説明

スチレン系樹脂組成物及びその成形品

【課題】 スチレン−(メタ)アクリル系樹脂組成物を用いて得られる成形品の実用的な強度を維持しながら、各種成形方法における成形加工性を向上させうるスチレン系樹脂組成物とその成形品を提供すること。
【解決手段】 スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物の重量平均分子量(Mw)が30万〜60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比が2.7〜4.0であり、且つ前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であるスチレン系樹脂組成物

【発明の詳細な説明】
【技術分野】
【0001】
本発明は分岐末端に重合性二重結合を有する多分岐マクロモノマーとスチレン系単量体及びアクリル酸エステルとの共重合体に関する。さらに詳しくは、成形加工(射出成形、押出成形、ブロー成形等)を行なう際の成形加工性に優れ、生産性が良好なスチレン系樹脂組成物に関する。
【背景技術】
【0002】
スチレン−(メタ)アクリル系樹脂は、剛性が高く、寸法安定性、透明性などに優れ、成形材料として広く用いられている。しかしながら、スチレン−(メタ)アクリル系樹脂は、種々の用途の要求を満たし、バランスの優れた成形材料としていまだ不十分であり、さまざまな性能向上が求められている。
【0003】
例えば、光学系部材では、成形品の変形(反り、たわみ)の一因である吸湿性を抑制するために、スチレンの割合が高い共重合体を使用することで対応しているが、成形品の強度低下を招くことがあり、実用レベルに達していない。この課題を解決する方法として、特に成形品の曲げエネルギーに着目し、該曲げエネルギーが大きい成形品を得るため、多分岐状マクロモノマーとスチレン系単量体と(メタ)アクリル系単量体とを共重合することにより得られる多分岐状スチレン-(メタ)アクリル系共重合体が提供されている(例えば、特許文献1参照。)。
【0004】
しかしながら、近年、特に環境への負荷軽減の観点から、生産性の向上も要求されるようになってきており、成形品の強度等を損なわずに更に成形加工性をも優れる材料の提供が待たれている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−284591号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記のような問題を鑑みてなされたものであり、本発明の課題は、スチレン−アクリル系樹脂組成物を用いて得られる成形品の実用的な強度を維持しながら、各種成形方法における成形加工性を向上させうるスチレン系樹脂組成物とその成形品を提供することにある。
【課題を解決するための手段】
【0007】
本発明者は上記課題を解決するために鋭意検討した結果、本発明者らが独自に開発した多分岐状マクロモノマーと、スチレン系単量体とアクリル酸エステルとを特定割合で共重合させて得られる、特定の重量平均分子量と分子量分布を有するスチレン系樹脂組成物が、上記課題を解決できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明は、スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であり、且つ前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であることを特徴とするスチレン系樹脂組成物と、これを用いて得られる成形品を提供するものである。
【発明の効果】
【0009】
本発明で得られるスチレン系樹脂組成物は、従来の線状のスチレン系樹脂組成物よりも広い分子量分布幅を有するものであり、このことから、超高分子量成分を含有していても成形加工性に優れる。更に金型を使用する各種成形方法を適用する場合には、金型からの離型性が良好であるため、添加剤等の併用によって離型させる必要がなく、表面汚れもないことから、コスト・時間共に生産性が良好であり、不良品発生の度合いを低減化できる。又、得られる成形品は、従来と同様、もしくはそれ以上の機械的強度も有する。これらのことから、大型化・薄肉化が進む各種筐体や光学部材、大量生産される各種包装材料へ好適に用いることができる。
【図面の簡単な説明】
【0010】
【図1】静的ミキシングエレメントを有する管状反応器を組み込んだ連続重合ラインの1例を示す工程図である。
【発明を実施するための形態】
【0011】
以下、本発明を詳細に述べる。
本発明のスチレン系樹脂組成物は、スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であり、且つ前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であることを特徴とする。
【0012】
GPC−MALS法は多角度光散乱検出器による分子量の測定方法であり、高度に分岐したポリマーにおける分子量測定に有用である。本発明においては、スチレン系樹脂組成物のGPC−MALS測定を、Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI−101、カラムShodex KF−806L×2、溶媒THF(テトラヒドロフラン)、流量1.0ml/minの条件にて行った。また、GPC−MALSの測定の解析は、Wyatt社の解析ソフトASTRAにより行い、スチレン系樹脂組成物についての重量平均分子量・数平均分子量を算出し、この値によって、組成物を規定するものである。
【0013】
本発明のスチレン系樹脂組成物の前記手法により求めた重量平均分子量(Mw)は30万〜60万であることを必須とする。該分子量が30万未満では、得られる成形体の強度が不足し、又、射出成形時の離型性が低下することがあり、又、60万を超えると、分子量分布が広くても成形加工性が不十分で、特に射出成形時に偏肉が生じやすくなる。
【0014】
又、スチレン系樹脂組成物のGPC−MALS法により求められる重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.7〜4.0の範囲であることを必須とする。Mw/Mnが2.7よりも低いものでは、従来、本発明者らが提供してきた多分岐構造を有するスチレン系樹脂組成物と同等であって、各種成形法を適用した場合の成形加工性が不足するものであり、生産性の向上には不向きである。又、Mw/Mnが4.0を超えるものは、後述する製造方法で得ることが難しくなる。
【0015】
本発明で使用することができるスチレン系単量体(a1)としては、例えば、スチレン及びその誘導体;例えばスチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレン、オクチルスチレン等のアルキルスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、ヨードスチレン等のハロゲン化スチレン、更にニトロスチレン、アセチルスチレン、メトキシスチレン等が挙げられ、単独でも、2種以上を混合して用いても良い。これらの中でも、汎用性に富み、後述のアクリル酸エステル(a2)との反応性に優れる観点から、スチレンを用いることが好ましい。
