料の種類、構成により最適条件が異なり、適宜選択されるが、1〜2000nmの範囲内であることが好ましい。ガスバリア膜の厚さが、上記の範囲より薄い場合には、均一な膜が得られず、ガスに対するバリア性を得ることが困難であるからである。また、ガスバリア膜の厚さが上記の範囲より厚い場合には、ガスバリアフィルムにフレキシビリティを保持させることが困難であり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリア性フィルムに亀裂が生じる等のおそれがあるからである。
【0033】
厚みがこれ以下であると膜欠陥が多く、充分な防湿性が得られない。また、厚みが大きい方が理論的には防湿性は高いが、余り大きいと内部応力が不必要に大きくなり、割れやすく好ましい防湿性が得られない。
【0034】
また、本発明においては、上記ガスバリア層となるセラミック膜が、透明であることが好ましい。上記ガスバリア層が透明であることにより、ガスバリアフィルムを透明なものとすることが可能となり、EL素子の透明基板等の用途にも使用することが可能となるからである。ガスバリアフィルムの光透過率としては、例えば試験光の波長を550nmとしたとき透過率が80%以上のものが好ましく、90%以上が更に好ましい。
【0035】
プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られるガスバリア層は、原材料(原料ともいう)である有機金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸化物、金属硫化物等のセラミック膜を、またこれらの混合物(金属酸窒化物、金属窒化炭化物など)も作り分けることができるため好ましい。
【0036】
例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスにニ硫化炭素を用いれば、硫化亜鉛が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
【0037】
このような無機物の原料としては、典型または遷移金属元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよく、溶媒は、メタノール,エタノール,n−ヘキサンなどの有機溶媒及びこれらの混合溶媒が使用出来る。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視することができる。
【0038】
このような有機金属化合物としては、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4−ビストリメチルシリル−1,3−ブタジイン、ジ−t−ブチルシラン、1,3−ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1−(トリメチルシリル)−1−プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
【0039】
チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn−ブトキシド、チタンジイソプロポキシド(ビス−2,4−ペンタンジオネート)、チタンジイソプロポキシド(ビス−2,4−エチルアセトアセテート)、チタンジ−n−ブトキシド(ビス−2,4−ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。
【0040】
ジルコニウム化合物としては、ジルコニウムn−プロポキシド、ジルコニウムn−ブトキシド、ジルコニウムt−ブトキシド、ジルコニウムトリ−n−ブトキシドアセチルアセトネート、ジルコニウムジ−n−ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート、ジルコニウムヘキサフルオロペンタンジオネート等が挙げられる。
【0041】
アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn−ブトキシド、アルミニウムs−ブトキシド、アルミニウムt−ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ−s−ブトキシド等が挙げられる。
【0042】
硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボラン−ジエチルエーテル錯体、ボラン−THF錯体、ボラン−ジメチルスルフィド錯体、三フッ化硼素ジエチルエーテル錯体、トリエチルボラン、トリメトキシボラン、トリエトキシボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリエチルボラゾール、トリイソプロピルボラゾール、等が挙げられる。
【0043】
錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジ−n−ブチル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、ジエチル錫、ジメチル錫、ジイソプロピル錫、ジブチル錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチラート、錫ジアセトアセトナート、エチル錫アセトアセトナート、エトキシ錫アセトアセトナート、ジメチル錫ジアセトアセトナート等、錫水素化合物等、ハロゲン化錫としては、二塩化錫、四塩化錫等が挙げられる。
【0044】
また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエトキシド、バリウム2,2,6,6−テトラメチルヘプタンジオネート、ベリリウムアセチルアセトナート、ビスマスヘキサフルオロペンタンジオネート、ジメチルカドミウム、カルシウム2,2,6,6−テトラメチルヘプタンジオネート、クロムトリフルオロペンタンジオネート、コバルトアセチルアセトナート、銅ヘキサフルオロペンタンジオネート、マグネシウムヘキサフルオロペンタンジオネート−ジメチルエーテル錯体、ガリウムエトキシド、テトラエトキシゲルマン、テトラメトキシゲルマン、ハフニウムt−ブドキシド、ハフニウムエトキシド、インジウムアセチルアセトナート、インジウム2,6−ジメチルアミノヘプタンジオネート、フェロセン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジウムアセチルアセトナート、白金ヘキサフルオロペンタンジオネート、トリメチルシクロペンタジエニル白金、ロジウムジカルボニルアセチルアセトナート、ストロンチウム2,2,6,6−テトラメチルヘプタンジオネート、タンタルメトキシド、タンタルトリフルオロエトキシド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドオキシド、マグネシウムヘキサフルオロアセチルアセトナート、亜鉛アセチルアセトナート、ジエチル亜鉛、などが挙げられる。
【0045】
また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。
【0046】
金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属炭化物、金属窒化物、金属酸化物、金属ハロゲン化物、金属硫化物を得ることができる。
【0047】
これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。
【0048】
このような放電ガスとしては、窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
【0049】
上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給する。
【0050】
本発明に係るガスバリア層として用いるセラミック膜においては、セラミック膜が含有する無機化合物が、SiOxCy(x=1.5〜2.0、y=0〜0.5)または、SiOx(酸化珪素)、SiNy(窒化珪素)またはSiOxNy(酸化窒化珪素)(x=1〜2、y=0.1〜1)であることが好ましく、特にガスバリア性、水分の透過性、光線透過性及び後述する大気圧プラズマCVD適性の観点から、SiOxであることが好ましい。
【0051】
また、本発明に係るガスバリア層として用いるセラミック膜を構成する物質として好ましいものとして、前記、酸化珪素、酸化窒化珪素又は窒化珪素のほか、酸化アルミニウム等を挙げることが出来る。また、これら何れかの混合であってもよい。
【0052】
本発明に係るセラミック膜が含有する無機化合物は、例えば、上記有機珪素化合物に、更に酸素ガスや窒素ガスを所定割合で組み合わせて、O原子とN原子の少なくともいずれかと、Si原子とを含む膜を得ることができる。
【0053】
以上のように、上記のような原料ガスを放電ガスと共に使用することにより様々な無機薄膜を形成することができる。
【0054】
次ぎに本発明の透明ガスバリアフィルムで用いられる樹脂フィルム基材について説明する。
【0055】
本発明でいうポリシクロオレフィンフィルムとは、ゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのアートン(日本合成ゴム(株)製)等が使用できる。
【0056】
これらポリシクロオレフィンフィルムは、透明性が高く、低透湿性、またガス透過性も低い。
【0057】
このような樹脂フィルム基材を用い、前記のセラミック層を形成することで、耐久性のあるガスバリア性能に優れたガスバリアフィルムが得られる。これらの素材は単独であるいは適宜混合されて使用することも出来る。
【0058】
また、樹脂フィルム基材は透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリアフィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
【0059】
また、上記に挙げた樹脂等を用いた樹脂フィルム基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
【0060】
本発明に用いられる樹脂フィルム基材は、従来公知の一般的な方法、例えば、溶液キャスト法、また溶融押出製法等により製造することが可能である。例えば、溶融押出し製法を用いて、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。
【0061】
また、本発明に係る樹脂フィルム基材においては、蒸着膜を形成する前にコロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理などの表面処理を行ってもよい。
【0062】
さらに、本発明に係る樹脂フィルム基材表面には、例えば、セラミック膜をプラズマCVDまたは蒸着等により形成する場合、形成される膜との密着性の向上を目的としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1または2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m2(乾燥状態)程度が好ましい。
【0063】
樹脂フィルム基材は、ロール状に巻き上げられた長尺品が便利である。基材の厚さは、得られるガスバリアフィルムの用途によって異なるので一概には規定できないが、ガスバリアフィルムを包装用途とする場合には、特に制限を受けるものではなく、包装材料としての適性から、3〜400μm、中でも6〜30μmの範囲内とすることが好ましい。
