説明

ガス供給構造体、泡制御システム、及び折り畳み可能な袋体容器及びバイオリアクタ用袋体成形方法並びに物品

【課題】流体を収容するとともに操作するシステムを提供する。
【解決手段】支持された折り畳み可能な袋体を含むシステム及び方法を備え、該折り畳み可能な袋体は内部の化学的、生化学的、生物学的反応を行うリアクタとして用いられる。一般的に、ガス供給構造体、泡制御システム、及び折り畳み可能な袋体容器及びバイオリアクタ用袋体成形方法並びに物品などの流体収容システムについての一連の改善及び特性がもたらされる。容器10は継ぎ目のない折り畳み可能な袋体を備える。折り畳み可能な袋体は射出成形、ブロー成形、回転成形されることもある。さらに、容器10は容器内で生成又は収容される泡を減少させる装置を備える。センサ43及び制御装置34を任意に用いることにより、泡立ちを監視及び/又は制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般的には流体を収容するとともに操作するためのシステムに関する。本発明はさらに特定の実施形態において、化学的な、生化学的な、及び/又は生物的な反応を内部で行うリアクタとして用いられる折り畳み可能な袋体を備えるシステム及び方法に関する。
【背景技術】
【0002】
流体を操作するための、及び/又は化学的、生化学的、及び/又は生物学的な反応を行うための様々な容器が利用可能である。例えば、哺乳類、植物、又は昆虫の細胞を備える生体物質(例えば、動物細胞及び植物細胞)及び微生物の培養は、バイオリアクタを用いることによって処理可能である。バイオリアクタは、伝統的なバイオリアクタ又は使い捨てのバイオリアクタが用いられる。伝統的なバイオリアクタは一般的には固定された加圧容器として設計され、使い捨てのバイオリアクタはその多くがプラスチック製の無菌性の袋体を利用している。反応システム及び他の流体操作システム(例えば、混合システム)
は公知であるが、上記システムの改良は有益である。
【発明の概要】
【0003】
本発明は一般的には流体を収容するとともに操作するシステムに関する。本発明はさらに特定の実施形態において、化学的な、生化学的な、及び/又は生物学的な反応を内部で行うリアクタとして用いられる支持された折り畳み可能な袋体を備えるシステム及び方法に関する。本発明の対象は場合によっては相互に関連する物品、特定の問題への代替解決策、及び/又は1以上のシステム及び/又は物品を複数回様々な形で用いることも含まれる。
【0004】
本発明の一形態において、一連の容器がもたらされる。ある実施形態では、所定体積の液体を収容するよう構成された容器がもたらされる。その容器は所定体積の液体を収容する折り畳み可能な袋体を備え、該折り畳み可能な袋体は少なくとも2リットルの容積を有する。容器はさらに該折り畳み可能な袋体の周囲を囲むとともに収容する支持構造体を備える。容器は同様に折り畳み可能な袋体と接続する第1スパージャを備え、該第1スパージャは液状で第1ガス組成の供給源と流体流通可能である。容器はさらに折り畳み可能な袋体と接続する第2スパージャを備え、該第2スパージャは第1ガス組成とは異なる第2
ガス組成の供給源と流体流通可能である。
【0005】
他の実施形態では、所定体積の液体を収容するよう構成された容器は、所定体積の液体を収容する折り畳み可能な袋体と該折り畳み可能な袋体の周囲を囲むとともに収容する支持構造体を備える。また、容器はさらに折り畳み可能な袋体と接続する第1スパージャを備える。該第1スパージャは第1の開口サイズを有し、第1スパージャの少なくとも一部は第1ガスの供給源に接続されるよう寸法を合わせる。容器はさらに、折り畳み可能な袋体と接続する第2スパージャを備える。該第2スパージャは第2の開口サイズを有し、少なくとも第2スパージャの一部は第2ガスの供給源に接続されるよう寸法を合わせる。
【0006】
他の実施形態において、所定体積の液体を収容するよう構成された容器は所定体積の液体を収容可能なコンテナを備える。容器は磁気駆動の消泡装置を備え、該消泡装置の少なくとも一部は、コンテナが所定体積の液体を収容する際にコンテナの上部空間内に配される。消泡装置は、少なくともその一部が回転している際に、上部空間の泡を分散させるように構成されるとともに配置される。
【0007】
他の実施形態では、所定体積の液体を収容するよう構成された容器は、液体を収容する折り畳み可能な袋体と該折り畳み可能な袋体の周囲を囲むとともに収容する再利用可能な支持構造体を備える。容器は折り畳み可能な袋体内の圧力を決定する圧力センサをさらに備え、該圧力センサは折り畳み可能な袋体と流体流通可能である。容器は消泡装置をさらに備え、該消泡装置は折り畳み可能な袋体と接続し、折り畳み可能な袋体内の泡を分散させるよう構成される。容器はまた、圧力センサ及び消泡装置と動作可能に接続し、圧力センサから信号を受信するとすぐに制御システムが消泡装置を制御する。
【0008】
他の実施形態では、少なくとも2リットルの容積を有するよう構成された折り畳み可能な袋体がもたらされる。折り畳み可能な袋体は底部に配された第1の回転可能な羽根車を備える。該第1の回転可能な羽根車は磁気的に回転可能である。折り畳み可能な袋体はさらに上部に配された第2の羽根車を備え、該第2の羽根車は磁気的に回転可能である。
【0009】
他の実施形態では、所定体積の液体を収容可能なコンテナがもたらされる。コンテナは少なくとも40リットルの容積を有する折り畳み可能な袋体を備え、該折り畳み可能な袋体は2以上の可撓性のある壁部を結合させる継ぎ目を有さない。コンテナは折り畳み可能な袋体の周囲を囲むとともに収容する再利用可能な支持構造体をさらに備える。
【0010】
本発明の他の形態において、一連の方法がもたらされる。ある実施形態においては、1つの方法は金型に剛性の構成要素を配する段階を備え、該金型は少なくとも10ミリリットルの容積を有するコンテナを成形するよう構成された形状を有する。この方法は第1ポリマ又はポリマ前駆物質を該金型に導入する段階をさらに備える。この方法はポリマ又はポリマ前駆物質を凝固させることによって金型内部に継ぎ目のないコンテナを形成する段階を備え、構成要素はコンテナ内に組み込まれる。
【0011】
他の実施形態においては、ある方法は第1ポリマ又はポリマ前駆物質をある金型に導入する段階を備え、該金型は少なくとも10ミリリットルの容積を有するコンテナを形成するよう構成された形状を有する。該金型は液体収容システムの機能的な構成部品を形成する少なくとも1つのマンドレルをさらに備える。この方法は金型内部にコンテナを形成する段階と、マンドレルを用いて金型内部に構成部品を形成する段階と、及び溶接することなくコンテナと機能的な構成部品を接合する段階をさらに備える。
【0012】
他の実施形態では、ある方法は第1ポリマ又はポリマ前駆物質を金型に導入する段階を備え、該金型は少なくとも10リットルの容積を有する折り畳み可能な袋体を成形するよう構成された形状を有するとともに磁性羽根車を支持するよう構成されたシャフトを備える基板を成形するよう構成される。この方法は折り畳み可能な袋体を金型内部に形成する段階をさらに備える。この方法は第2ポリマ前駆物質を金型に導入する段階と、第2ポリマ前駆物質を凝固させることにより混合システムの構成要素を形成する段階と、及び混合システムの構成要素と折り畳み可能な袋体を溶接することなく接合する段階をさらに備え
る。
【0013】
他の実施形態では、ある物品は柔軟壁部分と剛性部分を備える折り畳み可能な袋体を備える。該剛性部分は磁性羽根車を支持するよう構成されたシャフトを含む基盤を備え、剛性部分は柔軟壁部分に埋め込まれる。
【0014】
本発明の他の利点及び新規的特性は、添付の図と関連して考察する際に本発明の様々な制約のない実施形態についての以下の詳細な記載から明らかになる。本明細書及び参照することにより組み込まれた文書が相反する及び/又は一貫性のない開示を含んでいる場合、本明細書を優先するものとする。参照することにより組み込まれた2以上の文書が相反する及び/又は一貫性のない開示を互いに関連して含んでいる場合、より近い発行日を有する方の文書を優先するものとする。
【図面の簡単な説明】
【0015】
【図1】支持構造部内に収容されたコンテナを示す、本発明の1つの実施形態を示す。
【図2A】本発明の他の実施形態に従って、継ぎ目のないコンテナを形成するための技術を示す。
【図2B】本発明の他の実施形態に従って、継ぎ目のないコンテナを形成するための技術を示す。
【図2C】本発明の他の実施形態に従って、継ぎ目のないコンテナを形成するための技術を示す。
【図3】本発明の他の実施形態に従って、生物学的、化学的、及び生化学的工程を含む流体の操作を行う容器を示す。
【図4A】本発明の他の実施形態に従って、羽根車を含む様々な装置を示す。
【図4B】本発明の他の実施形態に従って、羽根車を含む様々な装置を示す。
【図5】本発明の他の実施形態に従って、外部モータに磁気的に接続された羽根車を示す。
【図6】本発明の他の実施形態に従って、羽根車を示す。
【図7】本発明の他の実施形態に従って、消泡システムの一例を示す。
【図8】本発明の他の実施形態に従って、消泡システムの他の例を示す。
【図9】本発明の他の実施形態に従って、制御工程及びフィードバック工程の一例を示す。
【発明を実施するための形態】
【0016】
本発明の制約のない実施形態が添付の図と関連し一例として記載される。図は概略図であり、縮尺を意図して描かれたものではない。図において、図示されている理想的な又はほぼ理想的な構成要素の各々は一般的には一つの数字で表されている。明確化するために、全ての構成要素が数字で表示されているわけではなく、図示された本発明の各実施形態の全ての構成要素も数字で表示されているわけでもない。実際に、当業者が本発明を理解するために図解は必ずしも必要なわけではない。
【0017】
本発明は一般的には流体を収容するとともに操作するシステムに関連する。特定の実施形態においては、本発明は化学的、生化学的、及び/又は生物学的反応を内部で行うためにリアクタとして用いられる折り畳み可能な袋体を有するシステム及び方法に関する。一般的に、本発明はガス供給構造体等の流体収容システム、泡制御システム、及び支持された折り畳み可能な袋体容器及びバイオリアクタ用袋体成形方法並びに物品に一連の改善と特性を与えるものである。例えば、ある形態において、容器内に収容される流体が散布されることにより、流体は容器のコンテナに向かうようになる。散布は必要に応じてその度
合いを急激に活動的にしたり、変化させたりすることによって制御可能となることもある。複数のスパージャが用いられる場合もある。他の形態では、容器は継ぎ目のない折り畳み可能な袋体を備える。折り畳み可能な袋体が射出成形、ブロー成形、又は回転成形されることもある。さらに別の形態では、容器は容器内で生成又は収容される泡を減少させる装置を備える。センサ及び/又は制御装置は任意に用いられ、泡立ちを監視及び/又は制御する。
【0018】
以下の文献は参照することによって本発明に組み込まれるものとする:米国仮特許出願第60/903,977号(出願日:2007年2月28日、発明の名称:「WeightMea
surementsofLiquidsinFlexibleContainers」出願人P.A.Mitchell,etal)、米国特許第11/147,124号(出願日:2005年6月6日、発明の名称:「DisposableBioreactorSystemsandMethods」出願人G.Hodge,etal.,2005年12月8日に米国特許公報第2005/0272146号として公開)、国際特許出願PCT/US2005/020083(出願日:2005年6月6日、発明の名称:「DisposableBiore
actorSystemsandMethods」出願人G.Hodge,etal.,2005年12月15日にWO2005/118771として公開)、国際特許出願PCT/US2005/002985(出願日:2005年2月3日、発明の名称:「SystemandMethodforManufacturing」出願人G.Hodge,etal.,2005年8月18日にWO/2005/076093として公開)
【0019】
本明細書記載の多くはバイオリアクタ(及び/又は生化学的かつ化学的な反応システム)に関連する本発明の典型的な応用例を備えるが、本発明及びその使用は制限されることなく、さらに、コンテナ内の流体の収容及び/又は処理のためのシステム(例えば、混合システム)だけでなく、一般的な収容システムを含む異なる設定においても本発明の形態は同様に利用可能であることを理解されたい。さらに、ここで提供される多くの実施例が折り畳み可能な袋体又はフレキシブルコンテナの使用を備える一方で、本発明の形態は非折り畳み式の袋体、剛性コンテナ、及び液体収容容器を含む他の構造を伴うシステムと統合可能である。
【0020】
ある形態において、所定体積の液体を収容するよう構成された容器がもたらされる。特定の実施形態において、容器はバイオリアクタシステムの一部である。例えば、フレキシブルコンテナを含むバイオリアクタシステムの制約のない実施例が図1の概略図に示される。図1の実施形態で示されているように、容器(10)は、コンテナ(18)の周囲を囲むとともに収容する再利用可能な支持構造体(14)(例えばステンレス製のスチールタンク)を備える。別の実施形態では、コンテナは折り畳み可能な袋体(ポリマ製の袋体)として構成される。加えて、及び/又は変更形態として、折り畳み可能な袋体又は他のコンテナの全て又は一部が、剛性ポリマ、金属、及び/又はガラスなどのほぼ剛性の材料を備えることもある。他の実施形態においては、剛性コンテナがこの構造で用いられる。
容器は使い捨てで、支持構造体から容易に取り外しできるように構成されている。ある実施形態では、コンテナは支持構造体と不完全に接続される。ここで用いられているように、2以上の対象を言及する際、「一体的に接続」という用語は、2以上の対象の分離には、少なくとも一方の対象(或いは対象の要素)に損傷を生じさせる必要があることを意味する。例えば、破損や剥離(例えば、接着剤や道具などを介してともに固定された構成要素を分離させる)による損傷を与えることが必要となる。
【0021】
折り畳み可能な袋体を用いる際、折り畳み可能な袋体は液体(22)を収容するために構築されるとともに配置され、該折り畳み可能な袋体は化学的、生化学的、及び/又は生物学的な反応等の所望の工程を実行するために必要な反応物、培地、及び/又は他の構成要素を収容する。さらに、使用中に液体(22)が折り畳み可能な袋体とのみほぼ接触し、支持構造体(14)とは接触しないように折り畳み可能な袋体が構成されることもある。その他の実施形態において袋体は使い捨て可能で、一度の反応又は単一の一連の反応に用いられ、反応後に処分される。折り畳み可能な袋体の液体が支持構造体と接触しないた
