説明

スベロイルアニリドヒドロキサム酸の製剤及びこれを作製するための方法

【課題】スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む、特定の溶解プロファイルを有する医薬組成物の提供。
【解決手段】医薬組成物の全活性成分が、インビトロで、10分目に43から63%溶解し、30分目に66から86%溶解し、及び60分目に77から97%溶解する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む、特定の溶解プロファイルを有する医薬組成物又は結晶組成物を提供する。本発明は、該結晶組成物又は医薬組成物を作製するプロセスを提供する。本発明は、特定の粒径分布を有する組成物も提供する。
【背景技術】
【0002】
本願の全体にわたって、括弧内のアラビア数字により様々な刊行物が参照される。これらの刊行物の完全な引用は、特許請求の範囲の直前の明細書の最終部分に見出され得る。
【0003】
癌は、増殖及び分化を正常に支配している調節メカニズムに対して、細胞の集団が、様々な程度で非応答性になる障害である。長年の間、癌の化学療法的処置のための2つの主な戦略が存在していた:a)性ホルモンの産生又は末梢作用への干渉によりホルモン依存性の腫瘍細胞増殖を阻止すること;並びにb)新生物細胞集団及び正常細胞集団の両方に損傷を与える細胞毒性物質に曝すことにより、癌細胞を直接死滅させること。
【0004】
新生物細胞の最終分化の誘導による癌治療も試みられている(1)。細胞培養モデルにおいて、以下のものを含む多様な刺激に細胞を曝すことによる分化が報告されている:サイクリックAMP及びレチノイン酸(2、3)、アクラルビシン及び他のアントラサイクリン類(4)。
【0005】
腫瘍学の領域における多くの進歩にもかかわらず、依然として、大多数の固形腫瘍が、進行した段階では治癒不可能である。ほとんどの症例において細胞毒性治療が使用されるが、これは、しばしば有意な臨床的利益なしに有意な合併症(morbidity)を患者に引き起こす。進行した悪性疾患を処置しコントロールするための、より低毒性で、より特異的な薬剤が探究されている。
【0006】
新生物形質転換は、癌細胞の分化能を必ずしも破壊しないことを示す豊富な証拠が存在する(1、5、6)。正常な増殖の制御剤に対して応答せず、分化プログラムの発現が阻止されているようであり、これでも、分化し複製を中止するよう誘導され得る腫瘍細胞の例が多く存在する。いくつかの比較的単純な極性化合物(5、7から9)、ビタミンD及びレチノイン酸の誘導体(10から12)、ステロイドホルモン(13)、増殖因子(6、14)、プロテアーゼ(15、16)、腫瘍プロモーター(17、18)、及びDNA又はRNAの合成の阻害剤(4、19から24)を含む多様な薬剤が、より分化した特徴を発現するよう、様々な形質転換細胞系及び原発性ヒト腫瘍外植片を誘導し得る。
【0007】
スベロイルアニリドヒドロキサミド(hydroxamide)酸(SAHA)のようなヒストン脱アセチル化酵素阻害剤は、腫瘍細胞の増殖停止、分化、及び/又はアポトーシスを誘導する能力を有するこの薬剤クラスに属する(25)。これらの化合物は、動物における腫瘍増殖の阻害に有効な用量では毒性を有しないようであるため、新生物細胞の悪性化する能力に固有のメカニズムに対してターゲティングされる(26)。ヒストンのアセチル化及び脱アセチル化は、細胞における転写制御が達成されるメカニズムであることを示すいくつかの証拠系列が存在する(27)。これらの効果は、ヌクレオソーム内のコイルDNAに対するヒストンタンパク質の親和性の改変による、染色質の構造の変化を通して起こると考えられている。ヌクレオソーム内には、(H1、H2A、H2B、H3、及びH4と名付けられた)5つの型のヒストンが同定されている。各ヌクレオソームは、ヌクレオソーム構造の外側部分に単独で存在するH1を除き、このコア内に各ヒストン型を2つ含有している。ヒストンタンパク質が低アセチル化されている場合には、DNAリン酸骨格に対するヒストンのより大きな親和性が存在すると信じられている。この親和性によって、DNAがヒストンに強固に結合するようになり、DNAが転写制御のエレメント及び機構へとアクセスできないようになる。アセチル化状態の制御は、2つの酵素複合体、ヒストンアセチル化酵素(HAT)とヒストン脱アセチル化酵素(HDAC)との間の活性のバランスを通して起こる。低アセチル化状態は、関連するDNAの転写を阻害すると考えられる。この低アセチル化状態は、HDAC酵素を含む大きな多重タンパク質複合体により触媒される。特に、HDACは、クロマチンコアヒストンからのアセチル基の除去を触媒することが示されている。
【0008】
SAHA(ZOLINZA(商標)(ボリノスタット(vorinostat)))は、癌の処置、新生物細胞の最終分化の選択的な誘導、細胞増殖停止の誘導、及び/又はアポトーシスの誘導のために有用であることが示されている。SAHAによるHDACの阻害は、X線結晶学研究により証明されるように、酵素の触媒部位との直接相互作用を通して起こると考えられる(28)。HDAC阻害の結果は、ゲノムに対する一般化された効果を有するのではなく、むしろ、ゲノムの小さなサブセットにのみ影響を与えると信じられている(29)。HDAC阻害剤と共に培養された悪性細胞系を使用したDNAマイクロアレイにより提供された証拠は、産物が改変される遺伝子の数が、有限(1から2%)であることを示している。例えば、HDAC阻害剤により培養物中で処理された細胞は、サイクリン依存性キナーゼ阻害剤p21の一貫した誘導を示す(30)。このタンパク質は、細胞周期停止において重要な役割を果たしている。HDAC阻害剤は、p21遺伝子の領域におけるヒストンの過アセチル化状態を広め、これにより、遺伝子が転写機構にアクセスできるようにすることにより、p21の転写の速度を増加させると考えられる。発現がHDAC阻害剤により影響を受けない遺伝子は、局所的な関連ヒストンのアセチル化の変化を示さない(31)。
【発明の概要】
【0009】
本発明は、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む、特定の溶解プロファイルを有する医薬組成物を提供する。一つの実施形態において、医薬組成物の活性成分は、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する。本発明は、経口投与用の医薬組成物、及びこれに基づく単位剤形も提供する。
【0010】
本発明は、約100mgの活性成分が、図2に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む結晶組成物も提供する。
【0011】
本発明は、医薬組成物を作製する方法も提供する。本発明は、特定の粒径分布を有する組成物も提供する。
【図面の簡単な説明】
【0012】
【図1】参照カプセルロット0683_004A001からのSAHAの溶解プロファイルを示す。カプセルは、約100mgの活性成分SAHA及び賦形剤を含有している。
【図2】カプセル化前の参照SAHA APIバッチ1007D(混和されたSAHA結晶)の溶解プロファイルを示す。溶解プロファイルは、約100mgのSAHAに基づき測定された。
【図3】本発明の薬学的カプセルのカプセル内容物の粒径分布を示す。カプセルは、約100mgの活性成分SAHA及び賦形剤を含有している。
【図4】カプセル化前の異なるバッチ(API)からの活性成分SAHAの粒径分布を示す。
【図5】本発明の薬学的カプセルからのSAHAの溶解プロファイルを示す。カプセルは、約100mgの活性成分SAHA及び賦形剤を含有している。
【図6】カプセル化前のSAHA APIバッチ(混和されたSAHA結晶)の溶解プロファイルを示す。溶解プロファイルは、約100mgのSAHAに基づき測定された。
【図7A】SAHAに関するX線ディフラクトグラムを示す。図7AからEがSAHA IからV型に対応。
【図7B】SAHAに関するX線ディフラクトグラムを示す。図7AからEがSAHA IからV型に対応。
【図7C】SAHAに関するX線ディフラクトグラムを示す。図7AからEがSAHA IからV型に対応。
【図7D】SAHAに関するX線ディフラクトグラムを示す。図7AからEがSAHA IからV型に対応。
【図7E】SAHAに関するX線ディフラクトグラムを示す。図7AからEがSAHA IからV型に対応。
【図8】コンピューターモデルにより予測された溶解プロファイル(曲線)、並びに参照試料(標的)、カプセル288及び283についての(丸、三角、及び四角により示された)実験的溶解プロファイルを示す。
【図9】異なるカプセル密度についてのAPI283と混和されたAPI288の画分に関するf2値を示す。
【図10】30%の湿式粉砕されたAPI288及び70%の未粉砕API283を含有している混和物から作成されたカプセルにおけるSAHA溶解に対するカプセル化条件の影響を示す。
【図11】分解速度定数とカプセル内容物の密度との相関を示す。
【図12】SAHAカプセルの異なるバッチ(API)からの活性成分の規準化された粒径分布を示す。
【図13】ロットC0666001からのカプセル内容物の粒径分布を示す。
【図14】ロットC0667001からのカプセル内容物の粒径分布を示す。
【図15】絶食状態時及び高脂肪食後の単回経口投与後のボリノスタットの平均血清濃度を示す。
【図16】高脂肪食後の400mgの単回又は複数回の経口投与後のボリノスタットの平均血清濃度を示す。
【発明を実施するための形態】
【0013】
(発明の詳細な説明)
「医薬的に許容される担体」という用語には、医薬組成物中の活性成分の指定された溶解速度を維持するであろう、医薬投与と適合性の、全ての任意の溶媒、分散培、コーティング、抗菌剤、抗真菌剤、等張化剤、及び吸収遅延剤等が含まれるものとする。適切な担体は、参照により本明細書に組み入れられる、当技術分野における標準的な参考書Remington’s Pharmaceutical Sciencesの最新版に記載されている。リポソーム、及び不揮発性油のような非水性媒体も、使用され得る。医薬的に活性な物質のためのこのような媒体及び薬剤の使用は、当技術分野において周知である。任意の従来の媒体又は薬剤が、活性成分と非適合性でない限り、組成物中に使用されることが企図される。補足的な活性化合物が、組成物に組み込まれてもよい。
【0014】
「f2」又は「F2」という用語は、式1に示されるような、新たなインビトロ溶解プロファイルの、参照インビトロ溶解プロファイルとの点比較(point by point comparison)を通して決定された類似性因子をさす。
【0015】
【数1】