【0064】
また、本発明に用いられる樹脂フィルム基材は、フィルム形状のものの膜厚としては10〜1000μmが好ましく、より好ましくは50〜500μm、さらに好ましくは80〜200μm、である。
【0065】
次いで、本発明のガスバリアフィルムの製造方法において、本発明に係るガスバリア層或いはセラミック膜の形成に好適に用いることのできる大気圧プラズマCVD法について、更に詳細に説明する。
【0066】
CVD法(化学的気相成長法)は、揮発・昇華した有機金属化合物が高温の基材表面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成されるというものであり、このような通常のCVD法(熱CVD法とも称する)では、通常500℃以上の基板温度が必要であるため、プラスチック基材への製膜には使用することが難しいが、一方、プラズマCVD法は、基材近傍の空間に電界を印加し、プラズマ状態となった気体が存在する空間(プラズマ空間)を発生させ、揮発・昇華した有機金属化合物がこのプラズマ空間に導入されて分解反応が起きた後に基材上に吹きつけられることにより、無機物の薄膜を形成するというものである。プラズマ空間内では、数%の高い割合の気体がイオンと電子に電離しており、ガスの温度は低く保たれるものの、電子温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン・ラジカルなどの励起状態のガスと接するために無機膜の原料である有機金属化合物は低温でも分解することができる。したがって、無機物を製膜する基材についても低温化することができ、樹脂フィルム基材上へも十分製膜することが可能な製膜方法である。
【0067】
しかしながら、プラズマCVD法においては、ガスに電界を印加して電離させ、プラズマ状態とする必要があるため、通常は、0.101kPa〜10.1kPa程度の減圧空間で製膜していたため、大面積のフィルムを製膜する際には設備が大きく操作が複雑であり、生産性の課題を抱えている方法である。
【0068】
これに対し、大気圧近傍でのプラズマCVD法では、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために製膜速度が速く、更にはCVD法の通常の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて平坦な膜が得られ、そのような平坦な膜は、光学特性、ガスバリア性共に良好である。以上のことから、本発明においては、大気圧プラズマCVD法を適用することが、真空下のプラズマCVD法よりも好ましい。
【0069】
またこの方法によれば、樹脂フィルム上に前記セラミック膜を形成させたときの膜密度が緻密であり、安定した性能を有する薄膜が得られる。また前記のように、残留応力が圧縮応力で、0.01MPa以上、20MPa以下という範囲のセラミック膜が安定に得られることが特徴である。
【0070】
次いで、大気圧或いは大気圧近傍でのプラズマCVD法を用いた前記セラミック膜の製造方法について述べる。
【0071】
先ず本発明のガスバリアフィルムの製造において使用されるプラズマ製膜装置の一例について、図2〜図5に基づいて説明する。図中、符号Fは基材の一例としての長尺フィルムである。
【0072】
図2または図3等に述べるプラズマ放電処理装置においては、ガス供給手段から、前記金属を含む原料ガス、分解ガスを適宜選択して、またこれらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合してプラズマ放電発生装置にガスを送りこむことで前記セラミック膜を得ることができる。
【0073】
放電ガスとしては、前記のように窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
【0074】
図2はジェット方式の大気圧プラズマ放電処理装置であり、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、図2では図示してない(後述の図3に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。
【0075】
プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11へは第1電源21からの周波数ω1、電界強度V1、電流I1の第1の高周波電界が印加され、また第2電極12へは第2電源22からの周波数ω2、電界強度V2、電流I2の第2の高周波電界が印加されるようになっている。第1電源21は第2電源22より高い高周波電界強度(V1>V2)を印加出来、また第1電源21の第1の周波数ω1は第2電源22の第2の周波数ω2より低い周波数を印加出来る。
【0076】
第1電極11と第1電源21との間には、第1フィルタ23が設置されており、第1電源21から第1電極11への電流を通過しやすくし、第2電源22からの電流をアースして、第2電源22から第1電源21への電流が通過しにくくなるように設計されている。
【0077】
また、第2電極12と第2電源22との間には、第2フィルター24が設置されており、第2電源22から第2電極への電流を通過しやすくし、第1電源21からの電流をアースして、第1電源21から第2電源への電流を通過しにくくするように設計されている。
【0078】
第1電極11と第2電極12との対向電極間(放電空間)13に、後述の図3に図示してあるようなガス供給手段からガスGを導入し、第1電極11と第2電極12から高周波電界を印加して放電を発生させ、ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、後述の図3に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは長手方向での基材の温度ムラが出来るだけ生じないように電極の内部の温度を均等に調節することが望まれる。
【0079】
ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に同じプラズマ状態のガスを放電させることが出来るので、何回も処理され高速で処理することも出来る。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することも出来る。
【0080】
図3は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
【0081】
本発明に係る大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。
【0082】
図3は、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。
【0083】
ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω1、電界強度V1、電流I1の第1の高周波電界を、また角筒型固定電極群(第2電極)36には第2電源42から周波数ω2、電界強度V2、電流I2の第2の高周波電界をかけるようになっている。
【0084】
ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルター44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。
【0085】
なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V1>V2)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。
【0086】
また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3mA/cm2〜20mA/cm2、さらに好ましくは1.0mA/cm2〜20mA/cm2である。また、第2の高周波電界の電流I2は、好ましくは10mA/cm2〜100mA/cm2、さらに好ましくは20mA/cm2〜100mA/cm2である。
【0087】
ガス供給手段50のガス発生装置51で発生させたガスGは、流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。
【0088】
基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。
【0089】
基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。
【0090】
放電処理済みの処理排ガスG′は排気口53より排出する。
【0091】
薄膜形成中、ロール回転電極(第1電極)35及び角筒型固定電極群(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。
【0092】
図4は、図3に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【0093】
図4において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。
【0094】
図5は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【0095】
図5において、角筒型電極36aは、導電性の金属質母材36Aに対し、図4同様の誘電体36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調節が行えるようになっている。
【0096】
なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されていおり、該電極の放電面積はロール回転電極35に対向している全角筒型固定電極面の面積の和で表される。
【0097】
図5に示した角筒型電極36aは、円筒型電極でもよいが、角筒型電極は円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。
【0098】
図4及び図5において、ロール電極35a及び角筒型電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。
【0099】
導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることが出来るが、後述の理由からはチタン金属またはチタン合金が特に好ましい。
【0100】
対向する第1電極および第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことを言う。
【0101】
双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1〜20mmが好ましく、特に好ましくは0.2〜2mmである。
【0102】
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述する。
【0103】
プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。図2において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。