【0016】
本発明で使用することができるアクリル酸エステル(a2)としては、特に限定されるものではなく、例えば、炭素数1〜6のアルキル基もしくは置換アルキル基を有するアクリル酸アルキルエステルが好ましい。ここで置換アルキル基としては、アルキル基の水素原子の一部又は全部がハロゲン原子、水酸基等で置換されたアルキル基を指し、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸n−へキシル、アクリル酸シクロヘキシル、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル等が挙げられ、単独でも、2種以上を混合して用いても良い。これらの中でも、得られる多分岐状共重合体(A)中に分岐構造を好適に配することができ、これを含むスチレン系樹脂組成物の成形加工性がより優れたものになる点からアクリル酸ブチルが好適である。
【0017】
又、本発明の効果を損なわない限りにおいて、その他の重合性二重結合を有する単量体を併用しても良い。前記単量体としては、例えば、各種(メタ)アクリル系化合物やビニルエーテル、ビニルエステル等が挙げられる。
【0018】
本発明において、前記のその他の単量体を用いる場合には、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)の合計質量に対して5質量%以下で用いることが好ましい。
【0019】
本発明において使用する多分岐状マクロモノマー(a3)としては、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000のマクロモノマーであればよく、その構造において特に限定されるものではない。工業的入手容易性の観点から、例えば、既に本発明者らが特開2003−292707号公報等にて開示している多分岐状マクロモノマーを用いることが好ましい。
【0020】
前記多分岐状マクロモノマーとしては、例えば下記(1)〜(5)のいずれかの方法によって得られるものが挙げられる。
(1)1分子中に活性メチレン基と、臭素、塩素、メチルスルホニルオキシ基またはトシルオキシ基等とを有するAB型モノマーを求核置換反応させて得られる多分岐状の自己縮合型重縮合体を前駆体として、該重縮合体中に残存する未反応の活性メチレン基またはメチン基を、クロロメチルスチレン、ブロモメチルスチレン等と求核置換反応させることによって重合性二重結合を導入して得られる多分岐状マクロモノマー、
(2)水酸基を1個以上有する化合物に、カルボキシル基に隣接する炭素原子が飽和炭素原子であり、かつ該炭素原子上の水素原子がすべて置換され、且つ水酸基を2個以上有するモノカルボン酸を反応することにより多分岐状ポリマーとし、これにアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(3)水酸基を1個以上有する化合物に水酸基を1個以上有する環状エーテル化合物を反応することにより多分岐状ポリマーとし、次いで該ポリマーの末端基である水酸基にアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(4)水酸基を1個以上有する化合物と、2個以上の水酸基とハロゲン原子、−SOOCH、−OSOCH等を含有する化合物とを反応させることにより多分岐状ポリマーとし、次いで該ポリマーの末端基である水酸基にアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(5)アミド結合が窒素原子を介して繰り返し構造となっているPAMAMデンドリマーにアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー。
【0021】
前記(1)における、1分子中に活性メチレン基と、臭素、塩素、メチルスルホニルオキシ基、トシルオキシ基等とを有するAB型モノマーとしては、例えば、ハロゲン化アルコキシ−フェニルアセトニトリル類、又はトシルオキシ基を有するフェニルアセトニトリル類が挙げられる。
【0022】
前記(2)における、カルボキシル基に隣接する炭素原子が飽和炭素原子であり、かつ該炭素原子上の水素原子がすべて置換され、且つ水酸基を2個以上有するモノカルボン酸としては、例えば、ジメチロールプロピオン酸、α,α−ビス(ヒドロキシメチル)酪酸、α,α,α−トリス(ヒドロキシメチル)酢酸、α,α−ビス(ヒドロキシメチル)吉草酸又はα,α−ビス(ヒドロキシメチル)プロピオン酸等が挙げられる。
【0023】
前記(3)における、水酸基を1個以上有する環状エーテル化合物としては、例えば、3−エチル−3−(ヒドロキシメチル)オキセタン、2,3−エポキシ−1−プロパノール、2,3−エポキシ−1−ブタノール又は3,4−エポキシ−1−ブタノール等が挙げられる。
【0024】
前記(4)における、2個以上の水酸基とハロゲン原子、−SOOCH、−OSOCH等を含有する化合物としては、例えば、5−(ブロモメチル)−1,3−ジヒドロキシベンゼン、2−エチル−2−(ブロモメチル)−1,3−プロパンジオール、2−メチル−2−(ブロモメチル)−1,3−プロパンジオール、2−(ブロモメチル)−2−(ヒドロキシメチル)−1,3−プロパンジオール等が挙げられる。
【0025】
前記(5)における、PAMAMデンドリマーとしては、例えば、特公平6−070132号公報及び特公平7−042352号公報等にて示されている手法によって、製造することができる。
【0026】
又、多分岐状マクロモノマー(a3)の重量平均分子量は1,000〜15,000であることを必須とするものである。該分子量は、GPC−MALS測定法(Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI−101、カラムShodex KF−806L×2、溶媒THF、流量1.0ml/分)にて行った。また、GPC−MALSの測定の解析は、Wyatt社の解析ソフトASTRAにより行い、重量平均分子量を求めた。該分子量が1,000未満では、分岐構造の導入量が不足し、従来の線状スチレン−アクリル共重合体に近い物性となり、本願で規定する広い分子量分布幅を有するスチレン系樹脂組成物が得られにくく、また得られる成形品の実用的強度が不足することがある。又、該分子量が15,000以上では、多分岐状マクロモノマーの取り扱いが困難になり、スチレン系単量体(a1)とアクリル酸エステル(a2)と均一に共重合しにくくなることがある。より好ましい分子量は2,500〜7,000である。
【0027】
又、前記多分岐状マクロモノマー(a3)としては、重合性二重結合を1gあたり0.1ミリモル〜5.5ミリモル含有する事が好ましい。この範囲であれば、得られる多分岐状共重合体(A)中の分岐構造の導入量を制御でき、製造時のゲル化を防ぎながら、所望の高分子量成分を適度に含有し、且つ広い分子量分布を有するスチレン系樹脂組成物を得ることが容易になる。より好ましい含有量は、1.0〜3.5ミリモルの範囲である。尚、この含有量は、例えば、メタクリル酸又はその誘導体に基づく二重結合の場合は、メタアクリル酸メチルの式量中に1モルの二重結合を含有するとして求めるものであり、スチレン又はその類似化合物に基づく二重結合の場合は、スチレンの式量中に1モルの二重結合を含有するとして求められる値である。
