説明

シリコン半導体デバイス基板および製造装置

【課題】デバイス後工程で薄型化され、且つ、裏面研削あるいは研磨される半導体デバイス用として好適なシリコン基板を製造する半導体装置を提供する。
【解決手段】 デバイス作製されたシリコン基板に対し、デバイス後工程で薄型化させたシリコン基板の裏面側を精度よくレーザー光照射できデバイス作製面側の温度を抑制させ本発明による加熱方式を適用することにより残留応力を低減させチップ強度の低下を抑制し、デバイス活性層側への重金属の拡散を防止しデバイス特性を維持させることを可能とするシリコン基板製造装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はシリコン基板に関し、特にマルチチップパッケージ(MCP)やシステムインパッケージ(SiP)などに搭載される薄型化された半導体デバイス用基板として好適なシリコン基板および製造装置に関する。
【背景技術】
【0002】
最終チップ厚みは年々薄型化しており、特にMCP搭載されるチップは50μm以下に薄型化されることが多く、製品によっては25μm以下まで薄型化され、将来的には10μm以下とも予測されている。チップの抗折強度に関しては、チップ厚の二乗に反比例するために薄型化の進展はワレやカケ問題を顕在化させることになる。更に裏面研削でのスクラッチ、クラックや非晶質層は裏面近傍に非常に大きな残留応力を生じさせるために薄型化されたシリコン基板の反りを増大させるばかりでなくワレやカケを助長することになる。従って、研削痕を除去させるために研磨工程を新たに追加して残留応力を低減(ストレスリリーフ)させる装置が適用されるようになった。
【0003】
半導体プロセスにおける他の問題点として、シリコン基板中への重金属の混入が挙げられる。シリコン基板の表面側に形成されるデバイス領域へ重金属が拡散した場合、ポーズタイム不良、リテンション不良、接合リーク不良及び酸化膜の絶縁破壊といったデバイス特性に著しい悪影響をもたらす。このため、シリコン基板に混入した重金属がデバイス領域に拡散するのを抑制するため、ゲッタリング法を採用するのが一般的である。
【0004】
前工程でデバイス作製されたシリコン基板は、シリコン基板の薄型化、ダイシング、ワイヤーボンディング、樹脂封止など行う後工程へと移る。後工程でも重金属の混入は存在するが、これまで特に重視されていなかった。これは、デバイス後工程の初期段階においてシリコン基板の裏面を研削除去する際に生じたスクラッチ、クラック、非晶質などを含む研削痕が強力なゲッタリング作用をしていたからである。
【0005】
ところが、上述したように研削痕の除去はゲッタリング源を失う事になり、更に薄型化されたシリコン基板はイントリンシック・ゲッタリング(IG)層の厚みも薄いことから十分なゲッタリング効果が期待できなくなる。すなわち、チップ抗折強度とゲッタリング効率はトレードオフの関係になっている。
【0006】
従って、薄型半導体デバイスにおいては、裏面研削の後に研削痕を完全に除去しないような研磨を施して僅かにスクラッチやクラックなどを残す方法や完全研磨後にサイズの小さな砥石にて新たに弱い研削痕を付与させる装置が開発され量産適用されている。しかし、シリコン基板裏面側に物理的なダメージを付与しているため残留応力の低減化は完全でなく、ゲッタリング効果も中途半端な状態である。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、デバイス後工程で薄型化されたシリコン基板に対して裏面研削で生じた残留応力を大幅に低下させる事を可能としたシリコン基板とその製造装置、あるいは残留応力を大幅に低下させ同時に十分なゲッタリング効果も付与させることを可能としたシリコン基板およびその製造装置を提供することにある。
【0008】
発明者は、特願2011−98729および特願2011−129602に記載したようにシリコン基板の裏面研削工程または研磨工程後にレーザー光を照射させシリコン裏面および近傍を溶融させた後に再結晶化させることで残留応力を飛躍的に低下させ、更にシリコン裏面の溶融中に重金属を捕獲できる物質を故意にドープさせることで強力なゲッタリング効果を発揮できる手法を見出した。しかし、量産設備として採用するにはドーピング剤の供給装置が必要となり装置コストアップやレーザー光照射中のデバイス作製面側の温度上昇を招きデバイス特性を劣化させるなどの課題が見つかった。
【課題を解決するための手段】
【0009】
請求項1に記載の発明は、デバイス作製されたシリコン基板を薄型化のために裏面研削もしくは裏面研磨された基板、チップ領域となるシリコン基板あるいは個別チップ化されたシリコン基板に対して裏面全面もしくはチップとなる領域全面を均一に繰り返し局所的加熱しながら、同時にデバイス作製面側の温度上昇を抑制しながら裏面近傍の残留応力を低減させ好適なゲッタリング能力を具備させる事を可能とするシリコン基板およびシリコン半導体製造装置である。
