説明

サンプリング装置

【課題】比較的簡単な構成により試料中の共存成分濃度の変動による影響を除去し、目的成分の測定精度を向上させたサンプリング装置を提供する。
【解決手段】密閉容器22内に満たされた液体21内に収容され、かつ試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグB1,B2と、試料Aをこれらの捕集バッグB1,B2に交互に捕集するための電磁弁V2aと、捕集バッグB1,B2に捕集された試料Aを差量法分析計10の電磁弁V1の流入側に交互に導入するための電磁弁V2bとを備え、電磁弁V2a,V2bの切換周期を同一にし、かつ、これらの切換周期を、前記電磁弁V1の切換周期の2n(nは自然数)倍とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、差量法分析計の前段に設けられて試料のサンプリングを行うサンプリング装置に関するものである。
【背景技術】
【0002】
周知のように差量法は、目的成分を定量する高選択性の分析方法がない場合に有効な測定方法であり、二つの測定方法に分類される。一つは、試料Aに目的成分と共存成分(妨害成分)とが含まれる場合、上記目的成分だけを除去した試料Bを生成し、試料Aの測定結果から試料Bの測定結果を差し引いた値を目的成分の濃度とする測定方法である。
もう一つは、試料Aの定量の目的成分を別の成分に変換して試料Bを生成し、試料Bの別の成分の測定結果から試料Aの測定結果を差し引いた値を目的成分の濃度とする測定方法である。
このような差量法を用いた分析計として、前者の測定方法としては、例えば紫外線吸収法によるオゾン計等が知られており、後者の測定方法としては、触媒酸化NDIR(非分散形赤外線)分析方式によるVOC計(揮発性有機化合物分析計)、化学発光法による二酸化窒素測定器等が知られている。
【0003】
図4は、単一の分析部を有する差量法分析計の概略的な構成図である。
図4に示す差量法分析計100は、試料Aが供給される分析計用切換弁としての電磁弁(三方弁)110と、試料Aから目的成分を除去、あるいは目的成分を別の成分に換えて試料Bを生成するための変換器120と、前記電磁弁110からサンプリングライン125Aを介して直接供給される試料A、及び変換器120からサンプリングライン125Bを経て供給される試料Bが導入されて各々の濃度を測定する単一の分析部130とを備えており、分析部130は、電磁弁110の切換により試料A及び試料Bの濃度を交互に測定している。
なお、図5は、差量法の事例として、差量法分析計100の種類に応じた変換器120の作用及び分析部130の測定物質を例示したものである。
【0004】
上述した差量法分析計100では、試料A,Bに含まれる定量の目的成分や共存成分の濃度が等しいことが前提となっているが、試料A,Bの濃度を単一の分析部100の分析セルにより交互に測定する結果、もとの試料Aに含まれる目的成分や共存成分の濃度が切換の前後で変動した場合には正確な測定値が得られないという問題がある。
更に、測定物質によっては試料Aの濃度よりも試料Bの濃度の方が高くなり、測定値がマイナス値として指示される場合もある。
【0005】
これらの問題は、図6に示す差量法分析計100’の如く、試料A,B用にそれぞれ分析部140,150を設けて個別の分析セルにより同時に測定すれば一応、解決可能である。しかし、両分析部140,150の分析セルの汚れが均等でなくなって感度が変化する等、セルバランスが崩れやすく、いわゆるゴースト指示が現れるために各分析部140,150の感度調整やセルの洗浄を頻繁に行う必要がある。これらの作業が面倒であるため、図6に示す構造の差量法分析計は余り普及していない。また、この場合、分析部が2個必要になるので、その分だけコストが高くなってしまう。
【0006】
なお、図4と同様に、単一の分析部を備えた差量法分析装置が、後述する特許文献1に記載されている。この分析装置は、分析部の差動増幅回路に入力される第1,第2信号処理回路の信号処理のタイミングがずれることによって差量信号が不正確になるのを防止するため、一方の信号処理回路の上流側に、サンプル導入用の開閉弁と同一周期でオン、オフするスイッチを設けたものである。
【0007】
また、差量法分析計に関する従来技術ではないが、成分濃度の経時的変動を伴うガスの分析を省力化することを目的として、サンプリングラインに配置された複数の電磁弁と二つのサンプリング容器とを備え、一方のサンプリング容器に充填した水を他方のサンプリング容器に移動させる動作を電磁弁の切換と連動させることで、一方のサンプリング容器によるガスの採取動作と他方のサンプリング容器による分析計へのガスの供給動作とを同時に行う分析用ガス採取方法が、下記の特許文献2に記載されている。