【0028】
本発明のスチレン系樹脂組成物は、前記スチレン系単量体(a1)と、前記アクリル酸エステル(a2)と前記多分岐状マクロモノマー(a3)とを共重合させて得られる多分岐状共重合体(A)を必須とするものであるが、この共重合体を合成する際には、同時にスチレン系単量体(a1)とアクリル酸エステル(a2)との線状の共重合体や、多分岐状マクロモノマー(a3)由来構造を充分に含有しない低分岐度の共重合体を含む混合物として得られることになる。本発明においては、前記多分岐状共重合体(A)を必須とすれば良いので、この様な線状の共重合体や低分岐度の共重合体を除去する必要はなく、前述で規定したMw、及びMw/Mn比率であれば本発明のスチレン系樹脂組成物としてそのまま使用することができる。又、1段の製造で、前記で規定するMw、Mw/Mnを満たさない場合には、別途スチレン系単量体(a1)とアクリル酸エステル(a2)とを共重合させてなる樹脂を混合し、調整することもできる。
【0029】
また、本発明のスチレン系樹脂組成物は、スチレン系単量体(a1)とアクリル酸エステル(a2)との使用割合(a1)/(a2)を87/13〜96/4(質量比)とすることを必須とするものである。前述のように、別途スチレン系単量体(a1)とアクリル酸エステル(a2)とを共重合させてなる樹脂を混合し、調整する場合においても、スチレン系樹脂組成物中におけるスチレン系単量体由来成分の含有率と、アクリル酸エステル(a2)由来成分の含有率との質量比が当該範囲内であることを必須とする。アクリル酸エステルの使用割合が4よりも低いものでは、各種成形法を適用した場合の成形加工性が不足するものであり、本発明の目的とする成形加工性の付与という効果を発現させることが困難になる。又、アクリル酸エステルの使用割合が13.0を超えるものは、ビカット軟化温度が低下し、又、成形品の耐熱性が実用的な範囲を下回る。
【0030】
また、前記多分岐状マクロモノマー(a3)を前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との合計に対して質量基準で100〜1,000ppmで用いることが好ましい。この範囲で原料を配合することにより、前記で規定するMw、Mw/Mnを有するスチレン系樹脂組成物を1段の製造で得ることが容易になる。得られる成形品の物性バランスに優れる点から、アクリル酸エステルとしてアクリル酸ブチルを用い、スチレン系単量体(a1)との使用割合(a1)/アクリル酸ブチルを92/8〜96/4(質量比)とすることが更に好ましく、多分岐状マクロモノマー(a3)の使用割合は、100〜500ppm(質量基準)の範囲とすることが更に好ましい。
【0031】
従来、スチレン系単量体(a1)とアクリル酸エステル(a2)とを併用することにより、得られる共重合体を用いた成形品に柔軟性(しなやかさ)が発現されることは知られていた。しかしながら、この場合には、当該共重合体の軟化点が低下することにより、耐熱性に不足したり、機械的強度が実用レベルにならなかったりすることがあった。一方で、多分岐状マクロモノマー(a3)を併用することによって、高分子量の共重合体が含まれているにもかかわらず、流動性に優れる共重合体が得られることも知られていた。しかしながら、多分岐状マクロモノマーを併用する場合においても、その流動性はあくまでも同様な重量平均分子量を有する線状樹脂との比較において、良好であるにすぎず、成形品の多様化(大型化・薄肉化・高意匠化など)に伴い、又、成形方法の多様化に伴い、更なる加工性の付与が求められるようになってきた。更に、エネルギー削減の観点からはより低温での成形性も必要であり、金型を使用する成形方法では該金型への樹脂汚れを防ぐための離型性も生産性向上のために必要な項目である。本発明では、この様な要求に答えるべく、これらの性能バランスに優れたスチレン系樹脂組成物を提供するものである。
【0032】
本発明のスチレン系樹脂組成物は、前記のように、多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、且つ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であればよく、用途・成形方法等によって各種添加剤等を併用しても良い。
【0033】
前記添加剤等としては、例えば、各種安定剤、アンチブロッキング剤、帯電防止剤、滑剤、防曇剤、抗菌剤、酸化防止剤、染料、紫外線吸収剤等が挙げられる。但し、本発明で用いるスチレン系樹脂組成物は、従来離型性や成形加工性を付与するために使用されていたミネラルオイル等を使用しなくてもこれらの性能に優れるため、添加剤の使用においては、従来のスチレン−(メタ)アクリル系共重合体における添加剤の使用方法とは異なる点に留意する必要がある。
【0034】
本発明のスチレン系樹脂組成物の製造方法としては、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)と前記多分岐状マクロモノマー(a3)とを共重合させ、本願で規定する分子量・分子量分布幅のスチレン系樹脂組成物になればよく、特に限定されるものではない。目的とするスチレン系樹脂組成物を1段の反応で効率よく製造できる点からは、本発明者らによって既に特開2005−053939号公報等で提供されている製造方法を採用することが好ましい。
【0035】
具体的には、前記原料を含有する混合物を溶液重合法又は溶融重合法(塊状重合法)によって反応するのが好ましい。その際有機溶剤を添加せずに実施することもできるが、少量の有機溶剤を併用するのが反応物の粘性を低下させ、重合物分子量の制御が容易であることから好ましい。
【0036】
使用され得る有機溶剤としては、連鎖移動定数が0.1×10−5〜1×10−4であるものが好ましく、0.2×10−5〜0.8×10−5であるものがより好ましい。その例として、トルエン、エチルベンゼン、キシレン、アセトニトリル、ベンゼン、クロロベンゼン、ジクロロベンゼン、アニソール、シアノベンゼン、ジメチルフォルムアミド、N,N−ジメチルアセトアミド、メチルエチルケトン等が好ましい。その使用量については、原料単量体の合計100質量部に対し、5質量部〜50質量部が好ましく、6質量部〜20質量部がより好ましい。尚、有機溶剤を使用して重合を行うと、有機溶剤不溶分の生成をも抑制し易いため、好ましい。
【0037】
特に多分岐状マクロモノマー(a3)の添加量を多くしたい場合には、ゲル化を抑制する観点からも上記有機溶剤を使用することが必要となる。これにより、先に示した多分岐状マクロモノマーの添加量を増量させることが可能である。
【0038】
