説明

ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法

【課題】ガス物性値の安定した計測を可能にする装置を提供する。
【解決手段】発熱抵抗体を含むマイクロチップ8Aと、マイクロチップ8Aの発熱抵抗体に複数の異なる電力を与え、マイクロチップ8Aの発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路303と、複数の電力の各値、複数の発熱温度の各値、及び発熱抵抗体と熱的に平衡なガスのガス温度の値に基づいて、ガスの放熱係数を算出する放熱係数算出モジュール301とを備え、駆動回路303が、発熱抵抗体を複数の異なる発熱温度で発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はガス検査技術に関し、ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法に関する。
【背景技術】
【0002】
従来、混合ガスの発熱量を求める際には、高価なガスクロマトグラフィ装置等を用いて混合ガスの成分を分析する必要があった。また、混合ガスの熱伝導率及び混合ガスにおける音速を測定することにより、混合ガスに含まれるメタン(CH4)、プロパン(C38)、窒素(N2)、及び炭酸ガス(CO2)の成分比率を算出し、混合ガスの発熱量を求める方法も提案されている。しかし、熱伝導率を測定するためのセンサの他に、音速を測定するための高価な音速センサが必要であった(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特表2004−514138号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
さらに、ガスの発熱量をリアルタイムで検出したいという要求が高まっており、従来以上に発熱量を検出するための装置の高速化及び小型化が求められている。ここで、演算量の多さが、装置の高速化及び小型化に限界を与える場合がある。従来の技術では、混合ガスの発熱量を算出するために、混合ガスの各ガス成分の割合を算出するステップと、算出された割合に基づいて、混合ガスの発熱量を算出するステップが必要であり、演算量が多いという問題がある。したがって、従来よりも演算量の少ない検出方法の登場が望まれている。よって本発明は、従来よりも演算量の少ない発熱量の検出方法及び装置を提供することを目的の一つとする。また、本発明は、ガスの物性値の安定した計測を可能にする装置を提供することも目的の一つとする。
【課題を解決するための手段】
【0005】
本発明の態様によれば、発熱抵抗体と、発熱抵抗体に複数の異なる電力を与え、発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路と、複数の電力の値、複数の発熱温度の値、及び発熱抵抗体と熱的に平衡なガスのガス温度の値に基づいて、ガスの物性値を算出する算出部と、を備えるガス物性値計測システムであって、駆動回路が、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止する、ガス物性値計測システムが提供される。
【0006】
また、本発明の態様によれば、発熱抵抗体に複数の異なる電力を与え、発熱抵抗体を、複数の異なる発熱温度で発熱させることと、複数の電力の値、複数の発熱温度の値、及び発熱抵抗体と熱的に平衡なガスのガス温度の値に基づいて、ガスの物性値を算出することと、を含み、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止することを特徴とする、ガス物性値の計測方法が提供される。
【0007】
本発明の態様に係るガス物性値計測システム及びガス物性値の計測方法によれば、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止することにより、ガスの放熱係数、熱伝導率、及び発熱量等のガス物性値の安定した計測が可能となる。
【0008】
また、上述したように、従来、混合ガスの発熱量を算出する際には、混合ガスの各ガス成分の割合を算出するステップが必要であった。これに対し、発明者らは、発熱量の演算方法を見直し、混合ガスの各ガス成分の割合を算出するステップを実施しなくとも、発熱量の算出が可能にならないかを検討した。そして、発明者らは、混合ガスの放熱係数又は熱伝導率を入力情報とすれば、混合ガスの発熱量を一意に算出可能な方法を、理論的及び実験的に見出した。
【0009】
そこで、本発明の態様によれば、発熱抵抗体と、発熱抵抗体に複数の異なる電力を与え、発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路と、複数の異なる発熱温度において、発熱抵抗体と熱的に平衡な混合ガスの複数の放熱係数又は熱伝導率の値を計測する計測部と、混合ガスの既知の発熱量の値と、計測された複数の放熱係数又は熱伝導率の値とに基づいて、複数の発熱温度における放熱係数又は熱伝導率を独立変数とし、発熱量を従属変数とする発熱量算出式を作成する式作成部と、を備える発熱量算出式作成システムであって、駆動回路が、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止する、発熱量算出式作成システムが提供される。
【0010】
また、本発明の態様によれば、発熱抵抗体に複数の異なる電力を与え、発熱抵抗体を、複数の異なる発熱温度で発熱させることと、複数の異なる発熱温度において、発熱抵抗体と熱的に平衡な混合ガスの複数の放熱係数又は熱伝導率の値を計測することと、混合ガスの既知の発熱量の値と、計測された複数の放熱係数又は熱伝導率の値とに基づいて、複数の発熱温度における放熱係数又は熱伝導率を独立変数とし、発熱量を従属変数とする発熱量算出式を作成することと、を含む発熱量算出式の作成方法において、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止する、発熱量算出式の作成方法が提供される。
【0011】
本発明の態様に係る発熱量算出式作成システム及び発熱量算出式作成方法によれば、発熱量が未知の混合ガスの各ガス成分の割合を算出するステップを実施せずとも、混合ガスの放熱係数又は熱伝導率から混合ガスの発熱量を算出可能な発熱量算出式が提供される。
【0012】
さらに、本発明の態様によれば、発熱抵抗体と、発熱抵抗体に複数の異なる電力を与え、発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路と、複数の異なる発熱温度において、発熱抵抗体と熱的に平衡な、発熱量が未知の計測対象混合ガスの複数の放熱係数又は熱伝導率の値を計測する計測部と、複数の発熱温度における複数の放熱係数又は熱伝導率を独立変数とし、発熱量を従属変数とする発熱量算出式を保存する式記憶装置と、発熱量算出式の複数の放熱係数又は熱伝導率の独立変数に、計測対象混合ガスの計測された複数の放熱係数又は熱伝導率の値を代入し、計測対象混合ガスの発熱量の値を算出する発熱量算出部と、を備える発熱量算出システムにおいて、駆動回路が、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止する、発熱量算出システムが提供される。
【0013】
また、本発明の態様によれば、発熱抵抗体に複数の異なる電力を与え、発熱抵抗体を、複数の異なる発熱温度で発熱させることと、複数の異なる発熱温度において、発熱抵抗体と熱的に平衡な、発熱量が未知の計測対象混合ガスの複数の放熱係数又は熱伝導率の値を計測することと、複数の発熱温度における複数の放熱係数又は熱伝導率を独立変数とし、発熱量を従属変数とする発熱量算出式を用意することと、発熱量算出式の複数の放熱係数又は熱伝導率の独立変数に、計測対象混合ガスの計測された複数の放熱係数又は熱伝導率の値を代入し、計測対象混合ガスの発熱量の値を算出することと、を含む発熱量の算出方法において、発熱抵抗体を発熱させる間に、少なくとも一度、発熱抵抗体への電力の供給を停止する、発熱量の算出方法が提供される。
【0014】
本発明の態様に係る発熱量算出システム及び発熱量の算出方法によれば、発熱量が未知の混合ガスの各ガス成分の割合を算出するステップを実施せずとも、混合ガスの放熱係数又は熱伝導率を計測することにより、混合ガスの発熱量を算出することが可能となる。
【発明の効果】
【0015】
本発明によれば、ガスの物性値の安定した計測を可能にするガス物性値計測システム及びガス物性値の計測方法を提供可能である。また、本発明によれば、少ない演算量で発熱量を算出可能な発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法を提供可能である。
【図面の簡単な説明】
【0016】
【図1】本発明の第1の実施の形態に係るマイクロチップの斜視図である。
【図2】本発明の第1の実施の形態に係るマイクロチップの図1のII−II方向から見た断面図である。