【0010】
請求項1に記載の発明によれば、薄型化のためにシリコン基板の裏面研削または研磨で導入された非晶質領域やキズを局所加熱させる方式としてレーザー発振装置を搭載しておりシリコン裏面側を溶融条件や非溶融条件で加熱する際にデバイス作製面側の温度上昇を制御させる構造を具備しているため熱起因によるデバイス特性の劣化をなくし残留応力の低減によるワレやカケ防止と最適なゲッタリング能力も付与するためデバイス歩留を大幅に向上できる装置である。
【0011】
適用するレーザー装置は、100nmから2μmの波長範囲で単一波長に限定するものでなく複数のレーザー装置を用いた多波長光を同時に使用することも出来る。レーザー光照射は、連続照射レーザーやパルス照射レーザーもしくは双方適用しても良い。また、複数のファイバーを用いたレーザー光を同時にシリコン裏面側に照射して生産性を向上させる事も可能である。
【0012】
特にレーザー光照射時のデバイス作製面側の温度上昇を抑制するためには、レーザー光パルス幅を1ショットに対して数百ナノ秒以下からフェムト秒オーダーでの短時間にて高い繰返し照射、好ましくは100KHz以上のレーザー装置を備える事が好ましい。短波長側のレーザー光を使用したシリコン基板裏面の溶融または非溶融加熱の場合には、シリコンに対する吸収係数が大きいため最表面での再結晶化の効率が高くなりレーザー光の侵入深さも短くできるため紫外光から可視光の波長を用いパルス幅も短くすることが好ましい。更に好ましい波長範囲は100nmから600nmである。
【0013】
シリコンに対して吸収係数が小さい長波長光での加熱の場合では、シリコンに対する侵入深さが深くなるためデバイス作製面側の温度上昇が起こりやすくなるために出来るだけパルス幅を短くする必要があり、好ましくはピコ秒やフェムト秒での照射が良い。特に非溶融加熱の際には、レーザー光を集光して裏面側を照射する時に焦点がシリコン基板内部にならないように裏面上部に集光させるようにする。これによりシリコン基板内部に侵入したレーザー光は裏面側でエネルギー密度が高いために効率良く加熱できデバイス作製面側ではレーザー光が広がりを持つため温度上昇が抑制される。
【0014】
薄型化されたシリコン基板ではデバイス作製面側の凹凸が裏面側にうねりとして反映されるため、うねり測定ができる装置を備えることによりステージ上に搭載されたシリコン基板の裏面側のうねりを予め測定もしくはレーザー照射時にその領域のうねりを測定することでシリコン裏面を基準としてレーザー光の照射エネルギー密度を一定とするようにレーザー光の焦点距離を変更しながら加熱することが好ましい。
【0015】
請求項2に記載の発明は、前記薄型化されたシリコン基板裏面全面を照射できるようにXY方向へ可動できる機構を有し薄型化された際に生じるシリコン基板の反り量を低減させる機構と冷却機構がシリコン基板保持用ステージに備わった請求項1記載の半導体製造装置である。
【0016】
請求項2に記載の発明によれば、薄型化されたシリコン基板は加工起因による残留応力やデバイス作製時の膜形成などによる残留応力で大きく反りが生じる。そのため加工されたシリコン基板は均一に裏面加熱する事ができない。従って、シリコン裏面に精度良くレーザー光を照射させるためにバックグラインド用の保護テープなどが貼り付けられたデバイス作製面をステージ上に搭載した後に真空吸着などして反り量を低減させる機構を具備させる。
【0017】
更に、ステージ内部に冷却水など流す事が可能な配管を具備させることでステージ表面温度を低下できレーザー照射時のデバイス作製面の温度上昇を抑制できる。または、ステージ表面と該シリコン基板との接地面に冷却ガスを流すようにしても良い。構造としてステージ表面全面に溝加工を施し該シリコン基板を吸着した状態で溝部に冷却ガスを導入できるようにしている。
【0018】
請求項3に記載の発明は、請求項1および2記載の半導体装置で作製されたシリコン基板またはデバイスチップである。
【0019】
請求項3に記載の発明によれば、薄型化されたシリコン基板またはデバイスチップに対してデバイス特性の劣化がなく裏面および裏面近傍に生じている残留応力を大幅に低減できチップの抗折強度の低下を抑制でき、更にはゲッタリング能力が具備されたシリコン基板を低コストで提供できる。
【0020】
本発明をより具体的に説明すると、先ずデバイス作製面にバックグラインド用保護テープなどが貼り付けられ、場合により先ダイシングと呼ばれる加工が先に施された状態で、該シリコン基板の裏面研削または研磨が施された後に裏面側の洗浄を行う。次に本発明の装置にてシリコン基板裏面側からレーザー光を照射させてシリコン裏面を溶融もしくは非溶融加熱する。その後は、通常のプロセス変更なく裏面側へのダイ・アタッチ・フィルム(DAF)の貼り付け工程に移行できる。