【0008】
【特許文献1】特開平10−274639号公報(段落[0009]〜[0012]、図1、図2等)
【特許文献2】特開昭57−88341号公報(第1頁右下欄第13行〜第2頁左下欄第10行等)
【発明の開示】
【発明が解決しようとする課題】
【0009】
図4に示した従来技術において、試料A中の共存成分濃度の変動による影響を極力少なくするためには、サンプリングラインにバッファを設けたり、演算処理によって濃度変動に起因する誤差を小さくする等の対策が考えられる。
しかし、濃度の変動が更に大きい測定系では、これらの方法だけで対応することは困難であり、測定誤差をなくすには不十分であった。
【0010】
また、特許文献1に記載された従来技術は、電気的な信号処理の遅れを解消しようとするものであり、目的成分や共存成分の濃度の変動を考慮したものではない。
更に、特許文献2に記載された従来技術では多数の電磁弁や水ポンプ等が必要であり、これらが構造の複雑化やコストの上昇を招くという問題がある。
【0011】
そこで本発明の解決課題は、比較的簡単な構成により試料中の目的成分や共存成分の濃度の変動による影響を除去し、目的成分の測定精度を向上させたサンプリング装置を提供することにある。
【課題を解決するための手段】
【0012】
上記課題を解決するため、請求項1に記載した発明は、導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1,第2の捕集バッグに交互に捕集するための第1のサンプリング用切換弁と、
第1,第2の捕集バッグに捕集された試料Aを前記分析計用切換弁の流入側に交互に導入するための第2のサンプリング用切換弁と、を備え、
第1,第2のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたものである。
【0013】
請求項2に記載した発明は、導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1の捕集バッグに捕集するための動作と、捕集した試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第3のサンプリング用切換弁と、
第3のサンプリング用切換弁により第1の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入している間に試料Aを第2の捕集バッグに捕集するための動作と、第3のサンプリング用切換弁により試料Aを第1の捕集バッグに捕集している間に第2の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第4のサンプリング用切換弁と、を備え、
第3,第4のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたものである。
【0014】
請求項3に記載した発明は、請求項1または2において、前記流体を水、油等の非圧縮性流体としたものである。
【発明の効果】
【0015】
本発明によれば、弁の切換周期を所定の関係に保つことにより、一方の捕集バッグにより捕集した試料Aを用いて、試料Aの分析と、この試料から変換器により生成した試料Bの分析とを交互に行えるようにし、目的成分や共存成分の濃度の変動の影響を受けずに試料A,Bの濃度、ひいては目的成分の濃度を差量法により高精度に測定することを可能にする。
また、サンプリング装置の構成要素としては、密閉容器内に満たされた流体に収容される一対の捕集バッグ及び弁のみであるから、構造が複雑になる恐れもなく、低コストにて提供することが可能である。
【発明を実施するための最良の形態】
【0016】
以下、図に沿って本発明の実施形態を説明する。まず、図1は本発明の第1実施形態を示す概略的な構成図である。
【0017】
図1において、10はVOC計、二酸化窒素測定器、オゾン計等の差量法分析計である。この分析計10は、図4と同様に試料Aが供給される分析用切換弁としての三方弁である電磁弁V1と、目的成分を除去または変換する変換部12と、サンプリングライン17A,17Bと、目的成分の濃度を差量法により測定する分析部13とを備えている。また、分析部13には、電磁弁V1を介して試料Aを導入するためのポンプ16が設けられている。
なお、18は分析部13の圧力(試料Aの吸引圧力)を測定するための圧力計である。
【0018】
一方、20は本実施形態にかかるサンプリング装置である。