【0104】
本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3−4500
A2 神鋼電機 5kHz SPG5−4500
A3 春日電機 15kHz AGI−023
A4 神鋼電機 50kHz SPG50−4500
A5 ハイデン研究所 100kHz* PHF−6k
A6 パール工業 200kHz CF−2000−200k
A7 パール工業 400kHz CF−2000−400k
等の市販のものを挙げることが出来、何れも使用することが出来る。
【0105】
また、第2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF−2000−800k
B2 パール工業 2MHz CF−2000−2M
B3 パール工業 13.56MHz CF−5000−13M
B4 パール工業 27MHz CF−2000−27M
B5 パール工業 150MHz CF−2000−150M
等の市販のものを挙げることが出来、何れも好ましく使用出来る。
【0106】
なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
【0107】
本発明においては、このような電界を印加して、均一で安定な放電状態を保つことが出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。
【0108】
本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm2、より好ましくは20W/cm2である。下限値は、好ましくは1.2W/cm2である。なお、放電面積(cm2)は、電極において放電が起こる範囲の面積のことを指す。
【0109】
また、第1電極(第1の高周波電界)にも、1W/cm2以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が両立出来る。好ましくは5W/cm2以上である。第1電極に供給する電力の上限値は、好ましくは50W/cm2である。
【0110】
ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。
【0111】
このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。
【0112】
本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10-6/℃以下となる組み合わせのものである。好ましくは8×10-6/℃以下、更に好ましくは5×10-6/℃以下、更に好ましくは2×10-6/℃以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
【0113】
線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材がステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング等がある。線熱膨張係数の差という観点では、上記1項または2項および5〜8項が好ましく、特に1項が好ましい。
【0114】
本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることが出来る。
【0115】
本発明に適用できる大気圧プラズマ放電処理装置としては、上記説明し以外に、例えば、特開2004−68143号公報、同2003−49272号公報、国際特許第02/48428号パンフレット等に記載されている大気圧プラズマ放電処理装置を挙げることができる。
【0116】
次いで本発明に係わるガスバリアフィルムについて説明する。
【0117】
図6は、本発明の透明なガスバリアフィルムの層構成を示す模式図である。
【0118】
ガスバリアフィルム1は、樹脂フィルム基材Y、例えばポリシクロオレフィン基材としてゼオノア(日本ゼオン製)上に一層のセラミック膜3を有している。また、本発明のガスバリアフィルムは、セラミック層を二つ以上積層されていてもよく、ガスバリアフィルム2は、樹脂フィルム基材Yと、少なくとも2層のセラミック膜3と2つのセラミック膜間に位置するセラミック膜より弾性率の低いポリマーを含む応力緩和層4を有している。本発明に係わるセラミック膜は緻密な構造を有し、硬度が高いため積層する場合、この様な応力緩和層を間に配し、複数の層に分けることが好ましい。応力緩和層は、セラミック層に発生する応力を緩和し無機セラミック膜の割れや欠陥の発生を防止する作用を有する。
【0119】
次いで、ここで用いられるポリマー層について説明する。
【0120】
本発明に係るポリマー層とは、無機ポリマー、有機ポリマー、有機無機ハイブリッドポリマー等を主成分とする薄膜で、その膜厚は、概ね5〜500nmで、前述のガスバリア層に対し相対的な硬度が低い層で、層中の平均炭素含有量が5%以上のものであり、応力緩和層とも呼ばれる。
【0121】
本発明で適用できる無機ポリマーは、無機骨格を主構造とし、かつ有機成分を含有する膜であり、有機金属化合物を重合したものも含む。
【0122】
これら無機ポリマー薄膜としては、特に限定は無いが、例えば、シリコーンやポリシラザンなどのケイ素化合物や、また、チタン化合物、アルミニウム化合物、硼素化合物、燐化合物、錫化合物を用い、例えば前記プラズマCVD法等により得ることができるセラミック膜でよい。
【0123】
例えば、本発明でこれら無機ポリマー薄膜の形成に用いることのできるケイ素化合物としては、特に限定はないが、好ましいものとして、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1−ジメチル−1−シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル−3,3,3−トリフルオロプロピルシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N−メチル−N−トリメチルシリルアセトアミド、3−アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3−トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル−3−ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3−アクリロキシプロピルジメトキシメチルシラン、3−アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2−アリールオキシエチルチオメトキシトリメチルシラン、3−グリシドキシプロピルトリメトキシシラン、3−アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3−メタクリロキシプロピルジメトキシメチルシラン、3−メタクリロキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ−3−グリシドキシプロピルシラン、ジブトキシジメチルシラン、3−ブチルアミノプロピルトリメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル−p−トリルビニルシラン、p−スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ−3−グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、1,4−ビス(ジメチルビニルシリル)ベンゼン、1,3−ビス(3−アセトキシプロピル)テトラメチルジシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン、1,3,5−トリス(3,3,3−トリフルオロプロピル)−1,3,5−トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7−テトラエトキシ−1,3,5,7−テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げるこができる。
【0124】
これらの無機ポリマーからなる応力緩和層は、従って、前記プラズマCVD方によって得られる本発明に係わるセラミック膜と同じ原料を用いて形成される好ましくは、酸化珪素等のセラミック膜であってもよく、膜の形成条件(反応ガス、電力、高周波電源等)を選択し、例えば生成するセラミック膜中の炭素含有率を増すことで、樹脂フィルム基材に接着性がよく、また硬度の稍低い割れに強いセラミック膜等が得られる。
【0125】
また、同じく応力緩和層となる有機ポリマー膜には、公知の重合性有機化合物を用いることができるが、その中でも、分子内にエチレン性不飽和結合を有する重合可能なエチレン性不飽和結合含有化合物が好ましく、また、一般的なラジカル重合性のモノマー類、光、熱、紫外線等により硬化する樹脂に一般的に用いられる分子内に付加重合可能なエチレン性二重結合を複数有する多官能モノマー類や多官能オリゴマー類を用いることができる。
【0126】
これらの重合可能なエチレン性二重結合含有化合物に特に限定は無いが、好ましいものとして、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシプロピルアクリレート、グリセロールアクリレート、テトラヒドロフルフリルアクリレート、フェノキシエチルアクリレート、ノニルフェノキシエチルアクリレート、テトラヒドロフルフリルオキシエチルアクリレート、テトラヒドロフルフリルオキシヘキサノリドアクリレート、1,3−ジオキサンアルコールのε−カプロラクトン付加物のアクリレート、1,3−ジオキソランアクリレート等の単官能アクリル酸エステル類、或いはこれらのアクリレートをメタクリレート、イタコネート、クロトネート、マレエートに代えたメタクリル酸、イタコン酸、クロトン酸、マレイン酸エステル、例えば、エチレングリコールジアクリレート、トリエチレングルコールジアクリレート、ペンタエリスリトールジアクリレート、ハイドロキノンジアクリレート、レゾルシンジアクリレート、ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのジアクリレート、ネオペンチルグリコールアジペートのジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのε−カプロラクトン付加物のジアクリレート、2−(2−ヒドロキシ−1,1−ジメチルエチル)−5−ヒドロキシメチル−5−エチル−1,3−ジオキサンジアクリレート、トリシクロデカンジメチロールアクリレート、トリシクロデカンジメチロールアクリレートのε−カプロラクトン付加物、1,6−ヘキサンジオールのジグリシジルエーテルのジアクリレート等の2官能アクリル酸エステル類、或いはこれらのアクリレートをメタクリレート、イタコネート、クロトネート、マレエートに代えたメタクリル酸、イタコン酸、クロトン酸、マレイン酸エステル、例えばトリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、トリメチロールエタントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサアクリレートのε−カプロラクトン付加物、ピロガロールトリアクリレート、プロピオン酸・ジペンタエリスリトールトリアクリレート、プロピオン酸・ジペンタエリスリトールテトラアクリレート、ヒドロキシピバリルアルデヒド変性ジメチロールプロパントリアクリレート等の多官能アクリル酸エステル酸、或いはこれらのアクリレートをメタクリレート、イタコネート、クロトネート、マレエートに代えたメタクリル酸、イタコン酸、クロトン酸、マレイン酸エステル等を挙げることができる。