【図3】本発明の第1の実施の形態に係る発熱抵抗体に関する回路図である。
【図4】本発明の第1の実施の形態に係る補助ヒータに関する回路図である。
【図5】本発明の第1の実施の形態に係る発熱抵抗体の発熱温度と、ガスの放熱係数の関係を示すグラフである。
【図6】本発明の第1の実施の形態に係る発熱量算出式作成システムの第1の模式図である。
【図7】本発明の第1の実施の形態に係る発熱量算出式作成システムの第2の模式図である。
【図8】本発明の第1の実施の形態に係る発熱量算出式作成システムの発熱抵抗体の駆動電力を示すグラフである。
【図9】本発明の第1の実施の形態の比較例に係る発熱量算出式作成システムの発熱抵抗体の駆動電力を示すグラフである。
【図10】本発明の第1の実施の形態に係る発熱量算出式の作成方法を示すフローチャートである。
【図11】本発明の第2の実施の形態に係る発熱量算出式作成システムの発熱抵抗体の駆動電力を示すグラフである。
【図12】本発明の第3の実施の形態に係る発熱量算出システムを示す模式図である。
【図13】本発明の第3の実施の形態に係る発熱量の算出方法を示すフローチャートである。
【図14】本発明の実施の形態の実施例に係るサンプル混合ガスの組成と発熱量を示す表である。
【図15】本発明の実施の形態の実施例に係るサンプル混合ガスの算出された発熱量と真の発熱量を示すグラフである。
【図16】本発明の実施の形態の実施例に係るサンプル混合ガスの真の発熱量と、算出された発熱量の関係を示すグラフである。
【図17】本発明のその他の実施の形態に係る熱伝導率と放熱係数の関係を示すグラフである。
【発明を実施するための形態】
【0017】
以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0018】
(第1の実施の形態)
まず、斜視図である図1、及びII−II方向から見た断面図である図2を参照して、第1の実施の形態に係る発熱量算出式作成システム及び発熱量算出式の作成方法に用いられるマイクロチップ8Aについて説明する。マイクロチップ8Aは、キャビティ66Aが設けられた基板60A、及び基板60A上にキャビティ66Aを覆うように配置された絶縁膜65Aを備える。基板60Aの厚みは、例えば0.5mmである。また、基板60Aの縦横の寸法は、例えばそれぞれ1.5mm程度である。絶縁膜65Aのキャビティ66Aを覆う部分は、断熱性のダイアフラムをなしている。
【0019】
さらにマイクロチップ8Aは、絶縁膜65Aに設けられた発熱抵抗体61Aと、発熱抵抗体61Aを挟むように絶縁膜65Aに設けられた第1の測温抵抗素子62A及び第2の測温抵抗素子63Aと、基板60A上に設けられたガス温度センサ64Aを備える。ガス温度センサ64Aも電気抵抗素子等からなる。発熱抵抗体61Aは、キャビティ66Aを覆う絶縁膜65Aの中心に配置されている。発熱抵抗体61Aは、電力を与えられて発熱し、発熱抵抗体61Aに接する雰囲気ガスを加熱する。ガス温度センサ64Aは、絶縁膜65Aを介して発熱抵抗体61Aから隔離されて設けられており、雰囲気ガスのガス温度を検出する。
【0020】
基板60Aの材料としては、シリコン(Si)等が使用可能である。絶縁膜65Aの材料としては、酸化ケイ素(SiO2)等が使用可能である。キャビティ66Aは、異方性エッチング等により形成される。また発熱抵抗体61A、第1の測温抵抗素子62A、第2の測温抵抗素子63A、及びガス温度センサ64Aのそれぞれの材料には白金(Pt)等が使用可能であり、リソグラフィ法等により形成可能である。
【0021】
図3に示すように、発熱抵抗体61Aの一端には、例えば、オペアンプ170の+入力端子が電気的に接続され、他端は接地される。また、オペアンプ170の+入力端子及び出力端子と並列に、抵抗素子161が接続される。オペアンプ170の−入力端子は、直列に接続された抵抗素子162と抵抗素子163との間、直列に接続された抵抗素子163と抵抗素子164の間、直列に接続された抵抗素子164と抵抗素子165の間、又は抵抗素子165の接地端子に電気的に接続される。抵抗素子162には例えば5.0Vの電圧Vinが印加され、抵抗素子163には例えば2.4Vの電圧VL3が印加される。抵抗素子164には例えば1.9Vの電圧VL2が印加され、抵抗素子165には例えば1.4Vの電圧VL1が印加される。
【0022】
抵抗素子162及び抵抗素子163の間と、オペアンプの−入力端子との間には、スイッチSW1が設けられており、抵抗素子163及び抵抗素子164の間と、オペアンプの−入力端子との間には、スイッチSW2が設けられている。また、抵抗素子164及び抵抗素子165の間と、オペアンプの−入力端子との間には、スイッチSW3が設けられており、抵抗素子165の接地端子と、オペアンプの−入力端子との間には、スイッチSW4が設けられている。
【0023】
オペアンプ170の−入力端子に2.4Vの電圧VL3を印加する場合、スイッチSW1のみが通電され、スイッチSW2,SW3,SW4は切断される。オペアンプ170の−入力端子に1.9Vの電圧VL2を印加する場合、スイッチSW2のみが通電され、スイッチSW1,SW3,SW4は切断される。オペアンプ170の−入力端子に1.4Vの電圧VL1を印加する場合、スイッチSW3のみが通電され、スイッチSW1,SW2,SW4は切断される。オペアンプ170の−入力端子に0Vの電圧VL0を印加する場合、スイッチSW4のみが通電され、スイッチSW1,SW2,SW3は切断される。したがって、スイッチSW1,SW2,SW3,SW4の開閉によって、オペアンプ170の−入力端子に0V又は3段階の電圧のいずれかを印加可能である。よって、スイッチSW1,SW2,SW3,SW4の開閉によって、発熱抵抗体61Aの発熱温度を3段階に設定可能である。
【0024】
図1及び図2に示す発熱抵抗体61Aは、温度によって抵抗値が変化する。発熱抵抗体61Aの発熱温度THと、発熱抵抗体61Aの抵抗値RHの関係は、下記(1)式で与えられる。
RH = RSTD×[1+α(TH-TSTD) + β(TH-TSTD)2] ・・・(1)
ここで、TSTDは標準温度を表し、例えば20℃である。RSTDは標準温度TSTDにおける予め計測された抵抗値を表す。αは1次の抵抗温度係数、βは2次の抵抗温度係数を表す。また、発熱抵抗体61Aの抵抗値RHは、発熱抵抗体61Aの駆動電力PHと、発熱抵抗体61Aの通電電流IHから、下記(2)式で与えられる。
RH = PH / IH2 ・・・(2)
あるいは発熱抵抗体61Aの抵抗値RHは、発熱抵抗体61Aにかかる電圧VHと、発熱抵抗体61Aの通電電流IHから、下記(3)式で与えられる。
RH = VH / IH ・・・(3)
【0025】
ここで、発熱抵抗体61Aの発熱温度THは、発熱抵抗体61Aと雰囲気ガスの間が熱的に平衡になったときに安定する。なお、熱的に平衡な状態とは、発熱抵抗体61Aの発熱と、発熱抵抗体61Aから雰囲気ガスへの放熱とが釣り合っている状態をいう。平衡状態において、下記(4)式に示すように、発熱抵抗体61Aの駆動電力PHを、発熱抵抗体61Aの発熱温度THと雰囲気ガスのガス温度TOとの差で割ることにより、雰囲気ガスの放熱係数MOが得られる。なお、放熱係数MOの単位は、例えばW/℃である。
MO = PH / (TH - TO) ・・・(4)
【0026】
発熱抵抗体61Aの通電電流IHと、駆動電力PH又は電圧VHは計測可能であるため、上記(1)乃至(3)から発熱抵抗体61Aの発熱温度THが算出可能である。また、雰囲気ガスのガス温度TOは、図1に示すガス温度センサ64Aで測定可能である。したがって、図1及び図2に示すマイクロチップ8Aを用いて、雰囲気ガスの放熱係数MOが算出可能である。なお、雰囲気ガスのガス温度TOは、発熱抵抗体61Aを用いて計測してもよい。ガス温度TOに影響しない程度の電力を発熱抵抗体61Aに供給することにより、発熱抵抗体61Aでガス温度TOを測定可能である。発熱抵抗体61Aで雰囲気ガスのガス温度TOを測定する場合、ガス温度センサ64Aを省略して、マイクロチップ8Aの構造を簡素化してもよい。ただし、発熱抵抗体61Aとガス温度センサ64Aを別個に設けたほうが、より正確な放熱係数MOの測定が可能となる。
【0027】
さらに、マイクロチップ8Aは、熱伝導性の基板60Aの温度を一定に保つ補助ヒータを備えていてもよい。基板60Aの温度を一定に保つことにより、発熱抵抗体61Aが発熱する前のマイクロチップ8Aの近傍の雰囲気ガスの温度が、基板60Aの一定の温度と近似する。そのため、雰囲気ガスの温度の変動が抑制され、より高い精度で放熱係数MOを算出することが可能となる。補助ヒータにも電気抵抗素子等が使用可能である。また、ガス温度センサ64Aが補助ヒータを兼ねていてもよい。
【0028】