【0021】
または、バックグラインドテープが貼り付けられた状態の薄厚化されたシリコン基板に対してUV照射など行い該テープを剥離した後に本発明の装置にてレーザー光照射を行っても良い。この場合、バックグラインドテープがないためデバイス作製面側の温度上昇による該テープの熱劣化を考慮しないで加工できるためレーザー光照射のプロセスマージンが広がる。
【0022】
更に、本プロセスの適用範囲を広げるとダイシングテープやDAFを通してレーザー光照射加熱する事も可能である。これは、DAF貼り付け工程後、マウント工程後やダイシング前もしくは後にも適用できる。これらプロセスへの本装置の適用は、単独装置でも薄型化装置やDAF貼り付け装置、更にはダイシング装置内に装備しても良い。
【0023】
薄型化されたシリコン基板またはチップ化された基板に対して裏面側にダイシングテープやDAFが貼り付けられた状態では、それら膜を介して裏面加熱するためにダイシングテープやDAFに対して透過性の良いレーザー光を選択してそれら材質が熱劣化させないように基板裏面近傍を加熱する事が必要である。
【発明の効果】
【0024】
本発明による装置を用いれば、薄型化されたシリコン基板裏面を溶融または非溶融条件で加熱してもデバイス作製面側の温度を制御できるためデバイス特性の熱劣化がなく、チップの抗折強度の低下を抑制でき更にゲッタリング能力も備えたデバイスチップが出来るために歩留を大幅に改善する事が可能となる。
【実施例】
【0025】
[比較例1]
直径200mm、厚み675μm、初期酸素濃度が1.0×1018atoms/cm、比抵抗が10Ω・cmから20Ω・cmに調整されたボロンドープのCZ基板を準備した。全てのサンプルに対して表面にバックグラインドテープを貼り付け裏面側から#2000の砥石にて75μm厚みにした後、裏面側にスクラブ洗浄を施した(サンプル1)。
【0026】
[比較例2]
サンプル1のバックグラインドテープ面側を通常の円形ステージ上に搭載した。基板の反りやうねりが大きいためレーザー光をシリコン基板裏面に均一に照射できないため真空吸着して反り量を低減させた。この状態でステージ速度を移動させながら波長508nm、パルス幅200ナノ秒、エネルギー密度5J/cmの条件にて裏面全面にレーザー光を照射させた(サンプル2)。
【実施例1】
【0027】
冷却水導入管を備えたステージに15℃の冷却水を流しながらサンプル1のバックグラインドテープ面側をステージ面に搭載し真空吸着を行った。次に、該シリコン基板裏面側からエキシマーレーザーを用いてステージ速度を移動させながら波長308nm、パルス幅20ナノ秒、エネルギー密度3J/cmの条件にて裏面全面にレーザー光を照射させた(サンプル3)。
【実施例2】
【0028】
実施例1と同様にエキシマーレーザーを用いてシリコン裏面側を溶融しないエネルギー密度1.5J/cmの条件にて裏面全面にレーザー光を照射させた(サンプル4)。
【0029】
[評価1]
サンプル1からサンプル4を用いてバックグラインドテープの劣化状況を観察した結果、サンプル2のみが熱劣化していた。
次に、サンプル1とサンプル3,4を用いて裏面側から表面側に向かってラマン分光による残留応力評価を行った。いずれのサンプルも最大残留応力値は表面もしくは極表層部である事を判明した。その値は、サンプル1で約100MPa、サンプル4では約8MPa前後、サンプル3に関しては残留応力が殆ど観察されなかった。
【0030】
[評価2]
サンプル1とサンプル3,4を用いて裏面側断面の電子顕微鏡による観察を行った。結果、サンプル1には裏面深さ0.5μm領域に非晶質領域部やキズなどが観察されたが、サンプル3では裏面全域で完全結晶化しており局部的に転位が残存する領域も観察された。サンプル4に関しては、極表層に存在する非晶質層が双晶構造などに再結晶化している事を確認できた。

【特許請求の範囲】
【請求項1】
デバイス作製後に薄型化のために裏面研削もしくは裏面研磨されたシリコン基板、チップ領域となるシリコン基板、あるいは個別チップ化されたシリコン基板に対して該裏面全面を均一に繰り返し局所加熱しながら、同時にデバイス作製面側の温度上昇を抑制することで熱起因によるデバイス特性の劣化を防止し該シリコン基板の残留応力低減とゲッタリング能力を具備させる事を可能とする半導体製造装置である。
【請求項2】
前記薄型化された基板の反り量を低減出来る構造と冷却機構がシリコン基板保持ステージに備わった請求項1記載の半導体製造装置である。
【請求項3】
請求項1および2記載の半導体装置で裏面レーザー光照射により作製されたシリコン基板およびデバイスチップである。