【0127】
また、プレポリマーも上記同様に使用することができる。プレポリマーは、1種又は2種以上を併用してもよいし、上述の単量体及び/又はオリゴマーと混合して用いてもよい。
【0128】
プレポリマーとしては、例えばアジピン酸、トリメリット酸、マレイン酸、フタル酸、テレフタル酸、ハイミック酸、マロン酸、こはく酸、グルタール酸、イタコン酸、ピロメリット酸、フマル酸、グルタール酸、ピメリン酸、セバシン酸、ドデカン酸、テトラヒドロフタル酸等の多塩基酸と、エチレングリコール、プロピレングルコール、ジエチレングリコール、プロピレンオキサイド、1,4−ブタンジオール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、1,6−ヘキサンジオール、1,2,6−ヘキサントリオール等の多価のアルコールの結合で得られるポリエステルに(メタ)アクリル酸を導入したポリエステルアクリレート類、例えば、ビスフェノールA・エピクロルヒドリン・(メタ)アクリル酸、フェノールノボラック・エピクロルヒドリン・(メタ)アクリル酸のようにエポキシ樹脂に(メタ)アクリル酸を導入したエポキシアクリレート類、例えば、エチレングリコール・アジピン酸・トリレンジイソシアネート・2−ヒドロキシエチルアクリレート、ポリエチレングリコール・トリレンジイソシアネート・2−ヒドロキシエチルアクリレート、ヒドロキシエチルフタリルメタクリレート・キシレンジイソシアネート、1,2−ポリブタジエングリコール・トリレンジイソシアネート・2−ヒドロキシエチルアクリレート、トリメチロールプロパン・プロピレングリコール・トリレンジイソシアネート・2−ヒドロキシエチルアクリレートのように、ウレタン樹脂に(メタ)アクリル酸を導入したウレタンアクリレート、例えば、ポリシロキサンアクリレート、ポリシロキサン・ジイソシアネート・2−ヒドロキシエチルアクリレート等のシリコーン樹脂アクリレート類、その他、油変性アルキッド樹脂に(メタ)アクリロイル基を導入したアルキッド変性アクリレート類、スピラン樹脂アクリレート類等のプレポリマーが挙げられる。
【0129】
また、本発明に係るポリマー層に適用可能な有機ポリマーとしては、薄膜形成性ガスとしてプラズマ重合可能な有機物を用いることでも容易に形成できる。プラズマ重合可能な有機物としては、炭化水素、ビニル化合物、含ハロゲン化合物、含窒素化合物を挙げることが出来る。
【0130】
炭化水素としては、例えば、エタン、エチレン、メタン、アセチレン、シクロヘキサン、ベンゼン、キシレン、フェニルアセチレン、ナフタレン、プロピレン、カンフォー、メントール、トルエン、イソブチレン等を挙げることができる。
【0131】
ビニル化合物としては、例えば、アクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、アリルメタクリレート、アクリルアミド、スチレン、α−メチルスチレン、ビニルピリジン、酢酸ビニル、ビニルメチルエーテル等を挙げることが出来る。
【0132】
含ハロゲン化合物としては、四フッ化メタン、四フッ化エチレン、六フッ化プロピレン、フロロアルキルメタクリレート等を挙げることが出来る。
【0133】
含窒素化合物としては、例えば、ピリジン、アリルアミン、ブチルアミン、アクリロニトリル、アセトニトリル、ベンゾニトリル、メタクリロニトリル、アミノベンゼン等を挙げることが出来る。
【0134】
本発明に係る有機無機ハイブリッドポリマーとしては、有機(無機)ポリマーに無機(有機)物を分散させた膜や、無機骨格と有機骨格をともに主構造とする膜を挙げることができる。本発明に適用できる有機無機ハイブリッドポリマーは、特に限定は無いが、好ましくは、前述した無機ポリマーと有機ポリマーを適宜組み合わせたものを用いることができる。
【0135】
またこれらのガスバリアフィルムは、保護層(プロテクト層)を有していることが好ましい。保護層を形成することで、残留応力が小さい(0.01以上20MPa以下)本発明に係わるセ緻密なラミック膜の表面をキズや割れ等の故障から保護する。
【0136】
保護層についても、5〜500nmの、応力緩和層と同じ性質をもつ、前述のガスバリア層に対し相対的に硬度が低い、膜中の平均炭素含有量が5%以上の薄膜が好ましく、応力緩和層に用いた前記無機ポリマー、有機ポリマー、有機無機ハイブリッドポリマー等を主成分とする層を好ましく用いることができる。
【0137】
本発明のこれらガスバリアフィルムは、種々の封止用材料、フィルムとして用いることができる。
【0138】
本発明のこれらガスバリアフィルムは、また表示素子、例えば有機EL素子に用いることができる。有機EL素子に用いる際に、本発明のガスバリアフィルムは透明であるため、このガスバリアフィルムを基材として用いてこの側から光取り出しを行うように構成できる。即ち、このガスバリアフィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機エレクトロルミネッセンス素子用樹脂基材を構成することができる。そして、基材上に設けられた透明導電性薄膜であるITO膜を陽極としてこの上に発光層を含む有機EL材料層を設け、更に金属膜からなる陰極を形成して有機EL素子を形成し、この上に別の封止材料を(同じでもよいが)重ねて前記ガスバリアフィルム基材と周囲を接着、素子を封じ込めることで有機EL素子層を封止することができ、これにより外気の湿気や酸素等のガスによる素子への影響を封じることが出来る。
【0139】
有機エレクトロルミネッセンス用樹脂基材はこの様にして形成されたガスバリアフィルムのセラミック膜上に、透明導電性薄膜を形成することによって得られる。透明導電性薄膜は有機EL素子を形成したとき陽極となる導電膜である。
【0140】
透明導電性薄膜の形成は、真空蒸着法やスパッタリング法等を用いることにより、また、インジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等の塗布法によっても製造でき、比抵抗値で10-4Ω・cmオーダーの優れた導電性を有するITO膜を得ることが出来るが、インジウム、スズ等の金属アルコキシド、アルキル金属等の有機金属化合物を用いて前記同様に、大気圧プラズマCVD法により形成することが好ましい。
【0141】
しかしながら、前記の大気圧プラズマ放電処理装置により形成されることは好ましく、例えば工業的には、DCマグネトロンスパッタリング装置を用いて比抵抗値で10-4Ω・cmオーダーの優れた導電性を有するITO膜を得ることが出来るが、これらの物理的製作法(PVD法)では気相中で目的物質を基板に堆積させて膜を成長させるものであり、真空容器を使用するため装置が大がかりで高価なうえ原料の使用効率が悪くて生産性が低い。また大面積の成膜も困難であった。さらに、低抵抗品を得るためには製膜時に200〜300℃に加熱する必要があり、樹脂フィルムへの低抵抗な透明導電膜の製膜は困難である。
【0142】
透明導電性薄膜の形成において使用するガスは、基材上に設けたい透明導電性薄膜の種類によって異なるが、基本的には、前記同様に不活性ガスと、透明導電性薄膜を形成するためにプラズマ状態となる反応性ガスの混合ガスである。ここで不活性ガスとは、周期表の第18属元素、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン更には窒素ガス等前期と同様であるが、アルゴンまたはヘリウムが特に好ましく用いられる。本発明で用いる反応性ガスは複数用いることが可能であるが、少なくとも1種類は、放電空間でプラズマ状態となり、透明導電性薄膜を形成する成分を含有するものである。このような反応性ガスとしては特に制限はないが、有機金属化合物が好ましく用いられる。有機金属化合物の種類は問わないが、分子内に酸素を有する有機金属化合物が好ましく、特にβジケトン金属錯体、金属アルコキシド、アルキル金属等の有機金属化合物が好ましく用いられる。より好ましくは上記一般式(1)および(2)で表される化合物から選ばれる反応ガスである。一般式(1)および(2)で表される化合物の中で好ましい例は、インジウムヘキサフルオロペンタンジオネート、インジウムメチル(トリメチル)アセチルアセテート、インジウムアセチルアセトナート、インジウムイソポロポキシド、インジウムトリフルオロペンタンジオネート、トリス(2,2,6,6−テトラメチル3,5−ヘプタンジオネート)インジウム、ジ−n−ブチルビス(2,4−ペンタンジオネート)スズ、ジ−n−ブチルジアセトキシスズ、ジ−t−ブチルジアセトキシスズ、テトライソプロポキシスズ、テトラブトキシスズ、ジンクアセチルアセトナート等を挙げることが出来る。
【0143】
この中で特に好ましいのは、インジウムアセチルアセトナート、トリス(2,2,6,6−テトラメチル3,5−ヘプタンジオネート)インジウム、ジンクアセチルアセトナート、ジ−n−ブチルジアセトキシスズである。これらの有機金属化合物は一般に市販されており、たとえばインジウムアセチルアセトナートであれば東京化成工業(株)から容易に入手することができる。
【0144】
導電膜の形成においてはこれら分子内に少なくとも1つ以上の酸素原子を含有する有機金属化合物のほかに導電性を向上させるために行われるドーピング用のガスを用いることができる。ドーピングに用いられる反応性ガスとしては、例えば、アルミニウムイソプロポキシド、ニッケルアセチルアセトナート、マンガンアセチルアセトナート、ボロンイソプロポキシド、n−ブトキシアンチモン、トリ−n−ブチルアンチモン、ジ−n−ブチルビス(2,4−ペンタンジオネート)スズ、ジ−n−ブチルジアセトキシスズ、ジ−t−ブチルジアセトキシスズ、テトライソプロポキシスズ、テトラブトキシスズ、テトラブチルスズ、ジンクアセチルアセトナート、6フッ化プロピレン、8フッ化シクロブタン、4フッ化メタン等を挙げることができる。
【0145】
また、透明導電膜の構成元素を含む反応ガスの他に水を反応ガスとして用いることで、高い電導性と大きなエッチング速度を有する透明導電膜の製造が可能である。反応ガス中に混入する水の量は反応性ガスと不活性ガスの混合気体中0.0001から10%の範囲にあることが好ましい。より好ましくは0.001から1%の範囲にあることが好ましい。
【0146】
反応ガスとしては透明導電膜を構成する元素を含む有機金属化合物及び水の他、酸素などの酸化性を有するガス、水素などの還元性を有するガスその他、一酸化窒素、二酸化窒素、一酸化炭素、二酸化炭素などを適宜用いることも可能である。
【0147】
透明導電膜主成分として用いられる反応性ガスとドーピングを目的に少量用いられる反応性ガスの量比は、成膜する透明導電膜の種類により異なる。例えば、酸化インジウムに錫をドーピングして得られるITO膜においては得られるITO膜のIn:Snの原子数比が100:0.1〜100:15の範囲になるように反応性ガス量を調整する。好ましくは、100:0.5〜100:10の範囲になるよう調整する。In:Snの原子数比はXPS測定により求めることができる。酸化錫にフッ素をドーピングして得られる透明導電膜(FTO膜という)においては、得られたFTO膜のSn:Fの原子数比が100:0.01〜100:50の範囲になるよう反応性ガスの量比を調整する。Sn:Fの原子数比はXPS測定により求めることが出来る。In23−ZnO系アモルファス透明導電膜においては、In:Znの原子数比が100:50〜100:5の範囲になるよう反応性ガスの量比を調整する。In:Znの原子数比はXPS測定で求めることが出来る。