図4に示すように、ガス温度センサ64Aは、抵抗ブリッジ回路の一部をなしている。抵抗ブリッジ回路は、ガス温度センサ64Aと直列に接続された抵抗素子181と、ガス温度センサ64A及び抵抗素子181と並列に接続された抵抗素子182,183を備える。ここで、ガス温度センサ64Aの抵抗値をRr、抵抗素子181,182,183の固定された抵抗値をそれぞれR181,R182,R183とする。抵抗ブリッジ回路には、オペアンプ171が接続されている。ガス温度センサ64Aを補助ヒータとして機能させる場合、抵抗素子181とガス温度センサ64Aの間のブリッジ電圧V2aが、抵抗素子182と抵抗素子183の間のブリッジ電圧V2bと等しくなるよう、ブリッジ駆動電圧V1がフィードバック制御される。これにより、ガス温度センサ64Aの抵抗値Rrが一定となり、ガス温度センサ64Aが補助ヒータとして一定の温度で発熱する。
【0029】
次に、雰囲気ガスが混合ガスであり、混合ガスが、ガスA、ガスB、ガスC、及びガスDの4種類のガス成分からなっていると仮定する。ここで、ガスAの体積率VA、ガスBの体積率VB、ガスCの体積率VC、及びガスDの体積率VDの総和は、下記(5)式で与えられるように、1である。
VA+VB+VC+VD=1 ・・・(5)
【0030】
また、ガスAの単位体積当たりの発熱量をKA、ガスBの単位体積当たりの発熱量をKB、ガスCの単位体積当たりの発熱量をKC、ガスDの単位体積当たりの発熱量をKDとすると、混合ガスの単位体積当たりの発熱量Qは、各ガス成分の体積率に、各ガス成分の単位体積当たりの発熱量を乗じたものの総和で与えられる。したがって、混合ガスの単位体積当たりの発熱量Qは、下記(6)式で与えられる。なお、単位体積当たりの発熱量の単位は、例えばMJ/m3である。
Q = KA×VA+ KB×VB+ KC×VC+KD×VD ・・・(6)
【0031】
また、ガスAの放熱係数をMA、ガスBの放熱係数をMB、ガスCの放熱係数をMC、ガスDの放熱係数をMDとすると、混合ガスの放熱係数MIは、各ガス成分の体積率に、各ガス成分の放熱係数を乗じたものの総和で与えられる。したがって、混合ガスの放熱係数MIは、下記(7)式で与えられる。
MI = MA×VA+ MB×VB+ MC×VC+MD×VD ・・・(7)
【0032】
さらに、ガスの放熱係数は発熱抵抗体61Aの発熱温度THに依存するので、混合ガスの放熱係数MIは、発熱抵抗体61Aの発熱温度THの関数として、下記(8)式で与えられる。
MI (TH)= MA(TH)×VA+ MB(TH)×VB+ MC(TH)×VC+MD(TH)×VD ・・・(8)
【0033】
したがって、発熱抵抗体61Aの発熱温度がTH1のときの混合ガスの放熱係数MI(TH1)は下記(9)式で与えられ、発熱抵抗体61Aの発熱温度がTH2のときの混合ガスの放熱係数MI(TH2)は下記(10)式で与えられ、発熱抵抗体61Aの発熱温度がTH3のときの混合ガスの放熱係数MI(TH3)は下記(11)式で与えられる。なお、発熱温度TH1、発熱温度TH2、発熱温度TH3は異なる温度である。
MI (TH1)= MA(TH1)×VA+ MB(TH1)×VB+ MC(TH1)×VC+MD(TH1)×VD ・・・(9)
MI (TH2)= MA(TH2)×VA+ MB(TH2)×VB+ MC(TH2)×VC+MD(TH2)×VD ・・・(10)
MI (TH3)= MA(TH3)×VA+ MB(TH3)×VB+ MC(TH3)×VC+MD(TH3)×VD ・・・(11)
【0034】
ここで、発熱抵抗体61Aの発熱温度THに対して各ガス成分の放熱係数MA(TH),MB(TH),MC(TH),MD(TH)が非線形性を有する場合、上記(9)乃至(11)式は、線形独立な関係を有する。また、発熱抵抗体61Aの発熱温度THに対して各ガス成分の放熱係数MA(TH),MB(TH),MC(TH),MD(TH)が線形性を有する場合でも、発熱抵抗体61Aの発熱温度THに対する各ガス成分の放熱係数MA(TH),MB(TH),MC(TH),MD(TH)の変化率が異なる場合は、上記(9)乃至(11)式は、線形独立な関係を有する。さらに、(9)乃至(11)式が線形独立な関係を有する場合、(5)式及び(9)乃至(11)式は線形独立な関係を有する。
【0035】
図5は、天然ガスに含まれるメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)の放熱係数と発熱抵抗体61Aの発熱温度の関係を示すグラフである。発熱抵抗体61Aの発熱温度に対して、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)のそれぞれのガス成分の放熱係数は線形性を有する。しかし、発熱抵抗体61Aの発熱温度に対する放熱係数の変化率は、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)のそれぞれで異なる。したがって、混合ガスを構成するガス成分がメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)であるである場合、上記(9)乃至(11)式は、線形独立な関係を有する。
【0036】
さて、(9)乃至(11)式中の各ガス成分の放熱係数MA(TH1),MB(TH1),MC(TH1),MD(TH1),MA(TH2),MB(TH2),MC(TH2),MD(TH2),MA(TH3),MB(TH3),MC(TH3),MD(TH3)の値は、計測等により予め得ることが可能である。したがって、(5)式及び(9)乃至(11)式の連立方程式を解くと、ガスAの体積率VA、ガスBの体積率VB、ガスCの体積率VC、及びガスDの体積率VDのそれぞれが、下記(12)乃至(15)式に示すように、混合ガスの放熱係数MI(TH1),MI(TH2),MI(TH3)の関数として与えられる。なお、下記(12)乃至(15)式において、nを自然数としてfnは、関数を表す記号である。
VA=f1[MI (TH1), MI (TH2), MI (TH3)] ・・・(12)
VB=f2[MI (TH1), MI (TH2), MI (TH3)] ・・・(13)
VC=f3[MI (TH1), MI (TH2), MI (TH3)] ・・・(14)
VD=f4[MI (TH1), MI (TH2), MI (TH3)] ・・・(15)
【0037】
ここで、上記(6)式に(12)乃至(15)式を代入することにより、下記(16)式が得られる。
Q = KA×VA+ KB×VB+ KC×VC+KD×VD
= KA×f1[MI (TH1), MI (TH2), MI (TH3)]+ KB×f2[MI (TH1), MI (TH2), MI (TH3)]
+ KC×f3[MI (TH1), MI (TH2), MI (TH3)]+KD×f4[MI (TH1), MI ( TH2), MI (TH3)] ・・・(16)
【0038】
上記(16)式から明らかなように、混合ガスの単位体積当たりの発熱量Qは、発熱抵抗体61Aの発熱温度TH1,TH2,TH3における混合ガスの放熱係数MI(TH1),MI(TH2),MI(TH3)を変数とする方程式で与えられる。したがって、混合ガスの発熱量Qは、gを関数を表す記号として、下記(17)式で与えられる。
Q = g[MI (TH1), MI (TH2), MI (TH3)] ・・・(17)
【0039】
よって、ガスA、ガスB、ガスC、及びガスDからなる混合ガスについて、予め上記(17)式を得れば、ガスAの体積率VA、ガスBの体積率VB、ガスCの体積率VC、及びガスDの体積率VDが未知の検査対象混合ガスの単位体積当たりの発熱量Qを容易に算出可能であることを、発明者らは見出した。具体的には、発熱抵抗体61Aの発熱温度TH1,TH2,TH3における検査対象混合ガスの放熱係数MI(TH1),MI(TH2),MI(TH3)を計測し、(17)式に代入することにより、検査対象混合ガスの発熱量Qを一意に求めることが可能である。
【0040】
なお、混合ガスのガス成分は、4種類に限定されることはない。例えば、混合ガスがn種類のガス成分からなる場合、まず、下記(18)式で与えられる、発熱抵抗体61Aの少なくともn−1種類の発熱温度TH1,TH2,TH3,・・・,THn-1に対する混合ガスの放熱係数MI(TH1),MI(TH2),MI(TH3),・・・,MI(THn-1)を変数とする方程式を予め得る。そして、発熱抵抗体61Aのn−1種類の発熱温度TH1,TH2,TH3,・・・,THn-1に対する、n種類のガス成分のそれぞれの体積率が未知の検査対象混合ガスの放熱係数MI(TH1),MI(TH2),MI(TH3),・・・,MI(THn-1)を計測し、(18)式に代入することにより、検査対象混合ガスの単位体積当たりの発熱量Qを一意に求めることが可能となる。
Q = g[MI (TH1), MI (TH2), MI (TH3), ・・・, MI (THn-1)] ・・・(18)
【0041】
ただし、混合ガスが、ガス成分としてメタン(CH4)、プロパン(C38)に加えて、jを自然数として、メタン(CH4)とプロパン(C38)以外のアルカン(Cj2j+2)を含む場合、メタン(CH4)とプロパン(C38)以外のアルカン(Cj2j+2)を、メタン(CH4)とプロパン(C38)の混合物とみなしても、(18)式の算出には影響しない。例えば、エタン(C26)、ブタン(C410)、ペンタン(C512)、ヘキサン(C614)を、下記(19)乃至(22)式に示すように、それぞれ所定の係数を掛けられたメタン(CH4)とプロパン(C38)の混合物とみなして(18)式を算出してもかまわない。