このサンプリング装置20は、試料Aが供給されるサンプリングライン23と、このサンプリングライン23に流入側が連結された第1のサンプリング用切換弁としての三方弁である電磁弁V2aと、この電磁弁V2aの一対の吐出側にそれぞれ連結された互いに同一容積の第1,第2の捕集バッグB1,B2と、これらの捕集バッグB1,B2の出口に一対の流入側がそれぞれ連結された第2のサンプリング用切換弁としての三方弁である電磁弁V2bと、その吐出側に連結されたサンプリングライン24とを備え、このサンプリングライン24の出口には前記電磁弁V1の流入側が連結されている。なお、V2は電磁弁V2a,V2bからなる電磁弁対である。
また、サンプリング装置20の構成要素のうち少なくとも捕集バッグB1,B2は、密閉容器22の内部一杯に満たされた非圧縮性流体としての水、油等の液体21に浸漬されている。これらの捕集バッグB1,B2は、試料Aの流出入に伴って容積が変化するフッ素樹脂等の材質により形成されている。
なお、前記電磁弁V1,V2a,V2bにはそれぞれ弁開閉手段としてソレノイドが設けられており、三方弁の一方側は電気の導通がない状態(off状態)で弁が開いているノーマルオープンの状態、他方側は電気の導通がない状態で弁が閉じているノーマルクローズの状態となっている。
【0019】
ここで、図1における電磁弁V1,V2a,V2bは、「開」状態を黒、「閉」状態を白にて示してあり、図1ではサンプリングライン23と捕集バッグB2、捕集バッグB1とサンプリングライン24、サンプリングライン24とサンプリングライン17A,17B(変換器12の出力側)とがそれぞれ連通した状態となっている。
なお、電磁弁V2a,V2bは、同一周期で交互に一方の捕集バッグB1またはB2と連通するように切り換わるものであり、便宜的に図1の状態を、電磁弁V2a,V2bからなる電磁弁対V2が「off」の状態(電気の導通がない状態)であるとする。従って、電磁弁対V2が「on」の状態(電気の導通がある状態)になると、サンプリングライン23と捕集バッグB1、捕集バッグB2とサンプリングライン24とがそれぞれ連通するように切り換わる。
また、電磁弁V1については、図1の状態を「on」の状態とする。
【0020】
更に、電磁弁V1と電磁弁対V2の切換周期の関係は、電磁弁V1の切換周期tに対して電磁弁対V2の切換周期が2n・t(nは自然数)となっている。すなわち、電磁弁対V2は電磁弁V1の1/2nの周波数でon,offが切り換わるように同期して駆動される。
ここでは、n=1として、電磁弁対V2が電磁弁V1の1/2の周波数で切り換わるものとする。
【0021】
次に、この実施形態の動作を説明する。図2は差量法分析計10及びサンプリング装置20の動作を示すタイムシーケンスである。
まず、ステップiでは、電磁弁V1がon、電磁弁対V2がoffであり、図1の状態となっている。このとき、ポンプ16の吸引動作により、一方の捕集バッグB1から、以前のステップで捕集された試料Aが電磁弁V2b、サンプリングライン24、電磁弁V1及びサンプリングライン17Aを介して分析部13に直接導入される。このため、分析部13は、目的成分及び共存成分を含む試料Aの濃度を測定することができる。
【0022】
また、捕集バッグB1から試料Aが排出されることに伴い、密閉容器22の内部が大気より負圧になるので、捕集バッグB1から分析計10側に導入された試料Aと同容量の試料Aがサンプリングライン23及び電磁弁V2aを介して他方の捕集バッグB2に捕集される。
ここで、本実施形態では、密閉容器22の内部に非圧縮性流体として水、油等の液体21を満たしているが、分析計10への導入流量が少なくて済む場合には、密閉容器22の内部に圧縮性流体として空気等の気体を気密状態で満たせばよい。
【0023】
次いで、ステップiiでは、電磁弁V1がoffとなるが、電磁弁対V2はoffのままである。ポンプ16の動作により、引き続き捕集バッグB1から試料Aが分析計10に導入されるが、電磁弁V1がoffであるため、試料Aは変換器12に導入される。従って、変換器12では、従来と同様に分析計10に応じた酸化、還元等が行われ、目的成分を除去したり、目的成分が別の成分に変換された試料Bが生成されることになり、分析部13は試料Bの濃度を測定可能となる。この間、他方の捕集バッグB2にはサンプリングライン23及び電磁弁V2aを介して試料Aが引き続き捕集される。
【0024】
このように、本実施形態では、電磁弁V1と電磁弁対V2との切換周期が異なるため、以前の捕集ステップにより捕集バッグB1に貯留しておいた同一の試料Aを用いて、分析部13による試料Aの濃度測定と、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定とを交互に行うことができ、目的成分や共存成分の濃度の変動の影響を受けずに試料A,Bの濃度を正確に測定することができる。このため、試料A,Bの濃度に基づいて目的成分の濃度を高精度に測定することが可能になる。