【0148】
更に、反応性ガスには透明導電膜主成分となる反応性ガスとドーピングを目的に少量用いられる反応性ガスがある。更に、本発明においては透明導電膜を構成する主たる金属元素、ドーピングとなる金属元素の他、ケイ素を導入する。ケイ素の導入方法には制限はないが、透明導電膜を形成する際、反応ガスとして透明導電膜の抵抗値を調整する為に反応性ガスを追加することも可能である。透明導電膜の抵抗値を調整する為に用いる反応性ガスとしては、有機金属化合物、特にβ−ジケトン金属錯体、金属アルコキシド、アルキル金属等の有機金属化合物が好ましく用いられる。具体的には以下のものをあげることができる。ケイ素化合物としてはテトラメトキシシラン、テトラエトキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、へキシルトリメトキシシラン等が挙げられる。この中でもテトラエトキシシランが安定性、蒸気圧の点で好ましい。
【0149】
透明導電性薄膜の膜厚としては、0.1nm〜1000nmの範囲が好ましい。
【0150】
透明導電性薄膜の場合大気圧近傍の圧力下で形成された後、熱を加え、透明導電性薄膜の特性を調整することも可能である。この熱処理によっても膜中の水素の量を変える事ができる。熱処理の温度としては50〜300℃の範囲が好ましい。好ましくは100から200℃の範囲である。加熱の雰囲気も特に制限はない。空気雰囲気、水素などの還元性ガスを含む還元雰囲気、酸素などの酸化性ガスを含有するような酸化雰囲気、あるいは真空、不活性ガス雰囲気下のうちから適宜選択することが可能である。還元、酸化雰囲気をとる場合、還元性ガス、酸化性ガスを希ガスや窒素などの不活性ガスで希釈して用いることが好ましい。このような場合、還元性ガス、酸化性ガスの濃度は0.01から5%が好ましく、より好ましくは0.1から3%である。
【0151】
また、本発明の透明導電性薄膜の形成方法によって得られる透明導電性薄膜は、反応性ガスとして有機金属化合物を用いるため、微量の炭素を含有する場合がある。その場合の炭素含有量は、0〜5.0原子数濃度であることが好ましい。特に好ましくは0.01〜3原子数濃度の範囲内にあることが好ましい。
【0152】
本発明においては、大気圧近傍の圧力下で前記セラミック膜、また透明導電性薄膜を形成するが、その際の基材の温度は特に制限はない。基材としてガラスを用いる場合は300℃以下、後に記す、高分子を用いる場合は200℃以下が好ましい。
【0153】
次いでこれらガスバリアフィルム、またこれに透明導電膜が形成された有機エレクトロルミネッセンス素子用樹脂基材を用いた有機エレクトロルミネッセンス素子について説明する。
【0154】
〔封止フィルムとその製造方法〕
本発明は、前記セラミック膜を有するガスバリアフィルムを基板として用いることが特徴の一つである。
【0155】
前記セラミック膜を有するガスバリアフィルムにおいてセラミック膜上に、更に透明導電性薄膜を形成し、これを陽極としてこの上に、有機EL素子を構成する有機EL材料層、陰極となる金属薄膜と積層し、この上に更にもう一つのガスバリアフィルムを封止フィルムとして、重ね接着することで封止する。
【0156】
本発明に係わる前記緻密な構造を有するセラミック膜を有するガスバリアフィルムと組み合わせて用いられるもう一つの封止材料(封止フィルム)としては、本発明に係わるガスバリアフィルムをも一つ用いることもできる。また、例えば、包装材等に使用される公知のガスバリア性フィルム、例えばプラスチックフィルム上に酸化珪素や、酸化アルミニウムを蒸着したフィルム、緻密なセラミック層と、柔軟性を有する衝撃緩和ポリマー層を交互に積層した構成からなるガスバリア性フィルム等を封止フィルムとして用いることが出来る。また特に、樹脂ラミネート(ポリマー膜)された金属箔は、光取りだし側のガスバリアフィルムとして用いることはできないが、低コストで、かつ透湿性の低い封止材料であり光取り出しを意図しない(透明性を要求されない)場合封止フィルムとして好ましい。
【0157】
本発明において金属箔とはスパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜と異なり、圧延等で形成された金属の箔またはフィルムを指す。
【0158】
金属箔としては、金属の種類に特に限定はなく、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。
【0159】
金属箔の厚さは6〜50μmが好ましい。6μm未満の場合は、金属箔に用いる材料によっては使用時にピンホールが空き、必要とするバリアー性(透湿度、酸素透過率)が得られなくなる場合がある。50μmを越えた場合は、金属箔に用いる材料によってはコストが高くなったり、有機EL素子が厚くなりフィルムのメリットが少なくなる場合がある。
【0160】
樹脂フィルム(ポリマー膜)がラミネートされた金属箔において樹脂フィルムとしては、機能性包装材料の新展開(株式会社 東レリサーチセンター)に記載の各種材料を使用することが可能であり、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン−ビニルアルコール共重合体系樹脂、エチレン−酢酸ビニル共重合体系樹脂、アクリロニトリル−ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
【0161】
上記の高分子材料の中で、ナイロン(Ny)、塩化ビニリデン(PVDC)をコートしたナイロン(KNy)、無延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、PVDCをコートしたポリプロピレン(KOP)、ポリエチレンテレフタレート(PET)、PVDCをコートしたセロハン(KPT)、ポリエチレン−ビニルアルコール共重合体(エバール)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)を用いることが好ましい。また、これら熱可塑性フィルムは、必要に応じて異種フィルムと共押し出しで作った多層フィルム、延伸角度を変えて張り合わせ積層した多層フィルム等も当然使用できる。さらに必要とする包装材料の物性を得るために使用するフィルムの密度、分子量分布を組み合わせて作ることも当然可能である。
【0162】
ポリマー膜の厚さは一概には規定できないが3〜400μmが好ましく、10〜200μmがより好ましく、10〜50μmがさらに好ましい。
【0163】
金属箔の片面にポリマー膜をコーティング(ラミネート)する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ドライラミネート方式、ホットメルトラミネーション法やエクストルージョンラミネート法も使用できるがドライラミネート方式が好ましい。
【0164】
金属箔の片面がポリマー膜でコーティングされたフィルムは、包装材用に市販されている。例えば、接着剤層/アルミフィルム9μm/ポリエチレンテレフタレート(PET)38μmの構成のドライラミネートフィルム(接着剤層としては2液反応型のウレタン系接着剤、厚みは1.5μm)が入手でき、これを用いて有機EL素子の陰極側の封止を行うことができる。
【0165】
また、封止用のフィルムとしては、金属箔の片面がポリマー膜でコーティングされたフィルムの、ポリマー膜と反対側の金属箔上に、セラミック膜を形成して用いることが好ましい。セラミック膜としては本発明に係わるセラミック膜が好ましく、膜厚としては、1〜2000nmの範囲内であり、前記大気圧プラズマ法等により同様に形成される。
【0166】
後述するが、2つのフィルムの封止方法としては、例えば、一般に使用されるインパルスシーラー熱融着性の樹脂層をラミネートして、インパルスシーラーで融着させ、封止する方法が好ましく、この場合、ガスバリアフィルム同士の封止は、フィルム膜厚が300μmを超えると封止作業時のフィルムの取り扱い性が悪化するのとインパルスシーラー等による熱融着が困難となるため膜厚としては300μm以下が望ましい。
【0167】
〔有機EL素子の封止〕
本発明では、本発明に係わる前記セラミック膜を有する樹脂フィルム(ガスバリアフィルム)上に透明導電膜を形成し、作製した有機エレクトロルミネッセンス用樹脂基材上に、有機EL素子各層を形成した後、上記封止フィルムを用いて、不活性ガスによりパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、有機エレクトロルミネッセンス素子を封止することができる。
【0168】
不活性ガスとしては、N2の他、He、Ar等の希ガスが好ましく用いられるが、HeとArを混合した希ガスも好ましく、気体中に占める不活性ガスの割合は、90〜99.9体積%であることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保存性が改良される。
【0169】
また、前記の樹脂フィルム(ポリマー膜)がラミネートされた金属箔を用いて、有機EL素子を封止するにあたっては、ラミネートされた樹脂フィルム面ではなく、金属箔上にセラミック膜を形成し、このセラミック膜面を有機EL素子の陰極に貼り合わせることが好ましい。封止フィルムのポリマー膜面を有機EL素子の陰極に貼り合わせると、部分的に導通が発生したり、それに伴う電飾が発生し、これによってダークスポットが発生することがある。
【0170】
封止フィルムを有機EL素子の陰極に貼り合わせる封止方法としては、一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えばエチレン酢酸ビニルコポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の熱融着性フィルムを積層して、インパルスシーラーで融着させ封止する方法がある。
【0171】
接着方法としてはドライラミネート方式が作業性の面で優れている。この方法は一般には1.0〜2.5μm程度の硬化性の接着剤層を使用する。ただし接着剤の塗設量が多すぎる場合には、トンネル、浸み出し、縮緬皺等が発生することがあるため、好ましくは接着剤量を乾燥膜厚で3〜5μmになるように調節することが好ましい。
【0172】
ホットメルトラミネーションとはホットメルト接着剤を溶融し基材に接着層を塗設する方法であるが、接着剤層の厚さは一般に1〜50μmと広い範囲で設定可能な方法である。一般に使用されるホットメルト接着剤のベースレジンとしては、EVA、EEA、ポリエチレン、ブチルラバー等が使用され、ロジン、キシレン樹脂、テルペン系樹脂、スチレン系樹脂等が粘着付与剤として、ワックス等が可塑剤として添加される。
【0173】
エクストルージョンラミネート法とは高温で溶融した樹脂をダイスにより基材上に塗設する方法であり、樹脂層の厚さは一般に10〜50μmと広い範囲で設定可能である。
【0174】
エクストルージョンラミネートに使用される樹脂としては一般に、LDPE、EVA、PP等が使用される。
【0175】