C2H6 = 0.5 CH4 + 0.5 C3H8 ・・・(19)
C4H10 = -0.5 CH4 + 1.5 C3H8 ・・・(20)
C5H12 = -1.0 CH4 + 2.0 C3H8 ・・・(21)
C6H14 = -1.5 CH4 + 2.5 C3H8 ・・・(22)
【0042】
したがって、zを自然数として、n種類のガス成分からなる混合ガスが、ガス成分としてメタン(CH4)、プロパン(C38)に加えて、メタン(CH4)とプロパン(C38)以外のz種類のアルカン(Cj2j+2)を含む場合、少なくともn−z−1種類の発熱温度における混合ガスの放熱係数を変数とする方程式を求めてもよい。
【0043】
なお、(18)式の算出に用いられた混合ガスのガス成分の種類と、単位体積当たりの発熱量Qが未知の検査対象混合ガスのガス成分の種類が同じ場合に、検査対象混合ガスの発熱量Qの算出に(18)式を利用可能であることはもちろんである。さらに、検査対象混合ガスがn種類より少ない種類のガス成分からなり、かつ、n種類より少ない種類のガス成分が、(18)式の算出に用いられた混合ガスに含まれている場合も、(18)式を利用可能である。例えば、(18)式の算出に用いられた混合ガスが、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)の4種類のガス成分を含む場合、検査対象混合ガスが、窒素(N2)を含まず、メタン(CH4)、プロパン(C38)、及び二酸化炭素(CO2)の3種類のガス成分のみを含む場合も、検査対象混合ガスの発熱量Qの算出に(18)式を利用可能である。
【0044】
さらに、(18)式の算出に用いられた混合ガスが、ガス成分としてメタン(CH4)とプロパン(C38)を含む場合、検査対象混合ガスが、(18)式の算出に用いられた混合ガスに含まれていないアルカン(Cj2j+2)を含んでいても、(18)式を利用可能である。これは、上述したように、メタン(CH4)とプロパン(C38)以外のアルカン(Cj2j+2)を、メタン(CH4)とプロパン(C38)の混合物とみなしても、(18)式を用いた単位体積当たりの発熱量Qの算出に影響しないためである。
【0045】
ここで、図6に示す第1の実施の形態に係る発熱量算出式作成システム20は、発熱量の値が既知のサンプル混合ガスが充填されるチャンバ101と、複数の異なる発熱温度で発熱する図1及び図2に示す発熱抵抗体61Aを用いて、サンプル混合ガスの複数の放熱係数の値を計測する図6に示す計測機構10と、サンプル混合ガスの既知の発熱量の値、及び計測された複数の放熱係数の値に基づいて、発熱抵抗体の複数の発熱温度における放熱係数を独立変数とし、発熱量を従属変数とする発熱量算出式を作成する式作成モジュール302とを備える。なお、サンプル混合ガスは、複数種類のガス成分を含む。
【0046】
計測機構10は、サンプル混合ガスが注入されるチャンバ101内に配置された、図1及び図2を用いて説明したマイクロチップ8Aを備える。マイクロチップ8Aは、断熱材を介してチャンバ101内に配置されていてもよい。断熱材によって、マイクロチップ8Aの温度が、チャンバ101の内壁の温度変動の影響を受けにくくなる。断熱材の熱伝導率は、例えば10W/(m・K)以下である。チャンバ101には、サンプル混合ガスをチャンバ101に送るための流路102と、サンプル混合ガスをチャンバ101から外部に排出するための流路103が接続されている。
【0047】
4種類のサンプル混合ガスが使用される場合、図7に示すように、第1のサンプル混合ガスを貯蔵する第1のガスボンベ50A、第2のサンプル混合ガスを貯蔵する第2のガスボンベ50B、第3のサンプル混合ガスを貯蔵する第3のガスボンベ50C、及び第4のサンプル混合ガスを貯蔵する第4のガスボンベ50Dが用意される。第1のガスボンベ50Aには、流路91Aを介して、第1のガスボンベ50Aから例えば0.2MPa等の低圧に調節された第1のサンプル混合ガスを得るための第1のガス圧調節器31Aが接続されている。また、第1のガス圧調節器31Aには、流路92Aを介して、第1の流量制御装置32Aが接続されている。第1の流量制御装置32Aは、流路92A及び流路102を介して発熱量算出式作成システム20に送られる第1のサンプル混合ガスの流量を制御する。
【0048】
第2のガスボンベ50Bには、流路91Bを介して、第2のガス圧調節器31Bが接続されている。また、第2のガス圧調節器31Bには、流路92Bを介して、第2の流量制御装置32Bが接続されている。第2の流量制御装置32Bは、流路92B,93,102を介して発熱量算出式作成システム20に送られる第2のサンプル混合ガスの流量を制御する。
【0049】
第3のガスボンベ50Cには、流路91Cを介して、第3のガス圧調節器31Cが接続されている。また、第3のガス圧調節器31Cには、流路92Cを介して、第3の流量制御装置32Cが接続されている。第3の流量制御装置32Cは、流路92C,93,102を介して発熱量算出式作成システム20に送られる第3のサンプル混合ガスの流量を制御する。
【0050】
第4のガスボンベ50Dには、流路91Dを介して、第4のガス圧調節器31Dが接続されている。また、第4のガス圧調節器31Dには、流路92Dを介して、第4の流量制御装置32Dが接続されている。第4の流量制御装置32Dは、流路92D,93,102を介して発熱量算出式作成システム20に送られる第4のサンプル混合ガスの流量を制御する。
【0051】
第1乃至第4のサンプル混合ガスのそれぞれは、例えば天然ガスである。第1乃至第4のサンプル混合ガスのそれぞれは、例えばメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)の4種類のガス成分を含む。
【0052】
図6に示すマイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aは、図6に示す駆動回路303から、例えば図8に示すように、予め定めされた時間WT1の間、第1の駆動電力PH#1を与えられる。第1の駆動電力PH#1を与えられることにより、マイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aは、例えば100℃で発熱する。発熱抵抗体61Aに第1の駆動電力PH#1が与えられてから時間WT2が経過した後、マイクロチップ8Aのガス温度センサ64Aは、100℃で発熱する発熱抵抗体61Aと熱的に平衡な第1のサンプル混合ガスのガス温度TO#H=100を検出する。なお、時間WT2は時間WT1よりも短い時間である。ガス温度センサ64Aが、発熱抵抗体61Aに駆動電力PH#1を与えられてから時間WT2が経過した後にガス温度TO#H=100を検出する理由は、発熱抵抗体61Aの発熱温度が安定し、発熱抵抗体61Aと第1のサンプル混合ガスが熱的に平衡になるのを待機するためである。
【0053】
図6に示す駆動回路303は、図8に示すように、時間WT1の間、第1の駆動電力PH#1を発熱抵抗体61Aに与えた後、時間WT3の間、駆動電力の提供を停止する。その後、発熱抵抗体61Aは、時間WT1の間、駆動回路303から第2の駆動電力PH#2を与えられて、例えば150℃で発熱する。図1及び図2に示す発熱抵抗体61Aに第2の駆動電力PH#2が与えられてから時間WT1よりも短い時間WT2が経過した後、ガス温度センサ64Aは、150℃で発熱する発熱抵抗体61Aと熱的に平衡な第1のサンプル混合ガスのガス温度TO#H=150を検出する。
【0054】
図6に示す駆動回路303は、図8に示すように、時間WT1の間、第2の駆動電力PH#2を発熱抵抗体61Aに与えた後、時間WT3の間、駆動電力の提供を停止する。その後、発熱抵抗体61Aは、時間WT1の間、駆動回路303から第3の駆動電力PH#3を与えられて、例えば200℃で発熱する。図1及び図2に示す発熱抵抗体61Aに第3の駆動電力PH#3が与えられてから時間WT2が経過した後、ガス温度センサ64Aは、200℃で発熱する発熱抵抗体61Aと熱的に平衡な第1のサンプル混合ガスのガス温度TO#H=200を検出する。
【0055】
図1及び図2に示すように、発熱抵抗体61Aは絶縁膜65Aに囲まれている。しかし、図9に示すように、発熱抵抗体61Aに連続的に駆動電力を与え、発熱させ続けると、図1及び図2に示す発熱抵抗体61Aから基板60Aに熱が伝わる場合がある。シリコン(Si)等からなる基板60Aは熱時定数(JIS C2570−1)が短いため、熱の影響を受けやすい。そのため、発熱抵抗体61Aから基板60Aに熱が伝わると、基板60Aの温度が急激に変動し、基板60Aの周囲の雰囲気ガスの温度も変動してしまう場合がある。この場合、発熱抵抗体61Aと雰囲気ガスが熱的に平衡な状態になるまで、長時間待機しなければならない場合もある。また、発熱抵抗体61Aを発熱させ続けると、発熱抵抗体61Aの抵抗値がドリフトし、発熱温度が一定にならない場合もある。