め、支持構造体は洗浄することなく再利用可能である。すなわち、コンテナ(18)で反応が起きた後に、コンテナは支持構造体から切り離され、第2(例えば、使い捨て可能な)コンテナと交換可能である。第1コンテナ又は再利用可能な支持構造体を洗浄する必要なく、第2反応は第2コンテナ内で実行可能である。
【0022】
図1で示されるごとく、任意の流入ポート(42)及び任意の排出ポート(46)はコンテナ及び/又は再利用可能な支持構造体の中で形成可能で、コンテナからの液体及び/又はガスの出し入れをより効率的に行うことができる。コンテナは適切な数の流入ポートと適切な数の排出ポートを有する。例えば、複数の流入ポートは様々なガス組成物を提供する(複数のスパージャ(47)を介して)及び/又はコンテナ内に取り込まれる前にガスを分離させるために用いられる。上記ポートはコンテナ(18)に対して適切な位置に配される。例えば、スパージャを含む特定の容器では、コンテナは底部に配された1以上のガス流入ポートを有する。チューブは流入ポート及び/又は排出ポートに接続され、例えば、送り出し管と取り込み管を形成して、各々がコンテナから液体を出し入れする。コ
ンテナ及び/又は支持構造体は任意でユーティリティタワー(50)を備え、ユーティリティタワー(50)は、コンテナ及び/又は支持構造体内部の1以上の装置を1以上のポンプ、制御装置、及び/又は電子機器(例えば、センサ電子機器、電子インターフェイス、加圧ガス制御装置)又は他の装置を相互接続させるために役立つ。上記のような装置は制御システム(34)を用いて制御される。
【0023】
複数のスパージャを含むシステムにとって、制御システム(34)はスパージャの各々と動作可能なように接続し、互いに独立してスパージャを操作するように構成されている。上記によって、例えば、複数のガスをコンテナ内に導入しながら制御することが可能となる。
【0024】
容器は羽根車(51)などの混合システムを任意で備え、該羽根車(51)はコンテナの外部に配されるモータ(52)を用いて回転可能(例えば、単一軸周り)である。別の実施形態では、以下に詳細に記載するように、羽根車とモータは磁気的に結合する。混合システムは制御システム(34)によって制御可能である。混合システムはさらに詳細に以下に記載されている。
【0025】
加えて、及び/又は、変更形態として、容器は機械的な消泡装置等の消泡システムを備えてもよい。図1の実施形態に示されているごとく、消泡装置は例えばコンテナの外部に配されるモータ(62)を用いて磁気的に回転可能な羽根車(61)を備えてもかまわない。羽根車はコンテナの上部空間(63)に収容される泡を分散させるために用いられることもある。別の実施形態では、消泡システムは制御システム(34)を介してセンサ(43、例えば、泡センサ)と電気的に接続している。このセンサは例えば上部空間内の泡の液位又は容積、又はコンテナ内の圧力を決定することもあり、これによって消泡システ
ムの調整又は制御を誘引することが可能である。他の実施形態において、消泡システムは任意のセンサから独立して操作される。
【0026】
別の実施形態では、支持構造体及び/又は容器は標本、分析(例えば、液体中の溶解ガスのpH及び/又は量を決定する)、又はその他の目的のために用いられる1以上のポート(54)を備える。支持構造体はコンテナ内の液体の液位を調べるための1以上のサイトウィンドウ(60)を備える。1以上の接続部(64)がコンテナの上部又は他の適切な位置に配される。接続部(64)はコンテナから液体、ガス等を出し入れするための開口部、チューブ、及び/又はバルブを備え、該接続部(64)の各々は流量センサ及び/又はフィルタ(図示されず)を任意で備える。支持構造体は複数の脚部(66)をさらに
備え、容器の運搬を容易にするために任意でキャスター(68)を有する。
【0027】
図1で示された全ての特性が本発明の全ての実施形態で必要とされるわけではないこと、及び図示された構成要素は異なるように曝されたり、構成されたりしてもかまわないことを留意されたい。同様に、ここで記載された構成要素等を他の実施形態で追加してもかまわない。
【0028】
本発明の様々な形態は折り畳み可能な袋体等のコンテナを備える容器を対象にしている。ここで用いられる「フレキシブルコンテナ」、「可撓性を有する袋体」、「折り畳み可能な袋体」とは、コンテナ又は袋体が内部の圧力に晒された際に(操作中に予想される収容された液体及び/又はガスの重量及び/又は静水圧によって)、個々の支持構造体の恩恵を受けることなくしてはその形状及び/又は構造的な統合性を維持することができないということを指し示している。折り畳み可能な袋体は本来、多くのプラスチック等の可撓性材料からできているか、又は通常、剛性材料とみなされるもの(例えば、ガラス又は特定の金属)からできているが、操作中に予想される内部圧力に曝された際には、その厚み及び/又は物理的特性ゆえに、容器は個々の支持構造体の恩恵を受けることなくしては全体としての形状及び/又は構造的な統合性を維持することができない。別の実施形態では、折り畳み可能な袋体は可撓性材料と剛性材料の組み合わせを備え、例えば、その袋体は接続部、ポート、混合システム及び/又は消泡装置等の支持部のような剛性の構成要素を備える。
【0029】
コンテナ(折り畳み可能な袋体)は液体を収容するための適切な大きさを有する。例えば、コンテナには、1−40リットル、40−100リットル、100−200リットル、200−300リットル、300−500リットル、500−750リットル、750−1000リットル、1000−2000リットル、2000−5000リットル、又は5000−10000リットルの容積がある。10000リットル以上の容積であっても同様に可能である。
【0030】
ある実施形態では、折り畳み可能な袋体は使い捨て可能であり、適切な可撓性材料から形成される。可撓性材料はUSPのVI級と認定されたなかのひとつで、例えば、シリコン、ポリカーボネート、ポリエチレン、及びポリプロピレン等がある。可撓性材料の制約のない例は、ポリエチレン(例えば、直鎖状低密度ポリエチレン及び超低密度ポリエチレン)、ポリプロピレン、ポリ塩化ビニル、ポリ二塩化ビニル、ポリ塩化ビニデリン、エチレン酢酸ビニル、ポリカーボネート、ポリメタクリレート、ポリビニルアルコール、ナイロン、シリコンゴム、他の合成ゴム、及び/又はプラスチック等のポリマを備える。上記のごとく、フレキシブルコンテナの一部は剛性ポリマ(例えば、高密度ポリエチレン)、金属、及び/又はガラス(例えば、器具を支持する領域で)等の剛性材料を備える。他の実施形態では、コンテナはほぼ剛性の材料である。コンテナの全て又は一部は光学的に透明で、コンテナ内部の内容物を見渡せることができる。コンテナを形成するために用いられる材料又はその組み合わせは、可撓性、穿刺力、抗張力、液体及びガスの浸透性、不透明性、及びブロー成形、射出成形、又は回転成形(例えば、継ぎ目のない折り畳み可能な袋体を形成するため)等の特定の工程に対する適応性などの1以上の特性に基づいて選択
される。
【0031】
コンテナ(例えば、折り畳み可能な袋体)は流体を収容する適切な厚みを有するとともに、操作中又は取り扱い中の穿刺に対する耐性を有するように設計される。例えば、コンテナの壁部は250ミル以下(1ミルは25.4マイクロメートル)、200ミル以下、100ミル以下、70ミル以下(1ミルは25.4マイクロメートル)、50ミル以下、25ミル以下、15ミル以下、又は10ミル以下の全体的な厚みを有する。実施形態のなかには、コンテナが1層以上の物質層を有することもあり、該1以上の物質層はともに薄層にされるか又は互いに付着して一定の特性をコンテナに与えることになる。例えば、ある層は酵素がほぼ浸透しない物質で形成される。別の層はコンテナに強度をもたらすある物質で形成される。さらに別の層が含まれることもあり、コンテナ内に収容される流体へ化学的な耐性を与える。コンテナは幾層かの適切な組み合わせからなること、及び本発明はこの点に制約されないことを留意されたい。コンテナ(例えば、折り畳み可能な袋体)は例えば1層、2層以上、3層以上、又は5層以上の材料の層を有することもある。各層は200ミル以下、100ミル以下、50ミル以下、25ミル以下、15ミル以下、又は10ミル以下、5ミル以下、又は3ミル以下、又はその組み合わせの厚みを有することも
ある。
【0032】
本発明のある実施形態において、コンテナには継ぎ目がない。コンテナは例えば継ぎ目のない折り畳み可能な袋体又は継ぎ目のない剛性(又は半剛性)コンテナである。多くの現存する折り畳み可能な袋体は、熱接合又は化学結合によって接合されたプラスチック材料の2つのシートから構築され、2つの縦方向の継ぎ目を有するコンテナを形成する。シートの開口端部は公知の技術を用いて密閉され、点検用の開口部はコンテナの壁部を貫通して形成される。継ぎ目を有する折り畳み可能な袋体は、使用中に継ぎ目付近で裂け目が形成されることがある。継ぎ目付近では内部に収容されている流体又は試薬は完全に混ざることはない。例えば、化学的、生化学的、及び/又は生物学的反応を行う折り畳み可能な袋体を用いる実施形態においては、混合していない試薬は所望の生成物の生産を減少させかねない。折り畳み可能な袋体に継ぎ目があると、折り畳み可能な袋体は袋体を支持する再利用可能な支持構造体の形状に適合することができない。しかしながら、袋体の2以上の可撓性のある壁部を接合する継ぎ目のない折り畳み可能な袋体を用いることにより、上記の混合及び適合の問題は回避されるか又は軽減される。ある実施形態では、継ぎ目のない折り畳み可能な袋体は、独特の形状及び構造を有する再利用可能な特定の支持構造体に特に適合するよう製造される。ほぼ完全に適合する折り畳み可能な袋体は、例えばバイオリアクタシステム、又は生化学的及び/又は化学反応システムの一部として用いられることが可能である。継ぎ目のない剛性又は半剛性コンテナも同様に有効な実施例もある。
【0033】
ある実施形態において、折り畳み可能な袋体の2以上の可撓性のある壁部を接合する継ぎ目を備えていない折り畳み可能な袋体は、液体を収容する特定の容積を有する。継ぎ目のない折り畳み可能な袋体は例えば、少なくとも1リットル、少なくとも10リットル、少なくとも20リットル、少なくとも40リットル、少なくとも50リットル、少なくとも70リットル、少なくとも100リットル、少なくとも150リットル、少なくとも200リットル、少なくとも300リットル、少なくとも500リットル、少なくとも700リットル、又は少なくとも1000リットルの容積を有する。継ぎ目のない折り畳み可能な袋体は必要に応じてさらに1000リットル以上(例えば、1000−5000リットル、又は5000−10000リットル)の容積を備える。実施形態によっては、折り畳み可能な袋体はフレキシブルコンテナの周囲を囲むとともに収容する再利用可能な支持構造体内に配されることもある。
【0034】
ある実施形態においては、継ぎ目のない折り畳み可能な袋体は1つの工程で形成される。該工程では、袋体のライナー(例えば、袋体の可撓性のある壁部)は、攪拌器/混合器システムの一構成要素(例えば、シャフト及び/又は支持基盤)やポート等の1以上の構成要素と同様に、ポリマ前駆物質材料の継続的な供給から鋳造される。鋳造は密閉(例えば溶接)することなく行われることもある。上記のような継ぎ目のない袋体では、内部の液体又は他の生成物が一般的には平らな表面と接触することが可能になり、例えば、その表面にはしわや折り目、裂け目などがない。加えて、場合によっては、折り畳み可能な袋
体が取り付けられ、液体や生成物で満たされると、折り畳み可能な袋体は補完的に支持構造体の中にはめ込まれることもある。継ぎ目のない折り畳み可能な袋体は、基本的に均一なポリマ表面に副反応を減少させる化学的性質を有する。1以上のポリマ前駆物質材料を有する継ぎ目のない折り畳み可能な袋体を形成する方法も同様に実行可能である。
【0035】
継ぎ目のない折り畳み可能な袋体は様々な方法により開発可能である。ある実施形態では、継ぎ目のない折り畳み可能な袋体は液体プラスチックを金型に導入することによって形成される。該金型はポート、接続部、支持部、及び混合システムを支持するよう構成された剛性部分(例えば、シャフト及び/又は基盤)等の構成要素に事前にはめ込まれている。該剛性部分はその後液体プラスチックによって周囲を囲まれ、覆い隠され、及び/又は埋め込まれる。構成要素は一つの剛性要素で、例えば、使用中に形状及び/又は構造的な統合性をほぼ維持できる剛性要素である。任意の適切な数の構成要素(例えば、少なく
とも1、2、5、10、15など)が本明細書記載の方法を用いてコンテナ(例えば、折り畳み可能な袋体)と一体化可能である。金型は金型の形状及び容積を有する折り畳み可能な袋体を形成するように設計され、該金型は再利用可能な支持構造体とほぼ同じ形状、容積、及び/又は構成を有する。
【0036】
ある実施形態では、コンテナは埋め込まれた構成要素/線状成形(ECM)技術を用いて形成される。上記のような技術の一つでは、チューブポート、攪拌基盤などの剛性要素又は事前に形成された構成要素は金型内に最初に配される。コンテナ(例えば、継ぎ目のない折り畳み可能な袋体)を形成するために用いられるポリマ又はポリマ前駆物質は、以下に記載のポリマ作成技術によって(例えば、溶解状態に)導入される。構成要素又は構成要素の一部がポリマ前駆物質によって部分的に溶解することによって、構成要素はコンテナに付着する要素を継続的に形成することが可能となる。すなわち、構成要素はコンテ
ナ(例えば、折り畳み可能な袋体の可撓性のある壁部)の1以上の壁部を接合(溶解)することにより、継ぎ目のない単一の完全な材料片が形成される。
【0037】
図2Aを参照すると、本工程の実施例が示されている。この図では、事前に取り付けられた構成要素(202)は金型壁部(205)及び(206)の間で維持される。ポリマ前駆物質(210)は適切な技術を介して金型に導入される。ポリマ前駆物質はその後構成要素(202)の周囲を流れるとともに、硬化、凝固、固定され、又は除去され、これによってポリマと埋め込まれた構成要素との間に継ぎ目のない接続部が形成される。
【0038】