図7に本発明のガスバリアフィルム上に有機EL素子各層が形成されたのち、更に酸化珪素膜付き樹脂ラミネートアルミ箔と前記ガスバリアフィルムが接着されることで封止された有機EL素子の断面概略図を示す。
【0176】
図7(a)において、樹脂フィルム基材Y上に形成された本発明に係わるセラミック膜3を有するガスバリアフィルム上には、この上に陽極(ITO)4、発光層を含む有機EL各層5、陰極(例えばアルミニウム)6がそれぞれ形成され有機EL素子を形成している。更に陰極上には別の封止フィルムSが重ねられ、基材フィルム周囲を接着することで有機EL材料層を含む有機EL素子は封止された構造となっている。封止フィルムSは、本発明に係わるセラミック膜3が金属(アルミ)箔7の上に形成されており、又金属箔の反対側には、樹脂層8がラミネートされており、セラミック膜3側を陰極に接するように接着されている。尚、矢印は光の取り出し方向を示す。
【0177】
また、図7(b)は、例えば、特開平11−283751号公報等に記載のような、光取り出しのため、ガスバリアフィルム表面に、光の回折また散乱をおこさせる凹凸形状を所定のピッチで形成した樹脂基材を用い作製、封止した有機エレクトロルミネッセンス素子の断面概略図である。この様な基材をもちいると封止された有機EL材料からの光取り出し効率を向上させることができる。図7(b)において、9は接着剤である。
【0178】
また、この様な封止構造を形成するにあたっては、封止構造中、封止空間に吸水性の物質を配置したり、また、構造中に吸水層等の水蒸気を吸収する層を設けてもよい。
【0179】
次いで、有機EL素子を構成する有機EL材料各層(構成層)について説明する。
【0180】
また、有機EL素子層の詳細についても後述するが、本発明において、有機EL素子としては発光層にリン光性ドーパントを含有するリン光発光タイプの発光層を有する素子が発光効率が高く好ましい。
【0181】
〔有機EL素子〕
次に、本発明に係わる有機EL素子の構成層について詳細に説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
【0182】
(1)陽極/発光層/電子輸送層/陰極
(2)陽極/正孔輸送層/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(5)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(陽極)
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
【0183】
(陰極)
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
【0184】
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明であげた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
【0185】
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
【0186】
(注入層:電子注入層、正孔注入層)
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
【0187】
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
【0188】
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0189】
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
【0190】
(阻止層:正孔阻止層、電子阻止層)
阻止層は、上記の如く、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
【0191】
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
【0192】
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
【0193】
(発光層)
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
【0194】
本発明の有機EL素子の発光層には、以下に示すホスト化合物とドーパント化合物が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
【0195】
発光ドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
【0196】
前者(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
【0197】
後者(リン光性ドーパント)の代表例としては、好ましくは元素の周期表で8属、9属、10属の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。具体的には以下の特許公報に記載されている化合物である。
【0198】
国際公開第00/70655号パンフレット、特開2002−280178号公報、同2001−181616号公報、同2002−280179号公報、同2001−181617号公報、同2002−280180号公報、同2001−247859号公報、同2002−299060号公報、同2001−313178号公報、同2002−302671号公報、同2001−345183号公報、同2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、同2002−50484号公報、同2002−332292号公報、同2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、同2002−338588号公報、同2002−170684号公報、同2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、同2002−100476号公報、同2002−173674号公報、同2002−359082号公報、同2002−175884号公報、同2002−363552号公報、同2002−184582号公報、同2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、同2002−226495号公報、同2002−234894号公報、同2002−235076号公報、同2002−241751号公報、同2001−319779号公報、同2001−319780号公報、同2002−62824号公報、同2002−100474号公報、同2002−203679号公報、同2002−343572号公報、同2002−203678号公報等。
【0199】
その具体例の一部を下記に示す。
【0200】
【化1】

【0201】
【化2】

【0202】
【化3】

【0203】
発光ドーパントは複数種の化合物を混合して用いてもよい。
【0204】
〈発光ホスト〉
発光ホスト(単にホストともいう)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントともいう)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。さらに、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
【0205】
本発明に用いられる発光ホストとしては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
【0206】
中でもカルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。
【0207】
以下に、カルボリン誘導体、ジアザカルバゾール誘導体等の具体例を挙げるが、本発明はこれらに限定されない。
【0208】
【化4】

【0209】
【化5】

【0210】
また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。
【0211】
発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
【0212】
さらに公知のホスト化合物を複数種併用して用いてもよい。また、ドーパント化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる。
【0213】
本発明の有機EL素子の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0214】
発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。発光層としての膜厚は特に制限はないが、通常は5nm〜5μm、好ましくは5〜200nmの範囲で選ばれる。この発光層はこれらのリン光性化合物やホスト化合物が1種または2種以上からなる一層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。
【0215】
(正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
【0216】
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
【0217】
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
【0218】
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
【0219】
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
【0220】
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0221】
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号、特開2000−196140号、特開2001−102175号、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0222】
(電子輸送層)
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
【0223】
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0224】
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
【0225】
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0226】
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号、特開2000−196140号、特開2001−102175号、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0227】