【0056】
これに対し、図8に示すように、間欠的に発熱抵抗体61Aに駆動電力を与えることによって、発熱抵抗体61Aが基板60Aの温度に影響を与えることを抑制することが可能となる。したがって、発熱抵抗体61Aと雰囲気ガスが熱的に平衡な状態になるまでの時間を短くすることが可能となる。また、消費電力を抑制することも可能となる。
【0057】
図6に示すチャンバ101から第1のサンプル混合ガスが除去された後、第2乃至第4のサンプル混合ガスがチャンバ101に順次充填される。マイクロチップ8Aは、第2乃至第4のサンプル混合ガスのそれぞれの、発熱抵抗体61Aの発熱温度100℃,150℃,200℃に対するガス温度TO#H=100,TO#H=150,TO#H=200を検出する。
【0058】
なお、それぞれのサンプル混合ガスがn種類のガス成分を含む場合、マイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aは、少なくともn−1種類の異なる発熱温度で発熱させられる。ただし、上述したように、メタン(CH4)及びプロパン(C38)以外のアルカン(Cj2j+2)は、メタン(CH4)及びプロパン(C38)の混合物とみなしうる。したがって、zを自然数として、n種類のガス成分からなるサンプル混合ガスが、ガス成分としてメタン(CH4)及びプロパン(C38)に加えてz種類のアルカン(Cj2j+2)を含む場合は、発熱抵抗体61Aは、少なくともn−z−1種類の異なる発熱温度で発熱させられる。
【0059】
さらに図6に示す計測機構10は、マイクロチップ8Aに接続された放熱係数算出モジュール301を備える。放熱係数算出モジュール301は、上記(4)式に示すように、図1及び図2に示すマイクロチップ8Aの発熱抵抗体61Aの第1の駆動電力PH#1を、発熱抵抗体61Aの発熱温度TH(ここでは100℃)と第1乃至第4のサンプル混合ガスのそれぞれのガス温度TO#H=100との差で割り、発熱温度100℃の発熱抵抗体61Aと熱的に平衡なときの第1乃至第4のサンプル混合ガスのそれぞれの放熱係数の値を算出する。
【0060】
また、図6に示す放熱係数算出モジュール301は、マイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aの第2の駆動電力PH#2を、発熱抵抗体61Aの発熱温度TH(ここでは150℃)と第1乃至第4のサンプル混合ガスのそれぞれのガス温度TO#H=150との差で割り、発熱温度150℃の発熱抵抗体61Aと熱的に平衡なときの第1乃至第4のサンプル混合ガスのそれぞれの放熱係数の値を算出する。
【0061】
さらに、図6に示す放熱係数算出モジュール301は、マイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aの第3の駆動電力PH#3を、発熱抵抗体61Aの発熱温度TH(ここでは200℃)と第1乃至第4のサンプル混合ガスのそれぞれのガス温度TO#H=200との差で割り、発熱温度200℃の発熱抵抗体61Aと熱的に平衡なときの第1乃至第4のサンプル混合ガスのそれぞれの放熱係数の値を算出する。
【0062】
図6に示す式作成モジュール302は、例えば第1乃至第4のサンプル混合ガスのそれぞれの既知の発熱量の値、発熱温度100℃における放熱係数の計測された値、発熱温度150℃における放熱係数の計測された値、及び発熱温度200℃における放熱係数の計測された値を収集する。さらに式作成モジュール302は、収集した発熱量及び放熱係数の値に基づいて、A. J Smola及びB. Scholkopf著の「A Tutorial on Support Vector Regression」(NeuroCOLT Technical Report (NC−TR−98−030)、1998年)に開示されているサポートベクトル回帰、重回帰分析、及び特開平5−141999号公報に開示されているファジィ数量化理論II類等を含む多変量解析により、発熱温度100℃における放熱係数、発熱温度150℃における放熱係数、及び発熱温度200℃における放熱係数を独立変数とし、発熱量を従属変数とする発熱量算出式を算出する。なお、放熱係数算出モジュール301及び式作成モジュール302は、中央演算処理装置(CPU)300に含まれている。
【0063】
発熱量算出式作成システム20は、CPU300に接続された放熱係数記憶装置401及び式記憶装置402をさらに備える。放熱係数記憶装置401は、放熱係数算出モジュール301が算出した放熱係数の値を保存する。式記憶装置402は、式作成モジュール302が作成した発熱量算出式を保存する。さらにCPU300には、入力装置312及び出力装置313が接続される。入力装置312としては、例えばキーボード、及びマウス等のポインティングデバイス等が使用可能である。出力装置313には液晶ディスプレイ、モニタ等の画像表示装置、及びプリンタ等が使用可能である。
【0064】
次に、図10に示すフローチャートを用いて第1の実施の形態に係る発熱量算出式の作成方法について説明する。なお、以下の例では、第1乃至第4のサンプル混合ガスを準備し、図6に示すマイクロチップ8Aの発熱抵抗体61Aを、100℃、150℃、及び200℃に発熱させる場合を説明する。
【0065】
(a) ステップS100で、図7に示す第2乃至第4の流量制御装置32B−32Dの弁を閉じたまま、第1の流量制御装置32Aの弁を開き、図6に示すチャンバ101内に第1のサンプル混合ガスを導入する。次にステップS101で、駆動回路303は、マイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aに、例えば時間WT1の間、第1の駆動電力PH#1を与え、発熱抵抗体61Aを100℃で発熱させる。発熱抵抗体61Aが100℃で発熱している間、ガス温度センサ64Aは、発熱抵抗体61Aと熱的に平衡な第1のサンプル混合ガスのガス温度TO#H=100を検出し、図6に示す放熱係数算出モジュール301は、発熱温度100℃における第1のサンプル混合ガスの放熱係数の値を算出する。その後、放熱係数算出モジュール301は、発熱温度100℃における第1のサンプル混合ガスの放熱係数の値を、放熱係数記憶装置401に保存する。
【0066】
(b) ステップS102で、駆動回路303は、発熱抵抗体61Aに対する駆動電力の供給を、時間WT3が経過するまで停止する。ステップS103で、図6に示す駆動回路303は、図1及び図2に示す発熱抵抗体61Aの発熱温度の切り替えが完了したか否か判定する。発熱温度150℃及び発熱温度200℃への切り替えが完了していない場合には、ステップS101に戻り、図6に示す駆動回路303は、図1及び図2に示す発熱抵抗体61Aを時間WT1の間150℃で発熱させる。図6に示す放熱係数算出モジュール301は、発熱温度150℃における第1のサンプル混合ガスの放熱係数の値を算出し、放熱係数記憶装置401に保存する。また、ステップS102で、駆動回路303は、発熱抵抗体61Aに対する駆動電力の供給を、時間WT3が経過するまで停止する。
【0067】
(c) 再びステップS103で、図1及び図2に示す発熱抵抗体61Aの発熱温度の切り替えが完了したか否か判定する。発熱温度200℃への切り替えが完了していない場合には、ステップS101に戻り、図6に示す駆動回路303は、図1及び図2に示す発熱抵抗体61Aを時間WT1の間200℃で発熱させる。図6に示す放熱係数算出モジュール301は、発熱温度200℃における第1のサンプル混合ガスの放熱係数の値を算出し、放熱係数記憶装置401に保存する。また、ステップS102で、駆動回路303は、図1及び図2に示す発熱抵抗体61Aに対する駆動電力の供給を停止する。
【0068】
(d) 発熱抵抗体61Aの発熱温度の切り替えが完了した場合には、ステップS103からステップS104に進む。ステップS104で、サンプル混合ガスの切り替えが完了したか否かを判定する。第2乃至第4のサンプル混合ガスへの切り替えが完了していない場合には、ステップS100に戻る。ステップS100で、図7に示す第1の流量制御装置32Aを閉じ、第3乃至第4の流量制御装置32C−32Dの弁を閉じたまま第2の流量制御装置32Bの弁を開き、図6に示すチャンバ101内に第2のサンプル混合ガスを導入する。
【0069】
(e) 第1のサンプル混合ガスと同様に、ステップS101乃至ステップS103のループが繰り返され、放熱係数算出モジュール301は、発熱温度100℃における第2のサンプル混合ガスの放熱係数の値、発熱温度150℃における第2のサンプル混合ガスの放熱係数の値、及び発熱温度200℃における第2のサンプル混合ガスの放熱係数の値を算出し、放熱係数記憶装置401に保存する。
【0070】
(f) その後、ステップS100乃至ステップS104のループが繰り返され、発熱温度100℃、150℃、200℃のそれぞれにおける第3のサンプル混合ガスの放熱係数の値、及び発熱温度100℃、150℃、200℃のそれぞれにおける第4のサンプル混合ガスの放熱係数の値が、放熱係数記憶装置401に保存される。
【0071】
(g) ステップS105で、入力装置312から式作成モジュール302に、第1のサンプル混合ガスの既知の発熱量の値、第2のサンプル混合ガスの既知の発熱量の値、第3のサンプル混合ガスの既知の発熱量の値、及び第4のサンプル混合ガスの既知の発熱量の値を入力する。また、式作成モジュール302は、放熱係数記憶装置401から、発熱温度100℃、150℃、200℃のそれぞれにおける第1乃至第4のサンプル混合ガスの放熱係数の値を読み出す。
【0072】
(h) ステップS106で、第1乃至第4のサンプル混合ガスの発熱量の値、及び発熱温度100℃、150℃、200℃のそれぞれにおける第1乃至第4のサンプル混合ガスの放熱係数の値に基づいて、式作成モジュール302は、重回帰分析を行い、発熱温度100℃における放熱係数、発熱温度150℃における放熱係数、及び発熱温度200℃における放熱係数を独立変数とし、発熱量を従属変数とする発熱量算出式を算出する。その後、ステップS107で、式作成モジュール302は作成した発熱量算出式を式記憶装置402に保存し、第1の実施の形態に係る発熱量算出式の作成方法を終了する。
【0073】
以上示したように、第1の実施の形態に係る発熱量算出式の作成システム及び方法によれば、発熱量の値が未知の計測対象混合ガスの放熱係数を複数の発熱温度に対して計測することにより、計測対象混合ガスの発熱量の値を一意に算出可能な発熱量算出式を作成することが可能となる。また、図8を用いて説明したように、発熱抵抗体61Aに間欠的に駆動電力を与えることにより、サンプル混合ガスの放熱係数を正確かつ高速に得ることが可能となる。
【0074】
(第2の実施の形態)
第1の実施の形態においては、図1及び図2に示す発熱抵抗体61Aに駆動電力を与える際、図8に示すように、異なる駆動電力を与えるごとに、駆動電力の提供を停止する期間を設ける例を示した。これに対し、例えばサンプル混合ガスが7種類のガス成分を含み、第1乃至第6の駆動電力を発熱抵抗体61Aに与える必要がある場合、発熱抵抗体61Aの発熱が基板60Aの温度変動に影響しない時間の範囲内であれば、図11に示すように、第1乃至第3の駆動電力を、発熱抵抗体61Aに連続的に与えてもよい。第3の駆動電力を発熱抵抗体61Aに与えた後、例えば時間WT4が経過するまで、駆動電力の提供を停止することにより、発熱抵抗体61Aの温度を低下させることが可能となる。そのため、その後、発熱抵抗体61Aの発熱が基板60Aの温度変動に影響しない時間の範囲内で、第4乃至第6の駆動電力を発熱抵抗体61Aに与えれば、第4乃至第6の駆動電力のそれぞれによって発熱する発熱抵抗体61Aと熱的に平衡なサンプル混合ガスのガス温度も、正確に測定される。
【0075】
(第3の実施の形態)
図12に示すように、第3の実施の形態に係る発熱量算出システム21は、発熱量の値が未知の計測対象混合ガスが充填されるチャンバ101、複数の異なる発熱温度で発熱する、図1及び図2に示す発熱抵抗体61Aを用いて、計測対象混合ガスの複数の放熱係数の値を計測する、図12に示す計測機構10、複数の発熱温度における放熱係数を独立変数とし、発熱量を従属変数とする発熱量算出式を保存する式記憶装置402、及び発熱量算出式の複数の発熱温度における放熱係数の独立変数に、計測対象混合ガスの複数の発熱温度に対して計測された放熱係数の値を代入し、計測対象混合ガスの発熱量の値を算出する発熱量算出モジュール305を備える。
【0076】
式記憶装置402は、第1の実施の形態で説明したように作成された発熱量算出式を保存する。ここでは、例として、発熱量算出式の作成のために、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)を含む天然ガスがサンプル混合ガスとして使用された場合を説明する。また、発熱量算出式は、発熱温度100℃における放熱係数、発熱温度150℃における放熱係数、及び発熱温度200℃における放熱係数を独立変数としているものとする。
【0077】
第3の実施の形態においては、例えば、未知の体積率でメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)を含む、発熱量が未知の天然ガスが、計測対象混合ガスとして、チャンバ101に導入される。図12に示すマイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aは、図12に示す駆動回路303から、例えば図8に示すように、時間WT1の間、第1の駆動電力PH#1を与えられ、100℃で発熱する。発熱抵抗体61Aに第1の駆動電力PH#1が与えられてから時間WT1よりも短い時間WT2が経過した後、マイクロチップ8Aのガス温度センサ64Aは、100℃で発熱する発熱抵抗体61Aと熱的に平衡な計測対象混合ガスのガス温度TO#H=100を検出する。
【0078】
図12に示す駆動回路303は、図8に示すように、時間WT1の間、第1の駆動電力PH#1を発熱抵抗体61Aに与えた後、時間WT3が経過するまで、駆動電力の提供を停止する。その後、発熱抵抗体61Aは、時間WT1の間、駆動回路303から第2の駆動電力PH#2を与えられて、例えば150℃で発熱する。図1及び図2に示す発熱抵抗体61Aに第2の駆動電力PH#2が与えられてから時間WT1よりも短い時間WT2が経過した後、ガス温度センサ64Aは、150℃で発熱する発熱抵抗体61Aと熱的に平衡な計測対象混合ガスのガス温度TO#H=150を検出する。
【0079】
図12に示す駆動回路303は、図8に示すように、時間WT1の間、第2の駆動電力PH#2を発熱抵抗体61Aに与えた後、時間WT3が経過するまで、駆動電力の提供を停止する。その後、発熱抵抗体61Aは、時間WT1の間、駆動回路303から第3の駆動電力PH#3を与えられて、例えば200℃で発熱する。図1及び図2に示す発熱抵抗体61Aに第3の駆動電力PH#3が与えられてから時間WT1よりも短い時間WT2が経過した後、ガス温度センサ64Aは、200℃で発熱する発熱抵抗体61Aと熱的に平衡な計測対象混合ガスのガス温度TO#H=200を検出する。なお、発熱抵抗体61Aに間欠的に駆動電力を与える理由は、第1の実施の形態と同様である。
【0080】
図12に示す放熱係数算出モジュール301は、上記(1)乃至(4)式で説明した方法に従って、発熱温度100℃で発熱する発熱抵抗体61Aと熱的に平衡な計測対象混合ガスの放熱係数の値を算出する。また、放熱係数算出モジュール301は、発熱温度150℃で発熱するマイクロチップ8Aの発熱抵抗体と熱的に平衡な計測対象混合ガスの放熱係数の値、及び発熱温度200℃で発熱するマイクロチップ8Aの発熱抵抗体と熱的に平衡な計測対象混合ガスの放熱係数の値を算出する。発熱量算出モジュール305は、発熱量算出式の放熱係数の独立変数に、算出された計測対象混合ガスの放熱係数の値を代入し、計測対象混合ガスの発熱量の値を算出する。
【0081】
CPU300には、発熱量記憶装置403がさらに接続されている。発熱量記憶装置403は、発熱量算出モジュール305が算出した計測対象混合ガスの発熱量の値を保存する。第3の実施の形態に係る発熱量算出システム21のその他の構成要件は、図6で説明した第1の実施の形態に係る発熱量算出式作成システム20と同様であるので、説明は省略する。
【0082】
次に、図13に示すフローチャートを用いて、第3の実施の形態に係る発熱量の算出方法について説明する。なお、以下の例では、図12に示すマイクロチップ8Aの発熱抵抗体61Aを、100℃、150℃、及び200℃に発熱させる場合を説明する。
【0083】
(a) ステップS200で、図12に示すチャンバ101内に計測対象混合ガスを導入する。次に、ステップS201で、駆動回路303は、マイクロチップ8Aの図1及び図2に示す発熱抵抗体61Aに、例えば時間WT1の間、第1の駆動電力PH#1を与え、発熱抵抗体61Aを100℃で発熱させる。発熱抵抗体61Aが100℃で発熱している間、ガス温度センサ64Aは、発熱抵抗体61Aと熱的に平衡な計測対象混合ガスのガス温度TO#H=100を検出し、図12に示す放熱係数算出モジュール301は、発熱温度100℃における計測対象混合ガスの放熱係数の値を算出する。その後、放熱係数算出モジュール301は、発熱温度100℃における計測対象混合ガスの放熱係数の値を、放熱係数記憶装置401に保存する。
【0084】
(b) ステップS202で、駆動回路303は、発熱抵抗体61Aに対する駆動電力の供給を、時間WT3が経過するまで、停止する。ステップS203で、図12に示す駆動回路303は、図1及び図2に示す発熱抵抗体61Aの発熱温度の切り替えが完了したか否か判定する。発熱温度150℃及び発熱温度200℃への切り替えが完了していない場合には、ステップS201に戻り、図12に示す駆動回路303は、図1及び図2に示す発熱抵抗体61Aを150℃に発熱させる。図12に示す放熱係数算出モジュール301は、発熱温度150℃における計測対象混合ガスの放熱係数の値を算出し、放熱係数記憶装置401に保存する。また、ステップS202で、駆動回路303は、発熱抵抗体61Aに対する駆動電力の供給を、時間WT3が経過するまで、停止する。
【0085】
(c) 再びステップS203で、図1及び図2に示す発熱抵抗体61Aの発熱温度の切り替えが完了したか否か判定する。発熱温度200℃への切り替えが完了していない場合には、ステップS201に戻り、図12に示す駆動回路303は、図1及び図2に示す発熱抵抗体61Aを200℃に発熱させる。図12に示す放熱係数算出モジュール301は、発熱温度200℃における計測対象混合ガスの放熱係数の値を算出し、放熱係数記憶装置401に保存する。また、ステップS202で、駆動回路303は、図1及び図2に示す発熱抵抗体61Aに対する駆動電力の供給を、時間WT3が経過するまで、停止する。
【0086】
(d) 発熱抵抗体61Aの発熱温度の切り替えが完了した場合には、ステップS203からステップS204に進む。ステップS204で、図12に示す発熱量算出モジュール305は、式記憶装置402から、発熱温度100℃、150℃、及び200℃における放熱係数を独立変数とする発熱量算出式を読み出す。また、発熱量算出モジュール305は、放熱係数記憶装置401から、発熱温度100℃、150℃、及び200℃のそれぞれにおける計測対象混合ガスの放熱係数の値を読み出す。
【0087】
(e) ステップS205で、発熱量算出モジュール305は、発熱量算出式の独立変数に発熱温度100℃、150℃、及び200℃のそれぞれにおける計測対象混合ガスの放熱係数の値を代入し、計測対象混合ガスの発熱量の値を算出する。その後、発熱量算出モジュール305は、算出した発熱量の値を発熱量記憶装置403に保存し、第3の実施の形態に係る発熱量の算出方法を終了する。
【0088】
以上説明した第3の実施の形態に係る発熱量算出システム及び方法によれば、高価なガスクロマトグラフィ装置や音速センサを用いることなく、計測対象混合ガスの放熱係数の値を測定することのみによって、計測対象混合ガスの発熱量の値を測定することが可能となる。また、図8に示したように、発熱抵抗体61Aに間欠的に駆動電力を与えることにより、計測対象混合ガスの放熱係数を正確かつ高速に得ることが可能となる。そのため、計測対象混合ガスの発熱量を正確かつ高速に得ることも可能となる。
【0089】
天然ガスは、産出ガス田によって炭化水素の成分比率が異なる。また、天然ガスには、炭化水素の他に、窒素(N2)や炭酸ガス(CO2)等が含まれる。そのため、産出ガス田によって、天然ガスに含まれるガス成分の体積率は異なり、ガス成分の種類が既知であっても、天然ガスの発熱量は未知であることが多い。また、同一のガス田由来の天然ガスであっても、発熱量が常に一定であるとは限らず、採取時期によって変化することもある。
【0090】
そのため、従来は、天然ガスの使用料金を徴収する際には、天然ガスの使用発熱量でなく、使用体積に応じて課金する方法がとられていた。しかし、天然ガスは由来する産出ガス田によって発熱量が異なるため、使用体積に課金するのは公平でない。これに対し、第3の実施の形態に係る発熱量算出システム及び方法を用いれば、ガス成分の種類が既知であるが、ガス成分の体積率が未知であるために発熱量が未知の天然ガス等の混合ガスの発熱量を、簡易に算出することが可能となる。そのため、公平な使用料金を徴収することが可能となる。
【0091】
また、ガラス加工品の製造業においては、ガラスを加熱加工する際、加工精度を一定に保つために、一定の発熱量を有する天然ガスが供給されることが望まれている。そのためには、複数のガス田由来の天然ガスのそれぞれの発熱量を正確に把握し、総ての天然ガスの発熱量が同一になるよう調整した上で、ガラスの加熱加工工程に天然ガスを供給することが検討されている。これに対し、第3の実施の形態に係る発熱量算出システム及び方法を用いれば、複数のガス田由来の天然ガスのそれぞれ発熱量を正確には把握することが可能となるため、ガラスの加熱加工精度を一定に保つことが可能となる。
【0092】
さらに、第3の実施の形態に係る発熱量算出システム及び方法によれば、天然ガス等の混合ガスの正確な発熱量を容易に知ることが可能となるため、混合ガスを燃焼させる場合に必要な空気量を適切に設定することが可能となる。そのため、無駄な二酸化炭素(CO2)の排出量を削減することも可能となる。
【0093】
(実施例)
まず、図14に示すように発熱量の値が既知の28種類のサンプル混合ガスを用意した。28種類のサンプル混合ガスのそれぞれは、ガス成分としてメタン(CH4)、エタン(C26)、プロパン(C38)、ブタン(C410)、窒素(N2)、及び二酸化炭素(CO2)のいずれか又は全部を含んでいた。例えば、No.7のサンプル混合ガスは、90vol%のメタン、3vol%のエタン、1vol%のプロパン、1vol%のブタン、4vol%の窒素、及び1vol%の二酸化炭素を含んでいた。また、No.8のサンプル混合ガスは、85vol%のメタン、10vol%のエタン、3vol%のプロパン、及び2vol%のブタンを含み、窒素及び二酸化炭素を含んでいなかった。また、No.9のサンプル混合ガスは、85vol%のメタン、8vol%のエタン、2vol%のプロパン、1vol%のブタン、2vol%の窒素、及び2vol%の二酸化炭素を含んでいた。次に、28種類のサンプル混合ガスのそれぞれの放熱係数の値を、発熱温度100℃、150℃、及び200℃で計測した。なお、例えばNo.7のサンプル混合ガスは6種類のガス成分を含んでいるが、上述したように、エタン(C26)とブタン(C410)は、メタン(CH4)とプロパン(C38)の混合物とみなしうるので、放熱係数の値を3種類の発熱温度で計測しても問題ない。その後、28種類のサンプル混合ガスの発熱量の値と、計測された放熱係数の値に基づいて、サポートベクトル回帰により、放熱係数を独立変数とし、発熱量を従属変数とする、発熱量を算出するための1次方程式、2次方程式、及び3次方程式を作成した。
【0094】
発熱量を算出するための1次方程式を作成する際には、キャリブレーション・ポイントは、3乃至5個を目安に、適宜決定できる。作成された1次方程式は下記(23)式で与えられた。28種類のサンプル混合ガスの発熱量を(23)式で算出し、真の発熱量と比較したところ、最大誤差は2.1%であった。
Q = 39.91 - 20.59×MI (100℃) - 0.89×MI (150℃) + 19.73×MI (200℃) ・・・(23)
【0095】
発熱量を算出するための2次方程式を作成する際には、キャリブレーション・ポイントは、8乃至9個を目安に、適宜決定できる。28種類のサンプル混合ガスの発熱量を作成された2次方程式で算出し、真の発熱量と比較したところ、最大誤差は1.2乃至1.4%であった。
【0096】
発熱量を算出するための3次方程式を作成する際には、キャリブレーション・ポイントは、10乃至14個を目安に、適宜決定できる。28種類のサンプル混合ガスの発熱量を作成された3次方程式で算出し、真の発熱量と比較したところ、最大誤差は1.2%未満であった。図15及び図16に示すように、10個のキャリブレーション・ポイントを取って作成された3次方程式で算出された発熱量は、真の発熱量に良好に近似した。
【0097】
(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施の形態及び運用技術が明らかになるはずである。
【0098】
例えば、図17は、発熱抵抗体に2mA、2.5mA、及び3mAの電流を流した際の、混合ガスの放熱係数と熱伝導率の関係を示す。図17に示すように、混合ガスの放熱係数と熱伝導率は一般に比例関係にある。したがって、第1乃至第3の実施の形態においては、発熱抵抗体の複数の発熱温度における混合ガスの放熱係数の値を用いたが、代わりに、混合ガスの複数の発熱温度における熱伝導率を用いて、発熱量算出式の作成及び発熱量の算出を行ってもよい。
【0099】
この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
【符号の説明】
【0100】
32A,32B,32C,32D 流量制御装置
8A マイクロチップ
10 計測機構
20 発熱量算出式作成システム
21 発熱量算出システム
31A,31B,31C,31D ガス圧調節器
32A,32B,32C,32D 流量制御装置
50A,50B,50C,50D ガスボンベ
60A 基板
61A 発熱抵抗体
62A 第1の測温抵抗素子
63A 第2の測温抵抗素子
64A ガス温度センサ
65A 絶縁膜
66A キャビティ
91A,91B,91C,91D,92A,92B,92C,92D,102,103 流路
101 チャンバ
161,162,163,164,165,181,182,183 抵抗素子
170,171 オペアンプ
301 放熱係数算出モジュール
302 式作成モジュール
303 駆動回路
305 発熱量算出モジュール
312 入力装置
313 出力装置
401 放熱係数記憶装置
402 式記憶装置
403 発熱量記憶装置

【特許請求の範囲】
【請求項1】
発熱抵抗体と、
前記発熱抵抗体に複数の異なる電力を与え、前記発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路と、
前記複数の電力の値、前記複数の発熱温度の値、及び前記発熱抵抗体と熱的に平衡なガスのガス温度の値に基づいて、前記ガスの物性値を算出する算出部と、
を備え、
前記駆動回路が、前記発熱抵抗体を発熱させる間に、少なくとも一度、前記発熱抵抗体への電力の供給を停止することを特徴とする、ガス物性値計測システム。
【請求項2】
前記発熱抵抗体が前記ガス温度を検出する、請求項1に記載のガス物性値計測システム。
【請求項3】
前記ガス温度を検出するガス温度センサを更に備える、請求項1に記載のガス物性値計測システム。
【請求項4】
前記発熱体が発熱する前の前記ガス温度を一定に保つ補助ヒータを更に備えることを特徴とする請求項1乃至3のいずれか1項に記載のガス物性値計測システム。
【請求項5】
前記物性値が放熱係数である、請求項1乃至4のいずれか1項に記載のガス物性値計測システム。
【請求項6】
前記物性値が熱伝導率である、請求項1乃至4のいずれか1項に記載のガス物性値計測システム。
【請求項7】
前記物性値が発熱量である、請求項1乃至4のいずれか1項に記載のガス物性値計測システム。
【請求項8】
発熱抵抗体に複数の異なる電力を与え、前記発熱抵抗体を、複数の異なる発熱温度で発熱させることと、
前記複数の電力の値、前記複数の発熱温度の値、及び前記発熱抵抗体と熱的に平衡なガスのガス温度の値に基づいて、前記ガスの物性値を算出することと、
を含み、
前記発熱抵抗体を発熱させる間に、少なくとも一度、前記発熱抵抗体への電力の供給を停止することを特徴とする、ガス物性値の計測方法。
【請求項9】
前記発熱抵抗体が前記ガス温度を検出することを更に含む、請求項8に記載のガス物性値の計測方法。
【請求項10】
ガス温度センサを用いて前記ガス温度を検出することを更に含む、請求項8に記載のガス物性値の計測方法。
【請求項11】
前記発熱体が発熱する前の前記ガス温度を一定にすることを更に含む、請求項8乃至10のいずれか1項に記載のガス物性値の計測方法。
【請求項12】
前記物性値が放熱係数である、請求項8乃至11のいずれか1項に記載のガス物性値の計測方法。
【請求項13】
前記物性値が熱伝導率である、請求項8乃至11のいずれか1項に記載のガス物性値の計測方法。
【請求項14】
前記物性値が発熱量である、請求項8乃至11のいずれか1項に記載のガス物性値の計測方法。
【請求項15】
発熱抵抗体と、
前記発熱抵抗体に複数の異なる電力を与え、前記発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路と、
前記複数の異なる発熱温度において、前記発熱抵抗体と熱的に平衡な混合ガスの複数の放熱係数又は熱伝導率の値を計測する計測部と、
前記混合ガスの既知の発熱量の値と、前記計測された複数の放熱係数又は熱伝導率の値とに基づいて、前記複数の発熱温度における放熱係数又は熱伝導率を独立変数とし、前記発熱量を従属変数とする発熱量算出式を作成する式作成部と、
を備え、
前記駆動回路が、前記発熱抵抗体を発熱させる間に、少なくとも一度、前記発熱抵抗体への電力の供給を停止することを特徴とする、発熱量算出式作成システム。
【請求項16】
前記混合ガスのガス温度を計測するガス温度センサを更に備える、請求項15に記載の発熱量算出式作成システム。
【請求項17】
前記計測部が、前記発熱抵抗体の各駆動電力を、前記発熱抵抗体の各発熱温度と前記ガス温度との差で割ることにより、前記混合ガスの複数の放熱係数の各値を計測する、請求項16に記載の発熱量算出式作成システム。
【請求項18】
前記複数の異なる発熱温度の数が、少なくとも、前記混合ガスに含まれる複数種類のガス成分の数から1を引いた数である、請求項17乃至17のいずれか1項に記載の発熱量算出式作成システム。
【請求項19】
前記式作成部が、サポートベクトル回帰を用いて、前記発熱量算出式を作成する、請求項15乃至18のいずれか1項に記載の発熱量算出式作成システム。
【請求項20】
発熱抵抗体に複数の異なる電力を与え、前記発熱抵抗体を、複数の異なる発熱温度で発熱させることと、
前記複数の異なる発熱温度において、前記発熱抵抗体と熱的に平衡な混合ガスの複数の放熱係数又は熱伝導率の値を計測することと、
前記混合ガスの既知の発熱量の値と、前記計測された複数の放熱係数又は熱伝導率の値とに基づいて、前記複数の発熱温度における放熱係数又は熱伝導率を独立変数とし、前記発熱量を従属変数とする発熱量算出式を作成することと、
を含み、
前記発熱抵抗体を発熱させる間に、少なくとも一度、前記発熱抵抗体への電力の供給を停止することを特徴とする、発熱量算出式の作成方法。
【請求項21】
前記混合ガスのガス温度を計測することを更に含む、請求項20に記載の発熱量算出式の作成方法。
【請求項22】
前記複数の放熱係数の各値が、前記発熱抵抗体の各駆動電力を、前記発熱抵抗体の各発熱温度と前記ガス温度との差で割ることにより計測される、請求項21に記載の発熱量算出式の作成方法。
【請求項23】
前記複数の異なる発熱温度の数が、少なくとも前記混合ガスに含まれる複数種類のガス成分の数から1を引いた数である、請求項20乃至22のいずれか1項に記載の発熱量算出式の作成方法。
【請求項24】
前記発熱量算出式を作成することにおいて、サポートベクトル回帰が用いられる、請求項20乃至23のいずれか1項に記載の発熱量算出式の作成方法。
【請求項25】
発熱抵抗体と、
前記発熱抵抗体に複数の異なる電力を与え、前記発熱抵抗体を、複数の異なる発熱温度で発熱させる駆動回路と、
前記複数の異なる発熱温度において、前記発熱抵抗体と熱的に平衡な、発熱量が未知の計測対象混合ガスの複数の放熱係数又は熱伝導率の値を計測する計測部と、
前記複数の発熱温度における複数の放熱係数又は熱伝導率を独立変数とし、前記発熱量を従属変数とする発熱量算出式を保存する式記憶装置と、
前記発熱量算出式の前記複数の放熱係数又は熱伝導率の独立変数に、前記計測対象混合ガスの前記計測された複数の放熱係数又は熱伝導率の値を代入し、前記計測対象混合ガスの発熱量の値を算出する発熱量算出部と、
を備え、
前記駆動回路が、前記発熱抵抗体を発熱させる間に、少なくとも一度、前記発熱抵抗体への電力の供給を停止することを特徴とする、発熱量算出システム。
【請求項26】
前記計測対象混合ガスのガス温度を計測するガス温度センサを更に備える、請求項25に記載の発熱量算出システム。
【請求項27】
前記計測部が、前記発熱抵抗体の各駆動電力を、前記発熱抵抗体の各発熱温度と前記ガス温度との差で割ることにより、前記計測対象混合ガスの複数の放熱係数の各値を計測する、請求項26に記載の発熱量算出システム。
【請求項28】
前記複数の異なる発熱温度の数が、少なくとも、前記計測対象混合ガスに含まれる複数種類のガス成分の数から1を引いた数である、請求項25乃至27のいずれか1項に記載の発熱量算出システム。
【請求項29】
発熱抵抗体に複数の異なる電力を与え、前記発熱抵抗体を、複数の異なる発熱温度で発熱させることと、
前記複数の異なる発熱温度において、前記発熱抵抗体と熱的に平衡な、発熱量が未知の計測対象混合ガスの複数の放熱係数又は熱伝導率の値を計測することと、
前記複数の発熱温度における複数の放熱係数又は熱伝導率を独立変数とし、前記発熱量を従属変数とする発熱量算出式を用意することと、
前記発熱量算出式の前記複数の放熱係数又は熱伝導率の独立変数に、前記計測対象混合ガスの前記計測された複数の放熱係数又は熱伝導率の値を代入し、前記計測対象混合ガスの発熱量の値を算出することと、
を含み、
前記発熱抵抗体を発熱させる間に、少なくとも一度、前記発熱抵抗体への電力の供給を停止することを特徴とする、発熱量の算出方法。
【請求項30】
前記計測対象混合ガスのガス温度を計測することを更に含む、請求項29に記載の発熱量の算出方法。
【請求項31】
前記計測対象混合ガスの複数の放熱係数の各値が、前記発熱抵抗体の各駆動電力を、前記発熱抵抗体の各発熱温度と前記ガス温度との差で割ることにより計測される、請求項30に記載の発熱量の算出方法。
【請求項32】
前記複数の異なる発熱温度の数が、少なくとも、前記計測対象混合ガスに含まれる複数種類のガス成分の数から1を引いた数である、請求項29乃至31のいずれか1項に記載の発熱量の算出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2010−210555(P2010−210555A)
【公開日】平成22年9月24日(2010.9.24)
【国際特許分類】
【出願番号】特願2009−59175(P2009−59175)
【出願日】平成21年3月12日(2009.3.12)
【出願人】(000006666)株式会社山武 (1,808)
【Fターム(参考)】