【0016】
とは、参照についての各時点(t)における溶解している化合物のパーセントをさす。Tとは、試験試料についての各時点(t)における溶解している化合物のパーセントをさす。nとは、計算のために使用される時点の数をさす。50以上のf値は、類似したインビトロ溶解速度を反映すると見なされる。
【0017】
本発明の目的のため、医薬組成物の全活性成分のインビトロの溶解の速度又はプロファイルは、実施例14における工程及び条件に従い、全医薬組成物から測定される。一つの実施形態において、インビトロの溶解の速度又はプロファイルは、37±0.5℃の温度で、900mLの2.0%トゥイーン(Tween)(TCI America,Portland,Oregon)において、ヘリカルシンカー(helical sinker)を有するUSP溶解装置(Dissolution Apparatus)II(Quality Lab Accessories L.L.C.,Manville,NJ)及び100rpmで回転するパドルを使用することにより測定される。全医薬組成物には、全活性成分が含まれ、医薬組成物が、カプセルシェル、担体、賦形剤、希釈剤、崩壊剤、滑沢剤、結合剤、又は下記の医薬組成物のセクションに記載される付加的な薬剤を含有している場合には、測定はこれらの成分を用いて実施される。
【0018】
本発明の目的のため、「約100mgの活性成分を含む単一経口単位剤形の一部」のインビトロの溶解の速度又はプロファイルは、単一経口単位剤形から約100mgの活性成分を含む組成物を回収し、37±0.5℃の温度で、900mLの2.0%トゥイーン(TCI America,Portland,Oregon)において、ヘリカルシンカーを有するUSP溶解装置II(Quality Lab Accessories L.L.C.,Manville,NJ)及び100rpmで回転するパドルを使用することにより測定される。単一経口単位剤形が、カプセルシェル、担体、賦形剤、希釈剤、崩壊剤、滑沢剤、結合剤、又は下記の医薬組成物のセクションに記載される付加的な薬剤を含有している場合には、測定はこれらの成分を用いて実施される。
【0019】
「医薬組成物の約100mgの活性成分」のインビトロの溶解の速度又はプロファイルは、実施例15における工程及び条件に従い測定される。一つの実施形態において、これは、37±0.5℃の温度で、900mLの2.0%トゥイーン(TCI America,Portland,Oregon)において、ヘリカルシンカーを有するUSP溶解装置II(Quality Lab Accessories L.L.C.,Manville,NJ)及び100rpmで回転するパドルを使用することにより測定される。
【0020】
本発明の目的のため、粒径分布(各粒径の%体積)は、RODOS粉末分散システムが装備されたシンパテック(Sympatec)レーザー回析分析装置(HELOS H1006,Clausthal−Zellerfeld,Germany)を介して測定される。試料が0.1バールの気圧を使用してレーザービームを通して噴霧され、5から20%の標的オブスキュレーション範囲(targeted obscuration range)で、850又は1750μmの焦点距離レンズを使用して、粒径分布が収集される。フラウンホーファー(fraunhofer)光学モデルを利用して試料散乱パターンをデコンボリュート(deconvolute)し、粒径分布を得る。
【0021】
本発明の目的のため、活性成分の%体積は、医薬組成物から粒子内容物(即ち、活性成分及び賦形剤)を回収すること、粒子内容物の粒径分布(各粒径の%体積)を測定すること、活性成分でない粒子の粒径分布を差し引くこと、並びに活性成分の%体積を規準化することにより測定される。活性成分の%体積は、%体積に、100%/粒子内容物に対する活性成分の百分率を乗じることにより規準化される。
【0022】
「約」という用語は、量に関して使用された場合、指定された量の±10%をさす。
【0023】
本発明の目的のため、X線回折パターンに関して、2θにおけるピークは、較正、試料、又は器械使用に依って、±0.3度までシフトし得る(誤差)。一つの実施形態において、X線回折パターン内の全てのピークが、+0.3度まで、又は−0.3度までシフトする。この誤差内のX線回折のパターン又はピークは、同一であるか、又は実質的に類似していると見なされる。
【0024】
特定の溶解速度を有する組成物
本発明は、医薬組成物の全活性成分が、インビトロで、10分目に43から63%溶解し、30分目に66から86%溶解し、及び60分目に77から97%溶解する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物を提供する。一つの実施形態において、医薬組成物の全活性成分は、インビトロで、15分目に52から72%溶解し、30分目に66から86%溶解し、及び45分目に73から93%溶解する。もう一つの実施形態において、医薬組成物の全活性成分は、インビトロで、10分目に43から63%溶解し、15分目に52から72%溶解し、20分目に58から78%溶解し、30分目に66から86%溶解し、45分目に73から93%溶解し、及び60分目に77から97%溶解する。一つの実施形態において、医薬組成物の全活性成分は、インビトロで、10分目に46から60%溶解し、15分目に55から69%溶解し、20分目に61から75%溶解し、30分目に69から83%溶解し、45分目に76から90%溶解し、及び60分目に80から94%溶解する。一つの実施形態において、15分目に全活性成分の少なくとも45%及び75%以下が溶解し、60分以内に全活性成分の少なくとも75%が溶解する。
【0025】
もう一つの実施形態において、本発明は、医薬組成物の全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物を提供する。一つの実施形態において、f2は56から100である。一つの実施形態において、f2は60から100である。一つの実施形態において、f2は65から100である。もう一つの実施形態において、f2は80から100である。
【0026】
一つの実施形態において、活性成分は結晶である。もう一つの実施形態において、活性成分は結晶スベロイルアニリドヒドロキサム酸である。特定の実施形態において、結晶スベロイルアニリドヒドロキサム酸は、SAHA I型であり、図7Aに示されたものと実質的に類似しているX線回折パターンを特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含むX線回折パターンを特徴とする。
【0027】
一つの実施形態において、SAHA I型は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0、及び43.3度2θの特徴的なピークを含むX線回折パターンを特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0、43.3度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする。一つの実施形態において、SAHA I型は、約<8.7、10.0から10.2、13.4から14.0、15.0から15.2、17.5から19.0、20.1から20.3、21.1から21.3、22.0から22.22、22.7から23.0、25.0から25.5、26.0から26.2、及び27.4から27.6度2θの少なくとも一つのピークの欠如をさらに特徴とする。もう一つの実施形態において、SAHA I型は、パーキンスエルマー(Perkins Elmer)DSC6装置(Instrument)5により測定されるような、約164.4±2.0に単一の最大値を有する示差走査熱量測定(DSC)サーモグラムをさらに特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、a=10.9Å、b=7.9Å、c=16.4Å、α=90°、β=97.8°、γ=90°の単位格子パラメーター、空間群P2/nを有する。
【0028】
特定の実施形態において、結晶スベロイルアニリドヒドロキサム酸は、SAHA IV型であり、約8.8、9.3、11.0、12.4、17.4、19.4、19.9、22.4、22.9、23.83、24.2、24.8、25.8、27.0、27.8、28.4度2θの特徴的なピークを含むX線回折パターンを特徴とする。
【0029】
一つの実施形態において、本発明は、全活性成分が、15分目に全活性成分の少なくとも45%及び75%以下が溶解し、60分以内に全活性成分の少なくとも75%が溶解することを特徴とするインビトロ溶解プロファイルを有し、活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、約100mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一カプセルを提供する。
【0030】
もう一つの実施形態において、本発明は、全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有し、活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、約100mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一カプセルを提供する。
【0031】
さらなる実施形態において、本発明は、全活性成分が、10分目に43から63%溶解し、30分目に66から86%溶解し、及び60分目に77から97%溶解することを特徴とするインビトロ溶解プロファイルを有し、活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、約100mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一カプセルを提供する。
【0032】
本発明は、約100mgの活性成分を含む該単位剤形の一部が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、約120mgから約600mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一経口単位剤形も提供する。一つの実施形態において、インビトロ溶解プロファイルは、図1に示される参照溶解プロファイルと比較して少なくとも70から100の類似性因子(f2)を有する。一つの実施形態において、活性成分は、結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする。
【0033】
本発明は、約100mgの活性成分が、図2に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む結晶組成物も提供する。この結晶組成物は、医薬組成物の前駆体である。医薬組成物がカプセルの形態である場合、結晶組成物は、カプセル化前の賦形剤を含むか又は含まない活性成分である。一つの実施形態において、活性成分は、結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする。
【0034】
活性成分粒子が指定された溶解速度を示す限り、活性成分は任意の結晶型であり得る。活性成分は、非結晶型であってもよい。活性成分粒子は、微粒子化されてもよいし、又は凝集した粒状顆粒、粉末、油状物質、油性懸濁物、もしくは他の任意の固形であってもよい。
【0035】
上記組成物の特定の実施形態において、活性成分はスベロイルアニリドヒドロキサム酸である。
【0036】
本発明は、無機塩基、例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、水酸化カルシウム、又は水酸化鉄、及びイソプロピルアミン、トリメチルアミン、2−エチルアミノエタノール、ヒスチジン、プロカイン等のような有機塩基を含むSAHAの医薬的に許容される塩を含む医薬組成物も包含する。
【0037】
本発明は、SAHAの水和物を含む医薬組成物も包含する。「水和物」という用語には、半水和物、一水和物、二水和物、三水和物等が含まれるが、これらに制限はされない。
【0038】
特定の粒径分布を有する組成物
本発明は、粒径についての%体積が、約90から110ミクロンから約120から250ミクロンまで増加し、約120から250ミクロンでピークに達し、及びピークの後、減少する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物も提供する。一つの実施形態において、ピークは、他の粒径の%体積と比較して最も高い%体積である。
【0039】
一つの実施形態において、約90から110ミクロンの粒径を有する活性成分の%体積は、約2.0%から約10%の範囲であり、及び約120から250ミクロンの粒径を有する活性成分の%体積は、約4.0%から約12%の範囲である。一つの実施形態において、約90から110ミクロンの粒径を有する活性成分の%体積は、約3.0%から約9%の範囲であり、及び約120から250ミクロンの粒径を有する活性成分の%体積は、約5.0%から約11.5%の範囲である。
【0040】
もう一つの実施形態において、約90から110ミクロンの粒径を有する粒子の%体積は、約5.5%から約8.0%の範囲であり、及び約120から250ミクロンの粒径を有する粒子の%体積は、約6.5%から約9.0%の範囲である。一つの実施形態において、約90から110ミクロンの粒径を有する粒子の%体積は、約6.0%から約7.5%の範囲であり、及び約120から250ミクロンの粒径を有する粒子の%体積は、約7.0%から約8.5%の範囲である。
【0041】
一つの実施形態において、約105ミクロン未満の粒径を有する活性成分の%体積は、約45%から85%であり、及び約105ミクロン超の粒径を有する活性成分の%体積は、約55%から15%である。
【0042】
一つの実施形態において、粒径についての活性成分の%体積は、約20から25ミクロンから約35から40ミクロンまで増加し、約35から40ミクロンでピークに達し、及びピークの後、減少する。一つの実施形態において、約20から25ミクロンの粒径を有する活性成分の%体積は、約1.0%から約4%の範囲であり、及び約35から40ミクロンの粒径を有する活性成分の%体積は、約3.0%から約7%の範囲である。
【0043】
一つの実施形態において、活性成分は結晶である。もう一つの実施形態において、活性成分は結晶スベロイルアニリドヒドロキサム酸である。特定の実施形態において、結晶スベロイルアニリドヒドロキサム酸は、SAHA I型であり、図7Aに示されたものと実質的に類似しているX線回折パターンを特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含むX線回折パターンを特徴とする。
【0044】
一つの実施形態において、SAHA I型は、約9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0、及び43.3度2θの特徴的なピークを含むX線回折パターンを特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0、43.3度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする。一つの実施形態において、SAHA I型は、約<8.7、10.0から10.2、13.4から14.0、15.0から15.2、17.5から19.0、20.1から20.3、21.1から21.3、22.0から22.22、22.7から23.0、25.0から25.5、26.0から26.2、及び27.4から27.6度2θの少なくとも一つのピークの欠如をさらに特徴とする。もう一つの実施形態において、SAHA I型は、パーキンスエルマーDSC6装置5により測定されるような、約164.4±2.0に単一の最大値を有する示差走査熱量測定(DSC)サーモグラムをさらに特徴とする。一つの実施形態において、結晶スベロイルアニリドヒドロキサム酸は、a=10.9Å、b=7.9Å、c=16.4Å、α=90°、β=97.8°、γ=90°の単位格子パラメーター、空間群P2/nを有する。
【0045】
特定の実施形態において、結晶スベロイルアニリドヒドロキサム酸は、SAHA IV型であり、約8.8、9.3、11.0、12.4、17.4、19.4、19.9、22.4、22.9、23.83、24.2、24.8、25.8、27.0、27.8、28.4度2θの特徴的なピークを含むX線回折パターンを特徴とする。
【0046】
医薬組成物
活性成分は、経口投与に適した医薬組成物へ組み込まれ得る。活性成分は、場合により、医薬的に許容される担体又は賦形剤と共に組み込まれ得る。一つの実施形態において、医薬的に許容される担体は、固体粒子形態である。例えば、ゴム、デンプン、糖、セルロース系材料、アクリレート、又はこれらの混合物のような、担体又は希釈剤として一般的に使用されている任意の不活性の賦形剤が、本発明の製剤において使用され得る。一つの実施形態において、希釈剤は微晶質セルロースである。組成物は、崩壊剤(例えば、クロスカルメロースナトリウム)及び滑沢剤(例えば、ステアリン酸マグネシウム)をさらに含んでいてもよく、さらに、結合剤、緩衝剤、プロテアーゼ阻害剤、界面活性剤、可溶化剤、可塑剤、乳化剤、安定化剤、粘性増加剤、甘味剤、フィルム形成剤、又はこれらの任意の組み合わせより選択される一つ以上の添加剤を含み得る。さらに、本発明の組成物は、放出制御型又は即時放出型の製剤の形態であってもよい。
【0047】
一つの実施形態において、本明細書に記載された医薬組成物は、さらに、微晶質セルロース、クロスカルメロースナトリウム、及びステアリン酸マグネシウムから構成され得る。製剤中の活性成分及び様々な賦形剤の百分率は、変動し得る。例えば、組成物は、重量で約20から90%、約50から80%、又は約60から70%の活性成分を含み得る。さらに、組成物は、重量で約10から70%、約20から40%、約25から35%の微晶質セルロースを担体又は希釈剤として含み得る。さらに、組成物は、重量で約1から30%、約1から10%、約2から5%のクロスカルメロースナトリウムを崩壊剤として含み得る。さらに、組成物は、重量で約0.1から5%又は約0.5から1.5%のステアリン酸マグネシウムを滑沢剤として含み得る。
【0048】
一つの実施形態において、本発明の医薬組成物は、約50から80重量%の活性成分;約20から40重量%の微晶質セルロース;約1から10重量%のクロスカルメロースナトリウム;及び約0.1から5重量%のステアリン酸マグネシウムである。もう一つの実施形態において、本発明の医薬組成物は、約60から70重量%の活性成分;約25から35重量%の微晶質セルロース;約2から5重量%のクロスカルメロースナトリウム;及び約0.5から1.5重量%のステアリン酸マグネシウムである。一つの実施形態において、記載された医薬組成物は、約50から200mg又は50から600mgのSAHA I型を含む。
【0049】
本発明の現在の実施形態は、ゼラチンカプセルに含有されている、微晶質セルロース、NF(Avicel Ph 101)、ナトリウムクロスカルメロース、NF(AC−Di−Sol)、及びステアリン酸マグネシウム、NFを含むSAHAの固体製剤である。さらなる実施形態は、約100mgの活性成分、約44.3mgの微晶質セルロース、約4.5mgのクロスカルメロースナトリウム、約1.2mgのステアリン酸マグネシウムを含む医薬組成物である。
【0050】
一つの実施形態において、医薬組成物は経口投与され、従って、経口投与に適した形態で、即ち、固体又は液体の形態として製剤化される。適切な固体経口製剤には、例えば、錠剤、カプセル、丸剤、顆粒、ペレット等が含まれる。適切な液体経口製剤には、例えば、エマルション、オイル等が含まれる。本発明の一つの実施形態において、組成物はカプセルへと製剤化される。この実施形態によると、本発明の組成物は、活性成分及び不活性の担体又は希釈剤に加え、硬ゼラチンカプセルを含む。
【0051】
固体の担体/希釈剤には、ゴム、デンプン(例えば、コーンスターチ、ゼラチンで前処理されたデンプン)、糖(例えば、乳糖、マンニトール、ショ糖、デキストロース)、セルロース系材料(例えば、微晶質セルロース)、アクリレート(例えば、ポリメチルアクリレート)、炭酸カルシウム、酸化マグネシウム、タルク、又はこれらの混合物が含まれるが、これらに制限はされない。
【0052】
液体製剤のための医薬的に許容される担体は、非水性の溶液、懸濁物、エマルション、又は油であり得る。非水性溶媒の例は、プロピレングリコール、ポリエチレングリコール、及びオレイン酸エチルのような注射可能な有機エステルである。油の例は、石油、動物、植物、又は合成の起源のもの、例えば、落花生油、大豆油、鉱油、オリーブ油、ヒマワリ油、及び魚肝油である。懸濁物は以下の成分を含むこともできる:不揮発性油、ポリエチレングリコール、グリセリン、プロピレングリコール、又は他の合成溶媒;ベンジルアルコール又はメチルパラベンのような抗菌剤;アスコルビン酸又は亜硫酸水素ナトリウムのような抗酸化剤;エチレンジアミン四酢酸(EDTA)のようなキレート化剤。
【0053】
さらに、組成物は、結合剤(例えば、アラビアゴム、コーンスターチ、ゼラチン、カルボマー(carbomer)、エチルセルロース、グアール(guar)ゴム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポビドン)、崩壊剤(例えば、コーンスターチ、ジャガイモデンプン、アルギン酸、二酸化ケイ素、クロスカルメロースナトリウム、クロスポビドン、グアールゴム、デンプングリコール酸ナトリウム、プリモゲル(Primogel))、界面活性剤(detergents)(例えば、トゥイーン20、トゥイーン80、プルロニック(Pluronic)F68、胆汁酸塩)、プロテアーゼ阻害剤、界面活性剤(surfactants)(例えば、ラウリル硫酸ナトリウム)、浸透増強剤、可溶化剤(例えば、グリセロール、ポリエチレングリセロール)、流動促進剤(glidant)(例えば、コロイド性二酸化ケイ素)、抗酸化剤(例えば、アスコルビン酸、メタ重亜硫酸ナトリウム(sodium metabisulfite)、ブチルヒドロキシアニソール)、安定剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース)、粘性増加剤(例えば、カルボマー、コロイド性二酸化ケイ素、エチルセルロース、グアールゴム)、甘味剤(例えば、ショ糖、アスパルテーム、クエン酸)、風味剤(例えば、ペパーミント、サリチル酸メチル、又はオレンジ風味料)、保存剤(例えば、チメロサール(Thimerosal)、ベンジルアルコール、パラベン)、滑沢剤(例えば、ステアリン酸、ステアリン酸マグネシウム、ポリエチレングリコール、ラウリル硫酸ナトリウム)、流動改善剤(flow−aids)(例えば、コロイド性二酸化ケイ素)、可塑剤(例えば、フタル酸ジエチル、クエン酸トリエチル)、乳化剤(例えば、カルボマー、ヒドロキシプロピルセルロース、ラウリル硫酸ナトリウム)、ポリマーコーティング(例えば、ポロキサマー又はポロキサミン)、コーティング剤及びフィルム形成剤(例えば、エチルセルロース、アクリレート、ポリメタクリレート)、並びに/又は佐剤をさらに含み得る。
【0054】
一つの実施形態において、活性成分は、インプラント及びマイクロカプセル化送達系を含む、放出制御型製剤のような、身体からの迅速な排除から化合物を保護するであろう担体を用いて調製される。エチレン酢酸ビニル、ポリ無水物、ポリグリコール酸、コラーゲン、ポリオルトエステル、及びポリ乳酸のような生分解性、生体適合性のポリマーが、使用され得る。このような製剤の調製のための方法は、当業者には明白であろう。材料は、アルザコーポレーション(Alza Corporation)及びノバファーマシューティカルズ社(Nova Pharmaceuticals,Inc.)より商業的に入手されてもよい。(ウイルス抗原に対するモノクローナル抗体により感染細胞にターゲティングされたリポソームを含む)リポソーム懸濁物も、医薬的に許容される担体として使用され得る。これらは、例えば、米国特許第4,522,811号に記載されているような、当業者に既知の方法により調製され得る。
【0055】
例えば、混合、造粒、又は錠剤形成のプロセスによる、活性成分を含有している医薬組成物の調製は、当技術分野においてよく理解されている。活性治療用成分は、しばしば、医薬的に許容され、及び活性成分と適合性の賦形剤と混合される。経口投与のため、活性薬剤は、媒体、安定剤、又は不活性希釈剤のようなこの目的のための慣習的な添加剤と混合され、慣習的な方法によって、上に詳述されたような錠剤、コーティング錠、硬又は軟ゼラチンカプセル、水性、アルコール性、又は油性の溶液等のような投与に適した形態へと変換される。
【0056】
一つの実施形態において、経口組成物は、投与の容易さ及び投薬量の均一性のため、単位剤形へと製剤化される。単位剤形とは、本明細書において使用されるように、処理される対象のための単位の投薬量として適合する物理的に不連続の単位をさし;各単位は、所望の治療効果を生ずるために計算された予定された量の活性成分を、必要とされる薬学的担体と共に含有している。本発明の単位剤形についての明細は、活性成分の独特の特徴及び達成すべき特定の治療効果、並びに個体の処置のためのこのような活性化合物の調合の分野に固有の制限により指示され、これらに直接依存する。ある種の実施形態において、投薬量単位は、約600mg、550mg、500mg、450mg、400mg、350mg、300mg、250mg、200mg、150mg、110mg、105mg、100mg、95mg、90mg、85mg、80mg、75mg、70mg、65mg、60mg、55mg、50mg、45mg、又は40mgの活性成分を含有している。一つの実施形態において、活性成分の量は、約100mgである。
【0057】
医薬組成物は、投与のための説明と共に、コンテナ、パック、又はディスペンサに含まれ得る。一つの実施形態において、医薬組成物は、活性成分の量が約100mgである単一カプセルである。一つの実施形態において、医薬組成物は、各カプセルが約50mgの活性成分を含有している2個のカプセルである。
【0058】
指定された溶解速度を有する組成物を作製するプロセス
本発明は、
(a)該活性成分の少なくとも2つのバッチを結晶化する工程;及び
(b)該結晶組成物を作製するため、結晶活性成分の少なくとも2つのバッチを混和する工程:を含む、約100mgの活性成分が、図2に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む結晶組成物を作製するプロセスを提供する。
【0059】
別のプロセスにおいて、結晶組成物は以下の工程により作製される:
(a)結晶活性成分の少なくとも一つの第1のバッチを作製するため、結晶活性成分を粉砕又は湿式粉砕する工程;
(b)粉砕又は湿式粉砕された結晶活性成分よりサイズが大きい結晶活性成分の少なくとも一つの第2のバッチを作製するため、活性成分を結晶化する工程;
(c)該結晶組成物を作製するため、結晶活性成分の少なくとも一つの第1のバッチを少なくとも一つの第2のバッチと混和する工程。
【0060】
次いで、結晶組成物は、全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する医薬組成物を作製するためにさらに加工され得る。これは、結晶組成物に圧力をかけること、例えば、賦形剤を用いて又は用いずに結晶組成物をカプセル化することにより達成され得る。カプセル充填の過程で受ける圧力のため、活性成分の粒子に分解が起こり、これが、粒径分布に影響し、従って溶解速度に影響する。粒子分解の量は、カプセル密度により影響され得、カプセル密度は、タンピングピンの型及びカプセル充填重量により影響を受ける。
【0061】
従って、さらにもう一つの実施形態において、本発明は、
(a)該活性成分の少なくとも2つのバッチを結晶化する工程;
(b)結晶活性成分の少なくとも2つのバッチを混和する工程;及び
(c)混和されたバッチから該医薬組成物を作製する工程:を含む、医薬組成物の全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物を作製するプロセスを提供する。
【0062】
一つの実施形態において、結晶活性成分は、有機溶媒又は有機溶媒と水との混合物からの活性成分又は粗活性成分の結晶化から調製される。一つの実施形態において、有機溶媒は、メタノール、エタノール、アセトニトリル、イソプロパノール、及び酢酸のうちの一つ以上である。一つの実施形態において、有機溶媒はエタノールである。一つの実施形態において、混合物は約40から99%のエタノールを含む。一つの実施形態において、混合物は、約40から99%のエタノール及び60から1%の水を含む。一つの実施形態において、工程(c)は、混和された結晶活性成分の一部をカプセル化することにより実施される。
【0063】
別のプロセスにおいて、医薬組成物は、以下の工程により作製される:
(a)結晶活性成分の少なくとも一つの第1のバッチを作製するため、結晶活性成分を粉砕又は湿式粉砕する工程;
(b)粉砕又は湿式粉砕された結晶活性成分よりサイズが大きい結晶活性成分の少なくとも一つの第2のバッチを作製するため、活性成分を結晶化する工程;
(c)結晶活性成分の少なくとも一つの第1のバッチを少なくとも一つの第2のバッチと混和する工程;並びに
(d)該混和された第1及び第2のバッチから該医薬組成物を作製する工程。
【0064】
一つの実施形態において、結晶活性成分の第1のバッチは約50μm未満の平均粒径を有し、及び結晶活性成分の第2のバッチは約130μm超の平均粒径を有する。もう一つの実施形態において、結晶活性成分の第1のバッチは約50μm未満の平均粒径を有し、及び結晶活性成分の第2のバッチは約120から160μmの範囲の平均粒径を有する。特定の実施形態において、結晶活性成分の第1のバッチの95%が約100μm未満である。一つの実施形態において、第2バッチ結晶の95%が約300μm未満である。一つの実施形態において、工程(d)は、混和された結晶活性成分の一部をカプセル化することにより実施される。
【0065】
一つの実施形態において、結晶成分の第1のバッチは約60μm未満の平均粒径を有し、及び結晶活性成分の第2のバッチは約100から250μmの平均粒径を有する。もう一つの実施形態において、結晶成分の第1のバッチは約25から45μmの範囲の平均粒径を有し、及び結晶活性成分の第2のバッチは約130から180μmの範囲の平均粒径を有する。
【0066】
一つの実施形態において、結晶活性成分は、有機溶媒又は有機溶媒と水との混合物からの活性成分又は粗活性成分の結晶化から調製される。一つの実施形態において、有機溶媒は、メタノール、エタノール、アセトニトリル、イソプロパノール、及び酢酸のうちの一つ以上である。一つの実施形態において、有機溶媒はエタノールである。一つの実施形態において、混合物は約40から99%のエタノールを含む。一つの実施形態において、混合物は、約40から99%のエタノール及び60から1%の水を含む。
【0067】
もう一つの実施形態において、工程(c)において、約40から95%の第2バッチ結晶活性成分が、約60から5%の第1バッチ粉砕結晶活性成分と混和される。
【0068】
上記プロセスの一つの実施形態において、結晶化工程はシーディングを含む。上記プロセスのもう一つの実施形態において、混和比は、カプセル化分解モデル及び溶解モデルを使用するコンピューターシミュレーションプログラムにより決定される。一つの実施形態において、混和比は、図1の溶解速度プロファイルを参照として類似したSAHA溶解速度プロファイルを有する組成物を入手するために最適化される。
【0069】
本発明は、
(a)スラリーを形成させるため、結晶活性成分を有機溶媒、水、又はこれらの混合物へ供給する工程;
(b)2から30%の未溶解結晶活性成分を確立するため、スラリーを加熱する工程;及び
(c)再結晶化された活性成分を入手するため、スラリーを冷却する工程:を含む、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物の再結晶化された活性成分を作製するプロセスも提供する。
【0070】
一つの実施形態において、工程(a)における結晶活性成分は、約60μm未満の平均粒径を有する。
【0071】
もう一つの実施形態において、結晶活性成分は、
(i)シードスラリーを形成させるため、有機溶媒、水、又はこれらの混合物へ結晶活性成分を添加する工程、及び
(ii)湿式粉砕された結晶活性成分を達成するため、スラリーを湿式粉砕する工程:により調製される。
【0072】
もう一つの実施形態において、結晶活性成分は、結晶活性成分を乾式粉砕する工程により調製される。さらなる実施形態において、結晶活性成分は、ヒドロキシルアミンの存在下で入手される。
【0073】
一つの実施形態において、工程(a)において、約40から99%のエタノールと約60から1%の水との混合物が使用される。もう一つの実施形態において、工程(b)において、スラリーは約1から3時間60から75℃に加熱される。さらなる実施形態において、工程(c)は、約15から72時間で、60から75℃の間から25から−5℃の間まで冷却することにより実施される。
【0074】
もう一つの実施形態において、上記プロセスは、約40から95%の再結晶化された活性成分を、約60から5%の約60μm未満の平均粒径を有する結晶活性成分と混和することをさらに含む。
【0075】
本発明は、
(a)スラリーを形成させるため、40から99%のエタノールと60から1%の水との混合物に結晶活性成分を供給する工程;
(b)2から30%の未溶解結晶活性成分を確立するため、スラリーを加熱する工程;
(c)再結晶化された活性成分を入手するため、スラリーを冷却する工程;及び
(d)40から95%の再結晶化された活性成分を、約60から5%の約60μm未満の平均粒径を有する結晶活性成分と混和する工程:を含む、スベロイルアニリドヒドロキサム酸の結晶活性成分を作製するプロセスも提供する。
【0076】
本発明は、
(a)スラリーを形成させるため、結晶活性成分を有機溶媒又は有機溶媒と水との混合物に添加する工程;
(b)約50μm未満の平均粒径を有する結晶活性成分を達成するため、スラリーを湿式粉砕する工程;
(c)約5から30%シードベッドを確立するため、湿式粉砕されたスラリーを加熱する工程;及び
(d)再結晶化された活性成分を入手するため、スラリーを25℃未満に冷却する工程:を含む、再結晶化されたスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を作製するプロセスも提供する。
【0077】
一つの実施形態において、工程(a)において、混合物は、エタノール及び水、特に、約40から95%のエタノールを含有している。特定の実施形態において、約1:1のエタノールと水との混合物が使用される。もう一つの特定の実施形態において、約9:1のエタノールと水との混合物が使用される。一つの実施形態において、湿式粉砕工程の後、結晶活性成分の少なくとも80から95%が約100μm未満の粒径を有するか、又は、もう一つの実施形態において、95%が約100μm未満の粒径を有する。
【0078】
一つの実施形態において、工程c)は、約10から20%のシードベッドを確立する。特定の実施形態において、工程c)は、約15%のシードベッドを確立する。一つの実施形態において、工程c)は、湿式粉砕されたスラリーを1から3時間60から70℃に加熱することにより達成される。もう一つの実施形態において、工程c)は、湿式粉砕されたスラリーを約1から3時間63から66℃に加熱することにより達成される。特定の実施形態において、工程c)は、湿式粉砕されたスラリーを約1から3時間64から65℃に加熱することにより達成される。
【0079】
一つの実施形態において、工程(d)は、約15から30時間で60から70℃の間から25から5℃の間に冷却することにより実施される。もう一つの実施形態において、工程(d)は、約15から30時間で64から65℃の間から20から5℃の間に冷却することにより実施される。冷却過程は、指定された期間、温度を減少させること、及び指定された期間、温度を維持することの組み合わせを含んでいてもよい。
【0080】
上記プロセスは、再結晶化された活性成分を、工程(a)及び(b)と同一の工程により作製される湿式粉砕された結晶活性成分と混和する工程をさらに含み得る。湿式粉砕された結晶活性成分は、工程b)の湿式粉砕された材料の一部から採取され得る。又は、湿式粉砕された結晶活性成分は、工程a)及びb)により別々に調製されてもよい。従って、湿式粉砕された結晶活性成分は、再結晶化された活性成分の結晶化条件と比較して、同一の溶媒もしくは混合物において作製されてもよいし、又は異なる溶媒もしくは混合物において作製されてもよい。混和比は、コンピューターシミュレーションソフトウェアにより決定され得る。一つの実施形態において、混和比は、60から80%の再結晶化された活性成分及び40から20%の湿式粉砕された結晶活性成分である。特定の実施形態において、混和比は、約70%の再結晶化された活性成分及び約30%の湿式粉砕された結晶活性成分である。もう一つの特定の実施形態において、工程(a)において、9:1又は1:1のエタノール水の混合物が使用され、混和比は、70%の再結晶化された活性成分及び30%の湿式粉砕された結晶活性成分である。
【0081】
本発明は、
(a)スラリーを形成させるため、第1の容器に有機溶媒、水、又はこれらの混合物に結晶活性成分を供給する工程;
(b)結晶活性成分の実質的に全部を溶解させるため、第1の容器内のスラリーを加熱する工程;
(c)溶液を過飽和する温度まで、第1の容器内の工程(b)における内容物を冷却する工程;
(d)工程(c)の内容物へ結晶活性成分のシードを添加する工程;
(e)工程(c)と同一の温度で工程(d)の内容物をエージングする工程;
(f)再結晶化された活性成分を入手するため、工程(e)における内容物を冷却する工程:を含む、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物の再結晶化された活性成分を作製するプロセスも提供する。
【0082】
一つの実施形態において、工程(d)は、
(i)シードスラリーを形成させるため、有機溶媒、水、又はこれらの混合物に結晶活性成分を供給する工程;
(ii)シードの一部を溶解させるため、シードスラリーを加熱しエージングする工程;
(iii)工程(c)と同一の温度まで工程(ii)における内容物を冷却する工程;
(iv)工程(iii)におけるシードスラリーを第1の容器へ移す工程:を含む。
【0083】
一つの実施形態において、工程(i)の結晶活性成分は、約60μm未満の平均粒径を有する。もう一つの実施形態において、工程(i)は、
(v)シードスラリーを形成させるため、有機溶媒、水、又はこれらの混合物に結晶活性成分を添加する工程;
(vi)湿式粉砕された結晶活性成分を達成するため、スラリーを湿式粉砕する工程:により調製される。
【0084】
もう一つの実施形態において、工程(i)は、
(v)結晶活性成分を乾式粉砕する工程;
(vi)シードスラリーを形成させるため、乾式粉砕された結晶活性成分を、有機溶媒、水、又はこれらの混合物に添加する工程:により調製される。
【0085】
さらなる実施形態において、工程(vi)の後、工程(d)の前に、湿式粉砕された結晶活性成分の単離、洗浄、及び乾燥の工程をさらに含む。
【0086】
一つの実施形態において、工程(a)の結晶活性成分は、ヒドロキシルアミンの存在下で入手される。もう一つの実施形態において、約40から99%のエタノールと約60から1%の水との混合物が、工程(a)及び(i)において使用される。さらなる実施形態において、49:51から51:49のエタノール対水比の混合物が、工程(a)及び(i)において使用される。
【0087】
一つの実施形態において、工程(b)において、スラリーは、最低15psigの圧力下で60から75℃に加熱される。もう一つの実施形態において、工程(b)において、スラリーは、最低15psigの圧力下で67から70℃に加熱される。
【0088】
一つの実施形態において、工程(c)において、内容物は60から65℃に冷却される。もう一つの実施形態において、工程(c)において、内容物は61から63℃に冷却される。
【0089】
一つの実施形態において、工程(ii)において、シードスラリーは62から66℃に加熱される。もう一つの実施形態において、工程(ii)において、シードスラリーは64から65℃に加熱される。
【0090】
一つの実施形態において、工程(f)は、約15から72時間で、60から70℃の間から25から−5℃の間まで冷却することにより実施される。もう一つの実施形態において、工程(f)は、約15から72時間で、60から64℃の間から0から10℃の間まで冷却することにより実施される。
【0091】
本発明は、
(a)スラリーを形成させるため、結晶活性成分を有機溶媒又は有機溶媒と水との混合物に添加する工程;
(b)約50μm未満の平均粒径を有する結晶活性成分を達成するため、スラリーを湿式粉砕する工程;
(c)シードスラリーを作製するため、湿式粉砕されたスラリーを60から70℃に加熱する工程;
(d)有機溶媒又は有機溶媒と水との混合物に結晶活性成分を供給する工程;
(e)結晶活性成分を溶解させるため、工程(d)における材料を加熱する工程;
(f)核形成のない過飽和溶液を入手するため、工程(e)における材料を冷却する工程;
(g)工程(c)におけるシードスラリーを過飽和溶液に移す工程;及び
(h)工程(g)における材料を25℃未満に冷却する工程:を含む、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物の再結晶化された活性成分を作製するプロセスも提供する。
【0092】
一つの実施形態において、工程(a)及び(d)において、エタノール及び水、特に、約40から95%のエタノールを含有している混合物が使用される。特定の実施形態において、約1:1のエタノールと水との混合物が使用される。もう一つの特定の実施形態において、約9:1のエタノールと水との混合物が使用される。工程(a)又は(d)において使用される有機溶媒の百分率は、同一であってもよいし、又は異なっていてもよい。例えば、工程(a)において、約40から100%のエタノールが使用され、及び工程d)において、約1:1又は9:1のエタノールの混合物が使用されてもよい。一つの実施形態において、湿式粉砕工程の後、結晶活性成分の少なくとも80から95%又は95%が、約100μm未満の粒径を有する。
【0093】
一つの実施形態において、工程c)は約10から20%のシードベッドを確立する。特定の実施形態において、工程c)は約15%のシードベッドを確立する。もう一つの実施形態において、湿式粉砕されたスラリーは、63から67℃に加熱される。もう一つの実施形態において、湿式粉砕されたスラリーは、20から25psigで62から66℃に加熱され、61から63℃に冷却される。もう一つの実施形態において、湿式粉砕されたスラリーは、シード固体の50%を溶解させるため、加熱される。
【0094】
一つの実施形態において、工程(e)において、加熱は65から75℃でなされる。特定の実施形態において、工程(e)において、加熱は67から70℃でなされる。一つの実施形態において、工程(e)において、加熱は、20から25psigの圧力下で実施される。もう一つの実施形態において、工程(f)において、冷却は60から65℃でなされる。さらにもう一つの実施形態において、工程(f)において、冷却は61から63℃でなされる。
【0095】
もう一つの実施形態において、工程(g)の後、及び工程(h)の前に、混合物は61から63℃で2時間エージングされる。一つの実施形態において、工程(h)において、冷却は、26時間で3つの直線的工程を通して達成される。
【0096】
本発明は、
(a)スラリーを形成させるため、第1の容器に40から99%のエタノールと60から1%の水との混合物に結晶活性成分を供給する工程;
(b)結晶活性成分の実質的に全部を溶解させるため、第1の容器内のスラリーを加熱する工程;
(c)溶液を過飽和するため、第1の容器内の工程(b)における内容物を冷却する工程;
(d)工程(c)の内容物へ結晶活性成分を添加する工程;
(e)工程(c)と同一の温度で工程(d)の内容物をエージングする工程;
(f)再結晶化された活性成分を入手するため、工程(e)における内容物を冷却する工程:を含む、スベロイルアニリドヒドロキサム酸の再結晶化された活性成分を作製するプロセスも提供する。
【0097】
上記プロセスの特定の実施形態において、活性成分はスベロイルアニリドヒドロキサム酸である。一つの実施形態において、結晶活性成分はSAHA I型である。
【0098】
有機溶媒による結晶化
一つの特定の実施形態において、結晶活性成分又は再結晶化された活性成分は、有機溶媒又は水と有機溶媒との混合物から結晶化される。有機溶媒は、メタノール、エタノール、又はイソプロパノールのようなアルコールであり得る。一つの実施形態において、有機溶媒は、メタノール、エタノール、アセトニトリル、イソプロパノール、及び酢酸のうちの一つ以上である。一つの実施形態において、有機溶媒はエタノールである。
【0099】
もう一つの実施形態において、有機溶媒と水との混合物は、約1から99%の有機溶媒及び約99から1%の水を含む。もう一つの実施形態において、混合物は、40から99%のエタノール及び60%から1%の水を含む。一つの実施形態において、混合物は、約15から85%の有機溶媒及び約1から15%の水を含む。特定の実施形態において、混合物は、約85%の有機溶媒及び約15%の水を含む。もう一つの特定の実施形態において、混合物は1:1のエタノール及び水を含む。さらにもう一つの特定の実施形態において、混合物は9:1のエタノール及び水を含む。ここに記載された有機溶媒対水の比率又は百分率は、体積による。
【0100】
一つの特定の実施形態において、有機溶媒と水との混合物は、アルコール及び水である(例えば、メタノール/水、エタノール/水、イソプロパノール/水等)。しかしながら、本明細書に記載された方法の結晶化が、有機合成の分野の当業者により容易に選択され得る任意の適切な溶媒又は溶媒混合物において実施され得ることは、当業者には明白であるはずである。このような適切な有機溶媒には、本明細書において使用されるように、例えば、非制限的に、塩素化溶媒、炭化水素溶媒、エーテル溶媒、極性プロトン性溶媒、及び極性非プロトン性溶媒が含まれる。適切なハロゲン化溶媒には、四塩化炭素、ブロモジクロロメタン、ジブロモクロロメタン、ブロモホルム、クロロホルム、ブロモクロロメタン、ジブロモメタン、塩化ブチル、ジクロロメタン、テトラクロロエチレン、トリクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1−ジクロロエタン、1,2−ジクロロエタン、2−クロロプロパン、ヘキサフルオロベンゼン、1,2,4−トリクロロベンゼン、o−ジクロロベンゼン、クロロベンゼン、フルオロベンゼン、フルオロトリクロロメタン、クロロトリフルオロメタン、ブロモトリフルオロメタン、四フッ化炭素、ジクロロフルオロメタン、クロロジフルオロメタン、トリフルオロメタン、1,2−ジクロロテトラフルオロエタン、及びヘキサフルオロエタンが含まれるが、これらに制限はされない。適切な炭化水素溶媒には、ベンゼン、シクロヘキサン、ペンタン、ヘキサン、トルエン、シクロヘプタン、メチルシクロヘキサン、ヘプタン、エチルベンゼン、m−、o−、もしくはp−キシレン、オクタン、インダン、ノナンが含まれるが、これらに制限はされない。適切なエーテル溶媒には、ジメトキシメタン、テトラヒドロフラン、1,3−ジオキサン、1,4−ジオキサン、フラン、ジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジイソプロピルエーテル、アニソール、又はt−ブチルメチルエーテルが含まれるが、これらに制限はされない。
【0101】
適切な極性プロトン性溶媒には、メタノール、エタノール、2−ニトロエタノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、エチレングリコール、1−プロパノール、2−プロパノール、2−メトキシエタノール、1−ブタノール、2−ブタノール、i−ブチルアルコール、t−ブチルアルコール、2−エトキシエタノール、ジエチレングリコール、1−、2−、又は3−ペンタノール、ネオペンチルアルコール、t−ペンチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、シクロヘキサノール、ベンジルアルコール、フェノール、及びグリセロールが含まれるが、これらに制限はされない。適切な極性非プロトン性溶媒には、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン(DMPU)、1,3−ジメチル−2−イミダゾリジノン(DMI)、N−メチルピロリジノン(NMP)、ホルムアミド、N−メチルアセトアミド、N−メチルホルムアミド、アセトニトリル(ACN)、ジメチルスルホキシド、プロピオニトリル、ギ酸エチル、酢酸メチル、ヘキサクロロアセトン、アセトン、エチルメチルケトン、酢酸エチル、酢酸イソプロピル、酢酸t−ブチル、スルホラン、N,N−ジメチルプロピオンアミド、ニトロメタン、ニトロベンゼン、ヘキサメチルホスホラミドが含まれるが、これらに制限はされない。
【0102】
投与の方法
本明細書に記載された方法全てにおいて、医薬組成物は、ゼラチンカプセルで経口投与され得る。組成物は、1日1回、1日2回、又は1日3回、本明細書に記載された方法により、単位投薬量で投与され得る。
【0103】
次いで、毎日投与が、数日から数年の期間にわたり連続的に繰り返される。経口処置は、1週間から患者の一生にわたり継続され得る。一つの実施形態において、5日連続で投与を行い、次いで、さらなる投与が必要とされるか否かを決定するため、患者を評価することができる。投与は、連続的であってもよいし、又は断続的であってもよく、即ち、多数の連続する日の処置の後に休薬期間が続いてもよい。
【0104】
本発明の医薬組成物は、25から4000mg/m、例えば、約25から1000mg、50から1000mg、100mg、200mg、300mg、400mg、600mg、800mg、1000mg等の全1日用量で経口投与され得る。典型的には、化合物は、400mgまでを投与する場合には、単一用量として患者に投与される。より高い全投薬量(即ち、400mg超)の場合には、全量が、複数の投薬量、例えば、1日2回、1日3回等に分割されるか、又は1日の間の等しい期間に広げられる。例えば、1日1000mgという全投薬量を達成するためには、2つの用量、例えば、各500mgが12時間間隔で投与され得る。
【0105】
一つの実施形態において、SAHAは、200mgの全1日投薬量で患者に投与される。もう一つの実施形態において、SAHAは、400mgの全1日投薬量で患者に投与される。もう一つの実施形態において、SAHAは、600mgの全1日投薬量で患者に投与される。
【0106】
一つの実施形態において、患者に投与される活性成分の量は、患者において毒性を引き起こすであろう量より少ない。ある種の実施形態において、患者に投与される活性成分の量は、患者の血漿中の化合物の濃度が、化合物の毒性レベルと等しいか又はこれを超過するようになる量より少ない。一つの実施形態において、患者の血漿中の活性成分の濃度は、約10nMから約5000nMに維持される。本発明の実施において患者に投与されるべき活性成分の最適な量は、使用される特定の化合物及び処置される癌の型に依るであろう。
【0107】
組み合わせ治療
本発明の方法は、まず、対象における新生物細胞を抗腫瘍剤に対して抵抗性にするため、対象に抗腫瘍剤を投与し、次いで、このような細胞の最終分化、細胞増殖停止、及び/又はアポトーシスを選択的に誘導するのに有効な、有効量の本発明の組成物を投与することも含み得る。
【0108】
抗腫瘍剤は、アルキル化剤、代謝拮抗薬、ホルモン剤、抗生物質、コルヒチン、ビンカアルカロイド、L−アスパラギナーゼ、プロカルバジン、ヒドロキシ尿素、ミトタン、ニトロソ尿素類、又はイミダゾールカルボキサミドのような多数の化学療法剤のうちの一つであり得る。適切な薬剤は、チューブリンの脱分極を促進する薬剤である。一つの実施形態において、抗腫瘍剤は、コルヒチン又はビンカアルカロイド;ビンブラスチンもしくはビンクリスチンである。抗腫瘍剤がビンクリスチンである実施形態において、細胞は、好ましくは、約5mg/mlの濃度のビンクリスチンに抵抗性となるように処理される。抗腫瘍剤に対して抵抗性にするための細胞の処理は、少なくとも3から5日間、細胞をこの薬剤と接触させることにより達成され得る。得られた細胞の上記化合物のいずれかとの接触は、以前に記載されたようにして実施される。上記化学療法剤に加え、化合物は、放射線治療と共に投与されてもよい。
【0109】
アルキル化剤
アルキル化剤は、DNA生成のためのヌクレオチド前駆体上の化学エンティティのような求核性残基と反応する。これらは、これらのヌクレオチドをアルキル化し、DNAへの組み立てを妨げることにより、細胞分裂の過程に影響する。
【0110】
アルキル化剤の例には、ビスクロロエチルアミン類(ナイトロジェンマスタード類、例えば、クロラムブシル、シクロホスファミド、イホスファミド、メクロレタミン、メルファラン、ウラシルマスタード)、アジリジン類(例えば、チオテパ)、アルキルアルコン(alkone)スルホネート類(例えば、ブスルファン)、ニトロソ尿素類(例えば、カルムスチン、ロムスチン(lomustine)、ストレプトゾシン)、非古典的アルキル化剤(アルトレタミン(altretamine)、ダカルバジン、及びプロカルバジン)、白金化合物(カルボプラスチン(carboplastin)及びシスプラチン)が含まれるが、これらに制限はされない。これらの化合物は、リン酸基、アミノ基、ヒドロキシル基、スルフィヒドリル(sulfihydryl)基、カルボキシル基、及びイミダゾール基と反応する。
【0111】
生理学的条件下で、これらの薬物は、イオン化し、正の電荷を有するイオンを生じ、これが、感受性の核酸及びタンパク質に付着して、細胞周期停止及び/又は細胞死をもたらす。アルキル化剤は、細胞周期の特定の期とは無関係に活性を発揮するため、細胞周期非特異的な薬剤である。ナイトロジェンマスタード類及びアルキルアルコンスルホネート類は、G1又はM期の細胞に対して最も有効である。ニトロソ尿素類、ナイトロジェンマスタード類、及びアジリジン類は、G1及びS期からM期への進行を損なう。Chabner and Collins eds.(1990)「Cancer Chemotherapy:Principles and Practice」,Philadelphia:JB Lippincott。
【0112】
アルキル化剤は、多様な新生物疾患に対して活性であり、白血病及びリンパ腫並びに固形腫瘍の処置において有意な活性を有する。臨床的に、この薬物グループは、急性及び慢性の白血病;ホジキン病;非ホジキンリンパ腫;多発性骨髄腫;原発性脳腫瘍;乳房、卵巣、精巣、肺、膀胱、子宮頸部、頭部、及び頚部の癌腫、並びに悪性黒色腫の処置においてルーチンに使用されている。
【0113】
アルキル化剤全てに共通の主要な毒性は、骨髄抑制である。さらに、様々な重度の胃腸への有害効果が一般的に起こり、様々な器官毒性が特定の化合物に関連している。Black and Livingston(1990)Drugs 39:489−501;及び39:652−673。
【0114】
抗生物質
抗生物質(例えば、細胞毒性抗生物質)は、DNA又はRNAの合成を直接阻害することにより作用し、細胞周期の全体を通して有効である。抗生剤の例には、アントラサイクリン類(例えば、ドキソルビシン、ダウノルビシン、エピルビシン、イダルビシン、及びアントラセンジオン)、マイトマイシンC、ブレオマイシン、ダクチノマイシン、プリカトマイシン(plicatomycin)が含まれる。これらの抗生剤は、種々の細胞成分を標的とすることにより細胞増殖に干渉する。例えば、アントラサイクリン類は、転写的に活性なDNAの領域においてDNAトポイソメラーゼIIの作用に干渉し、DNA鎖切断をもたらすと一般に信じられている。
【0115】
ブレオマイシンは、鉄をキレート化し、活性化された錯体を形成し、次いで、これがDNAの塩基に結合し、鎖切断及び細胞死を引き起こすと一般に信じられている。
【0116】
抗生剤は、乳房、肺、胃、及び甲状腺の癌腫、リンパ腫、骨髄性白血病、骨髄腫、並びに肉腫を含むある範囲の新生物疾患に対する治療薬として使用されている。このグループ内のアントラサイクリン類の主要な毒性は、骨髄抑制、特に、顆粒球減少である。顆粒球減少はしばしば粘膜炎を伴い、この重度は骨髄抑制の程度と相関する。有意な心臓毒性も、高投薬量のアントラサイクリンの投与に関連している。
【0117】
代謝拮抗剤
代謝拮抗剤(即ち、代謝拮抗薬)は、癌細胞の生理学及び増殖に必須の代謝過程に干渉する薬物のグループである。活発に増殖している癌細胞は、大量の核酸、タンパク質、脂質、及び他の必須の細胞構成要素の連続的な合成を必要とする。
【0118】
代謝拮抗薬の多くは、プリンもしくはピリミジンヌクレオシドの合成を阻害するか、又はDNA複製の酵素を阻害する。いくつかの代謝拮抗薬は、リボヌクレオシド及びRNAの合成並びに/又はアミノ酸代謝並びにタンパク質合成にも干渉する。必須細胞構成要素の合成に干渉することにより、代謝拮抗薬は、癌細胞の増殖を遅延又は停止させることができる。代謝拮抗剤の例には、フルオロウラシル(5−FU)、フロクスウリジン(5−FUdR)、メトトレキサート、ロイコボリン、ヒドロキシ尿素、チオグアニン(6−TG)、メルカプトプリン(6−MP)、シタラビン、ペントスタチン、リン酸フルダラビン、クラドリビン(2−CDA)、アスパラギナーゼ、及びゲムシタビンが含まれるが、これらに制限はされない。
【0119】
代謝拮抗剤は、結腸、直腸、乳房、肝臓、胃、及び膵臓の癌腫、悪性黒色腫、急性及び慢性の白血病、並びに有毛細胞白血病を含むいくつかの一般的な型の癌を処置するために広く使用されている。代謝拮抗薬による処置の有害効果の多くは、骨髄又は胃腸粘膜のような有糸分裂的に活発な組織における細胞増殖の抑制に起因する。これらの薬剤により処置された患者は、一般的に、骨髄抑制、口内炎、下痢、及び脱毛を経験する。Chen and Grem(1992)Curr.Opin.Oncol.4:1089−1098。
【0120】
ホルモン剤
ホルモン剤とは、標的器官の成長及び発達を制御する薬物のグループである。ホルモン剤の大部分が、エストロゲン、プロゲストーゲン、抗エストロゲン、アンドロゲン、抗アンドロゲン、及びプロゲスチンのような性ステロイド並びにこの誘導体及びアナログである。これらのホルモン剤は、受容体発現及び必須遺伝子の転写をダウンレギュレートする性ステロイドの受容体のアンタゴニストとして機能し得る。このようなホルモン剤の例は、合成エストロゲン(例えば、ジエチルスチベストロール(diethylstibestrol)、抗エストロゲン(例えば、タモキシフェン、トレミフェン、フルオキシメステロール(fluoxymesterol)、及びラロキシフェン)、抗アンドロゲン(ビカルタミド、ニルタミド、フルタミド)、アロマターゼ阻害薬(例えば、アミノグルテチミド、アナストロゾール、及びテトラゾール)、黄体形成ホルモン放出ホルモン(LHRH)アナログ、ケトコナゾール、酢酸ゴセレリン、ロイプロリド、酢酸メゲストロール、並びにミフェプリストンである。
【0121】
ホルモン剤は、乳癌、前立腺癌、黒色腫、及び髄膜腫を処置するために使用されている。ホルモンの主要な作用がステロイド受容体を通して媒介されるため、受容体陽性乳癌は60%がファーストライン(first−line)のホルモン治療に応答し;受容体陰性腫瘍は10%未満が応答した。ホルモン剤に関連した主な副作用は発赤である。高頻度の症状は、骨痛の急激な増加、皮膚病巣周囲の紅斑、及び誘導された高カルシウム血症である。
【0122】
特に、子宮内膜癌はプロゲストーゲンにより対抗されない高レベルのエストロゲンに曝された女性において起こるため、プロゲストーゲンはこれらの癌を処置するために使用されている。
【0123】
抗アンドロゲンは、主として、ホルモン依存性である前立腺癌の処置のために使用されている。これらは、テストステロンのレベルを減少させ、これにより腫瘍の増殖を阻害するために使用される。
【0124】
乳癌のホルモン処置は、新生物乳房細胞におけるエストロゲン依存性のエストロゲン受容体の活性化のレベルを低下させることを含む。抗エストロゲンは、エストロゲン受容体に結合することにより作用し、コアクチベーターの動員を妨げ、従って、エストロゲンシグナルを阻害する。
【0125】
LHRHアナログは、テストステロンのレベルを減少させ、従って、腫瘍の増殖を減少させるために、前立腺癌の処置において使用されている。
【0126】
アロマターゼ阻害薬は、ホルモン合成に必要とされる酵素を阻害することにより作用する。閉経後の女性において、エストロゲンの主な起源は、アロマターゼによるアンドロステンジオンの変換を通したものである。
【0127】
植物由来薬剤
植物由来薬剤は、植物に由来するか、又は薬剤の分子構造に基づき修飾された薬物のグループである。これらは、細胞分裂に不可欠の細胞コンポーネントの組み立てを妨げることにより、細胞複製を阻害する。
【0128】
植物由来薬剤の例には、ビンカアルカロイド類(例えば、ビンクリスチン、ビンブラスチン、ビンデシン、ビンゾリジン(vinzolidine)、及びビノレルビン)、ポドフィロトキシン類(例えば、エトポシド(VP−16)及びテニポシド(VM−26))、タキサン類(例えば、パクリタクセル及びドセタキセル)が含まれる。植物由来薬剤は、一般に、チューブリンに結合し有糸分裂を阻害する抗有糸分裂剤として作用する。エトポシドのようなポドフィロトキシン類は、トポイソメラーゼIIと相互作用し、DNA鎖切断をもたらすことにより、DNA合成に干渉すると信じられている。
【0129】
植物由来薬剤は、多くの型の癌を処置するために使用されている。例えば、ビンクリスチンは、白血病、ホジキンリンパ腫、非ホジキンリンパ腫、及び小児腫瘍神経芽細胞腫、横紋筋肉腫、及びウィルムス腫瘍の処置において使用されている。ビンブラスチンは、リンパ腫、精巣癌、腎細胞癌、菌状息肉腫、及びカポジ肉腫に対して使用されている。ドキセタキセル(Doxetaxel)は、進行した乳癌、非小細胞肺癌(NSCLC)、及び卵巣癌に対する有望な活性を示している。
【0130】
エトポシドは、広範囲の新生物に対して活性であり、このうち、小細胞肺癌、精巣癌、及びNSCLCは、最も応答性である。
【0131】
植物由来薬剤は、処置される患者に対して有意な副作用を引き起こす。ビンカアルカロイド類は、異なる臨床毒性スペクトルを示す。ビンカアルカロイド類の副作用には、神経毒性、改変された血小板機能、骨髄抑制、及び白血球減少が含まれる。パクリタクセルは、用量を制限する好中球減少を引き起こすが、他の造血細胞系には比較的無影響である。エピポフィロトキシン類(epipophyllotoxins)の主要な毒性は、血液学的なもの(好中球減少及び血小板減少)である。
【0132】
他の副作用には、一過性の肝酵素異常、脱毛症、アレルギー反応、及び末梢神経障害が含まれる。
【0133】
生物学的薬剤
生物学的薬剤は、単独で、又は化学療法及び/もしくは放射線治療と組み合わせて使用された場合に、癌/腫瘍の退縮を誘発する生体分子のグループである。生物学的薬剤の例には、サイトカインのような免疫調整タンパク質、腫瘍抗原に対するモノクローナル抗体、腫瘍抑制遺伝子、及び癌ワクチンが含まれる。
【0134】
サイトカインは、顕著な免疫調整活性を保有している。インターロイキン−2(IL−2、アルデスロイキン(aldesleukin))及びインターフェロン−α(IFN−α)のようないくつかのサイトカインは、抗腫瘍活性を示し、転移性腎細胞癌及び転移性悪性黒色腫を有する患者の処置のため承認されている。IL−2は、T細胞により媒介される免疫応答の中心となるT細胞増殖因子である。一部の患者におけるIL−2の選択的な抗腫瘍効果は、自己と非自己とを識別する細胞性免疫反応の結果であると信じられている。
【0135】
インターフェロン−αには、オーバーラップする活性を有する23を超える関連サブタイプが含まれる。IFN−αは、多くの固形悪性疾患及び血液学的悪性疾患に対する活性を示しており、後者が特に感受性であるようである。
【0136】
インターフェロンの例には、インターフェロン−α、インターフェロン−β(繊維芽細胞インターフェロン)、及びインターフェロン−γ(繊維芽細胞インターフェロン)が含まれる。他のサイトカインの例には、エリスロポエチン(エポイエチン(epoietin)−α)、顆粒球−CSF(フィルグラスチン(filgrastin))、及び顆粒球マクロファージ−CSF(サルグラモスチム)が含まれる。サイトカイン以外の他の免疫調整剤には、カルメット・ゲラン桿菌、レバミソール、及び天然に存在するホルモンソマトスタチンの効果を模倣する長期作用性のオクタペプチドであるオクトレオチドが含まれる。
【0137】
さらに、抗癌処置は、抗体、及び腫瘍予防接種アプローチにおいて使用される試薬による免疫療法による処置が含まれ得る。この治療クラスの主要な薬物は、単独の抗体、又は例えば癌細胞に対する毒素もしくは化学療法薬(chemostherapeutics)/細胞毒性薬を保持している抗体である。腫瘍抗原に対するモノクローナル抗体は、腫瘍により発現された抗原、好ましくは腫瘍特異抗原に対して誘発された抗体である。例えば、モノクローナル抗体HERCEPTIN(登録商標)(トラスツズマブ(trastuzumab))は、転移性乳癌を含むいくつかの乳房腫瘍において過剰発現されるヒト上皮増殖因子受容体2(HER2)に対して作製されたものである。HER2タンパク質の過剰発現は、より攻撃的な疾患及びより悪い臨床上の予後に関連している。HERCEPTIN(登録商標)は、HER2タンパク質を過剰発現している腫瘍を含む転移性乳癌を有する患者の処置のため単一の薬剤として使用されている。
【0138】
腫瘍抗原に対するモノクローナル抗体のもう一つの例は、リンパ腫細胞上のCD20に対して作製されたものであり、正常及び悪性のCD20+プレ−B細胞及び成熟B細胞を選択的に枯渇させるRITUXAN(登録商標)(リツキシマブ(rituximab))である。
【0139】
RITUXANは、再発性又は難治性の低悪性度又は濾胞性のCD20+B細胞非ホジキンリンパ腫を有する患者の処置のため単一の薬剤として使用されている。MYELOTARG(登録商標)(ゲムツズマブオゾガミシン(gemtuzumab ozogamicin))及びCAMPATH(登録商標)(アレムツズマブ(alemtuzumab))は、使用され得る腫瘍抗原に対するモノクローナル抗体のさらなる例である。
【0140】
腫瘍抑制遺伝子は、細胞の増殖及び分裂の周期を阻害し、従って、新形成の発達を妨げるよう機能する遺伝子である。腫瘍抑制遺伝子の変異により、細胞が、阻害シグナルのネットワークのコンポーネントのうちの一つ以上を無視し、細胞周期チェックポイントを克服するようになり、調節された細胞増殖癌のより高い速度−癌がもたらされる。腫瘍抑制遺伝子の例には、Duc−4、NF−1、NF−2、RB、p53、WT1、BRCA1、及びBRCA2が含まれる。
【0141】
DPC4は、膵臓癌に関与しており、細胞分裂を阻害する細胞質経路に参与する。NF−1は、細胞質阻害タンパク質Rasを阻害するタンパク質をコードする。NF−1は、神経系の神経繊維腫及びクロム親和細胞腫、並びに骨髄性白血病に関与している。NF−2は、神経系の髄膜腫、シュワン腫(schwanoma)、及び上衣細胞腫に関与している核タンパク質をコードする。RBは、細胞周期の主要な阻害剤である核タンパク質pRBタンパク質をコードする。RBは、網膜芽細胞腫、並びに骨癌、膀胱癌、小細胞肺癌、及び乳癌に関与している。p53は、細胞分裂を制御し、アポトーシスを誘導し得るp53タンパク質をコードする。p53の変異及び/又は不活性は、広範囲の癌において見い出される。WTIは、腎臓のウィルムス腫瘍に関与している。BRCA1は、乳癌及び卵巣癌に関与しており、BRCA2は乳癌に関与している。腫瘍抑制遺伝子は、腫瘍抑制機能を発揮するよう腫瘍細胞に導入され得る。
【0142】
癌ワクチンは、腫瘍に対する身体の特異的な免疫応答を誘導する薬剤のグループである。研究開発中及び臨床試験中の癌ワクチンの大部分が、腫瘍関連抗原(TAA)である。TAAは、腫瘍細胞上に存在し、正常細胞上には比較的存在しないか又は少ない構造(即ち、タンパク質、酵素、又は炭水化物)である。腫瘍細胞に極めて特有であるため、TAAは、免疫系が認識し、この破壊を引き起こすための標的を提供する。TAAの例には、ガングリオシド(GM2)、前立腺特異抗原(PSA)、α−フェトプロテイン(AFP)、(結腸癌、並びに他の腺癌、例えば、乳房、肺、胃、及び膵臓の癌により産生される)癌胎児性抗原(CEA)、黒色腫関連抗原(MART−1、gap100、MAGE1,3チロシナーゼ)、パピローマウイルスE6及びE7フラグメント、自己腫瘍細胞及び同種異系腫瘍細胞の完全細胞又は一部/溶解物が含まれる。
【0143】
他の治療
最近の開発は、癌を処置するために使用される伝統的な細胞毒性治療及びホルモン治療に加え、癌の処置のための付加的な治療を導入した。例えば、多くの型の遺伝子治療が前臨床試験又は臨床試験を受けている。
【0144】
さらに、腫瘍血管新生(血管形成)の阻害に基づくアプローチが現在開発中である。この概念の目標は、新たに構築された腫瘍血管系により提供される栄養及び酸素の供給から腫瘍を遮断することである。
【0145】
さらに、新生物細胞の最終分化の誘導による癌治療も試みられている。適切な分化剤には、以下の参照のうちの一つ以上に開示された化合物が含まれる。
【0146】
a)極性化合物(Marksら(1987);,Friend,C,Scher,W.,Holland,J.W.,and Sato,T.(1971)Proc.Natl.Acad.Sci.(USA)68:378−382;Tanaka,M.,Levy,J.,Terada,M.,Breslow,R.,Rifkind,R.A.,and Marks,P.A.(1975)Proc.Natl.Acad.Sci.(USA)72:1003−1006;Reuben,R.C,Wife,R.L.,Breslow,R.,Rifkind,R.A.,and Marks,P.A.(1976)Proc.Natl.Acad.Sci.(USA)73:862−866);
b)ビタミンD及びレチノイン酸の誘導体(Abe,E.,Miyaura,C,Sakagami,H.,Takeda,M.,Konno,K.,Yamazaki,T.,Yoshika,S.,and Suda,T.(1981)Proc.Natl.Acad.Sci.(USA)78:4990−4994;Schwartz,E.L.,Snoddy,J.R.,Kreutter,D.,Rasmussen,H.,and Sartorelli,A.C.(1983)Proc.Am.Assoc.Cancer Res.24:18;Tanenaga,K.,Hozumi,M.,and Sakagami,Y.(1980)Cancer Res.40:914−919);
c)ステロイドホルモン(Lotem,J.and Sachs,L.(1975)Int.J.Cancer 15:731−740);
d)増殖因子(Sachs,L.(1978)Nature(Lond.)274:535,Metcalf,D.(1985)Science,229:16−22);
e)プロテアーゼ(Scher,W.,Scher,B.M.,and Waxman,S.(1983)Exp.Hematol.11:490−498;Scher,W.,Scher,B.M.,and Waxman,S.(1982)Biochem.&Biophys.Res.Comm.109:348−354);
f)腫瘍プロモーター(Huberman,E.and Callaham,M.F.(1979)Proc.Natl.Acad.Sci.(USA)76:1293−1297;Lottem,J.and Sachs,L.(1979)Proc.Natl.Acad.Sci.(USA)76:5158−5162);並びに
g)DNA又はRNAの合成の阻害剤(Schwartz,E.L.and Sartorelli,A.C.(1982)Cancer Res.42:2651−2655,Terada,M.,Epner,E.,Nudel,U.,Salmon,J.,Fibach,E.,Rifkind,R.A.,and Marks,P.A.(1978)Proc.Natl.Acad.Sci.(USA)75:2795−2799;Morin,M.J.and Sartorelli,A.C.(1984)Cancer Res.44:2807−2812;Schwartz,E.L.,Brown,B.J.,Nierenberg,M.,Marsh,J.C,and Sartorelli,A.C.(1983)Cancer Res.43:2725−2730;Sugano,H.,Furusawa,M.,Kawaguchi,T.,and Ikawa,Y.(1973)Bibl.Hematol.39:943−954;Ebert,P.S.,Wars,I,and Buell,D.N.(1976)Cancer Res.36:1809−1813;Hayashi,M.,Okabe,J.,and Hozumi,M.(1979)Gann 70:235−238)。
【0147】
本発明の医薬組成物と上記抗癌剤との組み合わせ、及びこれらの使用は、本発明の範囲内である。
【0148】
処置の方法
本発明は、新生物細胞の最終分化を選択的に誘導し、これによりこれらの増殖を阻害するのに有効な、有効量の上記の本発明の組成物を患者に投与することを含む、新生物細胞の増殖を特徴とする腫瘍を有する患者を処置する方法も提供する。
【0149】
本発明の方法は、癌を有するヒト患者の処置のためのものである。しかしながら、方法は、他の哺乳動物における癌の処置においても有効である可能性が高い。癌には、肺癌、急性リンパ性骨髄腫、ホジキンリンパ腫、非ホジキンリンパ腫、膀胱黒色腫、腎臓癌、乳癌、前立腺癌、卵巣癌、又は結腸直腸癌のような、新生物細胞の増殖により引き起こされる癌が含まれるが、これらに制限はされない。
【0150】
本発明は、以下の実験的詳細セクションにおいて実施例により例示される。このセクションは、本発明の理解を支援するために示され、決して、続く特許請求の範囲に示されるような本発明を制限するためのものではなく、このように解釈されるべきではない。
【実施例】
【0151】
実験的詳細セクション
(実施例1)
SAHA I型の合成
SAHA I型は、以下に概説される方法、又はこの修飾及び変形により合成され得る。
【0152】
SAHAの合成
工程1−スベラニル酸の合成
【0153】
【化1】

【0154】
22Lのフラスコに、3,500g(20.09モル)のスベリン酸を置き、熱により酸を融解させた。温度を175℃に上げ、次いで、2,040g(21.92モル)のアニリンを添加した。温度を190℃に上げ、20分間この温度で保持した。溶解物を、50Lの水に溶解した4,017gの水酸化カリウムを含有しているナルゲン(Nalgene)タンクに注入した。溶解物の添加の後20分間、混合物を撹拌した。この反応を同一スケールで繰り返し、第2の溶解物を同水酸化カリウム溶液に注入した。混合物を完全に撹拌した後、スターラーを止め、混合物を安定させた。次いで、この混合物をセライトのパッド(4,200g)で濾過した((スベリン酸の両端におけるアニリンによる攻撃からの)中性副生成物を除去するために生成物を濾過した。濾液は、生成物の塩を含有しており、未反応のスベリン酸の塩も含有していた。濾過が極めて遅く、数日かかったため、混合物を安定させた)。5Lの濃塩酸を使用して濾液を酸性化し;混合物を1時間撹拌し、次いで、一晩安定させた。生成物を濾過により収集し、脱イオン水(4×5L)により漏斗上で洗浄した。湿濾過ケークを、44Lの脱イオン水を含む72Lのフラスコに置き、混合物を50℃に加熱し、熱濾過により固体を単離した(所望の生成物は、熱水へのはるかに大きな溶解度を有するスベリン酸により汚染されていた。スベリン酸を除去するために、数回のホットトリチャレーション(hot triturations)を行った。スベリン酸の除去をモニタリングするため、生成物をNMR[DDMSO]によりチェックした)。ホットトリチャレーションを50℃で44Lの水を用いて繰り返した。生成物を濾過により再び単離し、4Lの熱水で濯いだ。これを、真空源としてナッシュ(Nash)ポンプを使用して65℃の真空オーブンで週末にかけて乾燥させた(ナッシュポンプは、液体環ポンプ(水)であり、約29inHg(約0.1MPa)の真空を吸引する。水の除去を補助するために間欠的なアルゴンパージを使用した);4,182.8gのスベラニル酸が入手された。
【0155】
生成物はまだ少量のスベリン酸を含有しており;従って、一度に約300gの生成物を使用して、数回に分けて、65℃でホットトリチャレーションを行った。各部分を濾過し、付加的な熱水(合計約6L)で完全に濯いだ。これを、全バッチを精製するために繰り返した。これにより、生成物からスベリン酸が完全に除去された。固体生成物をフラスコで合わせ、6Lのメタノール/水(1:2)と共に撹拌し、次いで、濾過により単離し、週末にかけてフィルター上で空気乾燥させた。これをトレーに置き、ナッシュポンプ及びアルゴンブリード(bleed)を使用して、65℃の真空オーブンで45時間乾燥させた。最終生成物は、3,278.4gの重量を有する(収率32.7%)。
【0156】
工程2−スベラニル酸メチルの合成
【0157】
【化2】

【0158】
メカニカルスターラー及びコンデンサーが取り付けられた50Lのフラスコに、前工程からの3,229gのスベラニル酸、20Lのメタノール、及び398.7gのダウエックス(Dowex)50WX2−400樹脂を置いた。この混合物を加熱還流させ、18時間、還流下で保持した。この混合物を、樹脂ビーズを除去するために濾過し、濾液を、ロータリーエバポレーター上で残さにした。
【0159】
ロータリーエバポレーターからの残さを、コンデンサー及びメカニカルスターラーが取り付けられた50Lのフラスコに移した。このフラスコに、6Lのメタノールを添加し、溶液を得るために混合物を加熱した。次いで、2Lの脱イオン水を添加し、加熱を止めた。撹拌された混合物を冷却させ、次いで、フラスコを氷浴中に置き、混合物を冷却した。固体生成物を濾過により単離し、濾過ケークを4Lの冷メタノール/水(1:1)で濯いだ。生成物を、合計64時間、ナッシュポンプを使用して、真空オーブンで45℃で乾燥させ、2,850.2g(収率84%)のスベラニル酸メチル、CSL Lot#98−794−92−3 1を得た。
メカニカルスターラー、熱電対、及び不活性雰囲気の投入口を有する50Lのフラスコに、1,451.9gのヒドロキシルアミン塩酸塩、19Lの無水メタノール、及び3.93Lのを添加した。
【0160】
工程3−粗SAHAの合成
【0161】
【化3】

30%ナトリウムメトキシドメタノール溶液。次いで、フラスコに、2,748.0gのスベラニル酸メチル、続いて1.9Lの30%ナトリウムメトキシドメタノール溶液を投入した。この混合物を、16時間10分、攪拌した。反応混合物のおよそ半分を、反応フラスコ(フラスコ1)からメカニカルスターラーが取り付けられた50Lのフラスコ(フラスコ2)に移した。次いで、27Lの脱イオン水をフラスコ1に添加し、混合物を10分間撹拌した。pHメーターを使用してpHを計測したところ;pHは11.56であった。100mlの30%ナトリウムメトキシドメタノール溶液の添加により、混合物のpHを12.02に調整し;これにより、透明な溶液が得られた(この時点での反応混合物は、少量の固体を含有していた。pHは、生成物が沈殿するであろう透明な溶液を得るために調整された)。フラスコ2内の反応混合物を同様にして希釈し;27Lの脱イオン水を添加し、100mlの30%ナトリウムメトキシド溶液の混合物への添加によりpHを調整し、12.01のpH(透明な溶液)を得た。
【0162】
生成物を沈殿させるため、各フラスコ内の反応混合物を、氷酢酸の添加により酸性化した。フラスコ1は、8.98という最終pHを有し、フラスコ2は、8.70という最終pHを有していた。両方のフラスコからの生成物を、ブフナー(Buchner)漏斗及び濾布を使用した濾過により単離した。濾過ケークを15Lの脱イオン水で洗浄し、漏斗をカバーし、15.5時間、生成物を真空下で漏斗上で部分乾燥させた。生成物を除去し、5つのガラストレーに置いた。トレーを真空オーブン内に置き、生成物を一定の重量にまで乾燥させた。第1の乾燥期間は、アルゴンブリードと共に真空源としてナッシュポンプを使用して、60℃で22時間行った。トレーを真空オーブンから除去し、計量した。トレーをオーブンに戻し、真空源として油ポンプを使用して、アルゴンブリードなしで、さらに4時間10分、生成物を乾燥させた。材料をダブル4−ミル(double 4−mill)ポリエチレンバッグにパッケージングし、プラスチックアウターコンテナ(outer container)に置いた。サンプリング後の最終重量は2633.4gであった(95.6%)。
【0163】
工程4−粗SAHAの再結晶化によるSAHA I型の調製
粗SAHAを、メタノール/水から再結晶化した。メカニカルスターラー、熱電対、コンデンサー、及び不活性雰囲気の投入口を有する50Lのフラスコに、結晶化させる粗SAHA(2,525.7g)を投入し、続いて、2,625mlの脱イオン水及び15,755mlのメタノールを投入した。溶液を得るため、材料を加熱還流させた。次いで、5,250mlの脱イオン水を反応混合物に添加した。加熱を止め、混合物を冷却させた。フラスコを安全に取り扱うことができるよう十分に(28℃)混合物が冷却された時点で、フラスコを加熱マントルから除去し、冷却槽として使用するためのタブ内に置いた。混合物を−5℃に冷却するために、氷/水をタブに添加した。混合物を2時間この温度未満で保持した。生成物を、濾過により単離し、濾過ケークを1.5Lの冷メタノール/水(2:1)で洗浄した。漏斗をカバーし、生成物を、1.75時間、真空下で部分乾燥させた。生成物を漏斗から除去し、6つのガラストレーに置いた。トレーを真空オーブン内に置き、真空源としてナッシュポンプを使用し、アルゴンブリードを使用して、60℃で64.75時間、生成物を乾燥させた。トレーを計量のため除去し、次いで、オーブンに戻し、一定の重量を得るために60℃でさらに4時間乾燥させた。第2の乾燥期間の真空源は油ポンプであり、アルゴンブリードは使用しなかった。材料をダブル4−ミルポリエチレンバッグにパッケージングし、プラスチックアウターコンテナに置いた。サンプリング後の最終重量は、2,540.9gであった(92.5%)。
【0164】
他の実験において、以下の条件を使用して、粗SAHAを結晶化した:
【0165】
【表1】

これらの反応条件全てで、SAHA多形Iが生成した。
【0166】
(実施例1A)
SAHA I型の作製
工程1 8−アニリノ−8−オキソオクタン酸;スベラニル酸(化合物3)
スベリン酸(化合物1、174.2g、1.0モル)、アニリン(化合物2、85.8から94.9g)、及びトルエン(0.1から0.2L)を合わせ、加熱還流させ、最短60時間還流させる。10%水酸化ナトリウム溶液でpHを≧11に調整することにより、還流下で、反応を中止させる。水相を分離する。有機層を、トルエン(0.11から0.13L)及び水(0.3から0.4L)と合わせ、水層を分離する。抽出からの水層及びトルエン(0.11から0.13L)を合わせ、安定させ、次いで分離する。水層を、60から70℃でトルエン(0.2から0.3L)で2回抽出する。水層を、必要とされるだけの塩酸及び10%水酸化ナトリウム溶液を使用して、20から30℃で5.8から6.2のpHに調整する。バッチを濾過し、冷水(0.2から0.3L)で洗浄し、次いで冷イソプロパノールで洗浄する。スベラニル酸を得るため、真空下で最高65℃で湿ケークを乾燥させる。
【0167】
工程2 8−アニリノ−8−オキソオクタン酸メチル;スベラニル酸メチル(化合物4)
スベラニル酸(化合物3、249.3g、1.0モル)及びメタノール(0.4から0.5L)を合わせ、45から55℃に加熱する。塩酸を使用してpHを≦2に調整し、反応が完了するまで、バッチ温度を45から55℃に維持する。脱イオン水(0.1から0.2L)で反応を中止させる。バッチを25から30℃に冷却し、結晶化を誘導するためにシーディングし、次いで0から10℃に冷却する。バッチを濾過し、0から10℃で50:50(v/v)メタノール/水溶液(0.28から0.34L)でケークを洗浄する。スベラニル酸メチルを得るため、真空下で最高46℃で湿ケークを乾燥させる。
【0168】
工程3 N−ヒドロキシ−N’−フェニルオクタンジアミド;ボリノスタット(化合物5)
スベラニル酸メチル(化合物4、263.3g、1.0モル)及び2Mヒドロキシルアミン遊離塩基溶液(0.8から1.0L)を合わせる。最高20℃にバッチを維持しながら、必要とされるだけのナトリウムメトキシドメタノール溶液で、見かけのpHを≧10.5に調整する。バッチを最高20℃に維持し、ナトリウムメトキシドメタノール溶液を使用して見かけのpHを≧10.5に維持しながら、バッチをエージングする。エージの間、ヒドロキシルアミン遊離塩基溶液(0.5から0.6L)を添加し、反応が完了するまで、最高20℃及び見かけのpH≧10.5にバッチを維持する。バッチ温度を20から35℃に維持しながら、水(0.9から1.1L)にバッチを添加することにより反応を中止させ、バッチの水含有量を35から45%に調整する。必要とされるだけの氷酢酸及び炭酸ナトリウムを使用してpHを8.8から9.2に調整する。バッチを、5から10時間かけて0から10℃に冷却する。バッチを濾過し、ケークを0から10℃で55:45(v/v)メタノール/水(0.45から0.6L)で洗浄する。水含有量が≦35%になるまで、湿ケークを真空条件下に置く。
【0169】
ボリノスタット粗(264.32g、1.0モル)湿ケークを、変性エタノール(1308から1599g)及び水(167から204g)と合わせる。ヒドロキシルアミン塩酸塩(>9m当量)及びナトリウムメトキシドメタノール溶液(>9m当量)を、スラリーに添加し、バッチを70から80℃に加熱する。溶液を濾過し、次いで0から10℃にまで徐々に冷却することにより結晶化する。バッチを濾過し、ケークを冷4:1(v/v)変性エタノール/水で洗浄する。真空下で最高45℃で湿ケークを乾燥させる。
【0170】
工程4 N−ヒドロキシ−N’−フェニルオクタンジアミド−ボリノスタット(微細)(化合物6)
ボリノスタット(化合物5,264.3g、1.0モル)を、50:50(v/v)エタノール/水溶液(最少2.8L)でスラリー化する。7から30℃にバッチ温度を維持しながら、ボリノスタットスラリーを、25から45μmの平均径にまで湿式粉砕する。最終スラリーを濾過し、湿ケークを0から40℃の水(最少0.8L)で洗浄する。ボリノスタット(微細)薬物物質を得るため、0.2%(w/w)の最大水含有量になるまで、真空下で最高55℃で湿ケークを乾燥させる。
【0171】
工程5 N−ヒドロキシ−N’−フェニルオクタンジアミド−ボリノスタット(粗大)(化合物7)
ボリノスタット(化合物5,264.3g、1.0モル)を50:50(v/v)エタノール/水溶液(4.9から5.5L)でスラリー化する。最低15psigの圧力下で、スラリーを溶解させるため65から70℃に加熱し、次いで60から64℃に冷却する。バッチ温度を維持しながら、シードスラリーをバッチに移す。バッチを61から63℃で最短2時間エージングする。ジャケット温度を調節することにより、バッチを3工程で冷却する:(1)毎時0.35から0.78℃で55℃にする、(2)毎時0.83から2.00℃で45℃にする、及び(3)毎時2.00から4.44℃で−5から25℃にする。最終スラリーを約1時間−5から25℃でエージングし、次いで濾過する。湿ケークを水(最少0.8L)で洗浄する。ボリノスタット(微細)薬物物質を得るため、真空下で最高55℃で湿ケークを乾燥させる。
【0172】
ボリノスタット(微細)乾ケーク(97.8から116.3g、0.37から0.44mol)及び50:50(v/v)エタノール/水溶液(1.0から1.2L)を合わせることにより、シードスラリーを調製する。最低15psigの圧力下で、シードスラリーを62から66℃に加熱し、約0.5時間エージングし、次いで60から64℃に冷却する。
【0173】
(実施例2)
1:1エタノール/水における湿式粉砕された小粒子の作製
SAHA多形I結晶を、50mg/グラムから150mg/グラム(結晶/溶媒混合物)の範囲のスラリー濃度で、1:1(体積)EtOH/水溶媒混合物に懸濁させた。温度を室温に維持しながら、SAHAの平均粒径が50μm未満になり、95%が100μm未満になるまで、20から30m/sでスーパーファインブレードを有するIKA−ワークス(Works)ローター(Rotor)−ステーター(Stator)高剪断ホモジナイザーモデルT50で、スラリーを湿式粉砕した。湿式粉砕されたスラリーを濾過し、室温で1:1 EtOH/水溶媒混合物で洗浄した。次いで、湿ケークを40℃で乾燥させた。湿式粉砕された材料の最終平均粒径は、下記のマイクロトラック(Microtrac)法により測定されるように50μm未満であった。
【0174】
粒径は、マイクロトラック社(Microtrac Inc.)製のSRA−150レーザー回析粒径分析器を使用して分析した。この分析機はASVR(Automatic Small Volume Recirculator)を装備していた。0.25wt%レシチンISOPAR G溶液を分散液として使用した。各試料について3回のランを記録し、平均分布を計算した。粒径分布(PSD)は体積分布として分析された。体積に基づく平均粒径及び95%<値を報告した。
【0175】
(実施例2A)
1:1エタノール/水における湿式粉砕された小粒子の大規模作製
56.4kgのSAHA多形I結晶を、20から25℃で610kg(SAHA 1kg当たり10.8kgの溶媒)の200プルーフ純エタノール及び水の50%vol/vol溶液(「50/50 EtOH/水」)に投入した。スラリー(およそ700L)を、定常状態の粒径分布に達するまで、スーパーファインジェネレーターを有するIKAワークス湿式ミルセットに再循環させた。条件は以下の通りであった:DR3−6、23m/sローターチップスピード、30から35Lpm、3gen、およそ70ターンオーバー(ターンオーバーとは1genに通す1バッチ体積である)。
【0176】
【数2】

【0177】
湿ケークを濾過し、水(計3kg/kg、およそ170kg)で洗浄し、40から45℃で真空乾燥させた。次いで、乾ケークを篩過し(595μmスクリーン)、「微細API」としてパックした。
【0178】
(実施例3)
1:1エタノール/水における平均粒径150μmの大結晶の成長
25グラムのSAHA多形I結晶及び388グラムの1:1エタノール/水溶媒混合物を、ガラスアジテーターを有する500mlのジャケット付き樹脂ケトルに投入した。スラリーを、実施例2の工程に従い、室温で、50μm未満の粒径にまで湿式粉砕した。固体のおよそ85%を溶解させるため、湿式粉砕されたスラリーを65℃に加熱した。加熱されたスラリーを、およそ15%のシードベッドを確立するため、1から3時間65℃でエージングした。スラリーを、20psigの圧力下で、400から700rpmのアジテータースピード範囲で、樹脂ケトル内で混合した。
【0179】
次いで、バッチを徐々に5℃にまで冷却した:10時間で65℃から55℃にし、10時間で55℃から45℃にし、8時間で45℃から5℃にした。5mg/g未満、特に3mg/gの標的上清濃度に達するため、冷却されたバッチを1時間5℃でエージングした。バッチスラリーを濾過し、5℃で1:1 EtOH/水溶媒混合物で洗浄した。湿ケークを真空下で40℃で乾燥させた。乾ケークは、マイクロトラック法によると、およそ150μmの最終粒径を有しており、95%が粒径<300μmであった。
【0180】
(実施例3A)
1:1エタノール/水における大結晶の成長
13.4kgのボリノスタット及び134kgのエタノール及び水の1:1(v/v)溶液を合わせる。得られたスラリーを、95%の平均径が<100μmになるまで湿式粉砕する。さらに20kgの1:1溶液を添加し、バッチを20psigの窒素圧力下で69から71℃に加熱し、シードベッドを確立するため3時間エージングする。20psigの圧力を維持しながら、バッチを8時間かけて64から66℃に冷却し;4時間かけて59から61℃に冷却し;4時間かけて49から51℃に冷却し;次いで6時間かけて14から16℃に冷却する。バッチを濾過し、ケークを計およそ80kgの水で洗浄する。バッチを最高55℃で真空乾燥させる。
【0181】
(実施例4)
1:1エタノール/水における140μmの平均粒径を有する大結晶の成長
7.5グラムのSAHA多形I結晶及び70.7グラムの1:1 EtOH/水溶媒混合物を、シード調製容器(500mlのジャケット付き樹脂ケトル)に投入した。シードスラリーを、上記実施例2の工程に従い、室温で、50μm未満の粒径にまで湿式粉砕した。シードスラリーを63から67℃に加熱し、30分から2時間かけてエージングした。
【0182】
別のクリスタライザー(1リットルのジャケット付き樹脂ケトル)に、17.5グラムのSAHA多形I結晶及び317.3グラムの1:1 EtOH/水溶媒混合物を投入した。まず、全ての固体SAHA結晶を溶解させるため、クリスタライザーを67から70℃に加熱し、次いで、わずかに過飽和の溶液を維持するため、60から65℃に冷却した。
【0183】
シード調製容器からのシードスラリーをクリスタライザーに移した。スラリーを、20psigの圧力下で、実施例3と同様のアジテータースピード範囲で樹脂ケトル内で混合した。バッチスラリーを、実施例3における冷却プロファイルに従い、5℃にまで徐々に冷却した。バッチスラリーを濾過し、5℃で1:1 EtOH/水溶媒混合物で洗浄した。湿ケークを真空下で40℃で乾燥させた。乾ケークは、約140μmの最終粒径を有し、95%が粒径<280μmであった。
【0184】
(実施例4A)
1:1エタノール/水における大結晶の大規模成長
実施例2Aからの21.7kgの「微細API」乾ケーク(全体の28.6%、0.40当量、w.r.t基礎)及び213kgの50/50 EtOH/水溶液(3.93kgの溶媒/kg SAHA基礎)を、容器#1−シード調製タンクに投入した。54.2kgのSAHA多形I結晶(全体の71.4%、1.00当量、基礎)及び990kgの50/50 EtOH/水(18.24kgの溶媒/kg SAHA基礎)を、容器#2−クリスタライザーに投入した。クリスタライザーを20から25psigに加圧し、結晶SAHAを完全に溶解させるため、この圧力を維持しながら、内容物を67から70℃に加熱した。次いで、溶液を過飽和するため、内容物を61から63℃に冷却した。クリスタライザーにおけるエージング過程の間、シード調製タンクを20から25psigに加圧し、シード固体のおよそ1/2を溶解させるため、この圧力を維持しながら、シードスラリーを64℃に加熱し、30分間エージングし、次いで61から63℃に冷却した。
【0185】
両方の容器の温度を維持しながら、熱シードスラリーを、シード調製タンクからクリスタライザー(フラッシュなし)に迅速に移した。クリスタライザー内の窒素圧を20から25psigに回復させ、バッチを61から63℃で2時間エージングした。バッチを、26時間かけて、直線的な3工程で5℃にまで冷却した:(1)10時間かけて62℃から55℃にする;(2)6時間かけて55℃から45℃にする;及び(3)10時間かけて45℃から5℃にする。バッチを1時間エージングし、次いで、湿ケークを濾過し、水(計3kg/kg SAHA、およそ163kg)で洗浄し、40から45℃で真空乾燥させた。この再結晶化過程からの乾ケークを「粗大API」としてパックする。粗大API及び微細APIを、70/30の比率で混和した。
【0186】
クリスタライザー内のSAHA多形I結晶は、72kgのエタノール及び水の9:1(v/v)溶液に8.7kgのSAHAを添加することにより調製され得る。25gのヒドロキシルアミン塩酸塩を投入し、続いて350gの1N水酸化ナトリウム水溶液を投入する。得られたスラリーを69.5から71.5℃に加熱し、バッチを溶解させ、O−スベラニリンSAHA不純物のレベルを低下させるため、45分間エージングする。バッチを2時間かけて4℃にまで冷却し、2時間0から10℃でエージングする。バッチを濾過し、計およそ60kgの水でケークを洗浄する。8.0kgのボリノスタットを作製するため、バッチを最高55℃で真空乾燥させる。
【0187】
(実施例5)
湿式粉砕された小粒子バッチ288の作製
SAHA多形I結晶を、50mg/グラムから150mg/グラム(結晶/溶媒混合物)の範囲のスラリー濃度で、エタノール水溶液(体積で100%エタノールから50%エタノール水溶液)に懸濁させた。温度を室温に維持しながら、SAHAの平均粒径が50μm未満になり、95%が100μm未満になるまで、20から35m/sで、スーパーファインブレードを有するKA−ワークスローター−ステーター高剪断ホモジナイザーモデルT50で、スラリーを湿式粉砕した。湿式粉砕されたスラリーを濾過し、室温でEtOH/水溶媒混合物で洗浄した。次いで、湿ケークを40℃で乾燥させた。湿式粉砕された材料の最終平均粒径は、既に記載されたようなマイクロトラック法により測定されるように、50μm未満であった。
【0188】
(実施例6)
大結晶バッチ283の成長
24グラムのSAHA多形I結晶及び205mlの9:1エタノール/水溶媒混合物を、ガラスアジテーターを有する500mlのジャケット付き樹脂ケトルに投入した。スラリーを、実施例1の工程に従い、室温で、50μm未満の粒径にまで湿式粉砕した。固体のおよそ85%を溶解させるため、湿式粉砕されたスラリーを65℃に加熱した。加熱されたスラリーを、およそ15%のシードベッドを確立するため、1から3時間64から65℃でエージングした。スラリーを、100から300rpmのアジテータースピード範囲で混合した。
【0189】
次いで、バッチを、一つの加熱−冷却サイクルにより20℃にまで冷却した:2時間で65℃から55℃にし、1時間55℃、およそ30分かけて55℃から65℃にし、1時間65℃でエージング、5時間で65℃から40℃にし、4時間で40℃から30℃にし、6時間かけて30℃から20℃にした。冷却されたバッチを、1時間20℃でエージングした。バッチスラリーを濾過し、20℃で9:1 EtOH/水溶媒混合物で洗浄した。湿ケークを真空下で40℃で乾燥させた。乾ケークは、マイクロトラック法によると、およそ150μmの最終粒径を有し、95%が粒径<300μmであった。
【0190】
(実施例7)
X線粉末回析分析
実施例1から6に従って入手されたSAHA I型、及び下記表2に詳述される方法により調製されたSAHA IIからV型に対して、X線粉末回析分析を実施した。
【0191】
【表2】

【0192】
X線回折分析:
製造業者の説明に従い、標準作動手順(Standard Operating Procedure)EQ−27,Rev.12により作動させたシーメンス(Siemens)D500自動粉末回折計(Automated Powder Diffractometer)(Instrument ID No.LD−301−4)で試料を分析した。回折計には、50kV、40mAで作動するグラファイトモノクロメーター及びCu(λ=1.54A)X線源が装備されている。NBS雲母標準(SRM675)を使用して、2シータ較正を実施する。以下の装置パラメーターを使用して試料を分析した:
測定範囲:4から40 2シータ
ステップ幅:0.05Å
1ステップ当たりの測定時間:1.2秒
【0193】
試料調製は、ゼロバックグラウンドサンプルプレート(#1)を使用して、製造業者の説明に従い、標準作動手順MIC−7,Rev.2(Section 3.1.2)により実施した。均質性を保証するため、乳鉢及び乳棒で軽く摩砕した後、試料を加工した。
【0194】
図7AからEは、SAHA IからV型についてのX線ディフラクトグラムを示す。X線ディフラクトグラムについての対応するデータを、下記表3から7に提示する:
【0195】
【表3】

【0196】
【表4】

【0197】
【表5】

【0198】
【表6】

【0199】
【表7】

【0200】
SAHA I型のX線粉末回折パターンを、銅Kα線(波長1.542Å)を有するエクスパートプロフィリップス(X’PERT Pro Phillips)X線回折計を使用しても収集した。顕著な2θ位置を、d−面間隔と共に、表3Aに要約する。
【0201】
【表8】

【0202】
(実施例8)
融点分析
融点分析をSAHA IからV型に対して実施した。
【0203】
【表9】

【0204】
(実施例9)
示差走査熱量測定分析
示差走査熱量測定(DSC)分析をSAHA IからV型に対して実施した。
【0205】
装置:
使用された標準アルミニウム(Standard Aluminum)DSCサンプルパン及びカバーは、パーキンエルマー(Perkin Elmer)(パート#0219−0041、又は等価物)であった。
【0206】
使用されたサンプルパンクリンパーアクセサリー(Sample Pan Crimper Accessory)は、パーキンエルマーの標準アルミニウムパンクリンパー又は等価物であった。
【0207】
使用された示差走査熱量計は、パーキンエルマーDSC6又は等価物であった。
【0208】
使用された微量天秤(Micro Balance)は、パーキンエルマーAD−4オートバランス(Autobalance)又は等価物であった。
【0209】
ソフトウェア−ピリス(Pyris)又は他の適切な熱分析ソフトウェア。
【0210】
示差走査熱量計条件:
パージガス 窒素(約20mL/分)
冷却剤 水道水
オーブン温度プログラム 50℃から、10.0℃/分で、観察された融解温度より少なくとも30℃上まで加熱
【0211】
データ解釈:
ピーク温度及び融解開始温度を決定した。複数の融解温度が存在することを示すために、ピークの形を観察した。
【0212】
複数の試料の結果を、表9に要約する:
【0213】
【表10】

【0214】
DSC分析が実施される加熱の速度、即ち、走査速度、使用される較正標準、装置較正、相対湿度、及び化学的純度に依って、分析されたそれぞれのSAHAの吸熱(endoterms)は変動し得る。装置に依っても、所定のサンプルについて観察される吸熱が異なるかもしれない;しかしながら、装置が同様に較正された場合には、これは、一般に、本明細書において定義された範囲内にあるであろう。
【0215】
(実施例10)
コンピューターシミュレーションモデルの開発
モデル開発手順
カプセル化の間、SAHA結晶は、タンピングピンの圧力から分解を受ける。SAHAの溶解及び分解のモデリングの最初のパートは、溶解及び分解のモデルの開発であった。分解、及び続く分解した結晶の溶解の計算、並びに異なるバッチについてのモデルパラメーターの評価及び最適化のため、両方のモデルを組み合わせた。
【0216】
開発手順は、以下のように要約され得る。まず、カプセル化前のSAHA I型結晶の粒径分布(PSD)及び溶解プロファイルを測定した。多分散粉末の溶解のためのモデルを、多分散粉末及び結晶に関する固有溶解の抵抗性[32、33]及び薄膜抵抗性(film resistance)[34]を組み合わせることにより開発した。溶解モデルパラメーターには、固有溶解定数及び非球状結晶の形状係数が含まれる。溶解モデルのパラメーターは、モデル溶液の、SAHA I型結晶の実験的溶解プロファイルへのフィッティングにより評価した。
【0217】
賦形剤によるSAHA結晶のカプセル化を実施した。カプセル内容物の密度を、各実験条件について評価した。カプセルからのSAHAの溶解プロファイルを測定した。カプセル化前のSAHA結晶の溶解と比較して、溶解の加速が観察された。溶解の加速は、カプセル化の際の結晶の分解を確認する。
【0218】
カプセル化の際のSAHA結晶の分解モデルを開発した[35、36]。分解モデルパラメーターには、分解速度定数及び分解速度指数が含まれる。分解モデルを、分解速度定数及び分解速度指数の組み合わせを仮定して、カプセル化の際の分解の後のPSDの計算のために利用した。溶解モデルを、計算されたPSDを有する破壊された結晶の溶解プロファイルの計算のために利用した。算出されたSAHA溶解プロファイルを、カプセルについての実験的なSAHA溶解プロファイルと比較された。最適なフィットが見い出されるまで、このパラグラフ内の手順を、分解速度定数及び指数の異なる組み合わせについて繰り返した。異なるPSDを有するSAHA結晶の異なるバッチ、及び異なるカプセル化条件についても、手順を繰り返した。
【0219】
異なるPSDを有する全てのバッチの溶解を十分に記載することができる最適な溶解モデルパラメーターが見い出された。このパラメーターを、カプセル化前後両方のSAHA結晶の溶解の予測のために使用した。最適な分解速度指数が見い出され、全てのバッチについての分解モデルにおいて使用され得た。
【0220】
各バッチ及び各カプセル化条件についての最適な分解速度定数は、所定のカプセル化条件におけるカプセル密度と関係していた。図11に例示されるように、全ての関連するカプセル化条件及びバッチについて、ほぼ直線的な依存性が、増加するカプセル密度と分解速度定数との間に見い出された。
【0221】
予測手順
分解及び溶解のモデルの開発、並びにモデルパラメーター最適化の後、組み合わせられた分解及び溶解のモデルは、新たなSAHAバッチの溶解プロファイルの予測、及びカプセル化条件の最適化のために使用され得る。必要とされる情報は、新たなバッチのPSDのみである。
【0222】
予測手順は、以下のように要約され得る。まず、カプセル化前の新たなバッチのPSDを測定し、カプセル密度を仮定した。カプセル密度と分解速度定数との相関を、分解速度定数の計算のために使用した。
【0223】
算出された分解速度定数を、最適な分解速度指数と共に、カプセル化の際の分解をシミュレートするために分解モデルに導入し、カプセル化後の破壊された結晶の新たなPSDを算出した。
【0224】
新たなPSDを溶解モデルに導入し、カプセルからのSAHA溶解プロファイルをシミュレートした。シミュレートされた溶解プロファイルを、標的参照プロファイルと比較した。シミュレートされたプロファイルと標的との最適な適合が見い出されるまで、新たなカプセル密度についてこの手順を繰り返した。最適なカプセル密度は、直接、最適なカプセル化条件を決定する。
【0225】
(実施例11)
SAHA結晶の混和
上記の予測手法は、参照のものと類似した溶解プロファイルを入手するための異なる結晶化バッチの混和比を決定するために使用され得る。
【0226】
大結晶バッチ283と湿式粉砕された結晶バッチ288との混和比の最適化
より大きな結晶バッチ283と湿式粉砕された結晶バッチ288との最適な混和物の予測のため、数学モデルを使用した。目標は、まず、所定の条件(カプセル密度)で調製されたカプセルについての最適な混和物を見出し、次いで、異なるカプセル化条件についての最も頑強な混和物を見出すことであった。カプセル密度=0.8についての最適化の例が、図8に示される。異なるカプセル密度についての予測されたF2値の依存性は、図9に示される。図9は、予測されたF2試験値が、カプセル密度の減少と共に増加することを示している(カプセル密度の減少は、分解の程度の減少を引き起こす)。湿式粉砕された結晶は、カプセル化過程の際の分解をほとんど示さなかった。最も頑強な混和物組成物(異なる条件で調製されたカプセルの間の最低のF2変動)は、30%のバッチ288結晶及び70%のバッチ283結晶を含有していることが結論付けられた。
【0227】
30%のバッチ288結晶及び70%のバッチ283結晶を含有している混和物から製造されたカプセルについての実験的な溶解曲線は、図10に提示される。
【0228】
結晶化バッチの混和
類似のコンピューターシミュレーションプロセスが、異なる結晶化バッチからのSAHA結晶の混和について使用され得る。異なるバッチ結晶の粒径に依って、各バッチの分解定数が考慮に入れられるであろう。上記コンピューターシミュレーションプロセスを使用して、21.2%のバッチ1002DRW、18.0%のバッチ1008D、34.4%のバッチ1002E、10.0%のバッチ1004E、及び16.4%のバッチ1006Dを混和することにより、カプセルロット0683_007A001を作製した。
【0229】
バッチ1001E及びバッチ1003EのSAHA多形I結晶を、コンピューターシミュレーションの補助なしで混和し、2:1の比率で混和して、カプセルロット6001.004を作製した。
【0230】
(実施例12)
SAHA結晶の粉末混和
粉末混和
25.0Kgの混和されたSAHA多形I結晶を、まず、30メッシュスクリーン(600μm)で篩過した。次いで、得られたSAHA、11.1Kgの微晶質セルロース(Avicel PH−101)、及び1.13Kgのクロスカルメロースナトリウムを、141.6L V−ブレンダー、113L トート(Tote)ブレンダー、又はもう一つの比較可能なサイズ及び型のブレンダーに負荷した。V−ブレンダーの場合には、得られた材料を、およそ25rpmでおよそ8分間、均質になるまで混合した。トートブレンダーの場合には、得られた材料を、およそ12rpmでおよそ17分間、均質になるまで混合した。
【0231】
粉末混和物への滑沢剤添加
293.0gのステアリン酸マグネシウム(植物グレード)を、30メッシュスクリーン(600μm)で篩過し、混和された粉末混合物と共にV−ブレンダーへ負荷した。得られた混合物を、およそ25rpmでおよそ8分間、均質になるまで混和した。293.0gのステアリン酸マグネシウム(植物グレード)を、60メッシュスクリーン(250μm)でも篩過し、混和された粉末混合物と共にトートブレンダーへ負荷した。得られた混合物を、およそ12rpmでおよそ17分間、均質になるまで混和した。
【0232】
表10は、カプセル内の原材料の物理的特性を要約したものである。
【0233】
【表11】

【0234】
(実施例13)
SAHAカプセルのカプセル化
カプセル化/重量選別
滑沢剤が添加された粉末混合物を、H&Kカプセル充填機(encapsulator)、研磨型(polished)のタンピングピン又はクロミウムニトリドコーティング型のタンピングピン、及びサイズ「3」カプセルを使用して、所望のカプセル重量でカプセル化した。充填されたカプセルを、カプセルポリッシャーを使用して研磨し、次いで、重量ソーターを使用して適切な重量限界範囲へと重量選別した。表11はカプセル充填機の設定を要約したものである。
【0235】
【表12】

【0236】
最終的なSAHAカプセル組成を、表12に例示する。カプセルは、±10%標的カプセル重量というカプセル重量変動についての許容限界を使用して重量選別される。典型的なバッチにおけるカプセル重量変動は、標的カプセル重量の±4%である。
【0237】
【表13】

市場カプセルインク製剤はカラーコン(Colorcon)S−1−17762である。TSEなしのゼラチンカプセル。
**全重量に、硬ゼラチンカプセルシェルは含まれない。
【0238】
(実施例14)
SAHAカプセルの溶解速度の測定
硬ゼラチンカプセルからのSAHAの溶解速度は、USP溶解装置II(VK7000,Varian Inc.,Cary,NC)を使用して評価した。各カプセルをヘリカルシンカー(Quality Lab Accessories L.L.C.,Manville,NJ)に置き、37±0.5℃の温度で900mLの2.0%トゥイーン(TCI America,Portland,Oregon)を含有している容器に送った。パドルを100rpmで回転させ、35μmフルフローフィルター(full flow filters)(Varian Inc.,Cary,NC)が装備されたオートサンプラー(VK8000,Varian Inc.,Cary,NC)を介して、指定された時間間隔で、試料を引き出した。
【0239】
続いて、試料を、高速液体クロマトグラフィ(Agilent 1100 series,Agilent Technologies Inc.,Wilmington,DE)によりSAHAに関してアッセイした。クロマトグラフィ分析は、フェノメネックスルナC8(2)(100×4.6mm)5μm粒径カラム、1:1メタノール/0.1%トリフルオロ酢酸(試薬グレード、Fisher)の移動相、及び242nmの検出波長を使用して実施した。
【0240】
賦形剤、カプセルシェル、及び水分は、SAHAカプセル内容物の溶解速度に対する効果をほとんど示さなかった。しかしながら、SAHAの粒径分布は、溶解速度に影響を及ぼした。
【0241】
カプセル内容物からのSAHAの溶解速度プロファイルは、表13、14、及び図5に例示される。参照カプセルロット0683_004A001からのSAHAの溶解速度プロファイルは、図1に例示される。様々なカプセルバッチからのSAHAのF2因子を、カプセルロット0683_004A001を参照として使用して計算した。
【0242】
【表14】

【0243】
【表15】

【0244】
(実施例15)
SAHA APIの溶解速度の測定
カプセル化前の100mgのSAHA APIの溶解速度を、USP溶解装置II(VK7000,Varian Inc.,Cary,NC)を使用して評価した。約100mgのSAHAを、37±0.5℃の温度で900mLの2.0%トゥイーン(TCI America,Portland,Oregon)を含有している容器に送った。パドルを100rpmで回転させ、35μmフルフローフィルター(Varian Inc.,Cary,NC)が装備されたオートサンプラー(VK8000,Varian Inc.,Cary,NC)を介して、指定された間隔で試料を引き出した。
【0245】
続いて、試料を、高速液体クロマトグラフィ(Agilent 1100 series,Agilent Technologies Inc.,Wilmington,DE)によりSAHAに関してアッセイした。クロマトグラフィ分析は、フェノメネックスルナC8(2)(100×4.6mm)5μm粒径カラム、1:1メタノール/0.1%トリフルオロ酢酸(試薬等級、Fisher)の移動相、及び242nmの検出波長を使用して実施した。
【0246】
SAHA APIバッチの溶解速度プロファイルは、表15及び図6に例示される。
【0247】
【表16】

【0248】
(実施例16)
粒径分布の測定
混和されたSAHA結晶(活性薬学的成分(Active Pharmaceutical Ingredient):API)、滑沢剤が添加された製剤混和物、及びカプセル内容物の粒径測定は、RODOS粉末分散システムが装備されたシンパテックレーザー回析分析機(HELOS H1006,Clausthal−Zellerfeld,Germany)を介して決定した。
【0249】
およそ150mgの試料を手動でシステムに送り、0.1バールの気圧を使用して、レーザービームを通して噴霧した。データは、850又は1750μmの焦点距離レンズを使用して収集され、標的オブスキュレーション範囲は5から20%であった。フラウンホーファー光学モデルを利用して試料散乱パターンをデコンヴォルートし、生じた粒径分布を得た。
【0250】
SAHAカプセル内容物の粒径分布は、表16及び図3に例示される。カプセル化前のSAHA APIバッチの粒径分布は、表17及び図4に例示される。API288(30%湿式粉砕)及び283(70%大結晶)の混和物を使用して調製されたSAHAカプセルの粒径分布は、表18に例示される。湿式粉砕された結晶及び大結晶の異なる混和物を使用して調製されたカプセルからのSAHAの規準化された粒径分布は、表19及び図12に例示される。30%の湿式粉砕された結晶及び70%の大結晶を使用して調製されたロットC0666001 SAHAカプセルの粒径分布は、表20及び図13に例示される。30%の湿式粉砕された結晶及び70%の大結晶を使用して調製されたロットC0667001 SAHAカプセルの粒径分布は、表21及び図14に例示される。
【0251】
【表17】


【0252】
【表18】


【0253】
【表19】


【0254】
【表20】


【0255】
【表21】


【0256】
【表22】


【0257】
(実施例17)
患者研究
進行した段階の癌患者において実施されたこのフェーズI研究は、q.d.で400mg投与された経口ボリノスタットの安全性及び容認性、ボリノスタットの単回投与及び複数回投与の血清薬物動態(PK)、並びに単回投与ボリノスタットPKに対する標準的な高脂肪食の効果を査定した。1日目(絶食時)及び5日目(標準的な高脂肪食の後)に400mgのボリノスタットの単回投与を患者に与え、いずれの日にも、48時間の投与後PKサンプリングを行った。次いで、7から28日目に1日1回400mgのボリノスタットを患者に与えた(22日間投与)。28日目に、ボリノスタットを標準的な高脂肪食の後に投与し、投与後24時間PKサンプリングを行った。登録された患者23人のうち、1日目PKについては23人、5日目PKについては20人、28日目PKについては14人が評価可能であった。ボリノスタットの見かけのt1/2は短かった。高脂肪食は、吸収の程度の小さな増加、及びボリノスタットの吸収速度の中程度の減少に関連していた。大部分の対象において非絶食状態で検出可能なレベルのボリノスタットが血清中に観察される前に、少なくとも15分の遅延時間が観察され、Tmaxが遅れた。ボリノスタットの複数回投与の後の血清濃度時間プロファイルは、単回投与のものと類似していた。複数回投与後のトラフ濃度は、一般に、定量化限界より低く、これは短い見かけの最終t1/2と一致していた。結論として、進行した癌を有する患者へのボリノスタットの短期投与は一般によく容認された。ボリノスタットは、短いt1/2、単回投与と複数回投与との間で類似している血清濃度時間プロファイル、及び高脂肪食と共に投与された場合のわずかに減少した吸収速度を示した。
【0258】
【表23】

【0259】
実施形態を参照しながら具体的に本発明が示され記載されたが、記載された本発明の意味から逸脱することなく、これらの型及び詳細の様々な変化がなされ得ることが、当業者には理解されるであろう。むしろ、本発明の範囲は、以下の特許請求の範囲により定義される。
【0260】
【表24】




【特許請求の範囲】
【請求項1】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物であって、全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、前記医薬組成物。
【請求項2】
活性成分が結晶スベロイルアニリドヒドロキサム酸である、請求項1に記載の医薬組成物。
【請求項3】
結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含むX線回折パターンを特徴とする、請求項1の医薬組成物。
【請求項4】
結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0、及び43.3度2θの特徴的なピークを含むX線回折パターンを特徴とする、請求項1の医薬組成物。
【請求項5】
a=10.9Å、b=7.9Å、c=16.4Å、α=90°、β=97.8°、γ=90°の単位格子パラメーター、空間群P2/nを有する結晶スベロイルアニリドヒドロキサム酸である、請求項1の医薬組成物。
【請求項6】
結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、請求項1の医薬組成物。
【請求項7】
活性成分の量が約100mgである単一カプセルである、請求項1から6のいずれか一項の医薬組成物。
【請求項8】
各カプセル内の活性成分の量が約50mgである2個のカプセルである、請求項1から6のいずれか一項の医薬組成物。
【請求項9】
f2が60から100である、請求項8の医薬組成物。
【請求項10】
f2が80から100である、請求項8の医薬組成物。
【請求項11】
ゼラチンカプセル内に含有されている、請求項6に記載の医薬組成物。
【請求項12】
溶解プロファイルが、15分目に全活性成分の少なくとも45%ただし75%以下が溶解し、60分で全活性成分の少なくとも75%が溶解することで特徴づけられる、請求項4又は6の医薬組成物。
【請求項13】
溶解プロファイルが、15分目に全活性成分の少なくとも52から72%が溶解し、30分目に全活性成分の66から86%が溶解し、45分で全活性成分の73から93%が溶解することで特徴づけられる、請求項4又は6の医薬組成物。
【請求項14】
経口投与用の請求項4又は6の医薬組成物であって、
50から80重量%の活性成分としてのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物;
20から40重量%の微晶質セルロース;
1から10重量%のクロスカルメロースナトリウム;及び
0.1から5重量%のステアリン酸マグネシウム:
を含み、全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、前記医薬組成物。
【請求項15】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物であって、粒径についての%体積が、約90から110ミクロンから約120から250ミクロンまで増加し、約120から250ミクロンで、他の粒径についての%体積と比較して最も高い%体積であるピークに達し、及び前記ピークの後、減少する、前記医薬組成物。
【請求項16】
粒径についての活性成分の%体積が、約20から25ミクロンから約35から40ミクロンまで増加し、約35から40ミクロンでピークに達し、及び前記ピークの後、減少する、請求項15の医薬組成物。
【請求項17】
活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、請求項16の医薬組成物。
【請求項18】
約120mgから約600mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一経口単位剤形であって、約100mgの活性成分を含む前記単位剤形の一部が、図1に示される参照溶解プロファイルと比較して少なくとも70から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、前記単一経口単位剤形。
【請求項19】
活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、請求項18の単一経口単位剤形。
【請求項20】
約100mgの活性成分が、図2に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む結晶組成物を作製するプロセスであって、
(a)前記活性成分の少なくとも2つのバッチを結晶化する工程;及び
(b)前記結晶活性成分の少なくとも2つのバッチを混和して前記結晶組成物を作製する工程:を含む、前記プロセス。
【請求項21】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物を作製するプロセスであって、
全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有し、
(a)前記活性成分の少なくとも2つのバッチを結晶化する工程;
(b)前記結晶活性成分の少なくとも2つのバッチを混和する工程;及び
(c)混和されたバッチから前記医薬組成物を作製する工程:を含む、前記プロセス。
【請求項22】
結晶活性成分が、有機溶媒、水、又はこれらの混合物からの活性成分の結晶化から調製される、請求項21の方法。
【請求項23】
結晶活性成分が、メタノール、エタノール、アセトニトリル、イソプロパノール、及び酢酸のうちの一つ以上の有機溶媒、又は有機溶媒と水との混合物からの活性成分の再結晶化から調製される、請求項21の方法。
【請求項24】
結晶活性成分が、40から99%のエタノールと60から1%の水との混合物から調製される、請求項22の方法。
【請求項25】
混和比がコンピューターシミュレーションプログラムにより決定される、請求項21の方法。
【請求項26】
工程(c)が、混和された結晶活性成分の一部をカプセル化することにより実施される、請求項21の方法。
【請求項27】
活性成分が、スベロイルアニリドヒドロキサム酸である、請求項21から26のいずれか一項の方法。
【請求項28】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む結晶組成物を作製するプロセスであって、
約100mgの活性成分が、図2に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有し、
(a)結晶活性成分を粉砕して、結晶活性成分の少なくとも一つの第1のバッチを作製する工程;
(b)活性成分を結晶化して、結晶活性成分の少なくとも一つの第2のバッチを作製する工程;及び
(c)結晶活性成分の前記少なくとも一つの第1のバッチを前記少なくとも一つの第2のバッチと混和して、前記結晶組成物を作製する工程:を含む、前記プロセス。
【請求項29】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む医薬組成物を作製するプロセスであって、
全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有し、
(a)結晶活性成分を粉砕して、粉砕された結晶活性成分の少なくとも一つの第1のバッチを作製する工程;
(b)活性成分を結晶化して、粉砕された結晶活性成分よりサイズが大きい結晶活性成分の少なくとも一つの第2のバッチを作製する工程;
(c)結晶活性成分の前記少なくとも一つの第1のバッチを前記少なくとも一つの第2のバッチと混和する工程;並びに
(d)前記混和された第1及び第2のバッチから前記医薬組成物を作製する工程:を含む、前記プロセス。
【請求項30】
工程(b)における結晶化がシーディングを含む、請求項29の方法。
【請求項31】
工程(a)又は工程(b)の結晶活性成分が、有機溶媒、水、又はこれらの混合物からの活性成分の再結晶化から調製される、請求項29の方法。
【請求項32】
結晶活性成分が、メタノール、エタノール、アセトニトリル、イソプロパノール、及び酢酸のうちの一つ以上の有機溶媒、又は有機溶媒と水との混合物からの活性成分の再結晶化から調製される、請求項31の方法。
【請求項33】
結晶活性成分が、40から99%のエタノールと60から1%の水との混合物から調製される、請求項32の方法。
【請求項34】
結晶成分の第1のバッチが約60μm未満の平均粒径を有し、及び結晶活性成分の第2のバッチが約100から250μmの平均粒径を有する、請求項33の方法。
【請求項35】
結晶成分の第1のバッチが約25から45μmの範囲の平均粒径を有し、及び結晶活性成分の第2のバッチが約130から180μmの範囲の平均粒径を有する、請求項33の方法。
【請求項36】
工程(c)において、約40から95%の第2バッチ結晶活性成分が、約60から5%の第1バッチ粉砕結晶活性成分と混和される、請求項33の方法。
【請求項37】
工程(d)が、混和された結晶活性成分の一部をカプセル化することにより実施される、請求項29の方法。
【請求項38】
工程(b)が請求項57、65、及び66のいずれか一項のプロセスにより実施され、及び活性成分がスベロイルアニリドヒドロキサム酸である、請求項30の方法。
【請求項39】
活性成分がスベロイルアニリドヒドロキサム酸である、請求項29から37のいずれか一項の方法。
【請求項40】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物の再結晶化された活性成分を作製するプロセスであって、
(a)結晶活性成分を有機溶媒、水、又はこれらの混合物に供給して、スラリーを形成させる工程;
(b)スラリーを加熱して、2から30%の未溶解結晶活性成分を確立する工程;及び
(c)スラリーを冷却して、再結晶化された活性成分を入手する工程:を含む、前記プロセス。
【請求項41】
工程(a)における結晶活性成分が約60μm未満の平均粒径を有する、請求項40のプロセス。
【請求項42】
結晶活性成分が、
(i)有機溶媒、水、又はこれらの混合物へ結晶活性成分を添加して、シードスラリーを形成させる工程;及び
(ii)スラリーを湿式粉砕して、湿式粉砕された結晶活性成分を達成する工程:により調製される、請求項40の方法。
【請求項43】
結晶活性成分が、結晶活性成分を乾式粉砕する工程により調製される、請求項40の方法。
【請求項44】
結晶活性成分が、ヒドロキシルアミンの存在下で得られる、請求項40の方法。
【請求項45】
工程(a)において、約40から99%のエタノールと約60から1%の水との混合物が使用される、請求項40の方法。
【請求項46】
約40から95%の再結晶化された活性成分を、約60から5%の約60μm未満の平均粒径を有する結晶活性成分と混和することをさらに含む、請求項45の方法。
【請求項47】
工程(b)において、スラリーが約1から3時間、60から75℃に加熱される、請求項45の方法。
【請求項48】
工程(c)が、約15から72時間で、60ないし75℃から25ないし−5℃まで冷却することにより実施される、請求項47の方法。
【請求項49】
活性成分がスベロイルアニリドヒドロキサム酸である、請求項40から48のいずれか一項の方法。
【請求項50】
スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物の再結晶化された活性成分を作製するプロセスであって、
(a)第1の容器に有機溶媒、水、又はこれらの混合物に結晶活性成分を供給して、スラリーを形成させる工程;
(b)第1の容器内のスラリーを加熱して、結晶活性成分の実質的に全部を溶解させる工程;
(c)第1の容器内の工程(b)における内容物を溶液を過飽和する温度まで冷却する工程;
(d)工程(c)の内容物へ結晶活性成分のシードを添加する工程;
(e)工程(c)と同一の温度で工程(d)の内容物をエージングする工程;
(f)工程(e)における内容物を冷却して、再結晶化された活性成分を入手する工程:を含む、前記プロセス。
【請求項51】
工程(d)が、
(i)有機溶媒、水、又はこれらの混合物に結晶活性成分を供給して、シードスラリーを形成させる工程;
(ii)シードスラリーを加熱しエージングして、シードの一部を溶解させる工程;
(iii)工程(ii)における内容物を工程(c)と同一の温度まで冷却する工程;
(iv)工程(iii)におけるシードスラリーを第1の容器へ移す工程:を含む請求項50の方法。
【請求項52】
工程(i)の結晶活性成分が、約60μm未満の平均粒径を有する、請求項51の方法。
【請求項53】
工程(i)が、
(v)有機溶媒、水、又はこれらの混合物に結晶活性成分を添加して、シードスラリーを形成させる工程;
(vi)スラリーを湿式粉砕して、湿式粉砕された結晶活性成分を達成する工程:により調製される請求項51の方法。
【請求項54】
工程(i)が、
(v)結晶活性成分を乾式粉砕する工程;
(vi)乾式粉砕された結晶活性成分を、有機溶媒、水、又はこれらの混合物に添加して、シードスラリーを形成させる工程:により調製される請求項51の方法。
【請求項55】
工程(vi)の後、工程(d)の前に、湿式粉砕された結晶活性成分を単離、洗浄、及び乾燥する工程をさらに含む、請求項53の方法。
【請求項56】
工程(a)の結晶活性成分が、ヒドロキシルアミンの存在下で得られる、請求項50の方法。
【請求項57】
40から99%のエタノールと60から1%の水との混合物が、工程(a)及び(i)において使用される、請求項52の方法。
【請求項58】
49:51から51:49のエタノール対水比の混合物が、工程(a)及び(i)において使用される、請求項52の方法。
【請求項59】
工程(b)において、スラリーが、最低15psig(約0.1MPa)の圧力下で60から75℃に加熱される、請求項57の方法。
【請求項60】
工程(b)において、スラリーが、最低15psigの圧力下で67から70℃に加熱される、請求項58の方法。
【請求項61】
工程(c)において、内容物が60から65℃に冷却される、請求項59の方法。
【請求項62】
工程(c)において、内容物が61から63℃に冷却される、請求項60の方法。
【請求項63】
工程(ii)において、シードスラリーが62から66℃に加熱される、請求項61の方法。
【請求項64】
工程(ii)において、シードスラリーが64から65℃に加熱される、請求項62の方法。
【請求項65】
工程(f)が、約15から72時間で60ないし70℃から25ないし−5℃まで冷却することにより実施される、請求項63の方法。
【請求項66】
工程(f)が、約15から72時間で60ないし64℃から0ないし10℃まで冷却することにより実施される、請求項64の方法。
【請求項67】
活性成分がスベロイルアニリドヒドロキサム酸である、請求項50から66のいずれか一項の方法。
【請求項68】
約100mgの活性成分が、図2に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有する、スベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む結晶組成物。
【請求項69】
活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、請求項68の結晶組成物。
【請求項70】
約100mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一カプセルであって、全活性成分が、15分目に全活性成分の少なくとも45%ただし75%以下が溶解し、60分で全活性成分の少なくとも75%が溶解することを特徴とするインビトロ溶解プロファイルを有し、活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、前記単一カプセル。
【請求項71】
約100mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一カプセルであって、全活性成分が、図1に示される参照溶解プロファイルと比較して少なくとも50から100の類似性因子(f2)を有するインビトロ溶解プロファイルを有し、活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、前記単一カプセル。
【請求項72】
約100mgのスベロイルアニリドヒドロキサム酸又はこの医薬的に許容される塩もしくは水和物を活性成分として含む単一カプセルであって、全活性成分が、10分目に43から63%が溶解し、30分目に66から86%が溶解し、及び60分目に77から97%が溶解することを特徴とするインビトロ溶解プロファイルを有し、活性成分が結晶スベロイルアニリドヒドロキサム酸であり、及び9.0、9.4、17.5、19.4、20.0、24.0、24.4、24.8、25.0、28.0度2θの特徴的なピークを含み、13.4から14.0及び22.7から23.0度2θのピークを欠くX線回折パターンを特徴とする、前記単一カプセル。
【請求項73】
スベロイルアニリドヒドロキサム酸の結晶活性成分を作製するプロセスであって、
(a)40から99%のエタノールと60から1%の水との混合物に結晶活性成分を供給して、スラリーを形成させる工程;
(b)スラリーを加熱して、2から30%の未溶解結晶活性成分を確立する工程;
(c)スラリーを冷却して、再結晶化された活性成分を入手する工程;及び
(d)約40から95%の再結晶化された活性成分を、約60から5%の約60μm未満の平均粒径を有する結晶活性成分と混和する工程:を含む、前記プロセス。
【請求項74】
スベロイルアニリドヒドロキサム酸の再結晶化された活性成分を作製するプロセスであって、
(a)第1の容器に40から99%のエタノールと60から1%の水との混合物に結晶活性成分を供給して、スラリーを形成させる工程;
(b)第1の容器内のスラリーを加熱して、結晶活性成分の実質的に全部を溶解させる工程;
(c)第1の容器内の工程(b)における内容物を冷却して、溶液を過飽和にする工程;
(d)工程(c)の内容物へ結晶活性成分を添加する工程;
(e)工程(c)と同一の温度で工程(d)の内容物をエージングする工程;
(f)工程(e)における内容物を冷却して、再結晶化された活性成分を入手する工程:を含む、前記プロセス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図7D】
image rotate

【図7E】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−251985(P2011−251985A)
【公開日】平成23年12月15日(2011.12.15)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−157930(P2011−157930)
【出願日】平成23年7月19日(2011.7.19)
【分割の表示】特願2007−540436(P2007−540436)の分割
【原出願日】平成18年5月16日(2006.5.16)
【出願人】(390023526)メルク・シャープ・エンド・ドーム・コーポレイション (924)
【Fターム(参考)】