本発明においては有機EL素子の基板として用いられる樹脂フィルム材料として、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、ポリメチルペンテン等があり、またアートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等各種フィルムが挙げられる。
【0228】
本発明においては有機EL素子の基板として本発明に係わるガスバリアフィルムを用いることが好ましく、本発明のガスバリアフィルムに用いられるポリシクロオレフィンフィルム、例えば、ゼオネックスやゼオノア(日本ゼオン(株)製)等のフィルム、また、代表的な非晶質ポリシクロオレフィン樹脂であるノルボルネン系樹脂からなるARTONフィルム(日本合成ゴム(株)製)等が有機EL素子の基板として用いられる好ましいフィルムである。これらの樹脂フィルム基材上に、セラミック層、また透明導電性薄膜を形成して有機EL素子用樹脂基材を作製し、これを使用して有機EL素子を作製し、前記封止用の、もう一つのガスバリアフィルムと組み合わせ封止するのが好ましい。
【0229】
本発明の有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
【0230】
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
【0231】
(有機EL素子の作製方法)
有機EL素子の作製方法について以下に詳しく説明する。
【0232】
有機EL素子の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。
【0233】
まず基体(本発明のガスバリアフィルム)上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング、又前記プラズマCVD等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
【0234】
この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。さらに層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。
【0235】
これらの層を形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
【0236】
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると、発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
【0237】
本発明の有機EL素子を用いた表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる。
【0238】
表示デバイス、ディスプレイとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。
【0239】
本発明の有機EL素子を用いた照明装置は家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。
【0240】
また、本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザ発振をさせることにより、上記用途に使用してもよい。
【0241】
本発明に係わるガスバリア性の高い樹脂フィルム上に、残留応力が所定範囲にあるセラミック膜を塗設したガスバリアフィルムは、ガスバリア層として多層のセラミック膜を積層する必要がなく、生産性に優れており、また、発光層からの光の取り出しを向上させるための光の回折又は拡散させる凹凸形状を表面に有するように容易に加工することもができる生産性の高いガスバリアフィルムである。
【0242】
〔表示装置〕
本発明の有機EL素子は、照明用や露光光源のような1種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を3種以上使用することにより、フルカラー表示装置を作製することが可能である。または、一色の発光色、例えば、白色発光をカラーフィルターを用いてBGRにし、フルカラー化することも可能である。さらに有機ELの発光色を色変換フィルターを用いて他色に変換しフルカラー化することも可能であるが、その場合、有機EL発光のλmaxは480nm以下であることが好ましい。
【0243】
本発明の有機EL素子から構成される表示装置の一例を図面に基づいて説明する。
【0244】
図8は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
【0245】
ディスプレイ101は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
【0246】
制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
【0247】
図9は、表示部Aの模式図である。
【0248】
表示部Aは基板上に、複数の走査線5及びデータ線106を含む配線部と、複数の画素103等とを有する。表示部Aの主要な部材の説明を以下に行う。図9においては、画素103の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。
【0249】
配線部の走査線105及び複数のデータ線106は、各々導電材料からなり、走査線105とデータ線106は格子状に直交して、直交する位置で画素103に接続している(詳細は図示せず)。
【0250】
画素103は、走査線105から走査信号が印加されると、データ線106から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。
【0251】
次に、画素の発光プロセスを説明する。
【0252】
図10は、画素の模式図である。
【0253】
画素は、有機EL素子110、スイッチングトランジスタ111、駆動トランジスタ112、コンデンサ113等を備えている。複数の画素に有機EL素子110として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
【0254】
図10において、制御部Bからデータ線106を介してスイッチングトランジスタ111のドレインに画像データ信号が印加される。そして、制御部Bから走査線105を介してスイッチングトランジスタ111のゲートに走査信号が印加されると、スイッチングトランジスタ111の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ113と駆動トランジスタ112のゲートに伝達される。
【0255】
画像データ信号の伝達により、コンデンサ113が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ112は、ドレインが電源ライン107に接続され、ソースが有機EL素子110の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン107から有機EL素子110に電流が供給される。
【0256】
制御部Bの順次走査により走査信号が次の走査線105に移ると、スイッチングトランジスタ111の駆動がオフする。しかし、スイッチングトランジスタ111の駆動がオフしてもコンデンサ113は充電された画像データ信号の電位を保持するので、駆動トランジスタ112の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子110の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ112が駆動して有機EL素子110が発光する。
【0257】
すなわち、有機EL素子110の発光は、複数の画素それぞれの有機EL素子110に対して、アクティブ素子であるスイッチングトランジスタ111と駆動トランジスタ112を設けて、複数の画素103それぞれの有機EL素子110の発光を行っている。このような発光方法をアクティブマトリックス方式と呼んでいる。
【0258】
ここで、有機EL素子110の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。
【0259】
また、コンデンサ113の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
【0260】
本発明においては、上述したアクティブマトリックス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリックス方式の発光駆動でもよい。
【0261】
図11は、パッシブマトリックス方式による表示装置の模式図である。図14において、複数の走査線105と複数の画像データ線106が画素103を挟んで対向して格子状に設けられている。
【0262】
順次走査により走査線105の走査信号が印加されたとき、印加された走査線105に接続している画素103が画像データ信号に応じて発光する。パッシブマトリックス方式では画素103にアクティブ素子がなく、製造コストの低減が計れる。
【0263】
〔照明装置〕
本発明に係わる有機EL材料は、また、照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
【0264】
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光を発光する材料(発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを組み合わせたもののいずれでもよいが、本発明に係わる白色有機EL素子においては、発光ドーパントを複数組み合わせる方式が好ましい。
【0265】
複数の発光色を得るための有機EL素子の層構成としては、複数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。
【0266】
本発明に係わる白色有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。
【0267】
発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
【0268】
このように、白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような1種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。
【0269】
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
【実施例】
【0270】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0271】
実施例1
図3に示すロール電極型放電処理装置を用いて処理を実施。ロール電極に対向する棒状電極を複数個フィルムの搬送方向に対し平行に設置し、各電極部に原料及び電力を投入し以下のように薄膜を形成した。
【0272】
ここで誘電体は対向する電極共に、セラミック溶射加工のものに片肉で1mm被覆した。また、被覆後の電極間隙は、1mmに設定した。また誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水による電極温度コントロールを行いながら実施した。ここで使用する電源は、応用電機製高周波電源(80kHz)、パール工業製高周波電源(13.56MHz)を使用した。
【0273】
樹脂フィルム基材としては、100μm厚みのアートンフィルム(日本合成ゴム(株)製)を用いて、この上に密着層/セラミック層/保護層の順に、以下に示す条件で、それぞれ形成した。各膜厚は、密着層が50nmで、セラミック層が30nm、保護層が400nmである。また製膜時の基材保持温度は、120℃とした。
【0274】
また比較例として100μm厚みのPETフィルム及びそのフィルム上に同様にアクリル系クリアハードコートを5μm設けたフィルムを用いて、この上に、同じ構成で密着層/セラミック層/保護層を順次設けた。
【0275】
〈セラミック層〉
放電ガス:N2ガス
反応ガス1:酸素ガスを全ガスに対し5%
反応ガス2:TEOSを全ガスに対し0.1%
低周波側電源電力:80kHzを10W/cm2
高周波側電源電力:13.56MHzを0.8〜10W/cm2で変化
〈密着層〉
放電ガス:N2ガス
反応ガス1:水素ガスを全ガスに対し1%
反応ガス2:TEOSを全ガスに対し0.5%
低周波側電源電力:80kHzを10W/cm2
高周波側電源電力:13.56MHzを5W/cm2
〈保護層〉
放電ガス:N2ガス
反応ガス1:水素ガスを全ガスに対し1%
反応ガス2:TEOSを全ガスに対し0.5%
低周波側電源電力:80kHzを10W/cm2
高周波側電源電力:13.56MHzを5W/cm2
基材として用いた各フィルムの水蒸気透過係数、酸素透過係数は以下の通りであった。
【0276】
【表1】

【0277】
上記で得られた、高周波側電源電力13.56MHzのパワー(電力)を変化させて得た、それぞれアートンフィルムおよびPETフィルム及びクリアハードコート付PETフィルムを樹脂フィルム基材とするガスバリアフィルム(〜12)について水蒸気バリア性能(g/m2/day)をJIS K7129 B法に従って測定した結果を表2に示した。
【0278】
また、同様にして、アートンフィルムを基材としたサンプルNo.9〜12を用い、残留応力および、JIS K7129 B法に従って測定した酸素バリア性能(ml/m2/day)の結果を表3に示した。なお、表3において、サンプルNo.101は樹脂フィルムとして前記サンプルNo.1〜4で用いたPETフィルムを用い、またセラミック層形成の条件として高周波電力を0.8W/cm2としてセラミック層を作製した。残留応力はマイナスであった。
【0279】
【表2】

【0280】
【表3】

【0281】
PETフィルムを樹脂フィルム基材として用いたガスバリアフィルム、また残留応力の小さいガスバリアフィルムサンプルは水蒸気バリア性能、酸素バリア性能共に本発明のガスバリアフィルムに比べ、性能的に劣っていた。
【0282】
実施例2
前記実施例1で作製したガスバリアフィルムサンプルNo.12のセラミック膜上に、以下の方法により透明導電膜を作製した。
【0283】
〈透明導電膜の形成〉
プラズマ放電装置としては、電極が平行平板型のものを用い、この電極間に上記透明フィルムを載置し、且つ、混合ガスを導入して薄膜形成を行った。
【0284】
なお、アース(接地)電極としては、200mm×200mm×2mmのステンレス板に高密度、高密着性のアルミナ溶射膜を被覆し、その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行い、このようにして被覆した誘電体表面を研磨し、平滑にして、Rmax 5μmとなるように加工した電極を用いた。また、印加電極としては、中空の角型の純チタンパイプに対し、アース電極と同様の条件にて誘電体を被覆した電極を用いた。印加電極は複数作成し、アース電極に対向して設け放電空間を形成した。
【0285】
また、プラズマ発生に用いる電源としては、パール工業(株)製高周波電源CF−5000−13Mを用い、周波数13.56MHzで、5W/cm2の電力を供給した。
【0286】
電極間に以下の組成の混合ガスを流し、プラズマ状態とし、上記のガスバリアフィルムを大気圧プラズマ処理し、ガスバリア層(セラミック膜)上に、錫ドープ酸化インジウム(ITO)膜を100nmの厚さで成膜した。
放電ガス:ヘリウム 98.5体積%
反応性ガス1:酸素 0.25体積%
反応性ガス2:インジウムアセチルアセトナート 1.2体積%
反応性ガス3:ジブチル錫ジアセテート 0.05体積%
(有機EL素子の作製)
上記のITO膜を形成したガスバリアフィルム100mm×100mmを基板とし、これにパターニングを行った後、このITO透明電極を設けたガスバリアフィルム基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてCBPを200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、別のモリブデン製抵抗加熱ボートにIr−1を100mg入れ、さらに別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取付けた。
【0287】
次いで真空槽を4×10-4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、正孔輸送層を設けた。さらにCBPとIr−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して発光層を設けた。なお、蒸着時の基板温度は室温であった。さらにBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。その上に、さらにAlq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して、さらに膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
【0288】
引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子を作製した。
【0289】
【化6】

【0290】
(封止フィルムの作製)
膜厚30μmのアルミ箔の片方の面に、ポリプロピレンを膜厚30μmでラミネートし、さらにその反対側の面に、実施例1おいて用いた図3に示すロール電極型大気圧プラズマ放電処理装置を用いてプラズマ放電処理を実施し、以下の条件で実施例1と同様のセラミック(SiO2)膜を30nmの厚みで形成し封止フィルムを作製した。
【0291】
〈セラミック層〉
放電ガス:N2ガス
反応ガス1:酸素ガスを全ガスに対し5%
反応ガス2:テトラエトキシシラン(TEOS)を全ガスに対し0.1%
低周波側電源電力:80kHzを10W/cm2
高周波側電源電力:13.56MHzを10W/cm2
窒素ガス(不活性ガス)によりパージされた環境下で、前記ガスバリアフィルムの有機EL素子が形成されていない周囲にエポキシ系接着剤を塗布し、作製した封止フィルムのSiO2膜を設けた面と有機EL素子の陰極面が対向するようにして貼り付けることで、素子を封止して有機ELデバイス1を作製した(図7(a))。
【0292】
(有機EL素子の評価)
作製した有機EL素子を60℃、95%RHの高温高湿下で通電を行い、ダークスポットの発生状況を観察した。
【0293】
本発明の封止方法で作製した有機ELデバイスは封止性能に優れ、ダークスポットが発生し難いことが分かった。
【0294】
また、実施例2で形成した封止された有機EL素子に5Vの電圧を印加し発光させ、発光量を測定した。作製した封止された有機EL素子において、本発明のガスバリアフィルムを透過した発光の正面輝度は、650cd/m2であり、作製した有機EL素子は光取り出し効率も高く充分な輝度を有していることが判った。尚、輝度の測定には分光放射輝度計(コニカミノルタセンシング株式会社製 CS1000A)を用いた。
【図面の簡単な説明】
【0295】
【図1】真空蒸着法により形成した酸化珪素膜の残留応力と真空度との関係を示す図である。
【図2】本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
【図3】本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
【図4】図3に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【図5】角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【図6】本発明のガスバリアフィルムの層構成を示す模式図である。
【図7】封止された有機EL素子の断面概略図を示す断面図である。
【図8】有機EL素子から構成される表示装置の一例を示した模式図である。
【図9】表示部Aの模式図である。
【図10】画素の模式図である。
【図11】パッシブマトリックス方式による表示装置の模式図である。
【符号の説明】
【0296】
1,2 ガスバリアフィルム
3 セラミック膜
Y 樹脂フィルム基材
10、30 プラズマ放電処理装置
11 第1電極
12 第2電極
14 処理位置
21、41 第1電源
22、42 第2電源
32 放電空間(対向電極間)
35 ロール回転電極(第1電極)
35a ロール電極
35A 金属質母材
35B、36B 誘電体
36 角筒型固定電極群(第2電極)
36a 角筒型電極
36A 金属質母材
40 電界印加手段
50 ガス供給手段
52 給気口
53 排気口
F 基材
G ガス
G° プラズマ状態のガス

【特許請求の範囲】
【請求項1】
樹脂フィルム上にセラミック膜を少なくとも1層以上有するガスバリアフィルムにおいて、該樹脂フィルムがポリシクロオレフィンフィルムであることを特徴とするガスバリアフィルム。
【請求項2】
前記セラミック膜の残留応力が0.01以上20MPa以下であることを特徴とする請求項1記載のガスバリアフィルム。
【請求項3】
前記セラミック膜を構成する物質が、酸化珪素又は酸化窒化珪素又は窒化珪素又は酸化アルミニウムの何れか又はそれらの混合であることを特徴とする請求項1または2記載のガスバリアフィルム。
【請求項4】
請求項1〜3のいずれか1項記載のガスバリアフィルム上に、透明導電性薄膜が形成されていることを特徴とする有機エレクトロルミネッセンス用樹脂基材。
【請求項5】
樹脂フィルム上にセラミック膜および透明導電性薄膜が形成された請求項4記載の有機エレクトロルミネッセンス用樹脂基材上に、燐光発光有機エレクトロルミネッセンス材料及び陰極となる金属膜をコーティングし、更に樹脂ラミネート済み金属箔を接着剤で貼り付け封止したことを特徴とする有機エレクトロルミネッセンス素子。
【請求項6】
前記セラミック膜は、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を励起した前記ガスに晒すことにより基材上に薄膜を形成する薄膜形成方法により、樹脂フィルム上に形成されたことを特徴とする請求項5記載の有機エレクトロルミネッセンス素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2007−83644(P2007−83644A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【出願番号】特願2005−277386(P2005−277386)
【出願日】平成17年9月26日(2005.9.26)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】