重合開始にあたっては、ラジカル重合開始剤が用いられる。かかる開始剤としては、半減期が10時間になる温度が75〜140℃であるものが好ましく、より好ましくは、温度が85〜135℃である。例えば、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン等のパーオキシケタール類、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド等のジアルキルパーオキサイド類、ベンゾイルパーオキサイド、ジシナモイルパーオキサイド等のジアシルパーオキサイド類、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシイシプロピルモノカーボネート等のパーオキシエステル類、N,N’−アゾビスイソブチルニトリル、N,N’−アゾビス(シクロヘキサン−1−カルボニトリル)、N,N’−アゾビス(2−メチルブチロニトリル)、N,N’−アゾビス(2,4−ジメチルバレロニトリル)、N,N’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することが可能である。
【0039】
これらの使用量としては、原料の単量体合成質量に対して、質量基準で50ppm〜1000ppmが好ましく、より好ましくは100〜500ppmである。
【0040】
更にスチレン系樹脂組成物の分子量が過度に大きくなりすぎないように連鎖移動剤を添加してもよい。連鎖移動剤としては、連鎖移動基を1つ有する単官能連鎖移動剤でも連鎖移動剤を複数有する多官能連鎖移動剤を使用できる。単官能連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸エステル類等が挙げられる。
【0041】
多官能連鎖移動剤としては、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化したものが挙げられる。
【0042】
本発明の成形体は、前記本発明のスチレン系樹脂組成物を用いること以外、何ら制限されるものではなく、例えば、射出、押出、ブロー、圧縮等の成形方法を適用し、射出成形品、板、シート、フィルム等に成形する。特に本発明のスチレン系樹脂組成物が有する優れた成形加工性や離型性等の生産性に優れる点から、大量生産される用途、例えば、透明大型射出成形品等に好適に用いることができる。
【実施例】
【0043】
以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断わりがない限り「%」は「質量%」を表わす。
【0044】
評価方法は次の通りである。
〔GPC−MALS測定条件〕
スチレン系樹脂組成物のGPC−MALS測定を、Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI−101、カラムShodex KF−806L×2、溶媒THF、流量1.0ml/分の条件にて行った。また、GPC−MALSの測定の解析は、Wyatt社の解析ソフトASTRAにより行い、スチレン系樹脂組成物についての重量平均分子量、数平均分子量等を求めた。
【0045】
〔メルトマスフローレイト(MFR)測定法〕
JIS K7210に準拠して測定した。なお測定条件は、温度200℃、荷重49Nである。
〔シャルピー衝撃強度〕:JIS K7111に準拠して測定した。
〔ビカット軟化温度〕:JIS K7206:99に準拠して測定した。
【0046】
〔射出成形加工性〕
日本製鋼所製150トン射出成形機によりプリン型容器を成形し、下記評価基準に基づき評価した。
容器成形が容易で偏肉がない:◎
容器成形は比較的容易であり、偏肉がない:○
容器成形は比較的容易であるが、偏肉がある:△
容器成形が困難で偏肉がある:×
【0047】
〔シート成形加工性〕
シート押出機(スクリュ径30mm)を用い、樹脂ペレットを溶融樹脂温度210℃〜230℃、押出速度0.8〜1m/分で押出し、厚み0.4mmのシートサンプルを作製した。次にこのシートサンプルを真空成形機を用いて加熱温度290℃〜300℃、加熱時間10秒〜30秒で加熱した直後の、シート加熱前のシート面を基準としたシート中央部の垂れの長さを測定し、加熱時間に対してのシートの垂れの長さから、下記評価基準に基づき、成形加工性を評価した。
加熱時間20秒の時、垂れ量20mm未満が◎、20〜40mm未満が○、40mm以上が×。
加熱時間30秒の時、垂れ量30mm未満が◎、30〜60mm未満が○、60mm以上が×。
但し、どちらか一方の加熱時間に対しての評価が×で、他の一方が○か◎の場合、評価は△とした。
【0048】
〔離型性〕
日本製鋼所製150トン射出成形機により20cm×15cm×4cmの箱形を成形して、下記評価基準に基づき評価した。
◎:連続50ショット以上で離型は容易
○:連続30ショット以上で離型は容易
△:連続10ショット以上で離型困難が発生
×:連続1〜2ショットで離型が困難
【0049】
〔実用耐熱性〕
日本製鋼所製150トン射出成形機により20cm×15cm×4cmの箱形を成形した、その成形品を雰囲気温度70℃で、1時間放置した時、成形品に変形がない場合を◎、ほとんど変形がみられないときを○、明らかに変形し、その度合いが大きいときを×とした。
【0050】
(参考例1)多分岐状マクロモノマー(a3−1)の合成
<多分岐ポリエーテルポリオールの合成>
攪拌機、温度計、滴下ロート及びコンデンサーを備えた2リットルフラスコに、室温下、エトキシ化ペンタエリスリトール(5モル−エチレンオキシド付加ペンタエリスリトール)50.5g、BFジエチルエーテル溶液(50%)1gを加え、110℃に加熱した。これに3−エチル−3−(ヒドロキシメチル)オキセタン450gを、反応による発熱を制御しつつ、25分間でゆっくり加えた。発熱が収まったところで、反応混合物をさらに120℃で3時間撹拌し、その後、室温に冷却した。得られた多分岐ポリエーテルポリオールの重量平均分子量は3,000、水酸基価は530であった。
【0051】
<メタクリロイル基及びアセチル基を有する多分岐状マクロモノマーの合成>
攪拌機、温度計、コンデンサーを備えたディーンスタークデカンター及び気体導入管を備えた反応器に、上述の<多分岐ポリエーテルポリオール1の合成>で得られた多分岐ポリエーテルポリオール50g、メタアクリル酸13.8g、トルエン150g、ヒドロキノン0.06g、パラトルエンスルホン酸1gを加え、混合溶液中に3ミリリットル/分の速度で7%酸素含有窒素(v/v)を吹き込みながら、常圧下で撹拌し、加熱した。デカンターへの留出液量が1時間あたり30gになるように加熱量を調節し、脱水量が2.9gに到達するまで加熱を続けた。反応終了後、一度冷却し、無水酢酸36g、スルファミン酸5.7gを加え、60℃で10時間撹拌した。その後、残っている酢酸及びヒドロキノンを除去する為に5%水酸化ナトリウム水溶液50gで4回洗浄し、さらに1%硫酸水溶液50gで1回、水50gで2回洗浄した。得られた有機層にメトキノン0.02gを加え、減圧下、7%酸素含有窒素(v/v)を導入しながら溶媒を留去し、イソプロペニル基およびアセチル基を有する多分岐状マクロモノマー(a3−1)60gを得た。得られた多分岐状マクロモノマー(a3−1)の重量平均分子量は3,900であり、多分岐ポリエーテルポリオールへのイソプロペニル基およびアセチル基導入率は、それぞれ30モル%および62モル%であった。従って、重合性二重結合の導入量は1.50ミリモル/gである。