構成要素はより薄い部分で構成され、該部分はコンテナ形成中にポリマ前駆物質によって(例えば、溶解状態に)溶解可能である。例えば、図2Bに示される実施形態のように、構成要素(203)は、混合及び/又は消泡システムのドライブヘッド(図示されず)の少なくとも一部が挿入可能な凹部(212)を含む剛性部分である。この構成要素(203)はコンテナを成形するよう構成された形状を備える金型内に配される。ポリマ前駆物質(210)はその後適切な技術によって金型内に導入される。ポリマ前駆物質はさらに構成要素(203)周辺を流れるとともに薄い部分(204)を融解し、コンテナの壁部の一部及び構成要素の一部を溶解させる。コンテナ及び構成要素は硬化、凝固、固定され、又は除去され、これによって継ぎ目のない単一の完全な材料片が形成され、該材料片には継ぎ目のない接続部がポリマと埋め込まれた構成要素の間に存在する。この技術が用いられることにより、例えば40リットル、50リットル、100リットル、200リットル、1000リットル以上の容積を有するとともに、例えば、混合システムの羽根車用の1以上の支持基盤及び/又はシャフト等の構成要素が内部に埋め込まれたコンテナを形成する。
【0039】
したがって、本発明のある実施形態は、金型内でコンテナを形成中にコンテナの壁部と機能的な構成要素の少なくとも一部を共に接合する方法を備え、該機能的な構成要素の一部は接合段階において融解する。コンテナの壁部は第1の厚みを有し、機能的な構成要素の一部は第2の厚みを有し、その厚みは例えば、第1及び第2の厚みの大きいほうと比較して、互いの100%、80%、60%、40%、20%、10%、又は5%以下である。
【0040】
別の実施形態において、コンテナは連続的な構成要素/線状成形(CCM)技術を用いて形成される。上記のような技術の一つでは、折り畳み可能な袋体又は他のコンテナはポリマ又はポリマ前駆物質の流れから新たに鋳造される。折り畳み可能な袋体を形成するために用いられるポリマ又はポリマ前駆物質は、以下に記載されるようなポリマ作成技術によって導入される。構成要素はマンドレル、バリア、バッフル等を用いてフレキシブルコンテナに導入可能であって、これにより例えば1つの連続ポリマとしてチューブポート及び攪拌基盤等の液体収容システムの機能的な構成要素を形成するようポリマ前駆物質を誘
導する。ポリマ又はポリマ前駆物質を固定又は除去した後、マンドレル、バリアなどは回収される。例えば、図2Cに示されているように、マンドレル(209)は金型壁(205)及び(206)の間で支持される。ポリマ(210)はその後、以下に記載の適切な技術を介して金型に導入される。ポリマはさらに、マンドレル(209)の周囲を流れるとともに、マンドレルの周囲で硬化または固定される。マンドレルはその後に回収可能である。上記技術を用いて、例えば40リットル、50リットル、100リットル、200リットル、1000リットル以上の容積を有するコンテナ(継ぎ目のない折り畳み可能な袋体)を形成可能であり、溶接することなく折り畳み可能な袋体に接合される構成要素(例えば、剛性要素)を内部で組み合わせる。
【0041】
これら技術及び他の技術の組み合わせは同様に他の実施形態でも用いることもある。例えば、異なるポリマ製剤(低分子量ポリエチレン、高分子量ポリエチレン、ポリプロピレン、シリコン、ポリカーボネート、ポリメタクリレート、それらの組み合わせ又はそれらの前駆物質)は、チューブ又はセンサ穴、攪拌システム等のより剛性を有する構造を形成するために設計された金型の領域に同時に注入可能である。ある実施形態では、ある方法は第1ポリマ又はポリマ前駆物質を金型に導入する段階を備え、該金型は少なくとも10ミリリットル、40ミリリットル、100ミリリットル、1000ミリリットルの容積を有する折り畳み可能な袋体を成形するよう構成された形状を備える。金型はある形状をさらに備え、該形状は混合システム及び/又は消泡システムの1つの構成要素を成形するよう構成される。該構成要素は羽根車を支持するよう構成されたシャフト及び/又は基盤などである。この方法はさらに、混合システムの構成要素を成形するために第2ポリマ又はポリマ前駆物質を金型に導入する段階を備える。したがって、混合システムの構成要素及び折り畳み可能な袋体は、本明細書記載の方法を用いて溶接することなく接合される。第1及び第2ポリマ又はポリマ前駆物質が同時に導入される実施例もある。第1及び第2ポリマ又はポリマ前駆物質は、実施形態によっては同一であれば異なることもある。上記のような方法を用いて、例えば混合システム/攪拌システム、消泡システム、又は他の構成要素のための基板を形成することが可能である。別の実施形態では、多くのポリマが金型に(例えば、同時に)導入されることで、複数の構成要素を有するコンテナが成形可能である。
【0042】
上記のごとく、ポリマ又はポリマ前駆物質を金型に導入することにより、任意の適切な技術を用いて折り畳み可能な袋体(例えば、継ぎ目のない折り畳み可能な袋体)などのコンテナが形成される。例えば、ある実施形態において、折り畳み可能な袋体は回転成形工程を介して製作される。例えば、回転成形の間、金型がポリマ又はポリマ前駆物質が導入される際に回転することにより、金型表面上は全体的にプラスチックで被覆される。他の実施形態において、折り畳み可能な袋体は射出成形工程を介して製作される。例えば、ポリマ前駆物質は外側金型と内側金型との間のスペースに送り出される。さらに別の実施形態では、折り畳み可能な袋体はブロー成形工程を介して製作可能である。ポリマは例えばガス圧入を介して沈着することにより、金型表面へ拡散する。さらに別の実施形態においては、上記技術及び他の技術の組み合わせが用いられることもある。当業者は回転成形、射出成形、及び/又はブロー成形などのポリマ加工技術には精通しており、ここに記載される本発明の方法における上記技術を用いて適切な折り畳み可能な袋体又は他のコンテナを用意することができる。
【0043】
多くの実施形態は継ぎ目のない折り畳み可能な袋体について記載しているが、コンテナの可撓性のある壁部間に継ぎ目を有する折り畳み可能な袋体又は他のコンテナが製作される実施形態もある。他の実施形態では、コンテナの構成要素と1以上の可撓性のある壁部との間に継ぎ目を有する折り畳み可能な袋体又は他のコンテナが製作可能である。2以上の壁部の接合、又は壁部とコンテナの一部との接合は、溶接(例えば、熱溶接及び長音波溶接)、ボルト締め、接着剤、締め具の使用、又は他の取り付け技術によってなされる。
継ぎ目のある接続部と継ぎ目のない接続部を組み合わせて製作することも可能である。記載されている方法の多くが折り畳み可能な袋体の製作に言及しているが、この方法が剛性コンテナにも適用されることにも留意されたい。折り畳み可能な袋体(継ぎ目のある袋体又は継ぎ目のない袋体)などのコンテナを形成するために用いられる本明細書記載の方法は、様々なサイズの構成要素を備えるように応用される。例えば、折り畳み可能な袋体の可撓性のある壁部は、例えば、100ミル以下、70ミル以下、50ミル以下、25ミル以下、15ミル以下、又は10ミル以下の厚みを有するが、コンテナに組み込まれる構成
要素は例えば0.5ミリ以上、1センチメートル以上、1.5センチメートル以上、2センチメートル以上、5センチメートル以上、又は10センチメートル以上の厚み又は高さを有する。構成要素の1つの切断面の大きさ(例えば、高さ、長さ、幅、又は直径)が例えば、少なくとも0.5ミリ以上、1センチメートルメートル以上、1.5センチメートル以上、2センチメートル以上、5センチメートル以上、10センチメートル以上、15センチメートル以上、20センチメートル以上、25センチメートル以上、又は30センチメートル以上の場合もある。特定の実施形態においては、折り畳み可能な袋体(又は他
のコンテナ)の厚み、及び折り畳み可能な袋体と接合(溶解)した構成要素の一部の厚みが、互いの(厚い方と比較して)30%、20%、15%、10%、又は5%以内である。以下に詳細が記されているように、上記のように厚みが適合すると物質の接合(融解、溶接など)が促進される。
【0044】
折り畳み可能な袋体又は他のコンテナと一体化する構成要素は適切な物質で形成され、該適切な物質は袋体又はコンテナの物質と同一であったり、異なったりする。例えば、ある実施形態では、コンテナは第1ポリマで形成され、構成要素は第1ポリマとは異なる(異なる組成、分子量、及び/又は化学構造など)第2ポリマで形成される。当業者は物質加工技術に精通しており、本明細書記載の方法の上記技術を用いて適切な物質及びその組み合わせを選択することができる。
【0045】
実施形態によっては、本明細書記載の方法を用いて折り畳み可能な袋体又は他のコンテナと一体化される構成要素は1以上の物質で形成され、該物質はUSPのVI級と認定されており、例えば、シリコン、ポリカーボネート、ポリエチレン及びポリプロピレンなどがある。構成要素を形成するために使用可能な物質の制約のない実施例はポリマを備え、該ポリマはポリエチレン(低密度ポリエチレン及び高密度ポリエチレン)、ポリプロピレン、ポリ塩化ビニル、ポリ二塩化ビニル、ポリ塩化ビニデリン、エチレン酢酸ビニル、ポリビニルアルコール、ポリカーボネート、ポリメタクリレート、ナイロン、シリコンゴム、他の合成ゴム、及び/又はプラスチック、及びこれらの組み合わせである。セラミック、金属、及び磁性物質を用いて構成要素の全て又は一部を形成することも可能である。構成要素の全て又は一部が剛性の実施形態もあれば、構成要素の全て又は一部が可撓性を有する実施形態もある。構成要素を形成するために用いられる物質は、例えば、コンテナとの親和性、可撓性、抗張力、硬度、液体及びガスの浸透性、穿刺力、及びブロー成形、射出成形、又は回転成形などの特定の工程に対する順応性等の1以上の特性及び/又は構成要素の機能に基づいて選択される。
【0046】
特定の実施形態、とりわけ、流体の操作を備えるか又はコンテナ(折り畳み可能な袋体)内で化学的、生化学的、及び/又は生物学的反応を行う実施形態では、コンテナはほぼ閉じられている。例えば、ある実施形態では、コンテナへの内容物の追加及び/又はコンテナからの内容物の除去を行う1以上の流入ポート及び/又は排出ポートを除けば、コンテナは外部環境からほぼ遮断されている。折り畳み可能な袋体が用いられると、折り畳み可能な袋体は液体で満たされるよりも先にほぼ収縮するとともに、液体で満たされるにつれて膨張し始める。別の実施形態では、本発明の形態は開口式のコンテナシステムにも応用可能である。
【0047】
流体が流入ポート及び/又は排出ポートを介して導入される及び/又は除去される場合もある。容器は生物学的、生化学的、又は化学的反応を行うリアクタシステムの一部であることもある。上記のような容器の一部であるコンテナ(折り畳み可能な袋体)は、任意の適切な数の流入ポート及び排出ポートを有する。場合によっては、使い捨てポンプなどのポンプを用いて、例えば流入ポートを介してコンテナ内にガス又は他の流体を導入するか、及び/又は例えば排出ポートを介してコンテナからガス又は他の流体を除去する。例えば、磁気的に結合されたポンプは、使い捨ての磁性羽根車の上部を筐体に入れることに
より得られ、該筐体は流体のポンピングを行う流入ポート及び排出ポートを有する。可撓性を有する板が用いられると、ポンピングが促進されるか又は圧力が除去される。別の実施形態では、流体、ガス及び/又は粉末のポンピングは、ポンプの上部及び/又はポンプ室がなくとも、例えば「蠕動」を効率的に行う電気機械のポリマチューブを連続して圧送することにより行われる。チューブ内の一方向バルブを任意で用いると、逆流を防ぐために役立つ。
【0048】
本発明の特定の形態は支持構造体をさらに備え、例えば、図1に示される支持構造体(14)はコンテナ(18)の周囲を囲むとともに収容することが可能である。支持構造体は適切な形状を有し、コンテナの周囲を囲う及び/又は収容することが可能である。場合によっては、支持構造体は再利用可能である。支持構造体はほぼ剛性の物質で形成される。再利用可能な支持構造体を形成するために使用可能な物質の制約のない実施例は、ステンレス鋼、アルミニウム、ガラス、樹脂含浸処理されたファイバグラス又はカーボンファイバ、ポリマ(例えば、高密度ポリエチレン、ポリアクリル酸塩、ポリカーボネート、ポリスチレン、ナイロン、又は他のポリアミド、ポリエステル、フェノール性ポリマ)、及びこれらの組み合わせを有する。物質は用いられる環境においてその使用を補償される。例えば、脱粒することのない物質が用いられるのは最小の微粒子の発生が必要となる環境である。
【0049】
実施形態によっては、再利用可能な支持構造体は標準的なステンレス鋼のバイオリアクタ(又は他の標準的なリアクタ又は容器)と同様の高さ及び直径を有するように設計される。その構造は容積の小さな卓上リアクタシステムに縮小可能である。したがって、再利用可能な支持構造体は、所望の化学的、生化学的、及び/又は生物学的反応を行う適切な容積を有する。多くの実施例において、再利用可能な支持構造体はコンテナとほぼ同様の容積を有する。例えば、単一の再利用可能な支持構造体は、ほぼ同様の容積を有する単一のコンテナを支持するとともに収容するために用いられる。しかしながら、他の場合では、再利用可能な支持構造体は1以上のコンテナを収容するために用いられる。再利用可能な支持構造体は、例えば1−100リットル、100−200リットル、200−300リットル、300−500リットル、500−750リットル、750−1000リットル、1000−2000リットル、2000−5000リットル、又は5000−10000リットルの容積を有する。10000リットル以上の容積も可能である。
【0050】
しかしながら、他の実施形態では本発明の容器は個別のコンテナ(例えば、折り畳み可能な袋体)及び支持構造体を備えてはいないが、代わりに自立型の使い捨てコンテナを備える。コンテナは例えば、プラスチックの容器でも良く、場合によってはコンテナに一体的に取り付けられた攪拌システム又は取り外し可能な攪拌システムを備える。攪拌システムはコンテナとともに使い捨て可能である。ある特定の実施形態において、上記のようなシステムはポリマ製のコンテナに溶接又は固定された羽根車を備える。したがって、コンテナ及び支持構造体(例えば、継ぎ目のないコンテナ、散布システム、消泡装置など)に関する本明細書記載の容器の形態および特性は、自立型の使い捨てコンテナにも応用可能であることを留意されたい。
【0051】
一例として、図3に示されたコンテナ(18)などのコンテナは、使い捨てコンテナの内部の1以上の処理パラメータを制御する及び/又は監視するための様々なセンサ及び/又はプローブを備える。該処理パラメータは例えば、温度、圧力、pH、溶存酸素(DO)、溶存二酸化炭素(DCO2)、混合率、及びガス流量のことをいう。センサは他の場合では光学センサであってもよい。
【0052】
実施形態によっては、工程制御は使い捨てコンテナによって固定された滅菌バリアを傷つけない方法で実施される。例えば、ガス流は流入用エアフィルタ上流でロータメーター又はマスフローメータによって監視及び/又は制御される。他の実施形態では、使い捨て光学プローブは指示染料を有する物質の「一部(パッチ)」を用いるよう設計される。該指示染料は使い捨てコンテナの内部表面上に取り付け可能であるとともに、再利用可能な支持構造物内のウィンドウを介して使い捨てコンテナの壁部に沿って示される。例えば、溶存酸素、pH、及び/又はCO2の各々は、光学パッチ及び光学センサによって監視さ
れるとともに制御される。該光学パッチ及び光学センサは例えば、ガンマ線を照射可能な生体適合性のあるポリマ上に取り付けられ、該ポリマはコンテナの表面に固定されたり、埋め込まれたり、あるいは取り付けられたりすることが可能である。
【0053】
センサの特定の実施例として図3で例証された実施形態において示されたごとく、コンテナ(18)は温度制御装置(106)と動作可能に接続している。該温度制御装置とは、例えば、熱交換器、閉ループ式のウォータージャケット、電気毛布、又はペルチェヒーターである。コンテナ内部の液体を加熱する他の加熱器は当業者には公知であるとともに、コンテナ(18)と組み合わせて用いることも可能である。加熱器はコンテナ内の内容物の温度を感知する熱電対及び/又は測温抵抗体(RTD)をさらに備える。熱電対は温度制御装置と動作的に接続し、コンテナ内の内容物の温度を制御する。あるいは、熱伝導物質がコンテナの表面に埋め込まれることにより、表面に熱が伝達され、コンテナの他の部分を形成するために用いられた物質の絶縁効果を克服する。
【0054】
本明細書中に用いられるように、一般に、1以上の他の構成要素と「動作可能に接続」する進歩的なシステムの構成要素は、以下のことを示す。すなわち、このような構成要素は、物理的に接触した状態で互いに直接接続される。この構成要素は互いに接続又は取り付けられておらず、或いは互いに間接的に接続されている。或いは、構成要素は機械的、電気的(空間を通して伝達された電磁信号を介することを含む)、又は流体的に相互接続されることにより、十分な接続又がもたらされ、或いは十分な接続を可能にし、これにより所望の機能を発揮することができる。
【0055】
冷却は閉ループ式のウォータージャケット冷却システム、リアクタに取り付けられた冷却システム、又は再利用可能な支持構造体上のカバー/ジャケット(例えば、電気毛布又は加熱と冷却を行うパッケージ化された複式ユニットは加熱と冷却双方のために構成された装置の一構成要素であるが、冷却ジャケットとは分離することもある)を介した標準的な熱交換によって行われる。例えば、冷却はペルチェ冷却器によってもたらされる。例えば、ペルチェ冷却器は排気管に適用され、排出ガス中のガスを液化して排気フィルタが濡れるのを防ぐ。
【0056】
ある特定の実施形態において、リアクタシステムは上部空間及び/又は流出口の排気管を冷却するガス冷却を備える。例えば、ジャケット冷却、電気熱及び/又は化学冷却、又は熱変換は、流出口の送気管及び/又はコンテナの上部空間内で行われる。上記冷却されることによってより多くの凝縮物がコンテナへと戻され、これにより流出口の排気フィルタの詰まりや付着物が減少する。実施形態によっては、事前に冷却したガスを上部空間へと追いやることにより、露点が低下し、及び/又は流出口の空気ガスの水蒸気の負担が減少する。
【0057】
場合によっては、センサ及び/又はプローブ(例えばプローブ106)はセンサの電子モジュール(132)に接続され、該モジュールの出力は端子盤(130)及び/又は継電器箱(128)に送られる。センサ操作の結果はコンピュータによって実行される制御システム(115、例えば、コンピュータ)に入力される。該制御システムは様々なパラメータ(温度及び重量/容積の測定)の計算及び制御を行うとともにその表示やユーザ干渉を行う。上記のような制御システムが電気的、機械的、及び/又は空気圧システムを備えることにより、工程操作の環境パラメータの安定化又は制御の必要性に応じて、使い捨てコンテナに届けられる熱、空気、及び/又は液体が制御されるか、又は使い捨てコンテナから熱、空気、及び/又は液体が回収される。制御システムは他の機能を実行すること、及び本発明は任意の特定の機能又は一連の機能を有することに限定されないことを認識されたい。
【0058】
1以上の制御システムは多くの手法で実行可能である。該手法には専用のハードウェア及び/又はファームウェアを用いたり、マイクロコードやソフトウェアを使用して上記に列挙された機能や又は前述の任意の適切な組み合わせを実行するようプログラム処理されたプロセッサを用いたりするものがある。制御システムは生物学的、生化学的、又は化学的な反応の単一リアクタの1以上の操作、又は複数の(別々の又は相互接続された)リアクタの1以上の操作を制御する。
【0059】
記載されたシステムの各々(例えば、図3に関連した)、及びそれらの構成要素は、ソフトウェア(例えば、C、C#、C++、Java(登録商標)、又はそれらの組み合わせ)ハードウェア(例えば1以上のアプリケーション特有の集積回路)、ファームウェア(例えば、電気的にプログラムされたメモリ)、又はそれらの任意の組み合わせを備える様々な技術を駆使して実行される。
【0060】
本発明にしたがって様々な実施形態が1以上のコンピュータシステムで実行される。これらコンピュータシステムは例えば、IntelのPENTIUM(登録商標)-type及びXScale-typeのプロセッサ、MotorolaのPowerPC、MotorolaのDragonBall、IBMのHPC、SunのUltraSPARC、Hewlett-PackardのPA-RISCプロセッサ、AdvancedMicroDevices(AMD)で利用できる様々なプロセッサ、又は任意の他の種類のプロセッサに基づいた汎用コンピュータである。1以上の任意の種類のコンピュータシステムが本発明の様々な実施形態を実行するために
用いられることを認識されたい。コンピュータシステムは特別にプログラムされた、特定の目的を有するハードウェア、例えば、アプリケーション特有の集積回路(ASIC)を備える。本発明の形態はソフトウェア、ハードウェア、又はファームウェア、又はこれらの任意の組み合わせで実行される。さらに、上記の方法、行為、システム、システムの要素及びこれらの構成要素は、記載されたコンピュータシステムの一部として又は独立した構成要素として実行される。
【0061】
ある実施形態では、本明細書記載の容器と動作可能に接続する制御システムは携帯可能である。制御システムは、例えば、制御システム内で流体操作(例えば、混合及び反応)を行うために必要な制御と機能のすべて又は多くを備える。制御システムは1つの支持部と容器の輸送を容易にするキャスターを備える。上記のような携帯制御システムは設定された命令がプログラム化され、必要に応じて(任意で容器とともに)輸送されるとともに容器に取り付けられ、従来の流体操作制御システムよりも短い時間で流体操作を行う準備を整えることが可能である(例えば、1週間未満、3日未満、1日未満、12時間未満、6時間未満、3時間未満、又は1時間未満で)。
【0062】
コンテナを備える容器は、空気、酸素、二酸化炭素、窒素、アンモニア、又は本発明の様々な形態における混合体などの1以上のガスの供給源に接続されることもある。ガスは圧縮されたり、送り込まれたりする。上記ガスが用いられることにより、コンテナ内部での生成物の生成に適切な成長条件及び/又は反応条件が与えられる。ガスが用いられることにより、例えば混合又は他の目的のためにコンテナ内部の内容物にガスが散布される。例えば、スパージャを用いる特定の実施形態において、泡の大きさ及び分布が制御可能となるのは、流入ポートのガス流がコンテナに加えられるよりも先に浸透性の高い表面を通過するときである。さらに、散布された表面は、多孔性表面の外部表面上で加圧と減圧を交互に行うことによって、又は任意の他の適切な方法によって、ひとつの細胞分離装置として用いられることもある。
【0063】
特定の実施例として、図3がガス(118)及び(124)の供給源を示している。流入ポートのガスは任意にフィルタ(120)及び/又はフローメーター及び/又はバルブ(122)を通過する。該ガスはコンテナに入る前に制御システム(115)によって制御される。バルブ(122)は空気圧式アクチュエータ(圧縮空気及び/又は二酸化炭素又は他のガス(124))であり、電磁バルブ(126)によって制御される。これら電磁バルブは端子盤(130)に接続された継電器(128)によって制御され、該端子盤は制御システム(115)に接続される。端子盤は例えばPCI端子盤、又はUSB/パラレル、又は接続部のファイアポート用端子盤を備える。他の実施形態において、フラッシュ式閉鎖バルブは追加ポート、取り込みバルブ及びサンプリングバルブのために用いられる。流れを正確に測定する進歩的なチューブ状のピンチバルブを用いても良い。場合によっては、バルブはフラッシュ式閉鎖バルブ(例えば、流入ポート用、排出ポート用、サンプリングポート用など)である。流入ガスは容器の任意の適切な流入口に接続される。ある実施形態では、流入ガスは1以上のスパージャと接続し、該スパージャは以下に詳細に記載されるように独立して制御可能である。
【0064】
図3の典型的な実施形態で示されたごとく、本発明の他の形態によれば、図1で示されたコンテナ及び支持構造体はバイオリアクタシステム(100)全体の一部として様々な構成要素と動作可能に接続する。したがって、コンテナ及び/又は支持構造体は、液状媒質、ガスなどの試薬を供給する配管との接続だけでなく、センサ、フィルタ、ミキサなどの機能的な構成要素との接続を容易に行う複数の接続金具を備える。コンテナ及び接続金具は使用前に滅菌されることによって、「滅菌膜」を提供し、気中浮遊汚染物質からコンテナ内部の内容物を保護する。実施形態によっては、コンテナ内部の内容物は再利用可能
な支持構造体と接触しない。したがって、コンテナ及び/又はコンテナに接続される接続金具は廃棄可能な一方で、再利用可能な支持構造体は、滅菌を行わない特定の化学的、生化学的、及び/又は生物学的な反応を行った後に再利用可能である。他の実施形態では、コンテナ、接続金具、及び/又は再利用可能な支持構造体は再利用可能である(例えば、洗浄及び滅菌後に)。
【0065】
他の形態では、容器はコンテナの内容物を混ぜ合わせる混合システムも備える。場合によっては、1以上の攪拌器又はミキサが用いられ、攪拌器及び/又はミキサは同一のものでも異なるものでもかまわない。1以上の攪拌システムは例えば混合能力を高めるために用いられる。場合によっては、攪拌器の高さが調節可能なものであれば、ドラフトシャフトによって羽根車又は攪拌器をタンク底面より高く上げ、及び/又は複数の羽根車又は攪拌器の使用が可能となる。容器の混合システムは使い捨てであってもよく、又は1度の使用(例えば容器とともに)を目的としたものでもよい。
【0066】
流体を混ぜ合わせる様々な方法がコンテナ内で行われる。例えば、磁性駆動、散布、及び/又はエアリフトに基づいたミキサも使用可能である。密閉された磁性結合していない直接的なシャフト駆動のミキサを使用することもできる。ある特定の実施形態において、米国特許出願第11/147,124号(出願日:2005年6月6日、発明の名称:"
DisposableBioreactorSystemsandMethods"出願人G.Hodge,etal.,米国公開公報第2005/0272146号、公開日:2005年12月8日、参照することより本発明に組み込まれるものとする)で開示されたような混合システムは記載された実施形態とともに用いられる。例えば、混合システムはモータ(112)を備え、該モータは例えばコンテナ内部に配された羽根車(又は混合に用いられる他の構成要素)、電力調整器(114)、及び/又はモータ制御装置(116)を駆動させる。
【0067】
場合によって、複数の(例えば、1、2又は3以上)のミキサまたは羽根車がコンテナ内の内容物を混ぜ合わせるために用いられる。さらに、及び/又は変更形態として、混合システムは高さを調節可能な羽根車及び/又は様々な羽根車の板形状をした羽根車を備える。例えば、ミキサは延出した駆動シャフトを有し、該駆動シャフトによって、羽根車をコンテナの底部に対して異なる高さに上げることが可能となる。延出されたシャフトによって、複数の羽根車を一体化することも可能である。他の実施形態では、バイオリアクタシステムはコンテナにつき1以上の攪拌ドライブを備え、該攪拌ドライブは混合能力を高
めることが可能である。
【0068】
混合効率を上げるためにコンテナは内部膜や突起部などのバッフルを備える。該内部膜や突起部は、例えばコンテナの内部を横切って配されるか又はコンテナの内部表面から様々な高さ及び様々な角度で延出する。バッフルはコンテナと一体化が可能である限りは、ポリマ、金属、又はセラミックなどの任意の適切な物質で形成されてもかまわない。
【0069】
ある実施形態では直接駆動の攪拌器も用いられる。一般的には攪拌器はコンテナに挿入可能な直接的な駆動シャフトを備える。特定の実施例では、シャフトがコンテナから抜け出る場所は殺菌状態で維持される。例えば、内部及び/又は外部の回転シールは殺菌封鎖を維持するために用いられ、及び/又は新鮮な熱蒸気は殺菌シールを維持しやすくするために用いられる。上記のような殺菌シールを維持することにより、例えば、外部環境、排出されるガスなどからシャフトによってもたらされる汚染物質が減少したり、回避されたりする。
【0070】
他の実施形態においては磁性攪拌器が用いられる。一般的には磁性攪拌器は固定磁石又は永久磁石などの磁石を用いて、羽根車、板、羽根、厚板、円錐などの攪拌器を回転させるか又は移動させる。場合によっては、磁性攪拌器内部の磁石が固定されるとともに、稼動又は順々に活性化が可能となることによって、内部の磁性羽根車のハブを介して攪拌器を加速させるか又は減速させる。シャフトはコンテナを貫通していないため、内部及び/又は外部の回転シール、新鮮な熱蒸気などを用いて攪拌器を殺菌状態で維持する必要はない。
【0071】
さらに他の実施形態においては電気機械ポリマ攪拌器が用いられる。該電気機械ポリマ攪拌器とは、例えば、電気機械ポリマ基板の羽根車を備え、「パドリング」によって自ら回転する攪拌器で、すなわち、攪拌器が機械的に上下に動いて攪拌器又は羽根車を回転させながら進ませる。
【0072】
混合システム及び/又は消泡システムとして特定の実施形態において用いることができる装置の特定の非制限的な例を、図4A及びBに示す。図示される装置は磁気駆動の羽根車を備えているが、他の配置も可能である。これら磁性を有する構造の一部においては、モータは羽根車に直接接続されていないこともある。駆動ヘッドに接続する磁石は、羽根車のハブに接続する磁石と整列してもよい。そのため、駆動ヘッドは磁気相互作用により羽根車を回転させることができる。ある場合においては、モータ部分(及びその他モータに接続する要素)は支持構造体上に据え付けられてもよい。
【0073】
図4Aに示す如く、このシステムの例は羽根車支持体(300)を備える。この羽根車支持体はコンテナ壁(302)の一部に取り付けられるが、コンテナ壁の下部に取り付けられるのが好ましい。またこのシステムは、羽根車のハブ(304)、モータ(306)、モータシャフト(308)及び駆動ヘッド(310)を備える。羽根車支持体は、任意の好適な技術を用いてコンテナの壁に取り付けられてもよい。例えば、2片の羽根車支持体を二箇所熱溶接する、コンテナ壁を羽根車支持体間に挟む或いは壁の上に重ねる、或いは本明細書中に記載されるその他の方法を用いることができる。一例として、コンテナの壁の開口部を用い、羽根車の板の中心部をコンテナの外部から内部へ(或いはその逆も同様に)延出させてもよい。そして、シールリング(図示せず)は接着されてもよい、或い
はコンテナは羽根車支持体の外周部に直接溶接されることにより、それらの間にコンテナ壁を接着してもよい。他の例として、コンテナの壁にある小型の開口部を用い、シールを形成してもよい。このシールは羽根車支持体の外周端で形成され、開口部よりも僅かに大きい。他の実施形態において、羽根車支持体の少なくとも一部はコンテナの壁部に埋め込まれる、及び/又は羽根車支持体及びコンテナは同時に製作される(例:回転成形、射出成形、或いはブロー成形)。
【0074】
本発明のある実施形態による一つの特徴は、羽根車支持体に接続する1以上のスパージャを含むことである。このスパージャは空気或いは他のガスをコンテナ内へ導くものである。ある場合において、スパージャは多孔質、超多孔質、或いは限外ろ過要素(301)(例:散布要素)を備えてもよい。スパージャは気体を散布させる、或いは流体をコンテナ内及び/又は外へ移動させる。これは、スパージャがガス供給源と接続するため必要な大きさにされていることにより可能になる。この接続はチューブ(306)を介し行われる。ある場合において、このような散布及び/又は液体の添加或いは除去は、混合システム(例:羽根車のハブの回転)とともに用いられてもよい。散布システムの詳細は下記に述べる。
【0075】
図4Aに示される実施形態において、羽根車支持体の内側はシャフト或いは柱部(312)を備える。このシャフト或いは柱部(312)は、羽根車のハブ(304)の中央開口部に収容されている。羽根車のハブは、羽根車支持体表面上に僅かな間隔(305)を空けてもよく(例えば物理的な間隔を空けるスペーサを用いて)、これによりその間に生じる摩擦を防ぐことができる。羽根車のハブの製造においては低摩擦材料が用いられてもよく、これにより羽根車のハブ及び柱部間の摩擦が最小化される。他の実施形態において、1以上の軸受部が摩擦低減のため備えられる。つまり、羽根車のハブは、場合によっては、軸受(323)(例:ころ軸受、玉軸受(例:放射軸玉軸受)、スラスト軸受、レース軸受、二重軌道軸受、回転式軸受或いはその他の任意の好適な軸受)を備えてもよく、羽根車支持体及び柱部間の摩擦を減少或いは防止する。さらに、駆動ヘッドは物理的な間隔を空ける駆動ヘッド及び羽根車支持体間の摩擦を減少或いは防止するスペーサ(324)を備える。
【0076】
羽根車のハブもまた1以上の磁石(314)を備えてもよい。この磁石はハブの外周或いはその他の好適な位置に配されてもよい。また、磁石は駆動ヘッド(310)上にもたらされる磁石(316)の位置と一致してもよい。磁石の極は、羽根車のハブの磁石及び駆動ヘッドの磁石間で磁気引力を増大させる形で整列している。
【0077】
駆動ヘッド(310)はモータ(306)の軸(308)の中心に据え付けられてもよい。羽根車のハブもまた1以上の羽根車の板(318)を備えてもよい。ある場合において、羽根車に埋め込まれた磁石もまた、鉄粒子或いは磁性粒子を溶液、スラリ或いは粉末から取り除くのに用いられてもよい。
【0078】
このようなシステムの例は、米国特許出願番号第11/147,124号(2005年6月6日出願)発明の名称「DisposableBioreactorSystemsandMethods」(G.Hodge他)、米国特許出願公開番号第2005/0272146号公報(2005年12月8日公開))で詳細に述べられており、参照することにより本明細書に組み込まれるものとする。
【0079】
図4Bは機械的駆動の羽根車を有する他の実施形態を示す。図示される如く、本実施形態は羽根車支持体(400)、シャフト(405)を有する羽根車のハブ(404)、及びシャフト(408)を有する外部モータ(406)を備える。羽根車のハブのシャフト及びモータシャフト間のシャフトの接続は、当業者に周知の方法(例:ギアボックス、六角ドライブ等)により達成されてもよい。
【0080】
例えば、羽根車支持体はバイオリアクタの壁(402)の側部の底部に取り付けられる。この羽根車支持体は、本明細書で述べられる任意の方法を用いてバイオリアクタの壁に取り付けられてもよい。多孔質、超多孔質、或いは限外ろ過要素(401)もまた本発明に含まれてもよく、これによりスパージャは気体を散布させる、或いは流体をバイオリアクタ内及び/又は外へ移動させる。これについては下記に詳細に述べる通りである。図4Bに示される実施形態において、羽根車のハブのシャフトはシール部(412)に収容される(シール部は、場合によっては軸受も備える)。このシール部は羽根車支持体(400)の中心に配される。シール部を用いることにより、コンテナの内容物は汚染されないことを確約される。羽根車のハブはまた、羽根車支持体の表面の上部に僅かな間隔を空けることにより、その間の摩擦を防ぐことができる。羽根車のハブは1以上の羽根車の板(418)、或いは、他の好適な混合構造体(例えば羽根、板、錐体等)を備えてもよい。
【0081】
本発明の一つの特徴として、駆動ヘッド及び羽根車支持体間における緻密で密接した縦横の配列により、本発明の装置に重要な利点をもたらすと認識される。本発明に先立っては、このことは有用性において一般的に理解或いは評価されていなかった。そのため、従来の流体撹拌/回転メカニズムには、改良の必要性が潜在的に不足していた。ある実施例においては、化学及び生化学実験室において非常に好ましい従来の磁性撹拌棒の配置が例示される。この例によると、磁性撹拌モータ及び反応フラスコ内に配された撹拌棒は、互いに緻密に配されていないか、又は互いに緻密に配されている。本発明は、より優れた配
置及び近接性は、本発明の技術を用いて達成可能であり、その結果、より優れた撹拌トルク及び/又は撹拌回転速度の潜在性を得ることも可能であるという認識を備える。
【0082】
図5を参照する。本発明の駆動ヘッドが羽根車と磁気的に結合する駆動ヘッドのある実施形態が概略的に図示されている。図5において、断面で示される羽根車支持体(501)は、略水平部分(504)を備える。この水平部分(504)から、略垂直の羽根車のシャフト(508)は上方へ延出し、羽根車(509)を支持する(羽根車(509)は中心部(510)及び板(511)を備える)。羽根車(509)はシャフト(508)の周りを回転してもよい。さらに、この回転は軸受(507)により促されてもよい。軸受(507)は、任意の好適な軸受であってよく、例えばころ軸受、玉軸受け(例:放射軸玉軸受)、スラスト軸受、レース軸受、二重レース軸受、回転式軸受等である。羽根車支持体(501)は駆動ヘッド配置要素(512)を備える。図示した実施形態中で、この駆動ヘッド配置要素は、略垂直の下方に付随する隆起であり、円形の凹部を形成する。この凹部には、駆動ヘッド(516)の少なくとも一部が挿入される。案内要素(512)が配置されることにより、駆動ヘッドは羽根車支持体と噛み合う場合、羽根車(509)に対して所定の所望の位置に配されることができる。ある配置において、案内要素(512)は羽根車支持体と噛み合う場合、駆動ヘッドを羽根車(509)に対して中心位置に配する。さらなる実施形態として、物理的な間隔を空けるスペーサ(520)は、駆動ヘッド(516)及び羽根車支持体の底面(524)間で配される。この羽根車支持体の底面(524)は、駆動ヘッドの上面(526)の一部とある位置において一列になる。その位置で、羽根車支持体に対し駆動ヘッドは理想的に配される。物理的な間隔を空けるスペーサ(520)は、羽根車支持体の底面(524)と駆動ヘッドの上面(526)を所望の距離で物理的に分離する。しかし、駆動ヘッドの上面及び羽根車支持体の底面間の少なくとも一部は、連続した、物理的な接続部(空隙などがない)を駆動ヘッド及び羽根車支持体間に形成してもよい。これにより、羽根車支持体を用いて多数の従来の配置において理解されていたものより精密な駆動ヘッドの許容差が認められ、また、駆動ヘッドと羽根車支持体の噛み合いを再現可能で確実なものにする。ある場合において、駆動ヘッドは凹部(528)を備える。この凹部(528)には、物理的な間隔を空けるスペーサ(520)の少なくとも一部が挿入される。この配置により、駆動ヘッドと物理的な間隔を空けるスペーサの噛み合いは再現可能で確実なものとなる。
【0083】
羽根車支持体の底部及び駆動ヘッドの上面は間隔(521)により(例えば物理的な間隔を空けるスペーサを用い)分離される。ある実施形態において、間隔(521)は、羽根車支持体の略水平部分(504)の平均的な厚み(530)の約50%にすぎない。他の実施形態において、この間隔は羽根車支持体の厚みの40%、30%、20%、10%、或いは5%にすぎない。
【0084】
ある実施形態においては、物理的な間隔を空けるスペーサ(520)は、羽根車支持体の略水平部分(504)の平均的な厚み(530)の約50%にすぎない。他の実施形態において、この厚みは羽根車支持体の厚みの40%、30%、20%、10%、或いは5%にすぎない。
【0085】
ある実施形態において、物理的な間隔を空けるスペーサ(520)は軸受であって、羽根車支持体に対する駆動ヘッドの回転を促進させる。物理的な間隔を空けるスペーサ(520)が軸受である場合、任意の好適な軸受が選択されてもよく、例えばころ軸受、玉軸受(例:放射軸玉軸受)、スラスト軸受、レース軸受、二重レース軸受、回転式軸受等が挙げられる。
【0086】
図5に示される実施形態において、駆動ヘッドはシャフト(508)に対する位置の変更が可能である。この変更は通常の操作においては5ミリメートルにすぎない。或いは他の実施形態において、その変更は4,3,2,1ミリメートル(通常の操作においては0.5或いは0.25ミリメートル)にすぎない。駆動ヘッドはまた羽根車支持体の底面(524)に対する距離の変更も可能である。この変更は、図5に示される配置を用いて、特定の実施形態内では10ミリメートル、1ミリメートル、0.5ミリメートル、0.25ミリメートル、0.1ミリメートル、或いは0.005ミリメートルにすぎない。
【0087】
特に物理的な間隔を空けるスペーサ(520)が用いられる実施形態において、図5の配置は羽根車支持体(501)が受ける任意の他の物理的な支持に加えて、羽根車支持体(501)に物理的な支持を加えるものである。このように支持を与えることは、羽根車(例:混合装置及び/又は消泡装置)を含む折り畳み可能な袋体の配置に極めて有用である。
【0088】
さらに、羽根車支持体(501)はスパージャ(540)を備える。このスパージャ(540)は羽根車の板の下に配される。スパージャは1以上のガス供給源と接続されるような大きさである。例えば、スパージャはチューブ(542)に接続され、1以上のガス供給源と流体流通可能なポートを備える。
【0089】
本明細書中で説明される多数の図において、コンテナ底部或いはコンテナ底部付近に羽根車が配されているが、他の実施形態において羽根車は、コンテナ内の任意の好適な位置、例えばコンテナの中心付近或いはコンテナの上部に配されることも可能である。これは、羽根車を支持するシャフトの長さを延長することにより、又は他のいかなる好適な配置により可能となる。コンテナ内の羽根車の位置は、コンテナ内で行われる作業に依存する。つまり、散布が要求される実施形態の中には、羽根車はスパージャ付近に配されてもよい。これにより、羽根車はコンテナ内に導入された泡を除去及び/又は制限することができる。さらに、本明細書中に説明される図は、シャフトと接続される1つの羽根車を示しているが、場合によっては1以上の羽根車が用いられてもよい。例えば、シャフトに接続された第1の羽根車はコンテナの底部に配されてもよい。またシャフトに接続された第2の羽根車はコンテナの中心付近に配されてもよい。第1の羽根車は散布されたガスを適切に除去することが可能であり、また第2の羽根車はコンテナ内の内容物を適切に混合させることが可能である。
【0090】
本発明のある態様において、羽根車支持体は独特な設計がなされており、折り畳み可能な袋体を容易に固定することが可能である。折り畳み可能な袋体に取り付けられた羽根車の特定の周知の配置は、以下の欠点を有する。この欠点は、羽根車支持体に袋が非理想的に取り付けられたり、或いは非理想的な方法でこのような取り付けが行われたり、或いはその両方である。図5の実施形態に示される如く、この態様において、本発明は基部を有する羽根車支持体を備える。この基部はシャフトに対し略垂直であり、羽根車はシャフト上で回転する。また、羽根車支持体は、羽根車のシャフトを適切に支持するのに十分な平
均厚さを有する第1部分(534)、及び袋体への取り付けを促進する第1部分よりも薄い第2部分の周辺部(536)を有している。第1部分の厚みは、任意の場所の第1部分により定められた全体の厚みの断面として形成される。また、第1部分が様々な厚さを有する隆起した構造或いはその他の構造を有するとき、この場合の厚みは最も厚い部分として定義される。ある実施形態において、第2部分の周辺部は、折り畳み可能な袋体の構造と同様の、或いは実質的に同一の構造を形成する。また第2部分の周辺部は、折り畳み可能な袋体の厚さと同様の厚さである。他の実施形態において、第2部分の周辺部は折り畳み可能な袋体の組成物とは異なる組成物で形成されている。つまり、ある実施形態において、第1部分は低密度ポリエチレンで形成され、第2部分は高密度ポリエチレン、ポリプロピレン、シリコン、ポリカーボネート及び/又はポリメタクリル酸で形成される。
【0091】
支持体の周辺部の厚みと折り畳み可能な袋体(540)の壁部の厚みは、取り付け前は、100%を超えない。或いはその他実施形態において80%、60%、40%、20%、或いは10%を超えない(例:この割合は、この袋体の壁部及び周辺部間のより大きな厚みの割合として表される)。本発明のこの態様は一部において、部分的に以下の発見を有するものである。すなわち、羽根車支持体の周辺部の厚み及び折り畳み可能な袋体(羽根車支持体に取り付け可能な少なくとも一部)の厚みは、同じ(或いは適合性のある)材料及び同じ厚みでできているということ、そして一方の他方への接合は容易に再現可能であると共に、ある製品を用いて実行可能である。この製品とは、繋ぎ目において著しい不規則性及び厚みを有さない。したがって、本発明のある態様は、取り付け前の折り畳み可能な袋体及び羽根車支持体を、上述の如く取り付ける製品を含む。さらに、他の態様において、取り付け前の羽根車支持体と折り畳み可能な袋体を含むキットを備える。本明細書で説明されるように、袋体及び支持体の接合は任意の好適な方法により行われる。好適な方法とは例えば、成形(例:図2Aから図2Cに関連して述べた方法)及び溶接(例:超音波或いは熱溶接)等である。
【0092】
本発明の他の態様は取り替え可能な板を有する羽根車を備える。図6は羽根車(570)を本発明のある実施形態に従って図示したものであり、ハブ(572)を備える。ハブ(572)は円形の外周を有し、羽根車のシャフト或いは柱(図示せず)が備えられる前の中心通路(576)を備えてもよい。ハブ(572)は1以上のスロット(578)を有する。ある実施形態においては、スロット(578)は1以上の羽根車の板(580)が取り替え可能に挿入されている。図示する如く、一方のスロット(578)は板を収容せず、そしてもう一方のスロット(578)は羽根車の板を収容する。板及び板のスロットは非常に概略的に示されており、本明細書及び従来技術において説明される混合目的の多様性のために、板の様々な大きさ、形及び傾斜角度が通常の技術を有する者により選択可能であるということは、通常の技術を有する者にとって当然理解されるものである。板(580)は、好適に利用するためにスロット(578)内に十分しっかりと配されて固定されている。この固定は本発明に従い、様々な技術によりなされる。この技術の例として、摩擦嵌め、プレス嵌め、戻り止め機構、クリッピング及びクリップ解除機構、螺子、杭、クランプ等による固定、溶接(例:熱溶接及び超音波溶接)、及び接着剤を用いたものがある。
【0093】
図6に示される本発明の取り替え可能な板の装置により、以下の利点をもたらすものである。この利点は、混合/回転配列内の単一のハブと共に、異なる板を用いることにより、取り替え可能な板の装置は様々な目的で用いられるか、或いは異なる回転速度、トルク、混合形態等を備えるようになることである。例えば、第1の大きさ或いは傾斜角度を有する板は、第2の大きさ或いは傾斜角度を有する板と取り替え可能である。この取り替えにより、シア、通気、或いは混合等が増減されることは、通常の技術を有する者にとって容易に理解される。取り替え可能な板(例:飛行機のプロペラ羽根)は様々な分野において周知であるが、本発明のような折り畳み可能な袋体の配置中の取替え可能な板は、当該技術における知識を元に見出されると予期されていなかった。これは、このような袋体が、細胞を含む媒質を混合することのみに用いられていたためである。この媒質は、細胞を含む媒質が溶解しないよう、シアの限界以下でかき混ぜる必要があるものである。また、より大きなシアに耐えうる他の材料を有する媒質を混合することにおいても、このような袋体は用いられていた。本発明のこの態様において、折り畳み可能な袋体の装置には複数の板が用いられ、また、2つ以上の混合特性のどちらか一方或いはその両方と共に用いられる。
【0094】
ある態様において、羽根車は(ある実施形態中では駆動ヘッドの羽根車への磁気結合を介し)、回転方向を逆転させたり回転速度を微調整することが可能なモータにより駆動される。スピンの方向を反転させることは従来技術において見出されず、或いは提案されなかったが、多様な通気/散布特性等の点において、本発明により理解されるような重大な利点がもたらされた。本発明に従って羽根車の速度の微調整は行われ、これにより通気/散布、シア等の程度及び/又はバランスは正確で制御可能なものになる。この程度及び/又はバランスは、多数の媒質、特に細胞を含む媒質の混合に関連して非常に有益なように決定される。本発明のこの実施形態により、羽根車の回転速度を再現可能及び制御可能に調節することができる。羽根車の回転速度は、最大限度の羽根車回転速度の10%から90%間の回転速度の範囲において、プラスマイナス5%またはそれ未満になる。他の実施形態において、この速度の4%、3%、2%或いは1%またはそれ未満の回転調整は促進される。ある装置において、これらの態様はサーボモータを用いることにより実現される。
【0095】
その他の態様において、本発明はコンテナ内にできた泡を削減する、或いはコンテナの上部空間内の泡の量を削減するシステムを備える。ある場合において、センサ及び/又は制御装置はまた、泡を監視及び/又は制御することができる。特定の非制限的な例として、泡センサは上部空間内に挿入されてもよい。ある実施形態において、泡センサは2以上の泡プローブを備え、泡プローブの間には電位を有する。この電位は消泡を(制御システムを介し)活性化させることができ、例えば、化学消泡剤をポンプ等を介して添加する。他の実施形態において、泡センサは、プローブを含む第1部分、及び再利用可能な支持構
造体の壁部(或いはコンテナの壁部)を含む第2部分を備える。この第1部分及び第2部分は、プローブと壁部間の電流フローの変化を(例えば泡が存在することにより)検知することができる。他の実施形態において、泡センサは外部モータの電流を用いてコンテナ内の泡を検知する。このような装置において、泡がモータ駆動の羽根車に接触すると、電流は増加する。さらに他の実施形態において、泡センサは制御システムを介して機械的消泡装置を稼動させることができる。他の特定の非限定的な例として、機械的泡制御は、例えばコンテナの上部に羽根車を上下逆さに取り付ける、又は消泡を高める溶解物用排出口或いは非溶解物用排出口を任意で用いてもよい。消泡システムに用いられる羽根車の例は、図4AからBに関連して上述されている。
【0096】
さらにある実施形態において、泡を削減或いは除去する装置は容器、例えば容器のコンテナ内に接続していてもよい。消泡装置は、例えば泡が排出口或いは出口に溜まったり、フィルタを塞いだりする等の前に、泡を削減或いは除去することができる。消泡装置は連続的に、周期的に、或いは場合によっては一定の事象に対する反応として、例えばバイオリアクタシステム内及び/又はコンテナ内で作動する。例えば、消泡装置は1以上のセンサを有し、また泡を監視し泡を削減或いは除去することが可能な制御システムを有する。
【0097】
多数の実施形態において、消泡装置は制御システム備え、この制御システムは1以上の泡センサを例えばコンテナ内に有する。泡センサは、泡及び/又は例えばコンテナの出口内の圧力の変化の結果生じた泡を検知することのできる任意の場所に配されてよい。つまり、泡センサはコンテナ内の上部空間内、排出ポート内、排出管内(例えば空気排出管、及び/又は排気口フィルタの上流)等に配されてもよい。1以上の泡センサ内で泡を検知することは、下記の通り、制御システムに消泡方法を確立させることになる。他の一連の実施形態において、コンテナ内の泡或いは泡の影響を検知するセンサは圧力センサであってよい。このセンサは過度の圧力(例:泡による目詰まりに起因する)を検知するもので、泡の程度を決定するのに用いられることができる。例えば、ある実施形態において、泡の検知はコンテナ内の上部空間内の圧力センサ、或いは排出ポート内の圧力センサによりなされてもよい。
【0098】
消泡技術は、コンテナへのガス流量を低下させること及び/又は完全にガスを遮断すること、化学消泡剤の添加(例えば外部ポンプを介する)といった、通常の技術を有する者にとって周知のものを含むがこれらに限定されない。また、この消泡技術はコンテナ内の上部空間内に取り付けられた機械的泡崩壊装置、及び/又は混合器の撹拌速度を低下或いは停止することを含むが、これらに限定されない。
【0099】
ある一連の実施形態において、機械的消泡システムは泡を削減或いは除去するのに用いられる。機械的消泡システムは、コンテナ内等バイオリアクタシステム内の任意の好適な場所に配されることができる。つまり、機械的消泡システムは、本発明のコンテナの上部部分の内側、或いは排出ポート(空気及び/又は泡をコンテナの外へ排出させる)に嵌合することができる。機械的消泡システムは泡を削減及び/又は除去することのできる任意の好適な構造を有してもよい。つまり、ある実施形態において、機械的泡崩壊装置は、中空の回転シャフト上に取り付けられた1以上のステンレス製の板或いは錐体を有し、この
回転シャフトはコンテナを貫通している。シャフトは外部モータ(例:磁気作動モータ)或いは他の好適な装置により回転可能である。ある場合においては、中空のモータシャフトが利用され、コンテナ外へ排出されるガスの通路をもたらす。その他の場合においては、図4AからBに示されるような羽根車が用いられる。
【0100】
場合によっては、機械的消泡装置に接続されるシャフトは、コンテナの内側及び外側の間に配される。シャフトがコンテナの外にある場所は無菌状態で保持される。つまり、内側及び/又は外側の回転シール部を用いて無菌のシール部を維持する、及び/又は高温熱蒸気を用いて無菌のシール部の維持を促進する。このような無菌のシール部を維持することにより、シャフトによる汚染(例:外部環境、排出ガス等からの汚染)が減少或いは回避される。
【0101】
いかなる理論よる制約を望まずに、ガス及び/又は泡が機械的消泡装置(例えば回転羽根車、板、或いは錐体の間)を通過すると、遠心力が泡に加えられる。遠心力は安定した表面張力より大きくなるので、結果的に気泡の崩壊を招く。崩壊した気泡から出た流体はこのようにしてコンテナの外や下へ放出される。したがって、排出されたガスは少なくともほぼ泡のない状態になる。機械的消泡装置はセンサを介し常に作動させておくことが可能であり、或いは随時稼動させておくことも可能である。センサとは例えば、前述のコンテナの上部部分に取り付けられたセンサである。
【0102】
図7を参照する。このような機械的消泡システムのある実施形態が図示されている。この図において、例えばコンテナ(608)(例:剛性コンテナ或いは折り畳み可能な袋体)内での化学的、生化学的、及び/又は生物学的反応中に、泡(602)は生じる。この例において、泡は制御システムと電気通信可能な泡センサ(611)により検知され、その後、消泡装置を作動させる。また、消泡装置は外部駆動モータ(614)を備え、この外部駆動モータ(614)は翼(622)に接続されたシャフト(617)を回転させる。シャフト(617)はコンテナ(608)の内部にまで貫通する。そして、泡(602)は回転する翼(622)間を通過すると崩壊する。さらに、この例において、シャフト(617)は中空であり、ガスはシャフトを通過し、コンテナ(608)から排出され、矢印(619)が示すように、導管(616)及びフィルタ(617)を通過可能である。
【0103】
他の実施形態において、本発明の機械的消泡装置はコンテナを貫通しない。したがって、機械的消泡装置は回転シャフト或いは中空シャフトが欠けていてもよく、及び/又はシール部が欠けていてもよい。さらに、このような機械的消泡装置によりコンテナが貫通されていないので、機械的消泡装置を、例えば内部及び/又は外部の回転シール部、高温熱蒸気等を用いて無菌状態に保持する必要がない。つまり、このようなシステムは、鉄、ステンレス或いは安価な硬質プラスチックから形成されることで、折り畳み可能或いは使い捨て可能な袋体或いは本明細書記載の他のコンテナに挿入される。
【0104】
図8を参照する。このような機械的消泡システムの非制限的な例が図示されている。この図において、例えばコンテナ内での化学的及び/又は生物学的反応が起こる間、泡(602)は、コンテナ(608)内に生じる。泡は泡センサ(611)により検知される。そして、制御システムは消泡装置を作動させる。この特定の例において、消泡装置は外部駆動モータ(614)を備える。この外部駆動モータ(614)は回転する外部磁気駆動ヘッド(630)を有する。シャフトが貫通していないことにより、コンテナ(608)はモータ(614)から素早く取り除くことができる。コンテナ(608)の内部では、内部磁性ハブ(632)は、外部磁気駆動ヘッド(630)の回転を受けて回転する。この回転により、内部磁性ハブ(632)(例:単軸の周囲)に取り付けられた板(638)は回転し、そして泡を崩壊させる。この例において、ガスは中空のシャフト(図7参照)を介して外へ出ない。その代わりに、ガスは排出ポート(240)(空洞で、多孔質の溶解要素等を含む)を通過して、コンテナ(608)の外へ出て、矢印(619)が示すように導管(616)及びフィルタ(617)を通過する。
【0105】
図7及び図8はコンテナの上部部分或いは上部部分付近に配された機械的消泡装置を示すが、他の実施形態において、装置はコンテナ内の任意の好適な位置に配されてよい。好適な位置とは例えば、コンテナの中心部分付近である。この装置の配置は例えば、羽根車を支持するシャフトの長さを延出することにより、或いは他の好適な構造により達成可能である。羽根車はまたコンテナ内の液体及び泡の水位により下降或いは上昇する。さらに、消泡装置は場合によっては、1以上の羽根車を備えてもよい。例えば、シャフトに連結した第1の羽根車はコンテナの上部部分付近に配され、またシャフトに連結した第2の羽根車はコンテナの中心付近に配されてもよい。容器の消泡システムは、場合によっては使い捨て可能なもの、或いは一度の使用(例:コンテナと共に)を目的とするものであってよい。
【0106】
本明細書に説明される羽根車のシステムは、いかなる種類の流体、固体、或いは泡を混合してもよい。例えば、コンテナ内部の液体を混合することにより、栄養素が分配されたり、細胞増殖用途のための溶存ガスがもたらされる。同様の使い捨て可能なコンテナは緩衝剤及び媒質、或いはその他の溶液を混合するのに用いられる。その他の溶液には使い捨て可能な製品の接触面が望ましい。このことは、容器が無菌状態或いは無菌状態である必要がないことを含む。さらに、本明細書中に記載の実施形態において、液体/混合物/ガスを有するコンテナは、再利用可能な支持構造体から除去及び処分されることが可能にな
る。これにより、再利用可能な支持構造体は、コンテナ内で混合された流体により汚染されない。したがって、再利用可能な支持構造体は、使用後毎回洗浄或いは滅菌する必要がない。
【0107】