【0025】
また、ステップiii,ivでは、電磁弁V1がそれぞれon,offとなり、この間、電磁弁対V2はon状態を維持する。これにより、ステップiiiでは、捕集バッグB2からの試料Aの導入及び分析部13による試料Aの濃度測定と、捕集バッグB1による試料Aの捕集とが同時に行われ、ステップivでは、捕集バッグB2からの試料Aの導入、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定と、捕集バッグB1による試料Aの捕集とが同時に行われる。
【0026】
すなわち、ステップiii,ivでは、捕集バッグB1が試料Aの捕集側に、捕集バッグB2が試料Aの導入側にそれぞれ切り換わる。
これらのステップiii,ivでは、ステップi,iiで捕集バッグB2に貯留された試料Aを用いて、分析部13による試料Aの濃度測定と、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定とを交互に行うことができるため、目的成分の正確な濃度測定が可能になる。
【0027】
以下、ステップv,vi以降は前記ステップi,ii以降の動作を繰り返すことにより、試料Aの捕集用、導入用の捕集バッグを切り換えながら試料A,Bの濃度測定が交互かつ連続的に実行されるものである。
【0028】
次に、図3は本発明の第2実施形態の主要部を示すものであり、サンプリング装置25のみを図示してある。
このサンプリング装置25において、サンプリングライン23は密閉容器22内で分岐ライン23a,23bに分かれ、それぞれが第3のサンプリング用切換弁としての三方弁である電磁弁V3aと、同じく第4のサンプリング用切換弁としての三方弁である電磁弁V3bとを介して分岐ライン24a,24bに連結されている。また、前記電磁弁V3a,V3bの残りのポートはそれぞれ捕集バッグB1,B2に連結され、前記分岐ライン24a,24bは合体されてサンプリングライン24に連結されている。ここで、電磁弁V3a,V3bは電磁弁対V3を構成している。
なお、密閉容器22内に非圧縮性流体としての水、油等の液体21が満たされている点は第1実施形態と同様である。
【0029】
この実施形態においても、電磁弁V3a,V3bを同一周期でon,offし、サンプリングライン23または24に連通する捕集バッグB1またはB2を交互に切り換えるように動作させる。いま、図3の状態を、電磁弁V3a,V3bからなる電磁弁対V3が「off」の状態であるとすると、このとき、捕集バッグB2はサンプリングライン23に連通していて試料Aを捕集している状態、捕集バッグB1はサンプリングライン24に連通していて試料Aを分析計10に導入している状態である。
従って、電磁弁対V3が「on」の状態になると、サンプリングライン23と捕集バッグB1、捕集バッグB2とサンプリングライン24とがそれぞれ連通するように電磁弁V3a,V3bが切り換わる。
また、電磁弁対V3が図3のような状態であるとき、分析計10内の電磁弁V1は図1と同様の状態である。
【0030】
更に、電磁弁V1と電磁弁対V3の切換周期の関係は、第1実施形態と同様に、電磁弁対V3は電磁弁V1の1/2nの周波数でon,offが切り換わるように同期して駆動される。例えばn=1の場合、電磁弁対V3は電磁弁V1の1/2の周波数で切り換わるものである。
このため、装置全体のタイムシーケンスは実質的に図2と同一であり、図2における「電磁弁対V2」を「電磁弁対V3」に置き換えればよい。
【0031】
本実施形態においても、電磁弁V1と電磁弁対V3との切換周期の相違により、以前の捕集ステップにより一方の捕集バッグに貯留しておいた同一の試料Aを用いて、分析部13による試料Aの濃度測定と、変換器12による試料Bの生成及び分析部13による試料Bの濃度測定とを交互に行うことができ、目的成分や共存成分の濃度の変動の影響を受けずに試料A,Bの濃度を正確に測定することができる。従って、試料A,Bの濃度に基づいて目的成分の濃度を高精度に測定することが可能である。
【0032】
上記各実施形態において、捕集バッグB1,B2の必要最小限の容積は、分析計10に導入される試料Aの流量と電磁弁V1の開時間との積によって決まるが、実用上はその積よりも大きい容積とし、過剰分については従来のバッファと同様に使用すればよい。