【0052】
(参考例2)多分岐状マクロモノマー(a3−2)の合成
<スチリル基及びアセチル基を有する多分岐状マクロモノマーの合成>
攪拌機、乾燥管を備えたコンデンサー、滴下ロート及び温度計を備えた反応器に、上述の<多分岐ポリエーテルポリオール1の合成>で得られた多分岐ポリエーテルポリオール50g、テトラヒドロフラン100g及び水素化ナトリウム4.3gを加え、室温下、撹拌した。これに4−クロロメチルスチレン26.7gを1時間かけて滴下し、得られた反応混合物を50℃でさらに4時間撹拌した。反応終了後、一度冷却し、無水酢酸34g、スルファミン酸5.4gを加え、60℃で10時間撹拌した。その後、減圧下でテトラヒドロフランを留去し、得られた混合物をトルエン150gで溶解させ、残っている酢酸を除去する為に5%水酸化ナトリウム水溶液50gで4回洗浄し、さらに1%硫酸水溶液50gで1回、水50gで2回洗浄した。得られた有機層から減圧下で溶媒を留去し、スチリル基およびアセチル基を有する多分岐状マクロモノマー(a3−2)70gを得た。得られた多分岐状マクロモノマー(a3−2)の重量平均分子量は4,800であり、多分岐ポリエーテルポリオールへのスチリル基およびアセチル基導入率は、それぞれ38モル%および57モル%であった。従って、重合性二重結合の導入量は1.31ミリモル/gである。
【0053】
(参考例3)多分岐状マクロモノマー(a3−3)の合成
<メタクリロイル基及びアセチル基を有する多分岐状マクロモノマーの合成>
4口フラスコにスターラー、圧力計、冷却器及び受け皿を取り付け、これに308.9gのエトキシル化ペンタエリスリトールと0.46gの硫酸を加えた。その後、140℃まで加温し、460.5gの2,2−ジ(ヒドロキシメチル)プロピオン酸を10分間で加えた。2,2−ジ(ヒドロキシメチル)プロピオン酸が完全に溶解して、透明溶液になってから、30〜40mmHgに減圧し、攪拌しながら、酸価が7.0mgKOH/gになるまで4時間反応させた。その後、この反応液に921gの2,2−ジ(ヒドロキシメチル)プロピオン酸と0.92gの硫酸を15分かけて加え、透明溶液になってから、30〜40mmHgに減圧し、攪拌しながら3時間反応させて、ポリエステルポリオールを得た。7%酸素導入管、温度計、コンデンサーを備えたディーンスタークデカンター、および攪拌機を備えた反応容器に、上記で生成したポリエステルポリオールを10g、ジブチル錫オキシド1.25g、イソプロペニル基を有するメチルメタクリレート100g、およびヒドロキノン0.05gを加え、混合溶液中に3ml/分の速度で7%酸素を吹き込みながら、撹拌下に加熱した。デカンターへの留出液量が1時間あたり15〜20gになるように加熱量を調節し、1時間ごとにデカンター内の留出液を取り出し、これに相当する量のメチルメタクリレートを加えながら4時間反応させた。反応終了後、メチルメタクリレートを減圧下で留去し、残っているヒドロキシ基をキャッピングするために無水酢酸10g、スルファミン酸2gを加えて室温下、10時間撹拌した。濾過でスルファミン酸を除去し、減圧下で無水酢酸および酢酸を留去した後に、残留物を酢酸エチル70gに溶解し、ヒドロキノンを除去する為に5%水酸化ナトリウム水溶液20gで4回洗浄した。さらに7%硫酸水溶液20gで2回、水20gで2回洗浄した。得られた有機層にメトキノン0.0045gを加え、減圧下、7%酸素を導入しながら溶媒を留去し、イソプロペニル基およびアセチル基を有する多分岐状マクロモノマー11gを得た。得られた多分岐状マクロモノマー(a3−3)の重量平均分子量は3,000、数平均分子量は2,100、イソプロペニル基およびアセチル基導入率は、それぞれ55モル%および36モル%であった。従って重合性二重結合の導入量は2.00ミリモル/gである。
【0054】
(参考例4)多分岐状マクロモノマー(a3−4)の合成
<スチリル基を有するPAMAMデンドリマーの合成>
攪拌機、乾燥管を備えたコンデンサー、滴下ロート及び温度計を備えた反応器にPAMAMデンドリマー(ゼネレーション2.0:Dentritech社製)のメタノール溶液(20%)50gを加え、減圧下、撹拌しながらメタノールを留去した。続いて、テトラヒドロフラン50g及び微粉化した水酸化カリウム3.0gを加え、室温下、撹拌した。これに4−クロロメチルスチレン7.0gを10分間かけて滴下し、得られた反応混合物を50℃でさらに3時間撹拌した。反応終了後、冷却し、固体を濾過した後に、テトラヒドロフランを減圧下、留去し、スチリル基を有するPAMAMデンドリマー13gを得た。得られたデンドリマーのスチリル基含有率(重合性二重結合の導入量)は2.7ミリモル/グラムであった。得られた多分岐状マクロモノマー(a3−4)の重量平均分子量は4,050であった。
【0055】
(参考例5)多分岐状マクロモノマー(a3−5)の合成
<スチリル基及びアセチル基を有する多分岐ポリエーテルポリオール>
攪拌機、コンデンサー、遮光性滴下ロート及び温度計を備え、窒素シールが可能な遮光性反応容器に、窒素気流下、無水1,3,5−トリヒドロキシベンゼン0.5g、炭酸カリウム29g、18−クラウン−6 2.7g及びアセトン180gを加え、撹拌しながら、5−(ブロモメチル)−1,3−ジヒドロキシベンゼン21.7gとアセトン180gからなる溶液を2時間かけて滴下、加えた。その後、5−(ブロモメチル)−1,3−ジヒドロキシベンゼンが消失するまで、撹拌下、加熱、還流させた。その後、4−クロロメチルスチレン9.0gを加え、これが消失するまで、さらに撹拌下、加熱、還流させた。その後、反応混合物に無水酢酸4g、スルファミン酸0.6gを加え、室温下、一晩撹拌した。冷却後、反応混合物中の固体を濾過で除き、溶媒を減圧下で留去した。得られた混合物をジクロロメタンに溶解し、水で3回洗浄した後、ジクロロメタン溶液をヘキサンに滴下し、生成物を沈殿させた。これを濾過し、乾燥させて、スチリル基及びアセチル基を有する多分岐状マクロモノマー(a3−5)12gを得た。重量平均分子量は3,200で、スチリル基の含有率は3.5ミリモル/グラムであった。
【0056】
実施例1
本実施例では、図1に示すように配列された装置を用いた。スチレン、アクリル酸ブチル及び溶媒などを含む混合溶液をプランジャーポンプ(1)により、撹拌式反応器(2)に供給した。その後、ギヤポンプ(3)により循環重合ライン(I)に供給した。循環重合ライン(I)は、入口から順に内径2.5インチ管状反応器(スイス国、ゲブリュー・ズルツァー社製SMXスタティックミキサー)(4)、(5)、(6)及び混合溶液を循環させるためのギヤポンプ(7)から構成されている。(4)〜(6)の反応容積は約20Lである。管状反応器(6)とギヤポンプ(7)の間には非循環重合ライン(II)に続く出口が設けられている。非循環重合ライン(II)には、入口から順に上記と同様の管状反応器(8)、(9)、(10)とギヤポンプ(11)が直列に連結されている。(8)〜(10)の反応容積は約16Lである。
【0057】
スチレン93.5部、アクリル酸ブチル6.5部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し300ppm、重合開始剤〔2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン〕をスチレンとアクリル酸ブチルの合計100部に対し150ppmからなる混合液を調整し、図1に示す装置を用いて下記条件で、連続的に重合させた。
混合溶液の供給量:9.0リットル/時間
撹拌式反応器での反応温度:116℃
循環重合ライン(I)での反応温度:120℃
非循環重合ライン(II)での反応温度:155〜170℃
【0058】
重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。重合平均分子量Mwは38万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0059】
実施例2
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−2)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは35万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0060】
実施例3
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−3)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは39万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0061】
実施例4
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−4)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0062】
実施例5
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−5)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは32万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0063】
実施例6
実施例1における多分岐状マクロモノマー(a3−1)の添加量を100ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは34万、MFRは、4.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0064】
実施例7
実施例1における多分岐状マクロモノマー(a3−1)の添加量を500ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは46万、MFRは、3.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0065】
実施例8
実施例2における多分岐状マクロモノマー(a3−2)の添加量を100ppmにした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
【0066】
実施例9
実施例2における多分岐状マクロモノマー(a3−2)の添加量を500ppmにした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは43万、MFRは、3.5g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0067】
実施例10
実施例3における多分岐状マクロモノマー(a3−3)の添加量を100ppmにした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0068】
実施例11
実施例3における多分岐状マクロモノマー(a3−3)の添加量を500ppmにした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは51万、MFRは、3.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.0であった。
【0069】
実施例12
実施例4における多分岐状マクロモノマー(a3−4)の添加量を100ppmにした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、4.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0070】
実施例13
実施例4における多分岐状マクロモノマー(a3−4)の添加量を500ppmにした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、3.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0071】
実施例14
実施例5における多分岐状マクロモノマー(a3−5)の添加量を100ppmにした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0072】
実施例15
実施例5における多分岐状マクロモノマー(a3−5)の添加量を500ppmにした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、3.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.3であった。
【0073】
実施例16
実施例1におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0074】
実施例17
実施例1におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、4.0/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0075】
実施例18
実施例2におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例2と同様にしてチレン系樹脂組成物を得た。重合平均分子量Mwは32万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
【0076】
実施例19
実施例2におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは43万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0077】
実施例20
実施例3におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0078】
実施例21
実施例3におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは47万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0079】
実施例22
実施例4におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
【0080】
実施例23
実施例4におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、4.1g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0081】
実施例24
実施例5におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、3.7g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0082】
実施例25
実施例5におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは46万、MFRは、4.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.6であった。
【0083】
実施例26
実施例6におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例6と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、3.8g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。
【0084】
実施例27
実施例6におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例6と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0085】
実施例28
実施例7におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例7と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、3.5g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0086】
実施例29
実施例7におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例7と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは58万、MFRは、4.1g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.0であった。
【0087】
比較例1
実施例1と同様の反応装置を用い、スチレン98部、アクリル酸ブチル2部、エチルベンゼン6部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し100ppm、重合開始剤〔2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン〕をスチレンとアクリル酸ブチルの合計100部に対し150ppmからなる混合液を調整し、実施例1と同条件にて重合した。
【0088】
重合して得られた混合溶液を250℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは37万、MFRは、1.5g/10分、重量平均分子量と数平均分子量の比Mw/Mnは3.2であった。
【0089】
比較例2
実施例1と同様の反応装置を用い、スチレン98部、アクリル酸ブチル2部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し100ppm、重合開始剤t−ブチルパーオキシベンゾエートをスチレンとアクリル酸ブチルの合計100部に対し300ppmからなる混合液を調整し、図1に示す装置を用いて下記条件で、連続的に重合させた。
混合溶液の供給量:9.0リットル/時間
撹拌式反応器での反応温度:130℃
循環重合ライン(I)での反応温度:130℃
非循環重合ライン(II)での反応温度:135〜145℃
重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは27万、MFRは3.5g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.2であった。
【0090】
比較例3
スチレン100部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレン100部に対し300ppm、重合開始剤(2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン)をスチレン100部に対し150ppmからなる混合液を調整し、非循環重合ライン(II)での反応温度を145〜155℃の範囲にした以外は、実施例1と同条件にて重合した。重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは28万、MFRは2.7g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.4であった。
【0091】
比較例4
スチレン87.5部、アクリル酸ブチル12.5部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し300ppm、重合開始剤(2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン)をスチレン100部に対し150ppmからなる混合液を調整し、非循環重合ライン(II)での反応温度を145〜155℃の範囲にした以外は、実施例1と同条件にて重合した。重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量は61万、MFRは3.8g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。
【0092】
比較例5
スチレン85部、アクリル酸ブチル15部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し300ppm、重合開始剤(2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン)をスチレン100部に対し150ppmからなる混合液を調整し、非循環重合ライン(II)での反応温度を145〜155℃の範囲にした以外は、実施例1と同条件にて重合した。重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量Mwは59万、MFRは3.2g/10分、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。
【0093】
【表1】

【0094】
【表2】

【0095】
【表3】

【0096】
【表4】

【0097】
【表5】

【0098】
【表6】

【0099】
【表7】

【0100】
【表8】

【0101】
【表9】

【符号の説明】
【0102】
(1):プラジャーポンプ
(2):撹拌式反応器
(3):ギヤポンプ
(4):静的ミキシングエレメントを有する管状反応器
(5):静的ミキシングエレメントを有する管状反応器
(6):静的ミキシングエレメントを有する管状反応器
(7):ギヤポンプ
(8):静的ミキシングエレメントを有する管状反応器
(9):静的ミキシングエレメントを有する管状反応器
(10):静的ミキシングエレメントを有する管状反応器
(I):循環重合ライン
(II):非循環重合ライン

【特許請求の範囲】
【請求項1】
スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、
該組成物のGPC-MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であり、且つ前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であることを特徴とするスチレン系樹脂組成物。
【請求項2】
前記多分岐状マクロモノマー(a3)の使用割合が、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との合計に対して質量基準で100〜1,000ppmである請求項1記載のスチレン系樹脂組成物。
【請求項3】
前記アクリル酸エステル(a2)がアクリル酸ブチルである請求項1又は2記載のスチレン系樹脂組成物。
【請求項4】
請求項1〜3の何れか1項記載のスチレン系樹脂組成物を用いて得られることを特徴とする成形品。

【図1】
image rotate


【公開番号】特開2011−202071(P2011−202071A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2010−72115(P2010−72115)
【出願日】平成22年3月26日(2010.3.26)
【出願人】(000002886)DIC株式会社 (2,597)
【Fターム(参考)】