本発明のその他の態様は、複数のスパージャ(散布要素を含む)を備える。このスパージャは、異なるガス供給源と接続する寸法であって、及び/又は独立して制御されるものである。バイオリアクタシステム或いは生化学的/化学的反応システムに用いられるガスの種類、スパージャの数、及びスパージャの種類及び構造は、実施される特定の工程(例:好気性反応対嫌気性反応)、液体から出るあらゆる有毒な副産物の除去、反応のpHの制御等に部分的に依存する。本明細書中に記載のある実施形態と関連して詳細が下記に説明される通り、システムは様々なガス用に別々のスパージャを備えてよい。この別々のスパージャは、例えば化学的、生化学的及び/又は生物学的反応を行う様々な機能を有する。つまり、細胞培養用バイオリアクタシステムは、培養液中の溶存酸素量を制御する「溶存酸素制御ガス」、培養液中の有毒な副産物量を制御する「ストリップガス」、及び培養液中のpHを制御する「pH制御ガス」等の様々な種類のガスを有してよい。各種類のガスは培養物中に様々なスパージャを用い導入される。このスパージャは独立して操作及び制御が可能である。有利なことに、このようなシステムは高速プロセス制御及び低速プロセス制御の可変性をもたらす(高速及び低速とは、例えば溶存酸素制御ガス、ストリップガス、及びpH制御ガスをリアクタに導入される1つのガス流に結合させる特定のシステムと比較した場合をいう)。本明細書中に記載のバイオリアクタシステム内で行われた化学的、生化学的及び/又は生物学的反応はまたガスの消費が少ないので高額なガスにかかる費用が削減でき、及び/又は(例えばストリップガスの)ガス流量の総量が少ないので、これにより泡の生成を抑える及び/又は必要な入口ガスの滅菌フィルタのサイズを縮小することができる。
【0108】
ある実施形態において、本明細書中に記載の容器はバイオリアクタシステムの一部である。ある特定の種類の細胞培養に用いられたバイオリアクタにおいて、細胞は糖類、窒素元(例:アンモニア(NH3)或いはアミノ酸)、各種塩類、微量金属及び分裂と成長のための酸素等の栄養素を必要とする。他の栄養素のように、リアクタ中に均等及び均一な栄養素を分配することが、均一な細胞増殖のために不可欠である。酸素が十分に分配されないと一部の細胞は酸素不足になり、細胞の成長を鈍らせ、細胞代謝を変質させ、或いは細胞死を招くことになる。細胞がバイオプロダクトを生成するよう設計されたある応用に
おいては、酸素の欠乏はバイオプロダクト形成の量及び質において深刻な影響を及ぼす。細胞が常に利用可能な栄養素の量は流体中の栄養素濃度に一部依存している。糖類、窒素元、塩類及び微量金属は水溶性であるので、したがって細胞は過剰になると共に及び迅速に利用できる。一方で、酸素は比較的水に溶けにくい、或いは水に「溶解」しにくい。細胞の成長に必要な塩類の存在に加え気温の上昇は、さらに溶存酸素濃度を低減させる。この補填のため、酸素を液体中へ一定及び安定して移動させる(例えば本明細書中に記載の1以上のスパージャを用いて)高速溶存酸素検知システムを、バイオリアクタ内の高速及
び均一な分配と組み合わせて用いることにより、酸素欠乏を削減或いは回避する。
【0109】
酸素が気泡から培養液に侵入する酸素移動は重要なパラメータであるので、ガス供給システムの反応性の時定数もまた重要である。ある実施形態において、細胞集団の密度が増加すると、溶存酸素制御ガスで濃縮された酸素を供給するガス処理システムの反応速度は益々に重要になる。したがって、ある実施形態において、本明細書中に記載のシステムは1以上のセンサを有する。このセンサとは例えば、より多くの酸素(或いは他のガス)の必要性を検出する溶存酸素センサ、ガス制御装置、及び1以上のスパージャである。このスパージャは、信号を受け、例えば窒素、酸素、空気制御ガス等を用いて余分な酸素で培養物を強化する。この濃縮ガスがリアクタに到達するのにかかる遅延時間(例:数分)は、溶存酸素を低下させる酸素欠乏を引き起こすので、本明細書中に記載のシステムはセンサ、ガス制御装置、及びスパージャ間に制御フィードバックループを備えてもよい。したがって、反応的且つ均一的な酸素含有制御ガス(例:N2、O2、空気混合)の供給及び分配により、制御され、予測可能な細胞増殖及びバイオプロダクト形成がもたらされる。本明細書中に記載のシステムはスパージャ及び/又はガス組成物を単独で制御することができるので、コンテナ内に異なるガスを噴霧する前にガスを外に押し出す必要があるシステムと比較して有利である。
【0110】
さらに、圧縮空気及び圧縮酸素をリアクタに供給するのは費用がかかるため、適量の酸素で濃縮された適量の空気をもたらし、それにより泡がコンテナの上部空間で失われないような(及び排出ラインで失われないような)システムが実行される。例えば、このシステムが実行されるのは、システム内で用いられる他のガス(例:ストリップガス及び/又はpH制御ガス)の制御ガスの流量および流速を個別に制御することによりなされる。
【0111】
いかなる理論による制約を望まずに、空気、純酸素或いはガス混合物からバイオリアクタの流体中への酸素移動速度は、液体中の泡の総表面積の総量に直接関係している。したがって、大きな泡は、非常に小さい泡の細かい霧より総表面積が少ない。この理由のため、本発明のある実施形態において、制御ガスは微孔性のスパージャからもたらされ、非常に小さな泡を作る。微孔性のスパージャは以下のサイズ(平均的な直径)の開口部を有する。例えば開口部は、500ミクロン未満、200ミクロン未満、100ミクロン未満、60ミクロン未満、50ミクロン未満、40ミクロン未満、30ミクロン未満、20ミクロン未満、10ミクロン未満、3ミクロン未満、約1ミクロン未満、或いは0.1ミクロン未満のサイズを有する。ある実施形態において、微孔性のスパージャは0.1から100ミクロンの間の開口サイズを有する。当然、より大きな開口サイズを有するスパージャが用いられることができる。開口サイズは100ミクロン以上、200ミクロン以上、500ミクロン以上、1ミリメートル以上、3ミリメートル以上、5ミリメートル以上、7ミリメートル以上、或いは10ミリメートル以上であってもよい。開口部は任意の好適な断面形状(例:円形、楕円形、三角形、不規則な形、四角形或いは長方形等)であってよい。開口サイズの組み合わせを有するスパージャは、本明細書中に記載の容器に組み込まれることができる。
【0112】
さらに、望ましい細胞増殖及び制御された代謝は、細胞増殖の有毒な副産物を除去することに依存している。有毒な副産物とは例えば、二酸化炭素、アンモニア及び揮発性有機酸等である。二酸化炭素は非常によく水に溶け、細胞への有毒作用を悪化させる。これらの副産物はストリップガスを用い培養物にガスを供給することにより、培養液から除去することができる。したがって、ストリップガス、及び泡が培養物(及び例えば排気口)から流出するのに十分早い流速で導入されたストリップガスの分配は、細胞増殖及び/又はバイオプロダクト生成にとって重要なものである。これらのパラメータは、ストリップガ
ス用の別のスパージャを用いて、システム内に用いられる他のガス(例:制御ガス及び/又はpH制御ガス)を独立して制御する。
【0113】
ある場合において、ストリップガスは、0.1から10ミリメートル間の開口サイズを有するスパージャを用いてコンテナ内に導入される。例えば、開口サイズは100ミクロン以上、200ミクロン以上、500ミクロン以上、1ミリメートル以上、3ミリメートル以上、5ミリメートル以上、7ミリメートル以上、或いは10ミリメートル以上であってよい。これらの開口サイズは、比較的大きい泡がコンテナの液体を通過することを可能にする。これにより、コンテナの上部部分内に大量の泡を作らずに、任意の有毒な副生成物を液体の外へ除去できる。
【0114】
ある実施形態において、pH制御ガスはバイオリアクタシステム内の反応流体のpHを制御するのに用いられる。例えば、二酸化炭素は溶液のpHを増加させるのに用いられ、及びアンモニアは溶液のpHを減少させるのに用いられることができる。ある実施形態において、pH制御ガスは、二酸化炭素、アンモニア、或いはpHを制御(増加或いは減少)する他のガスの組み合わせを含む。その他の実施形態において、流体反応のpHは、第1のスパージャ及び第2のスパージャにより制御される。第1のスパージャはpH(例:二酸化炭素)を増加させる薬剤を含み、第2のスパージャはpH(例:NH3)を減少させる薬剤を含んでいる。バイオリアクタシステムに接続されたpH制御センサからの信号を受け、1以上のpH制御ガスはバイオリアクタシステムのコンテナに添加される。pH制御ガスは個別に、また酸素消費量(例:溶存酸素制御ガス)或いはストリップガスシステムによる支障を受けずに操作される。pH制御ガスは様々なサイズの開口部を有するスパージャを用いてコンテナ内に導入される。
【0115】
他の実施形態において、通常は酸素無しで増殖(例:嫌気性反応)した細胞、或いはどのような酸素に対しても敏感な細胞は、培養物から酸素を除去する必要がある。これらの培養物内への均一で制御された窒素ガスの分配によって、正常な細胞増殖を制御し及び生成物を生成する。
【0116】
上述の通り、本発明のある実施形態において、空気、CO2、O2、N2、NH3及び/又は溶存酸素等のガスはコンテナ内へ散布されてもよい。ある場合において、散布は必要に応じて素早く散布したり、或いは変更できるように制御可能である。場合によっては、複数のスパージャを用いることもできる。例えば、ある実施形態において、異なるガス組成物は夫々複数のスパージャを用いてコンテナに導入される。複数のスパージャの例は、第1のガス組成物用の第1のスパージャ、第2のガス組成物用の第2のスパージャ、第3のガス組成物用の第3のスパージャ等である。ガスは組成及び/又は濃度において異なっていてもよい。特定の例として、第1のガス組成物はCO2を5%含む空気を有し、また第2のガス組成物はCO2を10%含む空気を有する。その他の例において、第1のガス組成物はO2を有し、第2のガス組成物はN2を有する。さらに他の例において、第1のガス組成物は制御ガスを有し、第2のガス組成物はストリップガスを有し、そして第3のガス組成物はpH制御ガスを有する。勿論、その他のガスの組み合わせもまた可能である。ある場合において、複数のスパージャは反応をより早くするのに有益である。例えば、コンテナに導入されたガス組成物は、異なるスパージャを例えば単一で及び/又は組み合わせて作動させることにより、急速な変化が可能になる。特定の例において、コンテナ内に導入されたガスは、(第1のスパージャを介して)第1のガスから(第2のスパージャを介して)第2のガスへ、及び/又は第1及び第2のガスの組み合わせへと急速に切り替えられることが可能である。夫々のガスの流量もまた、互いに独立して変更可能である。(反対に、単一のスパージャを用いる場合は、組成物の変化は新しい組成物がコンテナ内に導入される前にスパージャに到達する必要がある。)さらに、複数のスパージャを用いることにより、スパージャの種類を特定の種類のガスに応じてカスタマイズすることができる。特定の種類のガスとは例えば、ストリップガス、溶存酸素制御ガス、pH制御ガス、空気、CO2、O2、N2、NH3、或いは必要な場合はその他の好適なガスであってよい。
【0117】
散布は連続的、周期的、或いは場合よっては一定の事象に対する反応として、例えばバイオリアクタシステム内及び/又はコンテナ内で作動する。例えば、上記の通り、スパージャは1以上のセンサ及び制御システムと接続されている。この制御システムは、散布量、泡の度合、コンテナ内の物体の量或いは濃度を検知すると共に、及び1以上のガスの組成物の一定の散布を開始、減少、或いは増加させることにより反応を検知できる。
【0118】
ある特定の実施形態において、容器(例:生物学的、生化学的或いは化学的反応を行うためのリアクタシステムの一部としてのもの)は、所定体積の液体を収容するよう形成される。またこの容器はコンテナ(例:折り畳み可能な袋体)を備え、このコンテナは少なくとも2リットルの容積(或いは任意の他の好適な容積)を有し所定体積の液体を収容する。任意で容器はコンテナを包囲し収容する支持構造体を備える。さらに、容器は第1のスパージャを備え、このスパージャはコンテナと流体流通可能な第1のガス組成物の供給源と接続或いは接続するような寸法を有する。また、容器は第2のスパージャを備え、こ
のスパージャはコンテナと流体流通可能な第1のガス組成物と異なる第2のガス組成物の供給源と接続或いは接続するような寸法を有する。さらに容器は第1及び第2のスパージャに動作可能に接続された制御システムを備える。またこのシステムはスパージャを互いに独立して操作するよう形成されている。勿論、第3、第4、第5及びそれ以上の数のスパージャが備えられてもよい(例えば10以上、或いは20以上のスパージャ)。スパージャの数は、例えばコンテナのサイズによって決定される。いくつかの実施形態において、容器はさらに、羽根車及び基板を備える混合システムを有する。この混合システムにお
いて、第1及び/又は第2のスパージャは基板と接続されている。ある特定の実施形態において、第1のガス組成物は空気を備え、第2のガス組成物はO2及びN2が補われた空気を備える。さらに追加のスパージャを備える場合、スパージャはN2、CO2、NH3からなるガス供給源に接続され、及び/又は任意の他の好適なガスの供給源に接続される。
【0119】
その他の例示的な実施形態において、所定体積の液体を収容するよう形成された容器は液体を備えるコンテナ(例:折り畳み可能な袋体)を備え、そして任意で折り畳み可能な袋体を包囲し収容する支持構造体を備える。容器はコンテナに接続される第1のスパージャを備え、第1のスパージャは第1の開口サイズを有し、第1のスパージャの少なくとも一部は第1のガス組成物の供給源に接続されるような寸法である。容器はまたコンテナに接続される第2のスパージャを備え、第2のスパージャは第2の開口サイズを有し、第2のスパージャの少なくとも一部は第2のガス組成物の供給源に接続されるような寸法である。第2のガス組成物は、第1のガス組成物と同じ或いは異なる組成物を有する。いくつかの実施形態において、容器はバイオリアクタシステムの一部である。或いは、容器は生物学的、生化学的或いは化学的反応システム、或いは混合システムの一部である。容器は第1及び第2のスパージャと動作可能に接続する制御システムを備え、スパージャ(或いはそれと共に関連するガス)を互いに独立して操作するよう形成される。容器は任意の好適な数のスパージャを有してもよい(例:10以上或いは20以上のスパージャ)。また、コンテナは任意の好適な容積を有してもよい(例:少なくとも2,10、20,40或いは100リットルの容積)。第1及び/又は第2のガス組成物は例えば、N2、O2、CO2、NH3或いは空気を有してもよい。例えば、ある場合において、第1のガスは空気を有し、第2のガスはO2及びN2が添加された空気を有する。第1の開口サイズは第2の開口サイズよりも大きい。つまり、第1の開口サイズは0.1から10ミリメートルの間であってよく、第2の開口サイズは0.1から100ミクロンの間であってよい。
【0120】
スパージャに接続される開口部は任意の好適な材料で形成されていてもよい。つまり、ある実施形態において、多孔質ポリマ材料が散布要素として用いられ、材料の一方からもう一方へとガスを移動させることができる。開口部はまた、金属、セラミック、ポリマ、及び/又はその組み合わせ等の他の材料で形成されてもよい。孔及び開口部を有する材料は、任意の好適な形状を有してもよい。例えば、材料は編む、織る、或いはメッシュ或いはその他の多孔質要素を形成するのに用いられる。要素は例えば、シート状、フィルム状及びブロック状であってよく、また任意の好適な大きさであってよい。いくつかの場合において、このような要素は、図5に示すように、羽根車或いは羽根車支持体に組み込まれている。要素は、好適に利用するために羽根車或いは羽根車支持体の領域に十分しっかりと配されて固定されている。この固定は本発明に従い、様々な技術によりなされる。この技術の例として、摩擦嵌め、プレス嵌め、戻り止め機構、クリッピング及びクリップ解除機構、螺子、杭、クランプ等による固定、溶接(例:熱溶接及び超音波溶接)、及び接着剤を用いたものがある。その他の実施形態において、羽根車及び/又は羽根車支持体の一部は、流体を流入させることができる孔或いは開口部に直接製作される。
【0121】
容器は制御システムと電気通信可能な1以上のセンサを備えてもよい。この制御システムは、コンテナ内のガス(例:O2、N2、CO2、NH3、反応の副産物)量或いは濃度を決定する。さらに及び/又は別の方法として、容器は制御システムと電気通信可能なセンサを備え、コンテナ内の液体のpH、或いは袋体内の泡の量或いは水位が決定される。
【0122】
上述の如く、制御システム及びフィードバックループを用い、ある実施形態中の散布の度合、或いは混合の度合、或いは他の実施形態中の消泡システムの働きを制御することができる。このような制御及びフィードバック工程の一例は、図9に示されている。システム(700)は第1のセンサ(702)(例えばコンテナ内の液体のCO2の量及び/又は濃度を検出する)及び第2のセンサ(704)(例えばコンテナ内の液体のO2の量及び/又は濃度を検出する)を備える。センサを測定した後、試薬がコンテナ(708)に添加される。そして、混合或いは生物学的、化学的、或いは生化学的反応を行う流体マニピュレーション工程が行われる。O2或いはCO2等のガスの量は、工程が進むにつれコンテナの液体内で変化してもよい。例えば、細胞を含む生物学的反応が行われると、細胞はO2を消費し、やがてCO2が生じる。これは細胞の成長段階に依存して変化する。したがって、ガスの量及び/又は濃度はセンサにより決定される(例えば時間関数として)。また、ガスの量及び/又は濃度に関連する信号(712)及び(714)は、制御システム(720)に送られる。制御システムは記録パラメータ(724)を備えてもよい。記録パラメータ(724)は例えば、反応前或いは反応中にユーザにより入力される1以上のガスの閾値である。例えば、パラメータは、スパージャが作動しストリップガスを用いてCO2の量を削減する前の液体中のCO2の一定の閾値を有している。その結果、制御装置から信号が送信され、構成要素(732)を作動させる。構成要素(732)は、CO2の量を削減するのに用いられるストリップガスの供給源に接続されたバルブ等である。ストリップガスがコンテナ(708)へ導入されるにつれ、CO2の量及び/又は濃度は減少する。この減少は制御システムに送信された(712)及び信号により測定可能である。CO2の量及び濃度が一定のレベルにまで減少すると、制御システムはコンテナに導入されたCO2の量をさらに低下或いは非活性化させるので、それによりフィードバックループが完成する。同様の工程が上記の工程とは無関係に、第2のセンサ(714)
を用いて行われる。第2のセンサ(714)は例えばコンテナ上部空間内の第2のガス、pH、或いは泡の量を測定する。
【0123】
他の実施形態において、気泡塔或いは気泡ポンプシステム(空気の気泡或いは他のガスの気泡を利用する)は、使い捨て可能なバイオリアクタ袋体と共に用いられる。このようなシステムは、リアクタの底部付近にガス(例:空気)を添加することにより混合エネルギをもたらす。ここで、上昇ガス気泡及び低密度のガス飽和液体は上昇し、下降するガス欠乏液体に取って代わり、上下の循環をもたらす。上昇する液体の経路は、例えば袋体のチャンバ内の仕切りを用い導かれる。つまり、バイオリアクタの袋体の内部を、例えば垂直に、上部及び底部の隙間を用いて両断するプラスチックのシートを用いる。ガスは仕切りの片側に添加されることによって、ガス及びガスが豊富な液体を片側に上昇させ、バリアシートの上面を横切るように、もう片側の方へ降下し、仕切りの下を通過しガス添加ポイントへ戻る。さらに、このような気泡塔/気泡ポンプ混合システム及び方法は、本明細書中記載のいかなる他の混合システムと組み合わされてもよい。
【0124】
ある態様において、本明細書中に記載のバイオリアクタシステムは、密閉樹脂装填/充填システムである。樹脂スラリがカラム上に押し出される一方で、通常、充填は無菌室で行われ、樹脂を収容する蓋の開いたカーボイを用いる。この樹脂は手動で混合される。しかしながらある実施形態において、可塑性を有するコンテナ等のコンテナは、クロマトグラフィ樹脂が充填されている。このクロマトグラフィ樹脂は、スラリがカラム内へ押し出される一方で、撹拌器でスラリ状にされる。
【0125】
光を必要とするある化学的、生化学的、及び/又は生物学的過程において、本明細書中に記載のバイオリアクタシステムは、直接、間接、及び/又は管内埋め込み式照明(例えば本発明のその他の態様による光ファイバを用いる)を備えてもよい。任意の好適な光源が用いられることができる。このようなバイオリアクタシステムは、例えば植物細胞の光合成等の活性化において有益である。ある特定の実施形態において、可塑性を有する蛍光コンテナは光をもたらすのに用いられ、例えば植物細胞の成長に用いられる。
【0126】
本発明のいくつかの実施例が説明及び描写される一方で、通常の技術を有する当業者は、機能を実行すること、及び/又は結果及び/又は本明細書に記載の1以上の効果を得るための他の手段及び/又は構造を容易に想到することができる。またこのような変形及び/又は修正は、本発明の範囲内であるとみなされる。さらに通常は、当業者は本明細書に説明される全てのパラメータ、寸法、材料及び形態が模範とされること、及び実際のパラメータ、寸法、材料及び/又は形態は、特定の適用或いは本発明の教示が用いられる応用に基づいていることを認識している。当業者は、通常の実験、本明細書に説明される特定の実施例の多くの同等物だけを用いずとも理解し、或いは解明することが可能である。したがって、前述の実施形態は例としてのみ提示される。また添付の請求の範囲及びその同等物の範囲内において、本発明は、特に説明及び請求の範囲に記載された以外の別の方法で実施されてもよい。本発明は、本明細書に記載の各個別の特徴、システム、物品、材料、キット及び/又は方法を対象とするものである。さらに、このような特徴、システム、物品、材料、キット及び/又は方法を2つ以上組み合わせることも本発明の範囲内に含まれる。それは、特徴、システム、物品、材料、キット及び/又は方法が互いに矛盾したものでない場合に限る。
本明細書中で定義され用いられる全ての定義は当然、辞書の定義、参照することにより本明細書に組み込まれる文献中の定義、及び/又は用語の普通の意味を使い分ける。本発明の明細書及び請求の範囲において用いられる不定冠詞「a」や「an」は、はっきりと提示されない限り、当然「少なくとも1つ」という意味である。
また、はっきりと提示されない限り、本明細書中に主張される本方法の1以上の段階或いは作用、又は本方法の段階或いは作用の順番は、必ずしも限定される必要はない。
上記の明細書と同様に請求の範囲において、全ての移行句は非限定的に用いられるものである。移行句とは例えば、「構成する(comprising)」「備える(including)」「運ぶ(carrying)」「有する(having)」「含む(containing)」「包含する(involving)」「保持する(holding)」「〜なる(composedof)」などである。非限定的とはすなわち、それを含むがそれに限定されることはないということを意味する。「〜からなる(consistingof)」及び「不可欠に〜からなる(consistingessentiallyof)」という移行句のみが、それぞれ限定的或いは半限定的な移行句である。

【特許請求の範囲】
【請求項1】
バイオリアクタ内の泡立ちを制御する方法であって、
大量の液体を収容するように形成された容器を用意するステップであって、前記容器が、
少なくとも10リットルの容積を有する、前記液体を収容するための半剛性コンテナ又は折り畳み可能な袋体を備えるコンテナと、
前記コンテナに接続され、第1のガス組成物の供給源と流体流通可能な第1のスパージャと、
前記コンテナに接続され、第2のガス組成物の供給源と流体流通可能な第2のスパージャと、
前記コンテナを包囲するとともに収容する支持構造体と、
磁気駆動の消泡装置と、
を備え、
前記磁気駆動の消泡装置の少なくとも一部は、前記コンテナが前記量の液体を収容する際、前記コンテナの上部空間に配され、
前記消泡装置は、取り換え可能に挿入された非磁性の1以上の羽根車の板と、前記羽根車の板の挿入のための1以上のスロットを有する羽根車のハブと、を備える羽根車を備え、
前記羽根車のハブは、前記コンテナの外側にあって、磁石を備える磁気駆動ヘッドを有するモータにより、前記羽根車のハブが磁気的に回転可能となるように配された1以上の磁石を備え、
前記羽根車の板は、前記消泡装置の少なくとも一部が回転する間、前記上部空間内の泡を壊すよう形成されると共に配され、
前記消泡装置は、前記泡からのガスを前記コンテナの外に排出可能である、
前記容器を用意するステップと、
前記泡からのガスを前記コンテナの外に排出されるように、前記バイオリアクターを前記磁気駆動の消泡装置を使って動作させるステップと、
を含む、方法。
【請求項2】
前記第2のガス組成物が、前記第1のガス組成物とは異なることを特徴とする請求項1に記載の方法。
【請求項3】
前記第2のガス組成物が、前記第1のガス組成物とは同じであることを特徴とする請求項1に記載の方法。
【請求項4】
前記第1のスパージャは、第1の開口サイズを有し、
前記第2のスパージャは、第1の開口サイズと異なる第2の開口サイズを有する、
ことを特徴とする請求項1から3のいずれかに記載の方法。
【請求項5】
前記容器は更に、前記第1及び第2のスパージャに動作可能に接続するとともに、前記スパージャを互いに独立して操作するよう設計された制御システムを備えることを特徴とする請求項1から4のいずれかに記載の方法。
【請求項6】
前記コンテナが折り畳み可能な袋体であることを特徴とする請求項1から5のいずれかに記載の方法。
【請求項7】
前記コンテナには継ぎ目がないことを特徴とする請求項1から6のいずれかに記載の方法。
【請求項8】
泡センサ、圧力センサ、及び、静電容量センサの少なくとも1つと、
制御システムをさらに備え、
前記制御システムが前記磁気駆動の消泡装置及び前記センサと動作可能に接続すること
を特徴とする請求項1から7のいずれかに記載の方法。
【請求項9】
前記少なくとも1つのセンサが前記上部空間内又は前記コンテナからの空気排出管内に配されることを特徴とする請求項8に記載の方法。
【請求項10】
前記コンテナが溶解物用排出口をさらに備えること特徴とする請求項5に記載の方法。
【請求項11】
前記磁気駆動の消泡装置は、プローブと前記コンテナの壁部との間で電流フローを検出することを介して前記制御システムによって制御されることを特徴とする請求項5に記載の方法。
【請求項12】
前記羽根車の板が、第1の大きさ或いは傾斜角度を有し、シアを増減させるために第2の大きさ或いは傾斜角度を有する板と取り換え可能であることを特徴とする請求項1から11のいずれかに記載の容器。
【請求項13】
少なくとも10ミリリットルの容積を有するコンテナを成形するよう構成された形を有する金型内に剛性部品を配する段階と、
第1のポリマ前駆物質を前記金型内へ導入する段階と、
前記ポリマ前駆物質を凝固させ前記コンテナを形成することにより、継ぎ目のないコンテナを前記金型内に形成する段階と、
を含み、
前記部品は前記コンテナに組み込まれることを特徴とする方法。
【請求項14】
前記内蔵する段階の間に前記剛性部品の少なくとも一部を融解させる段階を備えることを特徴とする請求項13に記載の方法。
【請求項15】
前記金型は少なくとも40リットルの容積のコンテナを成形するよう構成された形を有することを特徴とする請求項13に記載の方法。
【請求項16】
前記金型は少なくとも100リットルの容積のコンテナを成形するよう構成された形を有することを特徴とする請求項13に記載の方法。
【請求項17】
前記部品の少なくとも一部は前記第1のポリマと異なる材料からなることを特徴とする請求項13に記載の方法。
【請求項18】
前記部品の少なくとも一部は前記第1のポリマと同じ材料からなることを特徴とする請求項13に記載の方法。
【請求項19】
前記部品は第2のポリマを含み、
前記第1のポリマ及び前記第2のポリマは、前記コンテナを前記金型内で形成する間に結合する、
ことを特徴とする請求項17に記載の方法。
【請求項20】
前記第1のポリマは低密度ポリエチレンからなり、第2のポリマは高密度ポリエチレン、ポリプロピレン、シリコン、ポリカーボネート及び/又はポリメタクリル酸からなることを特徴とする請求項19に記載の方法。
【請求項21】
前記第1のポリマ及び前記第2のポリマは前記金型内へ同時に導入されることを特徴とする請求項19に記載の方法。
【請求項22】
前記コンテナを形成する段階は、前記第1のポリマ前駆物質を前記金型内で成形回転して前記コンテナを形成する段階を備えることを特徴とする請求項13に記載の方法。
【請求項23】
前記コンテナを形成する段階は、前記第1のポリマ前駆物質を前記金型内で射出成形して前記コンテナを形成する段階を備えることを特徴とする請求項13に記載の方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−74889(P2013−74889A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−211616(P2012−211616)
【出願日】平成24年9月26日(2012.9.26)
【分割の表示】特願2009−515509(P2009−515509)の分割
【原出願日】平成19年6月15日(2007.6.15)
【出願人】(508230743)エクセレレックス インク. (11)
【Fターム(参考)】