ここで、捕集バッグB1,B2の容積決定方法の一例を述べると、捕集バッグB1,B2の試料出入り口を大気開放にした状態で密閉容器22の内部に圧力をかけた流体を満たす。その後、一方の捕集バッグ、例えばB1の出入り口を塞いで密閉容器22内の流体を必要量外部に抜けば、その量に相当する分だけ、他方の大気開放された捕集バッグB2が膨らむため、この捕集バッグB2によって必要量の容積が確保される。以後は、この確保された容積が、前述した電磁弁V1,V2a,V2bまたはV1,V3a,V3bの切換動作によって捕集バッグB1,B2の間で交互に確保されることになる。
【0033】
また、装置全体の電源投入時には、捕集バッグB1,B2に残存している試料Aの容量が不明であるため、電磁弁V1及び電磁弁対V2またはV3の同期がとりにくい。この場合には、電源投入時に分析部13の圧力を圧力計18により監視しながら一方の捕集バッグに対して吸引動作を行ない、圧力が急激に減少した時点を同期の開始時点とすれば、容易に同期をとることができる。
【0034】
なお、図1に示した圧力計18はこの種の分析計10に通常備えられているため新たに用意する必要はない。
また、圧力計18を有しない場合、試料の入口(サンプリングライン24)を短時間閉塞しても支障がない分析計では、電磁弁対V2またはV3の切換周期よりも十分長い時間(例えば捕集バッグB1,B2の一方から試料Aを吸引するために要する時間)だけ試料Aを吸引した時点を同期の開始時点とすることもできる。
【0035】
上記各実施形態は、気体試料が供給される差量法分析計10を対象とした場合のものであるが、本発明は液体試料のサンプリングに対しても同様に適用可能である。
【図面の簡単な説明】
【0036】
【図1】本発明の第1実施形態を示す概略的な構成図である。
【図2】図1における差量法分析計及びサンプリング装置の動作を示すタイムシーケンスである。
【図3】本発明の第2実施形態の主要部を示す構成図である。
【図4】従来技術を示す概略的な構成図である。
【図5】差量法の事例の説明図である。
【図6】従来技術を示す概略的な構成図である。
【符号の説明】
【0037】
10:差量法分析計
12:変換器
13:分析部
16:ポンプ
17A,17B:サンプリングライン
18:圧力計
20,25:サンプリング装置
21:液体(非圧縮性流体)
22:密閉容器
23,24:サンプリングライン
V1,V2a,V2b,V3a,V3b:電磁弁
V2,V3:電磁弁対
B1,B2:捕集バッグ

【特許請求の範囲】
【請求項1】
導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1,第2の捕集バッグに交互に捕集するための第1のサンプリング用切換弁と、
第1,第2の捕集バッグに捕集された試料Aを前記分析計用切換弁の流入側に交互に導入するための第2のサンプリング用切換弁と、を備え、
第1,第2のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたことを特徴とするサンプリング装置。
【請求項2】
導入された試料Aを単一の分析部に直接供給して分析する動作と、前記試料Aから変換器を介して生成した試料Bを前記分析部に供給して分析する動作とを交互に実行し、これらの分析結果に基づいて試料Aに含まれる目的成分を分析すると共に、前記試料Aを前記分析部側と前記変換器側とに切り換えるための分析計用切換弁を備えた差量法分析計の前段に設けられるサンプリング装置において、
密閉容器内に満たされた流体に収容され、かつ、試料Aの流出入に伴って容積が変化する第1,第2の捕集バッグと、
試料Aを第1の捕集バッグに捕集するための動作と、捕集した試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第3のサンプリング用切換弁と、
第3のサンプリング用切換弁により第1の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入している間に試料Aを第2の捕集バッグに捕集するための動作と、第3のサンプリング用切換弁により試料Aを第1の捕集バッグに捕集している間に第2の捕集バッグ内の試料Aを前記分析計用切換弁の流入側に導入するための動作と、を交互に行う第4のサンプリング用切換弁と、を備え、
第3,第4のサンプリング用切換弁の切換周期を同一にし、かつ、これらの切換周期を、前記分析計用切換弁の切換周期の2n(nは自然数)倍としたことを特徴とするサンプリング装置。
【請求項3】
請求項1または2に記載したサンプリング装置において、
前記流体が水、油等の非圧縮性流体であることを特徴とするサンプリング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate