説明

セルロースエステルフィルム及びその製造方法、光学フィルム、偏光板、液晶表示装置

【課題】 本発明の目的は、セルロースエステルフィルム原反の保存性に優れ、異物の発生がなく、生産性にも優れたセルロースエステルフィルム及びその製造方法、並びに該セルロースエステルフィルムを用いた平面性、外観特性、リターデーション値変動に優れた光学フィルム、偏光板及び表示装置を提供することにある。
【解決手段】 平均一次粒子径0.1〜1.0μmでありかつ相対標準偏差が1〜20%である微粒子を含有し、表面のピーク密度が1000〜8000(1/mm2)であることを特徴とするセルロースエステルフィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学用途に利用されるセルロースエステルフィルム(以下、単にフィルムともいう)及びその製造方法に関するものであり、特に液晶表示装置等に用いられる偏光板用保護フィルム、位相差フィルム、視野角拡大フィルム、プラズマディスプレイに用いられる反射防止フィルムなどの各種機能フィルム、また有機ELディスプレイ等で使用される各種機能フィルム等にも利用することが出来るセルロースエステルフィルム及びその製造方法に関するものである。また、それを用いた光学フィルム、偏光板及び表示装置に関するものである。
【背景技術】
【0002】
近年、ノートパソコンの薄型軽量化、大型画面化、高精細化の開発が進んでいる。それに伴って、液晶偏光板用の保護フィルムもますます薄膜化、広幅化、高品質化の要求が強くなってきている。偏光板用保護フィルムには、一般的にセルロースエステルフィルムが広く使用されている。セルロースエステルフィルムは通常巻芯に巻かれてフィルム原反となり、保存、輸送されている。
【0003】
最近の大画面化に伴って、フィルム幅が広く、長い巻長のフィルム原反が要望されている。フィルム原反幅が広く、巻長が長くなるとフィルム原反での保存性が問題となる。例えばフィルム同士がくっついてフィルムが変形してしまうハリツキ故障や異物がフィルムの間に挟まったように凸状の変形になってしまう凸状故障などが発生し易くなる。これらを防止するために、微粒子を添加する方法が提案されている(例えば、特許文献1参照)。
【0004】
しかしながらこれらの方法で、添加量を増加させるとセルロースエステルフィルムのヘイズが増加し、透明性が悪化してしまう問題があった。近年の高画質化に伴ってフィルムの異物要求レベルも厳しくなり、高い透明性が要求されるようになった。そのため、微粒子の添加量を増加させて滑り性を向上し、かつ高い透明性を維持するという両方の特性を満足することは困難であった。
【0005】
我々は鋭意検討の結果、特許文献1の方法は、10〜20nmの細かい微粒子を分散し、2次凝集体として使用しているため、フィルム表面に突起の数は多いが、滑り性に寄与している突起は少なく、滑り性に寄与していない突起がヘイズを上昇させている原因であることを発見した。
【0006】
また、同様な問題を解決する手段として、中心線平均表面粗さRaを規定している特許が提案されている(例えば、特許文献2参照。)。しかしながら、Raは表面粗さの平均であり、長期保存性で問題となるベース同士が接触する時の重要な要素である、突起間の距離、密度には何ら影響されないパラメーターである。そのため、同じRaであっても、その滑り性、ヘイズ、長期保存性は全く違う結果となる場合が多く、問題であった。
【特許文献1】特開2001−114907号公報
【特許文献2】特開2003−326542号公報
【特許文献3】特公平05−4325号公報
【特許文献4】特許第3484611号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
従って、本発明は上記問題点に鑑みてなされたものであり、セルロースエステルフィルム原反の保存性に優れ、異物の発生がなく、生産性にも優れたセルロースエステルフィルム及びその製造方法、並びに該セルロースエステルフィルムを用いた平面性、外観特性、リターデーション値変動に優れた光学フィルム、偏光板及び表示装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明の上記課題は以下の構成により達成される。
【0009】
(請求項1) 平均一次粒子径0.1〜1.0μmでありかつ相対標準偏差が1〜20%である微粒子を含有し、表面のピーク密度が1000〜8000(1/mm2)であることを特徴とするセルロースエステルフィルム。
【0010】
(請求項2) 前記セルロースエステルフィルムが、製膜方向(MD方向)又は幅手方向(TD方向)の少なくとも一方に1.05〜1.3倍延伸したものであることを特徴とする請求項1に記載のセルロースエステルフィルム。
【0011】
(請求項3) 1,3,5−トリアジン環を有する芳香族化合物を含むことを特徴とする請求項1〜2のいずれか1項に記載のセルロースエステルフィルム。
【0012】
(請求項4) 前記セルロースエステルフィルムが光学フィルムであることを特徴とする請求項1〜3いずれかに記載のセルロースエステルフィルム。
【0013】
(請求項5) 請求項1〜4いずれかに記載のセルロースエステルフィルムを有することを特徴とする偏光板。
【0014】
(請求項6) 請求項1〜5いずれかに記載のセルロースエステルフィルムを有することを特徴とする液晶表示装置
【発明の効果】
【0015】
本発明により、セルロースエステルフィルム原反の保存性に優れ、異物の発生がなく、生産性にも優れたセルロースエステルフィルム及びその製造方法、並びに該セルロースエステルフィルムを用いた平面性、外観特性、リターデーション値変動に優れた光学フィルム、偏光板及び表示装置を提供することが出来る。
【発明を実施するための最良の形態】
【0016】
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0017】
我々は上記の問題に対し鋭意検討の結果、平均一次粒子径0.1〜1.0μmかつ相対標準偏差が1〜20%の微粒子を含有しているセルロースエステルフィルム表面のピーク密度に着目し、該ピーク密度が1000〜8000(1/mm2)の範囲にある時に、滑り性とヘイズの両立を図ることが出来、従来中心線平均表面粗さRaとの関係で議論されてきた滑り性、ヘイズ、長期保存性に対し、新たなパラメーターを提供出来ることを見出し、本発明を成すに至った次第である。
【0018】
更に、上記セルロースエステルフィルムを用いたハードコートフィルム、反射防止フィルム等の光学フィルムは、平面性、外観特性、リターデーション値変動にも優れることを見出したものである。
【0019】
以下、本発明を要素毎に詳細に説明する。
【0020】
(微粒子)
本発明に係るセルロースエステルフィルムに使用される微粒子は、平均一次粒子径0.1〜1.0μmの微粒子であり、0.1〜0.5μmが更に好ましく、0.2〜0.3μmが最も好ましい。平均一次粒子径の大きい方が分散性に優れ、小さい方が透明性に優れるためこの範囲が好ましい。平均一次粒子径は、透過型電子顕微鏡(倍率50万〜200万倍)で微粒子を撮影した。得られた画像をコニカミノルタ社製フラットヘッドスキャナーシティオス(Sitios)9231にて電子データ化し、画像解析ソフトイメージプロプラス(ImagePro Plus)を使用して、平均一次粒子径の測定を行った。平均一次粒子径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を使用した。また、このデータから相対標準偏差を算出した。画像解析条件としては次のフローで行う。
【0021】
フィルター処理:メディアン3×3→平坦化20ピクセル→ハイパス3×3→メディアン3×3。
【0022】
相対標準偏差は、1〜20%であって、1〜10%であることが好ましい。
【0023】
微粒子の例としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることが出来る。これらの中で、二酸化ケイ素が特に好ましい。
【0024】
本発明の微粒子は、反応性ケイ素化合物を加水分解条件下、縮合して得たものであることが好ましい。この方法によれば平均一次粒子径の相対標準偏差を容易に調整することができ、本発明の効果を得ることができる。具体的には、特公平05−4325号に記載の、有機性溶液中で加水分解当量を超える水の存在下、アルコキシシラン化合物を加水分解、縮合することによって製造する方法、特許第3484611号に記載の、気相中、微水滴の存在下、アルコキシシラン化合物を加水分解、縮合することによって製造方法を使用することが可能である。その他、特公平06−57317号記載のグリコール中への分散体、特許3187592号記載の方法も使用することができる。
【0025】
本発明のセルロースエステルフィルムは、ピーク密度が1000〜8000(1/mm2)の範囲であり、2000〜6000(1/mm2)が更に好ましく、3000〜5000(1/mm2)が最も好ましい。ピーク密度の大きい方が滑り性に優れ、小さい方が透明性に優れるためこの範囲が好ましい。ピーク密度を上記範囲にするには、上記微粒子の平均一次粒子径及び相対標準偏差を調整することで可能である。微粒子の添加量は1m2あたり0.02〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.2gが最も好ましい。
【0026】
上記表面ピーク密度とは、例えば、温度23℃、湿度50%±5%において、3次元表面構造解析顕微鏡zygo New View 5000 キャノン販売(株)製を用い、対物レンズ50倍、イメージズーム1.0倍で、3nm以上のピークの数を測定し、測定面積で割って、単位面積あたりのピークの数を算出することによって求めることが出来る。
【0027】
本発明に係る微粒子をセルロースエステルフィルム中に含有させるには、微粒子を分散した状態で含有している添加液を後述するドープ液に添加することによって行われる。微粒子の粉体を直接主ドープへ添加するのは、分散性が不十分となり、濾材に微粒子の凝集物がつまり急激な濾圧上昇となり易い為、微粒子を含有する添加液を主ドープに添加した後に、例えば捕集粒子径0.5〜5μmでかつ濾水時間が10〜25sec/100mlの濾材等で濾過されることが好ましい。微粒子を含有する添加液の主ドープへの添加は、前記濾過の前であれば、どこでも構わない。
【0028】
例えば、主ドープの溶解釜へ直接添加しても良いし、主ドープ溶解釜とは別に主ドープと微粒子添加液の混合釜を設けて混合しても良い。または濾過前の配管中でスタチックミキサーなどで混合しても良い。多くの場合、主ドープには返材が10〜50質量%程度含まれることがある。返材には微粒子が含まれているため、返材の添加量に合わせて微粒子添加液の添加量をコントロールする必要がある。
【0029】
コントロールが容易な点で、バッチ管理の出来る主ドープの溶解釜へ直接添加の方法と主ドープと微粒子添加液の混合釜を設けて混合する方法がより好ましい。主ドープと微粒子添加液の混合に十分な時間が取り易く、生産性に優れるため、主ドープの溶解釜へ直接添加の方法が最も好ましい。微粒子を含有する添加液には、微粒子を0.5〜10質量%含有していることが好ましく、1〜5質量%含有していることが更に好ましく、1〜3質量%含有していることが最も好ましい。
【0030】
微粒子の含有量の少ない方が、低粘度で取り扱い易く、微粒子の含有量の多い方が、添加量が少なく、主ドープへの添加が容易になるため、上記の範囲が好ましい。返材とは、セルロースエステルフィルムを細かく粉砕した物で、セルロースエステルフィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたセルロースフィルム原反が使用される。
【0031】
本発明において主ドープとは、本発明のセルロースエステルフィルムを製造する際のドープ液であり、添加液と区別するために主ドープと呼ぶ。添加液には、樹脂成分を高濃度で含有する主ドープ液と同様の樹脂成分を混合する場合があり、これと区別するためフィルム形成樹脂成分の大部分を含む添加液ではないドープ液を主ドープと呼ぶ。
【0032】
インライン添加では、特開2001−213974に記載されているフィルターや送液ポンプ等を適宜使用することが好ましい。
【0033】
微粒子添加液には、微粒子の他にセルロースエステルが含まれていることが、添加液の粘度を調整し、停滞安定性に優れる点で好ましい。微粒子添加液中のセルロースエステルの濃度は、2〜5質量%が好ましく、3〜4質量%が更に好ましい。セルロースエステルは、主ドープと同じものが使用出来る。また、主ドープと同様に返材を使用しても構わないが、好ましくは下記式(I)及び(II)を同時に満たすセルロースエステルが分散性に優れ、微粒子の凝集が抑えられるため、より好ましい。分散性に優れる理由として、我々はセルロースエステルのプロピオニル基やブチリル基が微粒子の表面に吸収するなど分散剤的な効果を示すためと推定している。
【0034】
式(I) 2.6≦X+Y≦2.9
式(II) 0≦X≦2.5
但し、Xはアセチル基の置換度、Yはプロピオニル基及び/またはブチリル基の置換度である。中でも1.9≦X≦2.5、0.1≦Y≦0.9のセルロースアセテートプロピオネート(総アシル基置換度=X+Y)が好ましい。アシル基で置換されていない部分は通常水酸基として存在している。これらは公知の方法で合成することが出来る。
【0035】
これらアシル基置換度は、ASTM−D817−96に規定の方法に準じて測定することが出来る。
【0036】
微粒子添加液に含有されるセルロースエステルは特開平10−45804号、同8−231761号、米国特許第2,319,052号等に記載されているようなセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることが出来る。上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルは、セルロースアセテートプロピオネートである。これらのセルロースエステルは混合して用いることも出来る。
【0037】
本発明で微粒子の分散に使用される分散機は、サンドミルまたは高圧ホモジナイザーが好ましく使用される。サンドミルは、0.3〜3mmφのビーズとミルベースを入れ、ディスクを300〜3000rpmで回転させ、ビーズの遠心力を利用して、衝突と剪断を起こし分散するものである。使用されるビーズには、ガラスビーズ、ジルコニアビーズ、アルミナビーズ、スチールビーズなどがあり、本発明では、コンタミの少ないジルコニアビーズやコンタミしても問題にならないガラスビーズが特に好ましい。また、サンドミルには、縦型、横型、アニュラー型などいろいろな形状のサンドミルがあり、本発明では、分散剪断力がより均一な横型やアニュラー型のサンドミルが特に好ましい。また、サンドミルは、ディスクやシャフト、分散容器内部が、ビーズによって削られ、コンタミとなる場合が多い。そのため、ディスクやシャフト、分散容器内部にセラミックコーティングやテフロン(登録商標)コーティングを施し、コンタミを最小限に抑えることが好ましい。
【0038】
サンドミルの例としては、ダイノミル(W.A.Bachofen社)、NEWマイミル(三井鉱山(株))、SCミル(三井鉱山(株))、ナノグレンミル(浅田鉄工(株))などがある。
【0039】
高圧ホモジナイザーは、ミルベースを細管やオリフィスを高速通過させたり、ミルベース同士を衝突させたりすることで、剪断力や衝突の衝撃力によって分散するメディアレスの分散機である。10〜300MPaの高圧でミルベース同士を衝突させたり、50〜2000μmの細管やオリフィスを通過させる。
【0040】
高圧ホモジナイザーの例としては、マイクロフルイダイザー(みずほ工業(株))、アルティマイザー(スギノマシン(株))、ナノマイザー(吉田機械工業(株))、クリアミックス、クリアミックスWモーション(エムテクニック(株))などがある。
【0041】
超音波分散機、ボールミル、高速ディスパー、アトライターなどの分散機は、剪断力が弱く、平均一次粒子径0.1〜1.0μmの微粒子を分散することは困難であり、ヘイズ上昇、異物の多発等があり、好ましくない。また、三本ロールミル、ヘンシェエルミキサー、ニーダー等の分散機は、剪断力が強過ぎ、平均一次粒子径0.1〜1.0μmの微粒子が割れてしまい、異物の増加、滑り性の悪化などがあり好ましくない。
【0042】
また、微粒子分散液にはポリマーを添加することが出来、ポリマーの例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることが出来る。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することが出来る。
【0043】
微粒子を含む添加液の作製方法は、以下ような方法が挙げられるが、これらに限定されるものではない。
【0044】
(作製方法A)
溶剤と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液を溶剤で希釈し、その後少量のセルロースエステルまたは主ドープを加え、十分撹拌する。
【0045】
(作製方法B)
溶剤と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルロースエステルまたは主ドープを加え、撹拌溶解する。これに前記微粒子分散液を加えて撹拌する。
【0046】
(作製方法C)
溶剤に少量のセルロースエステルまたは主ドープを加え、撹拌溶解する。これに微粒子を加えて分散機で分散を行う。
【0047】
(作製方法D)
溶剤と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。これに溶剤を加えて微粒子添加液とする。
【0048】
微粒子添加液は少量のセルロースエステルなど樹脂を含んでいる方が主ドープ添加時に発生する凝集が少なく好ましい。更に作製方法Cが、添加液作製時の凝集発生も少なく、特に好ましい。
【0049】
微粒子を分散するときに使用する溶剤は、セルロースエステルの製膜時に用いられる溶剤を用いることが出来る。特にアルコールが好ましく、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等の炭素原子数1〜8の等が挙げられる。
【0050】
微粒子を溶剤と混合して分散するときの微粒子の濃度は5〜30質量%が好ましく、8〜25質量%が更に好ましく、10〜15質量%が最も好ましい。分散濃度は高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
【0051】
微粒子を溶剤と少量の樹脂とを混合して分散するときの微粒子の濃度は0.5〜10質量%が好ましく、1〜5質量%が更に好ましく、1〜3質量%が最も好ましい。樹脂の濃度は、2〜10質量%が好ましく、3〜7質量%が更に好ましく、4〜6質量%が最も好ましい。この範囲が微粒子の分散性に優れるため好ましい。
【0052】
微粒子添加液中に紫外線吸収剤を含有させることも出来るが、微粒子の分散性に優れる点で、実質的に含まないことがより好ましい。
【0053】
他の主ドープ液に添加される添加液として、紫外線吸収剤を含有した添加液が挙げられる。紫外線吸収剤を含有した添加液は、下記に示す紫外線吸収剤を含有し、主ドープへインライン添加される液のことであり、紫外線吸収剤を1〜30質量%含有していることが好ましく、5〜20質量%含有していることが更に好ましく、10〜15質量%含有していることが最も好ましい。紫外線吸収剤の含有量の少ない方が、セルロースエステルの溶解性に優れ、紫外線吸収剤の含有量の多い方が、添加量が少なく、インライン添加が容易になるため、上記の範囲が好ましい。
【0054】
紫外線吸収剤添加液には、紫外線吸収剤の他にセルロースエステルが含まれていることが、添加液の粘度を調整する点で好ましい。セルロースエステルは、主ドープと同じものが使用出来る。また、主ドープと同様に返材を使用しても構わない。
【0055】
本発明は、濾過微粒子を含有する添加液を主ドープに添加し、その後、捕集粒子径0.5〜5μmでかつ濾水時間が10〜25sec/100mlの濾材等で濾過し、その後、実質的に微粒子を含まない紫外線吸収剤を含む添加液を主ドープにインライン添加することが特に好ましい。セルロースエステルフィルムの400nm以下の透過率のロットばらつきは、1%以内にすることが要望されている。しかし、前述のように主ドープには返材が10〜50%程度含まれることが多く、返材に含まれる紫外線吸収剤のばらつきによって、400nm以下の透過率が変動してしまう。そのため、インラインで紫外線吸収剤量を調整することが重要であり、これによってロットばらつきは、1%以内にコントロールすることが出来る。また、フィルムに添加される紫外線吸収剤の一部を主ドープ釜へ添加し、残りの紫外線吸収剤をインラインで添加して、紫外線吸収剤量を調整することも良い。
【0056】
この方法は、インライン添加量を減らせるため、生産性に優れる。主ドープ釜へ添加する紫外線吸収剤は、他の添加剤と同様にそのまま添加しても構わないし、溶剤で溶解した状態で添加しても良い。また、紫外線吸収剤の添加液を添加しても良い。
【0057】
実質的に微粒子を含まないとは、紫外線吸収剤を含む添加液中に添加される微粒子の量が1質量%以下であることが好ましく、更に微粒子を含まないことが最も好ましい。インラインで添加する紫外線吸収剤添加液に微粒子が含まれていると、主ドープと混合したときに凝集して異物の原因となるため、少ない方が好ましい。
【0058】
紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長380nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。
【0059】
本発明に用いられる紫外線吸収剤は20℃の温度下で液体である紫外線吸収剤が好ましい。20℃の温度下で液体の紫外線吸収剤を使用すると、フィルムを延伸したときにRtの変化が少なく好ましい。紫外線吸収剤の構造は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物等が挙げられる。
【0060】
好ましく用いられる紫外線吸収剤は、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤であり、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましい。本発明に用いられる紫外線吸収剤の具体例として、例えば、5−クロロ−2−(3,5−ジ−sec−ブチル−2−ヒドロキシルフェニル)−2H−ベンゾトリアゾール、(2−2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2,4−ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類があり、これらは何れもチバ・スペシャルティ・ケミカルズ社製の市販品であり好ましく使用出来る。これらの中で、チヌビン109、チヌビン171は20℃の温度下で液体の紫外線吸収剤であり、更に好ましく使用することが出来る。
【0061】
また、本発明の光学フィルムの紫外線吸収剤として、1,3,5−トリアジン環を有する化合物を特に好ましく用いることが出来る。
【0062】
1,3,5−トリアジン環を有する化合物は、中でも、下記一般式(I)で表される化合物が好ましい。
【0063】
【化1】

一般式(I)において、X1は、単結合、−NR4−、−O−または−S−であり;X2は単結合、−NR5−、−O−または−S−であり;X3は単結合、−NR6−、−O−または−S−であり;R1、R2及びR3はアルキル基、アルケニル基、アリール基または複素環基であり;そして、R4、R5及びR6は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。一般式(I)で表される化合物は、メラミン化合物であることが特に好ましい。
【0064】
メラミン化合物では、一般式(I)において、X1、X2及びX3が、それぞれ、−NR4−、−NR5−及び−NR6−であるか、或いは、X1、X2及びX3が単結合であり、かつ、R1、R2及びR3が窒素原子に遊離原子価を持つ複素環基である。−X1−R1、−X2−R2及び−X3−R3は、同一の置換基であることが好ましい。R1、R2及びR3は、アリール基であることが特に好ましい。R4、R5及びR6は、水素原子であることが特に好ましい。
【0065】
上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。
【0066】
アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることが更に好ましく、1〜8であることが更にまた好ましく、1〜6であることが最も好ましい。アルキル基は置換基を有していてもよい。
【0067】
置換基の具体例としては、例えばハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ、エポキシエチルオキシ等の各基)及びアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ)等が挙げられる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることが更に好ましく、2〜8であることが更にまた好ましく、2〜6であることが最も好ましい。アルケニル基は、置換基を有していてもよい。
【0068】
置換基の具体例としては、ハロゲン原子、アルコキシ基(例えば、メトキシ、エトキシ、エポキシエチルオキシ等の各基)またはアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ等の各基)が挙げられる。
【0069】
上記アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基であることが特に好ましい。アリール基は置換基を有していてもよい。
【0070】
置換基の具体例としては、例えば、ハロゲン原子、ヒドロキシル、シアノ、ニトロ、カルボキシル、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が含まれる。上記アルキル基は、前述したアルキル基と同義である。
【0071】
アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同義である。
【0072】
上記アルケニル基は、前述したアルケニル基と同義である。
【0073】
アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基及びアシル基のアルケニル部分も、前述したアルケニル基と同義である。
【0074】
上記アリール基の具体例としては、例えば、フェニル、α−ナフチル、β−ナフチル、4−メトキシフェニル、3,4−ジエトキシフェニル、4−オクチルオキシフェニルまたは4−ドデシルオキシフェニル等の各基が挙げられる。
【0075】
アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基及びアシル基の部分の例は、上記アリール基と同義である。
【0076】
X1、X2またはX3が−NR−、−O−または−S−である場合の複素環基は、芳香族性を有することが好ましい。
【0077】
芳香族性を有する複素環基中の複素環としては、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることが更に好ましく、6員環であることが最も好ましい。
【0078】
複素環中のヘテロ原子は、N、SまたはO等の各原子であることが好ましく、N原子であることが特に好ましい。
【0079】
芳香族性を有する複素環としては、ピリジン環(複素環基としては、例えば、2−ピリジルまたは4−ピリジル等の各基)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。
【0080】
X1、X2またはX3が単結合である場合の複素環基は、窒素原子に遊離原子価を持つ複素環基であることが好ましい。窒素原子に遊離原子価を持つ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることが更に好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。
【0081】
また、複素環基中のヘテロ原子は、窒素原子以外のヘテロ原子(例えば、O原子、S原子)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の具体例は、上記アリール部分の置換基の具体例と同義である。
【0082】
以下に、窒素原子に遊離原子価を持つ複素環基の具体例を示す。
【0083】
【化2】

【0084】
【化3】

1,3,5−トリアジン環を有する化合物の分子量は、300〜2000であることが好ましい。該化合物の沸点は、260℃以上であることが好ましい。沸点は、市販の測定装置(例えば、TG/DTA100、セイコー電子工業(株)製)を用いて測定出来る。
【0085】
以下に、1,3,5−トリアジン環を有する化合物の具体例を示す。
【0086】
尚、以下に示す複数のRは同一の基を表す。
【0087】
【化4】

(1)ブチル
(2)2−メトキシ−2−エトキシエチル
(3)5−ウンデセニル
(4)フェニル
(5)4−エトキシカルボニルフェニル
(6)4−ブトキシフェニル
(7)p−ビフェニリル
(8)4−ピリジル
(9)2−ナフチル
(10)2−メチルフェニル
(11)3,4−ジメトキシフェニル
(12)2−フリル
【0088】
【化5】

【0089】
【化6】

(14)フェニル
(15)3−エトキシカルボニルフェニル
(16)3−ブトキシフェニル
(17)m−ビフェニリル
(18)3−フェニルチオフェニル
(19)3−クロロフェニル
(20)3−ベンゾイルフェニル
(21)3−アセトキシフェニル
(22)3−ベンゾイルオキシフェニル
(23)3−フェノキシカルボニルフェニル
(24)3−メトキシフェニル
(25)3−アニリノフェニル
(26)3−イソブチリルアミノフェニル
(27)3−フェノキシカルボニルアミノフェニル
(28)3−(3−エチルウレイド)フェニル
(29)3−(3,3−ジエチルウレイド)フェニル
(30)3−メチルフェニル
(31)3−フェノキシフェニル
(32)3−ヒドロキシフェニル
(33)4−エトキシカルボニルフェニル
(34)4−ブトキシフェニル
(35)p−ビフェニリル
(36)4−フェニルチオフェニル
(37)4−クロロフェニル
(38)4−ベンゾイルフェニル
(39)4−アセトキシフェニル
(40)4−ベンゾイルオキシフェニル
(41)4−フェノキシカルボニルフェニル
(42)4−メトキシフェニル
(43)4−アニリノフェニル
(44)4−イソブチリルアミノフェニル
(45)4−フェノキシカルボニルアミノフェニル
(46)4−(3−エチルウレイド)フェニル
(47)4−(3,3−ジエチルウレイド)フェニル
(48)4−メチルフェニル
(49)4−フェノキシフェニル
(50)4−ヒドロキシフェニル
(51)3,4−ジエトキシカルボニルフェニル
(52)3,4−ジブトキシフェニル
(53)3,4−ジフェニルフェニル
(54)3,4−ジフェニルチオフェニル
(55)3,4−ジクロロフェニル
(56)3,4−ジベンゾイルフェニル
(57)3,4−ジアセトキシフェニル
(58)3,4−ジベンゾイルオキシフェニル
(59)3,4−ジフェノキシカルボニルフェニル
(60)3,4−ジメトキシフェニル
(61)3,4−ジアニリノフェニル
(62)3,4−ジメチルフェニル
(63)3,4−ジフェノキシフェニル
(64)3,4−ジヒドロキシフェニル
(65)2−ナフチル
(66)3,4,5−トリエトキシカルボニルフェニル
(67)3,4,5−トリブトキシフェニル
(68)3,4,5−トリフェニルフェニル
(69)3,4,5−トリフェニルチオフェニル
(70)3,4,5−トリクロロフェニル
(71)3,4,5−トリベンゾイルフェニル
(72)3,4,5−トリアセトキシフェニル
(73)3,4,5−トリベンゾイルオキシフェニル
(74)3,4,5−トリフェノキシカルボニルフェニル
(75)3,4,5−トリメトキシフェニル
(76)3,4,5−トリアニリノフェニル
(77)3,4,5−トリメチルフェニル
(78)3,4,5−トリフェノキシフェニル
(79)3,4,5−トリヒドロキシフェニル
【0090】
【化7】

(80)フェニル
(81)3−エトキシカルボニルフェニル
(82)3−ブトキシフェニル
(83)m−ビフェニリル
(84)3−フェニルチオフェニル
(85)3−クロロフェニル
(86)3−ベンゾイルフェニル
(87)3−アセトキシフェニル
(88)3−ベンゾイルオキシフェニル
(89)3−フェノキシカルボニルフェニル
(90)3−メトキシフェニル
(91)3−アニリノフェニル
(92)3−イソブチリルアミノフェニル
(93)3−フェノキシカルボニルアミノフェニル
(94)3−(3−エチルウレイド)フェニル
(95)3−(3,3−ジエチルウレイド)フェニル
(96)3−メチルフェニル
(97)3−フェノキシフェニル
(98)3−ヒドロキシフェニル
(99)4−エトキシカルボニルフェニル
(100)4−ブトキシフェニル
(101)p−ビフェニリル
(102)4−フェニルチオフェニル
(103)4−クロロフェニル
(104)4−ベンゾイルフェニル
(105)4−アセトキシフェニル
(106)4−ベンゾイルオキシフェニル
(107)4−フェノキシカルボニルフェニル
(108)4−メトキシフェニル
(109)4−アニリノフェニル
(110)4−イソブチリルアミノフェニル
(111)4−フェノキシカルボニルアミノフェニル
(112)4−(3−エチルウレイド)フェニル
(113)4−(3,3−ジエチルウレイド)フェニル
(114)4−メチルフェニル
(115)4−フェノキシフェニル
(116)4−ヒドロキシフェニル
(117)3,4−ジエトキシカルボニルフェニル
(118)3,4−ジブトキシフェニル
(119)3,4−ジフェニルフェニル
(120)3,4−ジフェニルチオフェニル
(121)3,4−ジクロロフェニル
(122)3,4−ジベンゾイルフェニル
(123)3,4−ジアセトキシフェニル
(124)3,4−ジベンゾイルオキシフェニル
(125)3,4−ジフェノキシカルボニルフェニル
(126)3,4−ジメトキシフェニル
(127)3,4−ジアニリノフェニル
(128)3,4−ジメチルフェニル
(129)3,4−ジフェノキシフェニル
(130)3,4−ジヒドロキシフェニル
(131)2−ナフチル
(132)3,4,5−トリエトキシカルボニルフェニル
(133)3,4,5−トリブトキシフェニル
(134)3,4,5−トリフェニルフェニル
(135)3,4,5−トリフェニルチオフェニル
(136)3,4,5−トリクロロフェニル
(137)3,4,5−トリベンゾイルフェニル
(138)3,4,5−トリアセトキシフェニル
(139)3,4,5−トリベンゾイルオキシフェニル
(140)3,4,5−トリフェノキシカルボニルフェニル
(141)3,4,5−トリメトキシフェニル
(142)3,4,5−トリアニリノフェニル
(143)3,4,5−トリメチルフェニル
(144)3,4,5−トリフェノキシフェニル
(145)3,4,5−トリヒドロキシフェニル
【0091】
【化8】

(146)フェニル
(147)4−エトキシカルボニルフェニル
(148)4−ブトキシフェニル
(149)p−ビフェニリル
(150)4−フェニルチオフェニル
(151)4−クロロフェニル
(152)4−ベンゾイルフェニル
(153)4−アセトキシフェニル
(154)4−ベンゾイルオキシフェニル
(155)4−フェノキシカルボニルフェニル
(156)4−メトキシフェニル
(157)4−アニリノフェニル
(158)4−イソブチリルアミノフェニル
(159)4−フェノキシカルボニルアミノフェニル
(160)4−(3−エチルウレイド)フェニル
(161)4−(3,3−ジエチルウレイド)フェニル
(162)4−メチルフェニル
(163)4−フェノキシフェニル
(164)4−ヒドロキシフェニル
【0092】
【化9】

(165)フェニル
(166)4−エトキシカルボニルフェニル
(167)4−ブトキシフェニル
(168)p−ビフェニリル
(169)4−フェニルチオフェニル
(170)4−クロロフェニル
(171)4−ベンゾイルフェニル
(172)4−アセトキシフェニル
(173)4−ベンゾイルオキシフェニル
(174)4−フェノキシカルボニルフェニル
(175)4−メトキシフェニル
(176)4−アニリノフェニル
(177)4−イソブチリルアミノフェニル
(178)4−フェノキシカルボニルアミノフェニル
(179)4−(3−エチルウレイド)フェニル
(180)4−(3,3−ジエチルウレイド)フェニル
(181)4−メチルフェニル
(182)4−フェノキシフェニル
(183)4−ヒドロキシフェニル
【0093】
【化10】

(184)フェニル
(185)4−エトキシカルボニルフェニル
(186)4−ブトキシフェニル
(187)p−ビフェニリル
(188)4−フェニルチオフェニル
(189)4−クロロフェニル
(190)4−ベンゾイルフェニル
(191)4−アセトキシフェニル
(192)4−ベンゾイルオキシフェニル
(193)4−フェノキシカルボニルフェニル
(194)4−メトキシフェニル
(195)4−アニリノフェニル
(196)4−イソブチリルアミノフェニル
(197)4−フェノキシカルボニルアミノフェニル
(198)4−(3−エチルウレイド)フェニル
(199)4−(3,3−ジエチルウレイド)フェニル
(200)4−メチルフェニル
(201)4−フェノキシフェニル
(202)4−ヒドロキシフェニル
【0094】
【化11】

(203)フェニル
(204)4−エトキシカルボニルフェニル
(205)4−ブトキシフェニル
(206)p−ビフェニリル
(207)4−フェニルチオフェニル
(208)4−クロロフェニル
(209)4−ベンゾイルフェニル
(210)4−アセトキシフェニル
(211)4−ベンゾイルオキシフェニル
(212)4−フェノキシカルボニルフェニル
(213)4−メトキシフェニル
(214)4−アニリノフェニル
(215)4−イソブチリルアミノフェニル
(216)4−フェノキシカルボニルアミノフェニル
(217)4−(3−エチルウレイド)フェニル
(218)4−(3,3−ジエチルウレイド)フェニル
(219)4−メチルフェニル
(220)4−フェノキシフェニル
(221)4−ヒドロキシフェニル
【0095】
【化12】

(222)フェニル
(223)4−ブチルフェニル
(224)4−(2−メトキシ−2−エトキシエチル)フェニル
(225)4−(5−ノネニル)フェニル
(226)p−ビフェニリル
(227)4−エトキシカルボニルフェニル
(228)4−ブトキシフェニル
(229)4−メチルフェニル
(230)4−クロロフェニル
(231)4−フェニルチオフェニル
(232)4−ベンゾイルフェニル
(233)4−アセトキシフェニル
(234)4−ベンゾイルオキシフェニル
(235)4−フェノキシカルボニルフェニル
(236)4−メトキシフェニル
(237)4−アニリノフェニル
(238)4−イソブチリルアミノフェニル
(239)4−フェノキシカルボニルアミノフェニル
(240)4−(3−エチルウレイド)フェニル
(241)4−(3,3−ジエチルウレイド)フェニル
(242)4−フェノキシフェニル
(243)4−ヒドロキシフェニル
(244)3−ブチルフェニル
(245)3−(2−メトキシ−2−エトキシエチル)フェニル
(246)3−(5−ノネニル)フェニル
(247)m−ビフェニリル
(248)3−エトキシカルボニルフェニル
(249)3−ブトキシフェニル
(250)3−メチルフェニル
(251)3−クロロフェニル
(252)3−フェニルチオフェニル
(253)3−ベンゾイルフェニル
(254)3−アセトキシフェニル
(255)3−ベンゾイルオキシフェニル
(256)3−フェノキシカルボニルフェニル
(257)3−メトキシフェニル
(258)3−アニリノフェニル
(259)3−イソブチリルアミノフェニル
(260)3−フェノキシカルボニルアミノフェニル
(261)3−(3−エチルウレイド)フェニル
(262)3−(3,3−ジエチルウレイド)フェニル
(263)3−フェノキシフェニル
(264)3−ヒドロキシフェニル
(265)2−ブチルフェニル
(266)2−(2−メトキシ−2−エトキシエチル)フェニル
(267)2−(5−ノネニル)フェニル
(268)o−ビフェニリル
(269)2−エトキシカルボニルフェニル
(270)2−ブトキシフェニル
(271)2−メチルフェニル
(272)2−クロロフェニル
(273)2−フェニルチオフェニル
(274)2−ベンゾイルフェニル
(275)2−アセトキシフェニル
(276)2−ベンゾイルオキシフェニル
(277)2−フェノキシカルボニルフェニル
(278)2−メトキシフェニル
(279)2−アニリノフェニル
(280)2−イソブチリルアミノフェニル
(281)2−フェノキシカルボニルアミノフェニル
(282)2−(3−エチルウレイド)フェニル
(283)2−(3,3−ジエチルウレイド)フェニル
(284)2−フェノキシフェニル
(285)2−ヒドロキシフェニル
(286)3,4−ジブチルフェニル
(287)3,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(288)3,4−ジフェニルフェニル
(289)3,4−ジエトキシカルボニルフェニル
(290)3,4−ジドデシルオキシフェニル
(291)3,4−ジメチルフェニル
(292)3,4−ジクロロフェニル
(293)3,4−ジベンゾイルフェニル
(294)3,4−ジアセトキシフェニル
(295)3,4−ジメトキシフェニル
(296)3,4−ジ−N−メチルアミノフェニル
(297)3,4−ジイソブチリルアミノフェニル
(298)3,4−ジフェノキシフェニル
(299)3,4−ジヒドロキシフェニル
(300)3,5−ジブチルフェニル
(301)3,5−ジ(2−メトキシ−2−エトキシエチル)フェニル
(302)3,5−ジフェニルフェニル
(303)3,5−ジエトキシカルボニルフェニル
(304)3,5−ジドデシルオキシフェニル
(305)3,5−ジメチルフェニル
(306)3,5−ジクロロフェニル
(307)3,5−ジベンゾイルフェニル
(308)3,5−ジアセトキシフェニル
(309)3,5−ジメトキシフェニル
(310)3,5−ジ−N−メチルアミノフェニル
(311)3,5−ジイソブチリルアミノフェニル
(312)3,5−ジフェノキシフェニル
(313)3,5−ジヒドロキシフェニル
(314)2,4−ジブチルフェニル
(315)2,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(316)2,4−ジフェニルフェニル
(317)2,4−ジエトキシカルボニルフェニル
(318)2,4−ジドデシルオキシフェニル
(319)2,4−ジメチルフェニル
(320)2,4−ジクロロフェニル
(321)2,4−ジベンゾイルフェニル
(322)2,4−ジアセトキシフェニル
(323)2,4−ジメトキシフェニル
(324)2,4−ジ−N−メチルアミノフェニル
(325)2,4−ジイソブチリルアミノフェニル
(326)2,4−ジフェノキシフェニル
(327)2,4−ジヒドロキシフェニル
(328)2,3−ジブチルフェニル
(329)2,3−ジ(2−メトキシ−2−エトキシエチル)フェニル
(330)2,3−ジフェニルフェニル
(331)2,3−ジエトキシカルボニルフェニル
(332)2,3−ジドデシルオキシフェニル
(333)2,3−ジメチルフェニル
(334)2,3−ジクロロフェニル
(335)2,3−ジベンゾイルフェニル
(336)2,3−ジアセトキシフェニル
(337)2,3−ジメトキシフェニル
(338)2,3−ジ−N−メチルアミノフェニル
(339)2,3−ジイソブチリルアミノフェニル
(340)2,3−ジフェノキシフェニル
(341)2,3−ジヒドロキシフェニル
(342)2,6−ジブチルフェニル
(343)2,6−ジ(2−メトキシ−2−エトキシエチル)フェニル
(344)2,6−ジフェニルフェニル
(345)2,6−ジエトキシカルボニルフェニル
(346)2,6−ジドデシルオキシフェニル
(347)2,6−ジメチルフェニル
(348)2,6−ジクロロフェニル
(349)2,6−ジベンゾイルフェニル
(350)2,6−ジアセトキシフェニル
(351)2,6−ジメトキシフェニル
(352)2,6−ジ−N−メチルアミノフェニル
(353)2,6−ジイソブチリルアミノフェニル
(354)2,6−ジフェノキシフェニル
(355)2,6−ジヒドロキシフェニル
(356)3,4,5−トリブチルフェニル
(357)3,4,5−トリ(2−メトキシ−2−エトキシエチル)フェニル
(358)3,4,5−トリフェニルフェニル
(359)3,4,5−トリエトキシカルボニルフェニル
(360)3,4,5−トリドデシルオキシフェニル
(361)3,4,5−トリメチルフェニル
(362)3,4,5−トリクロロフェニル
(363)3,4,5−トリベンゾイルフェニル
(364)3,4,5−トリアセトキシフェニル
(365)3,4,5−トリメトキシフェニル
(366)3,4,5−トリ−N−メチルアミノフェニル
(367)3,4,5−トリイソブチリルアミノフェニル
(368)3,4,5−トリフェノキシフェニル
(369)3,4,5−トリヒドロキシフェニル
(370)2,4,6−トリブチルフェニル
(371)2,4,6−トリ(2−メトキシ−2−エトキシエチル)フェニル
(372)2,4,6−トリフェニルフェニル
(373)2,4,6−トリエトキシカルボニルフェニル
(374)2,4,6−トリドデシルオキシフェニル
(375)2,4,6−トリメチルフェニル
(376)2,4,6−トリクロロフェニル
(377)2,4,6−トリベンゾイルフェニル
(378)2,4,6−トリアセトキシフェニル
(379)2,4,6−トリメトキシフェニル
(380)2,4,6−トリ−N−メチルアミノフェニル
(381)2,4,6−トリイソブチリルアミノフェニル
(382)2,4,6−トリフェノキシフェニル
(383)2,4,6−トリヒドロキシフェニル
(384)ペンタフルオロフェニル
(385)ペンタクロロフェニル
(386)ペンタメトキシフェニル
(387)6−N−メチルスルファモイル−8−メトキシ−2−ナフチル
(388)5−N−メチルスルファモイル−2−ナフチル
(389)6−N−フェニルスルファモイル−2−ナフチル
(390)5−エトキシ−7−N−メチルスルファモイル−2−ナフチル
(391)3−メトキシ−2−ナフチル
(392)1−エトキシ−2−ナフチル
(393)6−N−フェニルスルファモイル−8−メトキシ−2−ナフチル
(394)5−メトキシ−7−N−フェニルスルファモイル−2−ナフチル
(395)1−(4−メチルフェニル)−2−ナフチル
(396)6,8−ジ−N−メチルスルファモイル−2−ナフチル
(397)6−N−2−アセトキシエチルスルファモイル−8−メトキシ−2−ナフチル
(398)5−アセトキシ−7−N−フェニルスルファモイル−2−ナフチル
(399)3−ベンゾイルオキシ−2−ナフチル
(400)5−アセチルアミノ−1−ナフチル
(401)2−メトキシ−1−ナフチル
(402)4−フェノキシ−1−ナフチル
(403)5−N−メチルスルファモイル−1−ナフチル
(404)3−N−メチルカルバモイル−4−ヒドロキシ−1−ナフチル
(405)5−メトキシ−6−N−エチルスルファモイル−1−ナフチル
(406)7−テトラデシルオキシ−1−ナフチル
(407)4−(4−メチルフェノキシ)−1−ナフチル
(408)6−N−メチルスルファモイル−1−ナフチル
(409)3−N,N−ジメチルカルバモイル−4−メトキシ−1−ナフチル
(410)5−メトキシ−6−N−ベンジルスルファモイル−1−ナフチル
(411)3,6−ジ−N−フェニルスルファモイル−1−ナフチル
(412)メチル
(413)エチル
(414)ブチル
(415)オクチル
(416)ドデシル
(417)2−ブトキシ−2−エトキシエチル
(418)ベンジル
(419)4−メトキシベンジル
【0096】
【化13】

(424)メチル
(425)フェニル
(426)ブチル
【0097】
【化14】

(430)メチル
(431)エチル
(432)ブチル
(433)オクチル
(434)ドデシル
(435)2−ブトキシ2−エトキシエチル
(436)ベンジル
(437)4−メトキシベンジル
【0098】
【化15】

【0099】
【化16】

本発明においては、1,3,5−トリアジン環を有する化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記一般式(II)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。
【0100】
【化17】

上記合成反応スキームにおいて、R11、R12、R13、R14、R15及びR16は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。
【0101】
上記アルキル基、アルケニル基、アリール基及び複素環基及びこれらの置換基は前記一般式(I)で説明した各基、それらの置換基と同義である。
【0102】
メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例えば、メラミンホルムアルデヒド樹脂等)の合成方法と同様である。また、市販のメラミンポリマー(メラミン樹脂)を用いてもよい。
【0103】
メラミンポリマーの分子量は、2千〜40万であることが好ましい。メラミンポリマーの繰り返し単位の具体例を以下に示す。
【0104】
【化18】

MP−1:R13、R14、R15、R16:CH2OH
MP−2:R13、R14、R15、R16:CH2OCH3
MP−3:R13、R14、R15、R16:CH2O−i−C4H9
MP−4:R13、R14、R15、R16:CH2O−n−C4H9
MP−5:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−6:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−7:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−8:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−9:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−10:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−11:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−12:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−13:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−14:R13、R14、R15:CH2OH;R16:CH2O−i−C4H9
MP−15:R13、R14、R16:CH2OH;R15:CH2O−i−C4H9
MP−16:R13、R14:CH2OH;R15、R16:CH2O−i−C4H9
MP−17:R13、R16:CH2OH;R14、R15:CH2O−i−C4H9
MP−18:R13:CH2OH;R14、R15、R16:CH2O−i−C4H9
MP−19:R13、R14、R16:CH2O−i−C4H9;R15:CH2OH
MP−20:R13、R16:CH2O−i−C4H9;R14、R15:CH2OH
MP−21:R13、R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−22:R13、R14、R16:CH2OH;R15:CH2O−n−C4H9
MP−23:R13、R14:CH2OH;R15、R16:CH2O−n−C4H9
MP−24:R13、R16:CH2OH;R14、R15:CH2O−n−C4H9
MP−25:R13:CH2OH;R14、R15、R16:CH2O−n−C4H9
MP−26:R13、R14、R16:CH2O−n−C4H9;R15:CH2OH
MP−27:R13、R16:CH2O−n−C4H9;R14、R15:CH2OH
MP−28:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C4H9
MP−29:R13、R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2OCH3
MP−30:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9
MP−31:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C4H9
MP−32:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C4H9
MP−33:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C4H9
MP−34:R13:CH2OH;R14、R15:CH2O−n−C4H9;R16:CH2OCH3
MP−35:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C4H9
MP−36:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9
MP−37:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−38:R13、R16:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH
MP−39:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−40:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−41:R13:CH2OH;R14:CH2O−n−C4H9;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−42:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−43:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−44:R13:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−45:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−46:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−47:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−48:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−49:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−50:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
【0105】
【化19】

MP−51:R13、R14、R15、R16:CH2OH
MP−52:R13、R14、R15、R16:CH2OCH3
MP−53:R13、R14、R15、R16:CH2O−i−C4H9
MP−54:R13、R14、R15、R16:CH2O−n−C4H9
MP−55:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−56:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−57:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−58:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−59:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−60:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−61:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−62:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−63:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−64:R13、R14、R15:CH2OH;R16:CH2O−i−C4H9
MP−65:R13、R14、R16:CH2OH;R15:CH2O−i−C4H9
MP−66:R13、R14:CH2OH;R15、R16:CH2O−i−C4H9
MP−67:R13、R16:CH2OH;R14、R15:CH2O−i−C4H9
MP−68:R13:CH2OH;R14、R15、R16:CH2O−i−C4H9
MP−69:R13、R14、R16:CH2O−i−C4H9;R15:CH2OH
MP−70:R13、R16:CH2O−i−C4H9;R14、R15:CH2OH
MP−71:R13、R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−72:R13、R14、R16:CH2OH;R15:CH2O−n−C4H9
MP−73:R13、R14:CH2OH;R15、R16:CH2O−n−C4H9
MP−74:R13、R16:CH2OH;R14、R15:CH2O−n−C4H9
MP−75:R13:CH2OH;R14、R15、R16:CH2O−n−C4H9
MP−76:R13、R14、R16:CH2O−n−C4H9;R15:CH2OH
MP−77:R13、R16:CH2O−n−C4H9;R14、R15:CH2OH
MP−78:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C4H9
MP−79:R13、R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2OCH3
MP−80:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9
MP−81:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C4H9
MP−82:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C4H9
MP−83:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C4H9
MP−84:R13:CH2OH;R14、R15:CH2O−n−C4H9;R16:CH2OCH3
MP−85:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C4H9
MP−86:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9
MP−87:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−88:R13、R16:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH
MP−89:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−90:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−91:R13:CH2OH;R14:CH2O−n−C4H9;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−92:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−93:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−94:R13:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−95:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−96:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−97:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−98:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−99:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−100:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
【0106】
【化20】

MP−101:R13、R14、R15、R16:CH2OH
MP−102:R13、R14、R15、R16:CH2OCH3
MP−103:R13、R14、R15、R16:CH2O−i−C4H9
MP−104:R13、R14、R15、R16:CH2O−n−C4H9
MP−105:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−106:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−107:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−108:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−109:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−110:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−111:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−112:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−113:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−114:R13、R14、R15:CH2OH;R16:CH2O−i−C4H9
MP−115:R13、R14、R16:CH2OH;R15:CH2O−i−C4H9
MP−116:R13、R14:CH2OH;R15、R16:CH2O−i−C4H9
MP−117:R13、R16:CH2OH;R14、R15:CH2O−i−C4H9
MP−118:R13:CH2OH;R14、R15、R16:CH2O−i−C4H9
MP−119:R13、R14、R16:CH2O−i−C4H9;R15:CH2OH
MP−120:R13、R16:CH2O−i−C4H9;R14、R15:CH2OH
MP−121:R13、R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−122:R13、R14、R16:CH2OH;R15:CH2O−n−C4H9
MP−123:R13、R14:CH2OH;R15、R16:CH2O−n−C4H9
MP−124:R13、R16:CH2OH;R14、R15:CH2O−n−C4H9
MP−125:R13:CH2OH;R14、R15、R16:CH2O−n−C4H9
MP−126:R13、R14、R16:CH2O−n−C4H9;R15:CH2OH
MP−127:R13、R16:CH2O−n−C4H9;R14、R15:CH2OH
MP−128:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C4H9
MP−129:R13、R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2OCH3
MP−130:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9
MP−131:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C4H9
MP−132:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C4H9
MP−133:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C4H9
MP−134:R13:CH2OH;R14、R15:CH2O−n−C4H9;R16:CH2OCH3
MP−135:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C4H9
MP−136:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9
MP−137:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−138:R13、R16:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH
MP−139:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−140:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−141:R13:CH2OH;R14:CH2O−n−C4H9;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−142:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−143:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−144:R13:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−145:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−146:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−147:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−148:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−149:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−150:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
【0107】
【化21】

MP−151:R13、R14、R15、R16:CH2OH
MP−152:R13、R14、R15、R16:CH2OCH3
MP−153:R13、R14、R15、R16:CH2O−i−C4H9
MP−154:R13、R14、R15、R16:CH2O−n−C4H9
MP−155:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−156:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−157:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−158:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−159:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−160:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−161:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−162:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−163:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−164:R13、R14、R15:CH2OH;R16:CH2O−i−C4H9
MP−165:R13、R14、R16:CH2OH;R15:CH2O−i−C4H9
MP−166:R13、R14:CH2OH;R15、R16:CH2O−i−C4H9
MP−167:R13、R16:CH2OH;R14、R15:CH2O−i−C4H9
MP−168:R13:CH2OH;R14、R15、R16:CH2O−i−C4H9
MP−169:R13、R14、R16:CH2O−i−C4H9;R15:CH2OH
MP−170:R13、R16:CH2O−i−C4H9;R14、R15:CH2OH
MP−171:R13、R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−172:R13、R14、R16:CH2OH;R15:CH2O−n−C4H9
MP−173:R13、R14:CH2OH;R15、R16:CH2O−n−C4H9
MP−174:R13、R16:CH2OH;R14、R15:CH2O−n−C4H9
MP−175:R13:CH2OH;R14、R15、R16:CH2O−n−C4H9
MP−176:R13、R14、R16:CH2O−n−C4H9;R15:CH2OH
MP−177:R13、R16:CH2O−n−C4H9;R14、R15:CH2OH
MP−178:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C4H9
MP−179:R13、R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2OCH3
MP−180:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9
MP−181:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C4H9
MP−182:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C4H9
MP−183:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C4H9
MP−184:R13:CH2OH;R14、R15:CH2O−n−C4H9;R16:CH2OCH3
MP−185:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C4H9
MP−186:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9
MP−187:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C4H9
MP−188:R13、R16:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH
MP−189:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−190:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−191:R13:CH2OH;R14:CH2O−n−C4H9;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−192:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−193:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C4H9
MP−194:R13:CH2O−n−C4H9;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−195:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−196:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−197:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−198:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−199:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−200:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
本発明においては、上記繰り返し単位を二種類以上組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマーまたはコポリマーを併用してもよい。
【0108】
また、二種類以上の1,3,5−トリアジン環を有する化合物を併用してもよい。二種類以上の円盤状化合物(例えば、1,3,5−トリアジン環を有する化合物とポルフィリン骨格を有する化合物)を併用してもよい。
【0109】
また、特開2001−235621の一般式(I)で示されているトリアジン系化合物も本発明に係るセルロースエステルフィルムに好ましく用いられる。
【0110】
本発明に係るセルロースエステルフィルムは紫外線吸収剤を2種以上を含有することが好ましい。
【0111】
また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることが出来、特に特開平6−148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。
【0112】
紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒或いはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、または直接ドープ組成中に添加してもよい。無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースエステル中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。
【0113】
紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、セルロースエステルフィルムの乾燥膜厚が30〜200μmの場合は、セルロースエステルフィルムに対して0.5〜10質量%が好ましく、0.5〜4質量%が更に好ましく、0.6〜2質量%が特に好ましい。
【0114】
また、本発明においては、フィルムの色味を調整するために例えば青色染料等を添加剤として用いてもよい。好ましい染料としてはアンスラキノン系染料が挙げられる。アンスラキノン系染料は、アンスラキノンの1位から8位迄の位置に任意の置換基を有することが出来る。好ましい置換基としては、置換されても良いアニリノ基、ヒドロキシル基、アミノ基、ニトロ基、または水素原子が挙げられる。これらの染料のフィルムへの添加量はフィルムの透明性を維持するため0.1〜1000μg/m2、好ましくは10〜100μg/m2である。
【0115】
また、本発明においては、フィルムの色味を調整するために蛍光増白剤を添加剤として使用しても良い。
【0116】
青色染料や蛍光増白剤は、紫外線吸収剤の添加液中に添加することがフィルムの色味を調整し易く好ましい。
【0117】
本発明に用いられる可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤などを用いることが出来るがこれらに限定されるものではない。リン酸エステル系では、例えば、トリフェニルフォスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等があり、フタル酸エステル系としては、例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジベンジルフタレート、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート等があり、クエン酸エステル系可塑剤としては、例えば、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。
【0118】
これらの可塑剤は、単独で用いてもよく、また必要に応じて2種類以上を併用して用いてもよい。また、可塑剤の使用量は、セルロースエステルに対して1〜30質量%含有させることが出来、好ましくは2〜25質量%、特に好ましくは8〜15質量%である。
【0119】
本発明の光学フィルムにおいては、上記可塑剤の他にも可塑剤と同様の作用を示す添加剤が含有させることが出来る。これらの添加剤としては、例えば、セルロースエステルフィルムを可塑化することの出来る低分子有機化合物であれば、可塑剤と同様の効果を得ることが出来る。これらの成分は可塑剤に比べ直接フィルムを可塑化する目的で添加されるものではないが、量に応じて上記可塑剤と同様の作用を示す。
【0120】
次に、本発明に好ましく用いられる脂肪族多価アルコールエステルについて説明する。
【0121】
脂肪族多価アルコールエステルは、2価以上の脂肪族多価アルコールと1種以上のモノカルボン酸とのエステルである。
【0122】
(脂肪族多価アルコール)
本発明に用いられる脂肪族多価アルコールは、2価以上のアルコールで次の一般式(A)で表される。
【0123】
一般式(A) R1−(OH)n
但し、R1はn価の脂肪族有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。
【0124】
n価の脂肪族有機基としては、アルキレン基(例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基等)、アルケニレン基(例えばエテニレン基等)、アルキニレン基(例えばエチニレン基等)、シクロアルキレン基(例えば1,4−シクロヘキサンジイル基等)、アルカントリイル基(例えば1,2,3−プロパントリイル基等)が挙げられる。n価の脂肪族有機基は置換基(例えばヒドロキシ基、アルキル基、ハロゲン原子等)を有するものを含む。
【0125】
nは2〜20が好ましい。
【0126】
好ましい多価アルコールの例としては、例えばアドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることが出来る。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
【0127】
(モノカルボン酸)
本発明に好ましく用いられる多価アルコールエステルを合成するモノカルボン酸としては、特に制限はなく公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることが出来る。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
【0128】
好ましいモノカルボン酸の例としては、以下のようなものを挙げることが出来るが、本発明はこれに限定されるものではない。
【0129】
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることが出来る。炭素数は1〜20であることが更に好ましく、1〜10であることが特に好ましい。酢酸を含有するとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
【0130】
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることが出来る。これらは更に置換基を有しても良い。
【0131】
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることが出来る。
【0132】
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることが出来る。特に安息香酸が好ましい。
【0133】
(多価アルコールエステル)
本発明に好ましく用いられる多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることが更に好ましい。保留性の点では大きい方が好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
【0134】
多価アルコールエステルにおけるカルボン酸は一種類でも、二種以上の混合でもよい。
【0135】
また、多価アルコール中のOH基は全てエステル化してもよいし、一部をOH基のままで残してもよい。好ましくは、分子内に芳香環若しくはシクロアルキル環を3つ以上有することが好ましい。
【0136】
本発明に好ましく用いられる多価アルコールエステルの例を以下に示す。
【0137】
【化22】

【0138】
【化23】

【0139】
【化24】

【0140】
【化25】

多価アルコールエステルの使用量は、セルロースエステルに対して3〜30質量%が好ましく、5〜25質量%が更に好ましく、特に好ましくは5〜20質量%である。
【0141】
(セルロースエステルフィルムの製造方法)
本発明のセルロースエステルフィルムの製造方法について説明する。
【0142】
本発明のセルロースエステルフィルムの製造方法に用いられる好ましい製膜工程は、下記に示す溶解工程、流延工程、溶媒蒸発工程、剥離工程、乾燥工程及び巻き取り工程からなる。以下に各々の工程を説明する。
【0143】
《主ドープの溶解工程》
主ドープの溶解工程は、セルロースエステルのフレークに、後述の良溶媒を主とする有機溶媒に溶解釜中で該フレークを攪拌しながら溶解し、ドープを形成する工程である。
【0144】
本発明では、ドープ中の固形分濃度は15質量%以上に調整することが好ましく、特に18〜35質量%のものが好ましく用いられる。
【0145】
ドープ中の固形分濃度が高過ぎるとドープの粘度が高くなり過ぎ、流延時にシャークスキンなどが生じてフィルム平面性が劣化する場合があるので、35質量%以下であることが望ましい。
【0146】
ドープ粘度は10〜50Pa・sの範囲に調整されることが好ましい。
【0147】
溶解には、常圧で行う方法、好ましい有機溶媒(即ち、良溶媒)の沸点以下で行う方法、上記の良溶媒の沸点以上で加圧して行う方法、冷却溶解法で行う方法、高圧で行う方法等種々の溶解方法等がある。良溶媒の沸点以上の温度で、かつ沸騰しない圧力をかけて溶解する方法としては、40.4〜120℃で0.11〜1.50MPaに加圧することで発泡を抑え、かつ、短時間に溶解することが出来る。
【0148】
本発明に用いられるセルロースエステルとしては、セルロースの低級脂肪酸エステルが好ましく用いられる。
【0149】
セルロースエステルの低級脂肪酸エステルにおける低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート等、また特開平10−45804号、同8−231761号、米国特許第2,319,052号等に記載されているセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルなどがセルロースの低級脂肪酸エステルの例として挙げられる。
【0150】
セルロースエステルのアシル基の置換度の測定方法としては、ASTM−D−817−96に準じて実施することが出来る。
【0151】
上記脂肪酸の中でも、セルロースアセテート、セルロースアセテートプロピオネートが好ましく用いられるが、本発明のセルロースエステルフィルムの場合には、フィルム強度の観点から、特に重合度250〜400のものが好ましく用いられる。
【0152】
本発明のセルロースエステルフィルムは総アシル基置換度が2.5〜3.0のセルロースエステルが好ましく用いられるが、特に総アシル基置換度が2.55〜2.85のセルロースエステルが好ましく用いられる。総アシル基置換度が2.55以上になるとフィルムの機械強度が増加し、2.85以下になるとセルロースエステルの溶解性が向上したり、異物の発生が低減されるため、より好ましい。
【0153】
偏光板保護フィルムとして用いる場合は、セルロースアセテートがより好ましく、重量平均分子量Mwを数平均分子量Mnで除した分子量分布Mw/Mnが1.8〜3.0であることが更に好ましい。
【0154】
ここで使用するセルロースアセテートの分子量分布Mw/Mnを1.8〜3.0の範囲に限定した理由は、セルロースアセテートの分子量分布Mw/Mnが1.8未満であると、延伸によりフィルム表面或いは内部で、セルロースエステルの結晶化が部分的に発生するため、加工性や寸法安定性において品質にバラツキが生じるので、好ましくなく、これに対し、セルロースアセテートの分子量分布Mw/Mnが3.0を超えると、延伸によりフィルム表面に細かな凹凸が発生し易いので、好ましくないからである。セルロースアセテートの分子量は、数平均分子量(Mn)で90000〜180000のものが用いられる。120000〜180000のものが更に好ましく、150000〜180000が特に好ましい。数平均分子量(Mn)が90000未満だと、製膜時にシワが入りやすくなるので好ましくなく、数平均分子量(Mn)が180000を超えるとドープ粘度が非常に高くなるので生産上好ましくない。
【0155】
セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて公知の方法で測定することが出来る。これを用いて数平均分子量、重量平均分子量を算出し、その比(Mw/Mn)を計算することが出来る。
【0156】
測定条件は以下の通りである。
【0157】
溶媒: メチレンクロライド
カラム: Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に得ることが好ましい。
【0158】
位相差フィルムとして用いる場合は、セルロースアセテートプロピオネートがより好ましく、セルロースアセテートプロピオネートの場合、アセチル基置換度をX、プロピオニル基置換度をYとすると
2.55≦X+Y≦2.85
1.5≦X≦2.4の範囲にあるものが好ましく用いられる。
【0159】
セルロースエステルは綿花リンターから合成されたセルロースエステルと木材パルプから合成されたセルロースエステル、それ以外の原料から合成されたセルロースエステルを単独或いは混合して用いることが出来る。
【0160】
また、セルロースエステルは、セルロースエステル中の微量金属成分によっても影響を受ける。これらは製造工程で使われる水に関係していると考えられるが、不溶性の核となり得るような成分は少ない方が好ましく、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成する事により不溶物を形成する場合があり、少ないことが好ましい。鉄(Fe)成分については、1ppm以下であることが好ましい。カルシウム(Ca)成分については、地下水や河川の水等に多く含まれ、これが多いと硬水となり、飲料水としても不適当であるが、カルボン酸や、スルホン酸等の酸性成分と、また多くの配位子と配位化合物即ち、錯体を形成し易く、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成する。
【0161】
カルシウム(Ca)成分は60ppm以下、好ましくは0〜30ppmである。マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、0〜70ppmであることが好ましく、特に0〜20ppmであることが好ましい。鉄(Fe)分の含量、カルシウム(Ca)分含量、マグネシウム(Mg)分含量等の金属成分は、絶乾したセルロースエステルをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP−AES(誘導結合プラズマ発光分光分析装置)を用いて分析を行うことによって求めることが出来る。
【0162】
セルロースエステルの代わりに、セルロースエステルフィルムの返材を用いても良い。
【0163】
返材の使用比率は、主ドープ等の処方値の固形分に対して0〜70質量%が好ましく、10〜50質量%が更に好ましく、20〜40質量%が最も好ましい。返材使用量の多い方が、濾過性に優れ、返材使用量の少ない方が、滑り性に優れるため、上記範囲にすることが好ましい。
【0164】
返材を使用した場合は、その使用量に対応して、可塑剤、紫外線吸収剤、微粒子などセルロースエステルフィルムに含まれる添加剤は減量して、最終的なセルロースエステルフィルム組成が設計値になるように調整を行う。
【0165】
主ドープを作製する際に使用される溶媒としては、セルロースエステルを溶解出来る溶媒であれば特に限定はされないが、また単独で溶解出来ない溶媒であっても他の溶媒と混合することにより、溶解出来るものであれば使用することが出来る。一般的には良溶媒であるメチレンクロライドとセルロースエステルの貧溶媒からなる混合溶媒を用い、かつ混合溶媒中には貧溶媒を4〜30質量%含有するものが好ましく用いられる。
【0166】
この他使用出来る良溶媒としては、例えばメチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。酢酸メチルを用いると、得られるフィルムのカールが少なくなるため特に好ましい。
【0167】
セルロースエステルの貧溶媒としては、例えばメタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等の炭素原子数1〜8のアルコール、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、モノクロルベンゼン、ベンゼン、シクロヘキサン、テトラヒドロフラン、メチルセロソルブ、エチレングリコールモノメチルエーテル等を挙げることが出来、これらの貧溶媒は単独若しくは2種以上を適宜組み合わせて用いることが出来る。
【0168】
溶解後セルロースエステル溶液(ドープ)を濾材で濾過し、脱泡してポンプで次工程に送ることが好ましく、また、その際、ドープ中には、前記した微粒子、可塑剤、酸化防止剤、紫外線吸収剤等が好ましく添加される。
【0169】
この様にして得られたドープを用い、以下に説明する流延工程を経てセルロースエステルフィルムを得ることが出来る。
【0170】
《流延工程》
ドープを加圧型定量ギヤポンプを通して加圧ダイに送液し、流延位置において、無限に移送する無端の金属ベルト或いは回転する金属ドラムの流延用支持体(以降、単に支持体ということもある)上に加圧ダイからドープを流延する工程である。流延用支持体の表面は鏡面となっている。
【0171】
その他の流延する方法は流延されたドープ膜をブレードで膜厚を調節するドクターブレード法、或いは逆回転するロールで調節するリバースロールコーターによる方法等があるが、口金部分のスリット形状を調製出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があるが、いずれも好ましく用いられる。
【0172】
製膜速度を上げるために加圧ダイを流延用支持体上に2基以上設け、ドープ量を分割して重層してもよい。或いはダイの内部をスリットで分割し、組成の異なる複数のドープ液を同時に流延(共流延とも言う)して、積層構造のセルロースエステルフィルムを得ることも出来る。
【0173】
この様に、得られたドープをベルトまたはドラム等の支持体上に流延し、製膜するが、本発明は特にベルトを用いた溶液流延製膜法で特に有効である。これは後述のように支持体上での乾燥条件を細かく調整することが容易だからである。
【0174】
《溶媒蒸発工程》
ウェブ(本発明においては、流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し溶媒を蒸発させる工程である。溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/または支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱の方法が乾燥効率が好ましい。またそれらを組み合わせる方法も好ましい。流延後の支持体上のウェブを40〜100℃の雰囲気下、支持体上で乾燥させることが好ましい。40〜100℃の雰囲気下に維持するにはこの温度の温風をウェブ上面にあてるか赤外線等の手段により加熱することが好ましい。
【0175】
特に本発明のセルロースエステルフィルムは、流延から30〜90秒以内で該ウェブを支持体から剥離することが望ましい。30秒未満で剥離するとフィルムの面品質が低下するだけでなく、透湿性の点でも好ましくない。90秒を越えて乾燥させると剥離性が悪化することなどによる面品質の低下や、フィルムに強いカールが発生するため好ましくない。
【0176】
《剥離工程》
支持体上で溶媒が蒸発したウェブを、剥離位置で支持体から剥離する工程である。剥離されたウェブは次工程に送られる。剥離する時点でのウェブの残留溶媒量(下記式)があまり大き過ぎると剥離し難かったり、逆に支持体上で十分に乾燥させてから剥離すると、途中でウェブの一部が剥がれたりする。
【0177】
支持体上の剥離位置における温度は、好ましくは10〜40℃であり、更に好ましくは11〜30℃である。該剥離位置におけるウェブの残留溶媒量は25〜120質量%が好ましく、更に好ましくは40〜100質量%である。
【0178】
本発明に係るウェブの残留溶媒量は下記式で定義される。
【0179】
残留溶媒量=(ウェブの加熱処理前質量−ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100%
尚、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
【0180】
上記のように剥離時の残留溶媒量を調整するには、流延後の流延用支持体の表面温度を制御し、ウェブからの有機溶媒の蒸発を効率的に行えるように、流延用支持体上の剥離位置における温度を上記の温度範囲に設定することが好ましい。支持体温度を制御するには、伝熱効率のよい伝熱方法を使用するのがよく、例えば、液体による裏面伝熱方法が好ましい。
【0181】
輻射熱や熱風等による伝熱方法は支持体温度のコントロールが難しく、好ましい方法とはいえないが、ベルト(支持体)マシンにおいて、移送するベルトが下側に来た所の温度制御には、緩やかな風でベルト温度を調節することが出来る。
【0182】
支持体の温度は、加熱手段を分割することによって、部分的に支持体温度を変えることが出来、流延用支持体の流延位置、乾燥部、剥離位置等異なる温度とすることが出来る。
【0183】
製膜速度を上げる方法(残留溶媒量が出来るだけ多いうちに剥離するため製膜速度を上げることが出来る)として、残留溶媒が多くとも剥離出来るゲル流延法(ゲルキャスティング)がある。
【0184】
それは、ドープ中にセルロースエステルに対する貧溶媒を加えて、ドープ流延後、ゲル化する方法、支持体の温度を低めてゲル化する方法等がある。また、ドープ中に金属塩を加える方法もある。
【0185】
支持体上でゲル化させ膜を強くすることによって、剥離を早め製膜速度を上げることも出来る。
【0186】
本発明のセルロースエステルフィルムを偏光板保護フィルムとして使用する場合は、製膜した後、残留溶剤量が40質量%以上であるときに該フィルムをMD方向に延伸を開始し、かつ残留溶剤量が40質量%未満であるとき、TD方向に延伸することが好ましい。
【0187】
残留溶剤量が40質量%以上であるときに該フィルムをMD方向に延伸し、かつ残留溶剤量が40質量%未満であるとき、TD方向に延伸するのは、剥離後のフィルムを高残留溶剤状態でMD方向とTD方向の両方に延伸してしまうと、MD方向に延伸しセルロースエステルの配向性を高めても、TD方向の延伸によってその配向性が乱れてしまい、弾性率向上の効果が低くなってしまうためである。
【0188】
本発明のセルロースエステルフィルムは、セルロースエステルの配向性を乱すことなく、弾性率の向上を維持出来るものである。残留溶剤量が60〜120質量%であるときに該フィルムをMD方向に延伸を開始することが更に好ましく、90〜110質量%が最も好ましい。残留溶剤量が1〜30質量%未満であるとき、TD方向に延伸することが更に好ましく、5〜20質量%が最も好ましい。
【0189】
偏光板保護フィルムとして使用する場合のセルロースエステルフィルムの延伸倍率はMD方向とTD方向とも1.05〜1.3倍であり、1.05〜1.15倍が更に好ましい。MD方向とTD方向延伸により面積が1.12倍〜1.44倍となっていることが好ましく、1.15倍〜1.32倍となっていることが好ましい。これはMD方向の延伸倍率×TD方向の延伸倍率で求めることが出来る。MD方向の延伸倍率が1.05倍未満では弾性率向上効果が少なく好ましくない。TD方向の延伸倍率が1.05倍未満ではリターデーション値Ro調整効果が少なく好ましくない。また、延伸倍率が1.3倍を超えてもヘイズも増加するため好ましくない。
【0190】
なお、本発明の微粒子を使用した場合は、平均一次粒子径が相対的に大きいにもかかわらず、微粒子を含有するセルロースエステルフィルムを延伸した場合のヘイズの増加が小さく抑えられる効果をみることができる。
【0191】
MD方向に延伸するために、剥離張力を130N/m以上で剥離することが好ましく、特に好ましくは150〜170N/mである。剥離後のウェブも高残留溶剤状態であるため、剥離張力と同様の張力を維持することで、MD方向への延伸を行うことが出来る。ウェブが乾燥し、残留溶剤量が減少するに従って、MD方向への延伸率は低下する。
【0192】
偏光板保護フィルムとして使用する場合は、セルロースエステルフィルムをMD方向に延伸する延伸ゾーンのロールスパンが1.0m以下であることが好ましい。本発明のような分子量分布のセルロースエステルフィルムを高残留溶剤量の状態でMD方向に延伸する場合、MD方向へのツレが発生し易く、ロールスパンが1.0m以下であると、ツレを防止することが出来る。また、MD方向へ延伸しているときのフィルム温度は10〜40℃が好ましく、この範囲にすることで、フィルムの平面性が良くなるからである。
【0193】
本発明のMD方向の延伸倍率は、ベルト支持体の回転速度とテンター運転速度から算出した。
【0194】
TD方向に延伸するには、例えば、特開昭62−46625号に示されているような乾燥全工程或いは一部の工程を幅方向にクリップまたはピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
【0195】
テンターを行う場合の乾燥温度は、30〜150℃が好ましく、80〜150℃が更に好ましく、100〜140℃が最も好ましい。乾燥温度の低い方が紫外線吸収剤、可塑剤などの蒸散が少なく、工程汚染に優れ、乾燥温度の高い方がフィルムの平面性、弾性率に優れる。セルロースエステルフィルムを延伸すると、異物が表面に突出し易く、通常よりも異物故障が多く発生する。そのため、本発明は延伸するプロセスを有するセルロースエステルフィルムにおいて特に効果を発揮するものである。
【0196】
本発明において、面内リターデーション値Roは自動複屈折率計KOBRA−21ADH(王子計測機器(株)製)を用いて、590nmの波長において、三次元屈折率測定を行い、得られた屈折率Nx、Ny、Nzから算出することが出来る。
【0197】
面内リターデーション値Roは20〜200nmであることが好ましく、かつ厚み方向のリターデーション値Rtが70〜400nmの範囲であることが好ましい。更にRoは30〜70nmであることがより好ましい。
【0198】
Ro=(Nx−Ny)×d
Rt=((Nx+Ny)/2−Nz)×d(式中、Nx、Ny、Nzはそれぞれ屈折率楕円体の主軸x、y、z方向の屈折率を表し、かつ、Nx、Nyはフィルム面内方向の屈折率を、Nzはフィルムの厚み方向の屈折率を表す。また、Nx≧Nyであり、dはフィルムの厚み(nm)を表す。)
本発明のセルロースエステルフィルムは、遅相軸方向と製膜方向とのなす角度θ(ラジアン)と面内方向のレターデーションRoが下記の関係にあり、特に偏光板用保護フィルム等の光学フィルムとして好ましく用いられる。
【0199】
P≦1−sin2(2θ)sin2(πRo/λ)
Pは0.9999以下である。
【0200】
θはフィルム面内の遅相軸方向と製膜方向(フィルムの直尺方向)とのなす角度(°ラジアン)、λは上記Nx、Ny、Nz、θを求める三次元屈折率測定の際の光の波長590nm、πは円周率である。
【0201】
《乾燥工程》
ウェブを千鳥状に配置したロールに交互に通して搬送する乾燥装置及び/またはクリップまたはピンでウェブの両端を保持して搬送するテンター装置を用いて幅保持しながら、ウェブを乾燥する工程である。乾燥工程における搬送張力も可能な範囲で低めに維持することがRoが低く維持出来るため好ましく、190N/m以下であることが好ましい。更に好ましくは170N/m以下であることが好ましく、更に好ましくは140N/m以下であることが好ましく、100〜130N/mであることが特に好ましい。特に、フィルム中の残留溶媒量が少なくとも5質量%以下となるまで上記搬送張力以下に維持することが効果的である。
【0202】
乾燥の手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブをあてて加熱する手段もある。あまり急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥温度は概ね40〜250℃で行われる。特に40〜160℃で乾燥させることが好ましい。
【0203】
流延用支持体面から剥離した後の乾燥工程では、溶媒の蒸発によってウェブは幅方向に収縮しようとする。高温度で急激に乾燥するほど収縮が大きくなる。
【0204】
この収縮を可能な限り抑制しながら乾燥することが、出来上がったフィルムの平面性を良好にする上で好ましい。
【0205】
この観点から、例えば、特開昭62−46625号に示されているような乾燥全工程或いは一部の工程を幅方向にクリップまたはピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
【0206】
このとき幅手方向の延伸倍率は0%〜100%であることが好ましく、偏光板保護フィルムとして用いる場合は5%〜20%が更に好ましく、8%〜15%が最も好ましく、位相差フィルムとして用いる場合は10%〜40%が更に好ましく、20%〜30%が最も好ましい。延伸倍率によってR0をコントロールすることが可能で、延伸倍率が高い方が出来上がったフィルムの平面性に優れるため好ましい。本発明は、微粒子の凝集物が異物となり易い延伸倍率の高いフィルムで特に効果を発揮するものである。
【0207】
テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20〜100質量%であるのが好ましく、かつ、ウェブの残留溶媒量が10質量%以下になるまでテンターをかけながら乾燥を行うことが好ましく、更に好ましくは5質量%以下である。
【0208】
テンターを行う場合の乾燥温度は、30〜150℃が好ましく、50〜120℃が更に好ましく、70〜100℃が最も好ましい。乾燥温度の低い方が紫外線吸収剤、可塑剤などの蒸散が少なく、工程汚染に優れ、乾燥温度の高い方がフィルムの平面性に優れる。一般式(I)で示される紫外線吸収剤は乾燥温度が高い場合でも、蒸散しにくいため、テンター乾燥温度が高く、延伸倍率の高い製造条件のときに、その効果が顕著発揮される。
【0209】
また、フィルムの乾燥工程においては、支持体より剥離したフィルムを更に乾燥し、残留溶媒量を0.5質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、更に好ましくは0〜0.01質量%以下とすることである。
【0210】
フィルム乾燥工程では一般にロール懸垂方式か、上記のようなピンテンター方式でフィルムを搬送しながら乾燥する方式が採られる。フィルムを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行う。簡便さの点で熱風で行うのが好ましい。乾燥温度は40〜150℃の範囲で3〜5段階の温度に分けて、段々高くしていくことが好ましく、80〜140℃の範囲で行うことが寸法安定性を良くするため更に好ましい。
【0211】
溶液流延製膜法を通しての流延直後から乾燥までの工程において、乾燥装置内の雰囲気を、空気とするのもよいが、窒素ガスや炭酸ガス、アルゴン等の不活性ガス雰囲気で行ってもよい。
【0212】
ただ、乾燥雰囲気中の蒸発溶媒の爆発限界の危険性は常に考慮されなければならないことは勿論のことである。
【0213】
《巻き取り工程》
ウェブ中の残留溶媒量が2質量%以下となってからセルロースエステルフィルムとして巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることが出来る。
【0214】
巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。
【0215】
膜厚の調節には、所望の厚さになるように、ドープ濃度、ポンプの送液量、ダイの口金のスリット間隙、ダイの押し出し圧力、流延用支持体の速度等をコントロールするのがよい。
【0216】
また、膜厚を均一にする手段として、膜厚検出手段を用いて、プログラムされたフィードバック情報を上記各装置にフィードバックさせて調節するのが好ましい。
【0217】
セルロースエステルフィルムの膜厚は、使用目的によって異なるが、仕上がりフィルムとして、通常5〜500μmの範囲にあり、更に10〜250μmの範囲が好ましく、特に液晶画像表示装置用フィルムとしては10〜120μmの範囲が用いられる。本発明のセルロースエステルフィルムは特に、10〜60μmの膜厚の薄いフィルムの範囲でより効果を発揮する。
【0218】
本発明のセルロースエステルフィルムの透湿度は、JIS Z 0208に記載の方法で測定された25℃90RH%における値で定義する。透湿度は20〜250g/m2・
24時間であることが好ましいが、特に20〜200g/m2・24時間であることが好ましい。透湿性が、250g/m2・24時間を超えた場合では偏光板の耐久性が著しく低下し、逆に20g/m2・24時間未満では、偏光板製造時の接着剤に使われている水等の溶媒が乾燥しにくくなり、乾燥時間が長くなるため好ましくない。より好ましくは25〜200g/m2・24時間である。
【0219】
また、本発明のセルロースエステルフィルムでは80℃、90%RHにおける質量変化を少なくすることで、寸法安定性を更に改善することが出来る。
【0220】
本発明のセルロースエステルフィルムでは80℃、90%RHで48時間加熱処理した前後での質量変化率が±2%以内とすることがより好ましく、これによって、透湿度が改善された薄膜フィルムでありながら、寸法変化率も優れたセルロースエステルフィルムを得ることが出来る。
【0221】
本発明のセルロースエステルフィルムは、80℃、90%RH雰囲気下で48時間加熱処理した際の寸法変化率はMD方向(フィルムの製膜方向)、TD方向(フィルムの幅手方向)共に±0.5%以内であることが好ましく、更に±0.3%以内であることが好ましく、更に±0.1%以内であることが好ましく、更に±0.05%以内であることが好ましい。
【0222】
本発明でいう寸法変化率とは、温度や湿度の条件が過酷な状況でのフィルム縦方向及び横方向の寸法変化を表す特性値である。具体的には加熱条件、加湿条件、熱湿条件にフィルムを置いて強制劣化としての、縦、横の寸法変化を測定する。例えば、測定しようとするフィルム試料について、幅手方向150mm×長手方向120mmサイズに断裁し、該フィルム表面に、幅手方向及び長手方向それぞれに100mm間隔で2ヶ所、カミソリ等の鋭利な刃物で十文字型の印を付ける。該フィルムを23℃、55%RHの環境下で24時間以上調湿し、光学顕微鏡で処理前の幅手方向及び長手方向のそれぞれの印間距離L1を測定する。次に、該試料を電気恒温槽中で、高温高湿処理(条件;80℃、90%RHの環境下で48時間放置をする)する。再び、該試料を23℃、55%RHの環境下で24時間調湿し、光学顕微鏡で処理後の幅手方向及び長手方向のそれぞれの印間距離L2を測定する。この処理前後の変化率を次式によって求める。
【0223】
寸法変化率(%)=(L2−L1)/L1×100
式中、L1は処理前の印間距離、L2は処理後の印間距離を表す。
【0224】
即ち、付す印の位置をフィルムの長手方向、幅手方向に付けることによって所望の寸法変化率測定を行うことが出来るのである。
【0225】
105℃で5時間処理したときの寸法変化率は、MD方向、TD方向共に±0.5%以内であることが好ましく、更に±0.3%以内であることが好ましく、更に±0.1%以内であることが好ましく、更に±0.05%以内であることが好ましい。
【0226】
本発明のセルロースエステルフィルムは抗張力がMD方向、TD方向共に90〜170N/mm2であることが好ましく、特に120〜160N/mm2であることが好ましい。
【0227】
含水率としては0.1〜5%が好ましく、0.3〜4%がより好ましく、0.5〜2%であることが更に好ましい。
【0228】
本発明のセルロースエステルフィルムは、透過率が90%以上であることが望ましく、更に好ましくは92%以上であり、更に好ましくは93%以上である。また、ヘイズは3%以下であることが好ましく、0.5%以下であることが更に好ましく、特に0.1%以下であることが好ましく、0%であることが最も好ましい。
【0229】
本発明のセルロースエステルフィルムにおいては、カール値は絶対値が小さい方が好ましく、変形方向は、+方向でも、−方向でもよい。カール値の絶対値は30以下であることが好ましく、更に好ましくは20以下であり、10以下であることが特に好ましい。尚、カール値は、曲率半径(1/m)で表される。
【0230】
以下に本発明のセルロースエステルフィルムの溶液流延製膜法による製造方法について、図を用いて更に詳細に説明する。
【0231】
図1はフィルムの溶液流延製膜法の好ましい一例を示す模式図である。図1(a)は流延後、ロール搬送・乾燥工程で乾燥する場合の模式図である。図1(b)は流延後、ロール搬送・乾燥工程で乾燥し、その後テンター搬送・乾燥工程で乾燥を行う場合の模式図である。図1(c)は流延後、テンター搬送・乾燥工程で乾燥し、その後ロール搬送・乾燥工程で乾燥を行う場合の模式図である。図1(d)は流延後、ロール搬送・乾燥工程で乾燥し、その後テンター搬送・乾燥工程で乾燥し、その後ロール搬送・乾燥工程で乾燥を行う場合の模式図である。
【0232】
尚、本発明において、テンター搬送・乾燥工程及びロール搬送・乾燥工程を含む工程とは、支持体から剥離されたフィルムを乾燥して巻き取る迄の工程のどこかに、フィルムの乾燥伸縮率を調整するテンター搬送・乾燥工程及びロール搬送・乾燥工程を有する工程をいう。テンター搬送・乾燥工程とはテンター搬送装置で搬送しながら同時に乾燥を行い、乾燥伸縮率を調整する工程を言い、ロール搬送・乾燥工程とはロール搬送装置で搬送しながら同時に乾燥を行い、乾燥伸縮率を調整する工程をいう。
【0233】
図1において、1はエンドレスで走行する支持体を示す。支持体としては鏡面帯状金属が使用されている。2はセルロースエステル樹脂を溶媒に溶解したドープを、支持体1に流延するダイスを示す。3は支持体1に流延されたドープが固化したフィルムを剥離する剥離点を示し、4は剥離されたフィルムを示す。5はテンター搬送・乾燥工程を示し、51は排気口を示し、52は乾燥風取り入れ口を示す。尚、排気口51と乾燥風取り入れ口52は逆であっても良い。6は張力カット手段を示す。張力カット手段としてはニップロール、サクションロール等が挙げられる。尚、張力カット手段は各工程間に設けても構わない。
【0234】
8はロール搬送・乾燥工程を示し、81は乾燥箱を示し、82は排気口を示し、83は乾燥風取り入れ口を示す。尚、排気口82と乾燥風取り入れ口83は逆であっても良い。
84は上部搬送用ロールを示し、85は下部搬送用ロールを示す。該搬送用ロール84、85は上下で一組で、複数組から構成されている。7は巻き取られたロール状のフィルムを示す。
【0235】
図1(d)で示される工程において、テンター搬送・乾燥工程5の前のロール搬送・乾燥工程を第1ロール搬送・乾燥工程と呼び、テンター搬送・乾燥工程5の後のロール搬送・乾燥工程を第2ロール搬送・乾燥工程と呼ぶ。尚、図1(a)〜(d)では示されていない冷却工程を、巻き取る前に必要に応じて設けても良い。
【0236】
本発明においては、上述したいずれの溶液流延製膜法による形態でセルロースエステルフィルムを製造しても構わない。
【0237】
本発明のセルロースエステルフィルムは、本発明の目的効果以外にも、良好な透湿性、寸法安定性等から液晶表示用部材、詳しくは偏光板用保護フィルムに用いられるのが好ましい。特に、透湿度と寸法安定性に対して共に厳しい要求のある偏光板用保護フィルムにおいて、本発明のセルロースエステルフィルムは好ましく用いられる。
【0238】
本発明に係る偏光板は、一般的な方法で作製することが出来る。例えば、光学フィルム或いはセルロースエステルフィルムをアルカリケン化処理し、ポリビニルアルコールフィルムをヨウ素溶液中に浸漬、延伸して作製した偏光膜の両面に、完全ケン化型ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリケン化処理とは、水系接着剤の濡れを良くし、接着性を向上させるために、セルロースエステルフィルムを高温の強アルカリ液中に漬ける処理のことをいう。
【0239】
本発明のセルロースエステルフィルムにはハードコート層、防眩層、反射防止層、防汚層、帯電防止層、導電層、光学異方層、液晶層、配向層、粘着層、接着層、下引き層等の各種機能層を付与することが出来る。これらの機能層は塗布或いは蒸着、スパッタ、プラズマCVD、大気圧プラズマ処理等の方法で設けることが出来る。特に、ハードコート層、防眩層(防眩性ハードコート層)、反射防止層を設けることが好ましい。
【0240】
(ハードコート層)
本発明は、前記セルロースエステルフィルム上にハードコート層を塗設し、ハードコートフィルムとすることが好ましい。ハードコート層として用いられる活性線硬化樹脂層の製造方法について述べる。
【0241】
本発明のハードコートフィルムにおいては、ハードコート層として活性線硬化樹脂層が好ましく用いられる。
【0242】
活性線硬化樹脂層とは紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させてハードコート層が形成される。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。
【0243】
紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。
【0244】
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る。例えば、特開昭59−151110号に記載のものを用いることが出来る。
【0245】
例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
【0246】
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることが出来、特開昭59−151112号に記載のものを用いることが出来る。
【0247】
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることが出来、特開平1−105738号に記載のものを用いることが出来る。
【0248】
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。
【0249】
これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用出来る。また、エポキシアクリレート系の光反応開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることが出来る。紫外線硬化樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。
【0250】
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることが出来る。
【0251】
また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。
【0252】
本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHCX−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用出来る。
【0253】
また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。
【0254】
これらの活性線硬化樹脂層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することが出来る。
【0255】
紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成する為の光源としては、紫外線を発生する光源であれば制限なく使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、活性線の照射量は好ましくは、5〜150mJ/cm2であり、特に好ましくは20〜100mJ/cm2である。
【0256】
また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによって更に平面性が優れたフィルムを得ることが出来る。
【0257】
紫外線硬化樹脂層組成物塗布液の有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
【0258】
また、紫外線硬化樹脂層組成物塗布液には、特にシリコン化合物を添加することが好ましい。例えば、ポリエーテル変性シリコーンオイルなどが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1000〜100000、好ましくは、2000〜50000が適当であり、数平均分子量が1000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。
【0259】
シリコン化合物の市販品としては、DKQ8−779(ダウコーニング社製商品名)、SF3771、SF8410、SF8411、SF8419、SF8421、SF8428、SH200、SH510、SH1107、SH3749、SH3771、BX16−034、SH3746、SH3749、SH8400、SH3771M、SH3772M、SH3773M、SH3775M、BY−16−837、BY−16−839、BY−16−869、BY−16−870、BY−16−004、BY−16−891、BY−16−872、BY−16−874、BY22−008M、BY22−012M、FS−1265(以上、東レ・ダウコーニングシリコーン社製商品名)、KF−101、KF−100T、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、シリコーンX−22−945、X22−160AS(以上、信越化学工業社製商品名)、XF3940、XF3949(以上、東芝シリコーン社製商品名)、ディスパロンLS−009(楠本化成社製)、グラノール410(共栄社油脂化学工業(株)製)、TSF4440、TSF4441、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、BYK−306、BYK−330、BYK−307、BYK−341、BYK−344、BYK−361(ビックケミ−ジャパン社製)日本ユニカー(株)製のLシリーズ(例えばL7001、L−7006、L−7604、L−9000)、Yシリーズ、FZシリーズ(FZ−2203、FZ−2206、FZ−2207)等が挙げられ、好ましく用いられる。
【0260】
これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
【0261】
紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることが出来る。塗布量はウェット膜厚として0.1〜30μmが適当で、好ましくは、0.5〜15μmである。また、ドライ膜厚としては0.1〜20μm、好ましくは1〜10μmである。
【0262】
より好ましくは、セルロースエステルフィルムの膜厚が10〜80μmであり、層の膜厚(H)とセルロースエステルフィルムの膜厚(d)の比率(d/H)が4〜10である時、平面性と同時に硬度、耐傷性にも優れる。これはセルロースエステルの膜厚に比べハードコート層が薄い場合、硬度、耐傷性に劣り、セルロースエステルの膜厚に比べ、ハードコート層が厚い場合、平面性が劣化することによる。
【0263】
紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、前記の5〜150mJ/cm2という活性線の照射量を得る為の照射時間としては、0.1秒〜5分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。
【0264】
また、これら活性線照射部の照度は50〜150mW/cm2であることが好ましい。
【0265】
こうして得た硬化樹脂層に、ブロッキングを防止する為、また対擦り傷性等を高める為、或いは防眩性や光拡散性を持たせる為また屈折率を調整する為に無機化合物或いは有機化合物の微粒子を加えることも出来る。
【0266】
ハードコート層に使用される無機微粒子としては、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることが出来る。特に、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウムなどが好ましく用いられる。
【0267】
また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物に加えることが出来る。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)が挙げられる。
【0268】
これらの微粒子粉末の平均粒径としては、0.005〜5μmが好ましく0.01〜1μmであることが特に好ましい。紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。
【0269】
紫外線硬化樹脂層は、JIS B 0601で規定される中心線平均粗さ(Ra)が1〜50nmのクリアハードコート層であるか、若しくはRaが0.1〜1μm程度の防眩層であることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製RST/PLUSを用いて測定することが出来る。
【0270】
(バックコート層)
本発明のハードコートフィルムのハードコート層を設けた側と反対側の面にはバックコート層を設けることが出来る。バックコート層は、塗布やCVDなどによって、ハードコート層やその他の層を設けることで生じるカールを矯正する為に設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることが出来る。尚、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせる為に微粒子が添加されることが好ましい。
【0271】
バックコート層に添加される微粒子としては無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることが出来る。微粒子は珪素を含むものがヘイズが低くなる点で好ましく、特に二酸化ケイ素が好ましい。
【0272】
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。ポリマー微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることが出来る。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することが出来る。
【0273】
これらの中でもアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きい為特に好ましく用いられる。本発明で用いられるハードコートフィルムは、ハードコート層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。
【0274】
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%好ましくは0.1〜10質量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。
【0275】
バックコート層は、具体的にはセルロースエステルフィルムを溶解させる溶媒または膨潤させる溶媒を含む組成物を塗布することによって行われる。用いる溶媒としては、溶解させる溶媒及び/または膨潤させる溶媒の混合物の他更に溶解させない溶媒を含む場合もあり、これらを透明樹脂フィルムのカール度合いや樹脂の種類によって適宜の割合で混合した組成物及び塗布量を用いて行う。
【0276】
カール防止機能を強めたい場合は、用いる溶媒組成を溶解させる溶媒及び/または膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが効果的である。この混合比率は好ましくは(溶解させる溶媒及び/または膨潤させる溶媒):(溶解させない溶媒)=10:0〜1:9で用いられる。この様な混合組成物に含まれる、透明樹脂フィルムを溶解または膨潤させる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルムなどがある。溶解させない溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール或いは炭化水素類(トルエン、キシレン、シクロヘキサノール)などがある。
【0277】
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター等を用いて透明樹脂フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体或いは共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることが出来るが、これらに限定されるものではない。例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが市販されており、この中から好ましいモノを適宜選択することも出来る。
【0278】
特に好ましくはジアセチルセルロース、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。
【0279】
バックコート層を塗設する順番はセルロースエステルフィルムの、バックコート層とは反対側の層(クリアハードコート層或いはその他の例えば帯電防止層等の層)を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。或いはハードコート層の塗設の前後に2回以上に分けてバックコート層を塗布することも出来る。
【0280】
(反射防止層)
本発明に係るハードコート層を有するセルロースエステルフィルム上に、更に反射防止層を設け反射防止フィルムとすることが好ましい。
【0281】
本発明に係る反射防止層は、ハードコート層の上に、ハードコート層側から複数の屈折率層を設けることが好ましく、更に、高屈折率層、低屈折率層を順に積層したものであることが好ましい。屈折率の高低は、そこに含まれる金属または化合物によってほぼ決まり、例えばTiは高く、Siは低く、Fを含有する化合物は更に低く、この様な組み合わせによって屈折率が設定される。屈折率と膜厚は、分光反射率の測定により計算して算出し得る。
【0282】
本発明の反射防止フィルムでは、各反射防止層を光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の高い高屈折率層と、支持体よりも屈折率の低い低屈折率層を組み合わせて構成されている。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体またはハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
【0283】
また、必要に応じて、汚れや指紋のふき取りが容易となるように、最表面の低屈折率層の上に、更に防汚層を設けることも好ましい。防汚層としては、含フッ素有機シラン化合物が好ましく用いられる。
【0284】
本発明に係る反射防止層は、塗布方式により形成することも出来、また大気圧プラズマ処理、CVD等のドライプロセスによって金属酸化物層、金属酸窒化物層(SiO2、TiO2、Ta2O5、ZrO2、ZnO、SnO2、ITO、SiN、TiN、SiOxNy、SiOx、TiOx、TiOxNyなど)を設けることが出来る。本発明では、塗布方式により反射防止層を形成することが好ましい。
【0285】
本発明に用いられる高屈折率層としては、好ましくはチタン酸化物を含有することが望ましい。これらは微粒子、有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物を含有する塗布液を塗布し乾燥させて形成させた屈折率1.55〜2.5の層である。
【0286】
本発明に用いられる有機チタン化合物のモノマー、オリゴマーとしては、Ti(OCH3)4、Ti(OC2H5)4、Ti(O−n−C3H7)4、Ti(O−i−C3H7)4、Ti(O−n−C4H9)4、Ti(O−n−C3H7)4の2〜10量体、Ti(O−i−C3H7)4の2〜10量体、Ti(O−n−C4H9)4の2〜10量体等が好ましい例として挙げられる。これらは単独で、または2種以上組み合わせて用いることが出来る。中でもTi(O−n−C3H7)4、Ti(O−i−C3H7)4、Ti(O−n−C4H9)4、Ti(O−n−C3H7)4の2〜10量体、Ti(O−n−C4H9)4の2〜10量体が特に好ましい。
【0287】
本発明に用いられる有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、塗布液に含まれる固形分中の50.0質量%〜98.0質量%を占めていることが望ましい。固形分比率は50質量%〜90質量%がより好ましく、55質量%〜90質量%が更に好ましい。このほか、塗布組成物には有機チタン化合物のポリマー(予め有機チタン化合物の加水分解を行って架橋したもの)或いは酸化チタン微粒子を添加することも好ましい。
【0288】
また、本発明においては、塗布液中に上記有機チタン化合物のモノマー、オリゴマーの部分または完全加水分解物を含むが、有機チタン化合物のモノマー、オリゴマーは、自己縮合して架橋し網状結合するものである。その反応を促進するために触媒や硬化剤を使用することが出来、それらには、金属キレート化合物、有機カルボン酸塩等の有機金属化合物や、アミノ基を有する有機けい素化合物、光による酸発生剤(光酸発生剤)等がある。
【0289】
これらの触媒または硬化剤の中で特に好ましいのは、アルミキレート化合物と光酸発生剤である。アルミキレート化合物の例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリスエチルアセトアセテート、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等であり、光酸発生剤の例としては、ベンジルトリフェニルホスホニウムヘキサフルオロホスフェート、その他のホスホニウム塩やトリフェニルホスホニウムヘキサフルオロホスフェートの塩等を挙げることが出来る。
【0290】
反射防止層の塗布液中の固形分比率として0.5質量%〜20質量%のバインダーが含まれることが好ましい。
【0291】
バインダーとしては、重合可能なビニル基、アリル基、アクリロイル基、メタクリロイル基、イソプロペニル基、エポキシ基、オキセタン環等の重合性基を2つ以上有し、活性線硬化型樹脂を含む塗布層で用いたのと同様なアクリルまたはメタクリル系活性エネルギー線反応性化合物、エポキシ系活性エネルギー線反応性化合物またはオキセタン系活性エネルギー線反応性化合物を用いることが出来る。これらの化合物はモノマー、オリゴマー、ポリマーを含む。重合速度、反応性の点から、これらの活性基のうちアクリロイル基、メタクリロイル基またはエポキシ基が好ましく、多官能モノマーまたはオリゴマーがより好ましい。また、前述の活性線硬化型樹脂を含む塗布層及びハードコート層に用いられる活性線硬化型樹脂も好ましく用いることが出来る。更に、アルコール溶解性アクリル樹脂も好ましく用いられる。
【0292】
チタン化合物を含む中〜高屈折率層には、バインダーとしてアルコール溶解性アクリル樹脂も好ましく用いられ、これによって、膜厚ムラが少ない中、高屈折率層を得ることが出来る。具体的には、アルキル(メタ)アクリレート重合体またはアルキル(メタ)アクリレート共重合体、例えばn−ブチルメタクリレート、イソブチルメタクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート等の共重合体が好ましく用いられるが、共重合成分としてはこれらに限定されるものではない。市販品としては、ダイヤナールBR−50、BR−51、BR−52、BR−60、BR−64、BR−65、BR−70、BR−73、BR−75、BR−76、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−89、BR−90、BR−93、BR−95、BR−96、BR−100、BR−101、BR−102、BR−105、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118(以上、三菱レーヨン(株)製)等が使用出来る。これらのモノマー成分も中〜高屈折率層用バインダーとして添加することが出来る。バインダーの添加比率を変更することによって屈折率を調整することが出来る。
【0293】
本発明に用いられる低屈折率層は、酸化ケイ素等の珪素化合物微粒子或いはフッ素含有化合物微粒子等を塗設して設けることが好ましい。好ましい有機けい素化合物としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等を挙げることが出来、これらを加水分解することによりシリケートオリゴマーが得られる。加水分解反応は、公知の方法により行うことが出来、例えば、上記テトラアルコキシシランに所定量の水を加えて、酸触媒の存在下に、副生するアルコールを留去しながら、通常、室温〜100℃で反応させる。この反応によりアルコキシシランは加水分解し、続いて縮合反応が起こり、ヒドロキシル基を2個以上有する液状のシリケートオリゴマー(通常、平均重合度は2〜8、好ましくは3〜6)を加水分解物として得ることが出来る。
【0294】
硬化触媒としては、酸、アルカリ、有機金属、金属アルコキシド等を挙げることが出来るが、本発明においては酸、特にスルホニル基またはカルボキシル基を有する有機酸が好ましく用いられる。例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メチルスルホン酸等が用いられる。有機酸は1分子内に水酸基とカルボキシル基を有する化合物であればいっそう好ましく、例えば、クエン酸または酒石酸等のヒドロキシジカルボン酸が用いられる。また、有機酸は水溶性の酸であることが更に好ましく、例えば上記クエン酸や酒石酸の他に、レブリン酸、ギ酸、プロピオン酸、リンゴ酸、コハク酸、メチルコハク酸、フマル酸、オキサロ酢酸、ピルビン酸、2−オキソグルタル酸、グリコール酸、D−グリセリン酸、D−グルコン酸、マロン酸、マレイン酸、シュウ酸、イソクエン酸、乳酸等が好ましく用いられる。また、安息香酸、ヒドロキシ安息香酸、アトロバ酸等も適宜用いることが出来る。
【0295】
上記有機酸を用いることで、硫酸、塩酸、硝酸、次亜塩素酸、ホウ酸等の無機酸の使用による生産時の配管腐蝕や安全性への懸念が解消出来るばかりでなく、加水分解時のゲル化を起こすことなく、安定した加水分解物を得ることが出来る。添加量は、部分加水分解物100質量部に対して0.1〜10質量部、好ましくは0.2〜5質量部がよい。また、水の添加量については部分加水分解物が理論上100%加水分解し得る量以上であればよく、100〜300%相当量、好ましくは100〜200%相当量を添加するのがよい。この様にして得られた低屈折率層用の塗布組成物は極めて安定である。
【0296】
更に、本発明では熟成工程により、有機けい素化合物の加水分解、縮合による架橋が十分に進み、得られた被膜の特性が優れたものとなる。熟成は、オリゴマー液を放置すればよく、放置する時間は、上述の架橋が所望の膜特性を得るのに十分な程度進行する時間である。具体的には用いる触媒の種類にもよるが、塩酸では室温で1時間以上、マレイン酸では数時間以上、8時間〜1週間程度で十分であり、通常3日前後である。熟成温度は熟成時間に影響を与え、極寒地では20℃付近まで加熱する手段をとった方がよいこともある。一般に高温では熟成が早く進むが、100℃以上に加熱するとゲル化が起こるので、せいぜい50〜60℃までの加熱が適切である。また、本発明で用いるシリケートオリゴマーについては、上記の他に、例えばエポキシ基、アミノ基、イソシアネート基、カルボキシル基等の官能基を有する有機化合物(モノマー、オリゴマー、ポリマー)等により変性した変性物であってもよく、単独または上記シリケートオリゴマーと併用することも可能である。
【0297】
また、本発明においては上記低屈折率層に酸化けい素微粒子を含有させることが出来る。粒径0.1μm以下の酸化けい素微粒子を含むことが好ましい。例えば、アエロジル200V(日本アエロジル(株)製)等を添加することが出来る。特に表面がアルキル基で修飾された酸化けい素微粒子が好ましく用いられ、例えばアエロジルR972、R972V(日本アエロジル(株)製)として市販されている表面がメチル基で修飾された酸化けい素微粒子を好ましく添加することが出来る。このほか特開2001−2799号に記載されている表面がアルキル基で置換された酸化けい素微粒子を用いることも出来、前述のシリケートオリゴマーの加水分解後にアルキルシランカップリング剤により処理することでも容易に得ることが出来る。添加量としては低屈折率層中の固形分比率で0.1質量%〜40質量%の範囲となるように添加することが好ましい。
【0298】
本発明の各屈折率層には、屈折率の調整或いは膜質の改善のために更にシラン化合物を添加することが出来る。
【0299】
本発明に係る中〜高屈折率層及び低屈折率層を塗設する際の塗布液に使用する溶媒は、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセルソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;N−メチルピロリドン、ジメチルフォルムアミド、乳酸メチル、乳酸エチル、水等が挙げられ、それらを単独または2種以上混合して使用することが出来る。
【0300】
また、分子内にエーテル結合をもつものが特に好ましく、グリコールエーテル類が更に好ましい。
【0301】
グリコールエーテル類としては、プロピレングリコールモノ(C1〜C4)アルキルエーテル、プロピレングリコールモノ(C1〜C4)アルキルエーテルエステルであり、具体的にはプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル等が挙げられる。また、プロピレングリコールモノ(C1〜C4)アルキルエーテルエステルとしては特にプロピレングリコールモノアルキルエーテルアセテートが挙げられ、具体的にはプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等が挙げられる。これらの溶媒は、塗布液中に全有機溶媒の1質量%〜90質量%添加されていることが好ましい。
【0302】
また、本発明に係る中〜高屈折率層及び低屈折率層の各層の塗布液には各種の添加剤を添加することが出来る。
【0303】
例えば、低屈折率層には滑り剤を添加することが好ましく、滑り性を付与することによって耐傷性を改善することが出来る。滑り剤としては、シリコンオイルまたはワックス状物質が好ましく用いられる。
【0304】
具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝋、モンタンワックスも好ましく使用出来る。特公昭53−292号に開示されているようなポリオルガノシロキサン、米国特許第4,275,146号に開示されているような高級脂肪酸アミド、特公昭58−33541号、英国特許第927,446号または特開昭55−126238号及び同58−90633号に開示されているような高級脂肪酸エステル(炭素数が10〜24の脂肪酸と炭素数が10〜24のアルコールのエステル)、そして米国特許第3,933,516号に開示されているような高級脂肪酸金属塩、特開昭51−37217号に開示されているような炭素数10までのジカルボン酸と脂肪族または環式脂肪族ジオールからなるポリエステル化合物、特開平7−13292号に開示されているジカルボン酸とジオールからのオリゴポリエステル等を挙げることが出来る。
【0305】
低屈折率層に使用する滑り剤の添加量は0.01mg/m2〜10mg/m2が好ましい。必要に応じて、中屈折率層や高屈折率層に添加することも出来る。
【0306】
本発明の中〜高屈折率層及び低屈折率層には、界面活性剤、柔軟剤、柔軟平滑剤等を添加することが好ましく、これによって耐擦り傷性が改善される。中でもアニオン系または非イオン系の界面活性剤が好ましく、例えば、ジアルキルスルホコハク酸ナトリウム塩、多価アルコール脂肪酸エステルの非イオン界面活性剤乳化物等が好ましい。例えば、リポオイルNT−6、NT12、NT−33、TC−1、TC−68、TC−78、CW−6、TCF−208、TCF−608、NKオイルCS−11、AW−9、AW−10、AW−20、ポリソフターN−606、塗料用添加剤PC−700(日華化学株式会社製)等が用いられる。
【0307】
本発明に用いられる中〜高屈折率層及び低屈折率層の塗設後、金属アルコキシドを含む組成物の加水分解または硬化を促進するため、活性線を照射することが好ましい。より好ましくは、各層を塗設するごとに活性エネルギー線を照射することである。
【0308】
本発明に使用する活性線は、活性線硬化型樹脂層の硬化で用いるのと同様の光源を用いることが出来る。照射条件はそれぞれのランプによって異なるが、照射光量は20mJ/cm2〜10000mJ/cm2が好ましく、更に好ましくは、100mJ/cm2〜2000mJ/cm2であり、特に好ましくは、400mJ/cm2〜2000mJ/cm2である。
【0309】
紫外線を用いる場合、多層の反射防止層を1層ずつ照射してもよいし、積層後照射してもよいが、多層を積層した後、紫外線を照射することが特に好ましい。
【0310】
(偏光板)
本発明に係るセルロースエステルフィルム若しくはハードコートフィルム及び反射防止フィルム等の光学フィルムは偏光板保護フィルムとして極めて優れている。偏光板は一般的な方法で作製することが出来る。本発明においても同様に、本発明のセルロースエステルフィルム若しくは光学フィルムをアルカリ鹸化処理した偏光板用保護フィルムを、沃素溶液中に浸漬延伸して作製した偏光膜の両面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせる。本発明のセルロースエステルフィルム若しくは光学フィルムとした後に、セルロースエステルフィルムの片面を鹸化処理してもよい。
【0311】
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明のセルロースエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせるが、本発明に係るセルロースエステルフィルム若しくは光学フィルムは透湿性が低く耐久性に優れている。
【0312】
本発明の偏光板を用いた画像表示装置は耐久性に優れ、長期間にわたってコントラストの高い表示が可能である。
【0313】
(画像表示装置)
本発明のセルロースエステルフィルム若しくは光学フィルム或いはそれを用いた偏光板を画像表示装置に組み込むことによって、種々の画像表示装置を作製することが出来る。
【0314】
画像表示装置としては、液晶画像表示装置(反射型、半透過型、透過型)、有機電解発光素子、プラズマディスプレイ等がある。例えば、高温高湿条件下での強制劣化処理において、画像表示装置についても本発明のセルロースエステルフィルム若しくは光学フィルムまたはそれを用いた偏光板は、視認性に優れかつフィルム起因の問題は認められなかった。
【0315】
更に、本発明の偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来る。本発明の偏光板は反射型、透過型、半透過型LCD或いはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上の大画面の液晶表示装置では、色むらや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
【実施例】
【0316】
以下、実施例により本発明を説明するが、本発明はこれらに限定されるものではない。
【0317】
実施例1
〈セルロースエステルフィルム1〜15の作製〉
(酸化ケイ素添加液a〜iの作製方法)
メチレンクロライド82.6質量部、エタノール11.8質量部を密閉容器に投入し、撹拌しながら、セルロースアセテートプロピオネート(総アシル基置換度2.65、アセチル基置換度1.90、プロピオニル基置換度0.75)4.0質量部を加えてディゾルバーで60分間撹拌混合した。その後撹拌しながら表1に記載の酸化ケイ素微粒子A〜Iを1.6質量部加えて、更に60分間撹拌した後、、表2に記載の酸化ケイ素添加液a〜iを作製した。酸化ケイ素添加液中の平均粒子径はベックマン・コールター(株)製粒度分布測定装置LS 13 320シリーズマルチウェーブを用いて測定した。
【0318】
表1に記載の酸化ケイ素微粒子A〜E、H、Iは、特許第3484611号公報に記載の方法により作成し、F、Gは当該公報に記載の方法において、微水滴を用いずに作成した。
【0319】
(酸化ケイ素微粒子の平均一次粒子径と相対標準偏差)
酸化ケイ素微粒子を精製水またはアルコール等の溶剤に少量添加し、超音波分散機で分散し、ガラス板に塗布、乾燥させ、透過型電子顕微鏡(倍率50万〜200万倍)で微粒子を撮影した。得られた画像をコニカミノルタ社製フラットヘッドスキャナーシティオス(Sitios)9231にて電子データ化し、画像解析ソフトイメージプロプラス(ImagePro Plus)を使用して、平均一次粒子径の測定を行った。平均一次粒子径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を使用した。また、このデータから相対標準偏差を算出した。画像解析条件としては次のフローで行う。
【0320】
フィルター処理:メディアン3×3→平坦化20ピクセル→ハイパス3×3→メディアン3×3。
【0321】
【表1】

【0322】
【表2】

(インライン添加液Aの作製)
チヌビン109(チバスペシャリティーケミカルズ(株)製) 11質量部
チヌビン171(チバスペシャリティーケミカルズ(株)製) 5質量部
メチレンクロライド 88質量部
エタノール 12質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、セルロースアセテートプロピオネート(総アシル基置換度2.65、アセチル基置換度1.90、プロピオニル基置換度0.75)6質量部を撹拌しながら加えて、更に120分間撹拌した後、ロキテクノ(株)製のSLフィルターカートリッジ SL−100で濾過し、インライン添加液Aを調製した。
【0323】
(主ドープ液Aの調製)
リンター綿から合成されたセルローストリアセテート(Mn=148000、Mw=310000、Mw/Mn=2.1) 100質量部
一般式(A)例示化合物16 5.0質量部
エチルフタリルエチルグリコレート 5.5質量部
メチレンクロライド 440質量部
エタノール 40質量部
以上を密閉容器に投入し、撹拌しながら、表3に示す種類と量の酸化ケイ素添加液を添加し、加熱、撹拌しながら、溶解し、その後、プレスフィルター装置に捕集粒子径3μmで濾水時間10sec/100mlのガードフィルターを使用し濾過して、主ドープ液を調製した。プレスフィルターの濾過面積は50m2であった。
【0324】
(セルロースエステルフィルム1〜15の製膜)
製膜ライン中で日本精線(株)製のファインメットNFでドープ液Aを濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液Aを濾過した。濾過した主ドープ液A100質量部に対して濾過したインライン添加液Aを1.3質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi−Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度22℃、1800mm幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力162Newton/mでステンレスバンド支持体上から剥離した。剥離したセルローストリアセテートのウェブを35℃で溶媒を蒸発させ、1650mm幅にスリットし、その後、テンターで幅方向に1.07倍に延伸しながら、135℃の乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は10%であった。その後、110℃、120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1430mm幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、セルロースエステルフィルム1を得た。ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.08倍であった。セルロースエステルフィルム1の残留溶剤量は0.004%であり、膜厚は80μm、巻数は5200mであった。
【0325】
同様にして酸化ケイ素添加液の種類と量を表3に示すように変えてセルロースエステルフィルム2〜15を作製した。
【0326】
上記作製したセルロースエステルフィルム1〜15の表面上に下記ハードコート層を設けた。
【0327】
《ハードコート層の形成》
(ハードコート層塗布組成物)
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
ジエトキシベンゾフェノンUV開始剤 2質量部
イソプロピルアルコール 50質量部
酢酸エチル 50質量部
メチルエチルケトン 50質量部
上記ハードコート層塗布組成物を押し出しコートし、次いで80℃に設定された乾燥部で乾燥した後、紫外線を150mJ/cm2照射して塗布層を硬化させ、厚さ5μmのハードコート層(屈折率1.5)を形成し、ハードコートフィルム1〜15を作製した。
【0328】
《評価》
作製した試料を下記に示す測定方法に従って評価した。結果を表3に示す。
【0329】
(フィルム中の平均粒子径)
セルロースエステルフィルムサンプルをエポキシ樹脂で包埋後、ウルトラミクロトームにより約100nm厚の超薄切片を作製し、日本電子製 透過型電子顕微鏡2000FX(加速電圧:200kV)により2500〜10000倍のTEM画像を撮影した。得られた画像をコニカ製フラットヘッドスキャナーSitios9231にて電子データ化し、画像解析ソフトImagePro Plusを使用して、フィルム中の平均粒子径の測定を行った。フィルム中の平均粒子径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を使用した。
【0330】
〈画像解析条件〉
フィルター処理:メディアン3×3→平坦化20ピクセル→ハイパス3×3→メディアン3×3

(Ra、表面ピーク密度)
温度23℃、湿度50%±5%において、3次元表面構造解析顕微鏡zygo New View 5000 キャノン販売(株)製を用い、対物レンズ50倍、イメージズーム1.0倍で、セルロースエステルフィルムの中心線平均表面粗さRaを測定した。また、3nm以上のピークの数を測定し、測定面積で割って、単位面積あたりのピークの数を算出した。
【0331】
(ヘイズ)
セルロースエステルフィルム試料3枚を重ね合わせ、ASTM−D1003−52に従って、東京電色工業(株)社製T−2600DAを使用して測定した。
【0332】
(動摩擦係数)
セルロースエステルフィルム表面と裏面間の動摩擦係数は、JIS−K−7125−ISO8295に準じ、フィルムの表裏面が接触するように切り出し、200gの重りを載せ、サンプル移動速度100mm/分、接触面積80mm×200mmの条件で重りを水平に引っ張り、重りが移動中の平均荷重(F)を測定し、下記式より動摩擦係数(μ)を求めた。
【0333】
動摩擦係数=F(gf)/重りの重さ(gf)
(平面性)
巻き取ったセルロースエステルフィルム原反試料を35℃、80%RHの条件下で10日間保存した。フィルム原反試料を500m巻き出して、1mの長さでサンプングし、フィルム試料表面に点灯している蛍光灯の管を反射させて映し、その歪み或いは細かい乱れを観察し、平面性を下記レベルにランク分けした。
【0334】
◎:画面の表面に蛍光灯を映して見たとき、蛍光灯が歪みみ無くきれいに見える。
【0335】
○:画面の表面に蛍光灯を映して見たとき、蛍光灯が少し歪みんで見える。使用上問題ないレベル。
【0336】
×:画面の表面に蛍光灯を映して見たとき、蛍光灯が激しく歪みんで見える。使用上問題となるレベル。
【0337】
(干渉ムラ)
ハードコートフィルムのハードコート層が形成された反対の面をサンドペーパーで擦り、その後艶消しの黒色塗料を塗布し、ハードコート層形成側からハードコートフィルムを観察し、干渉ムラを下記レベルにランク分けした。
【0338】
◎:干渉ムラが無く、きれいに見える。
【0339】
○:干渉ムラが確認出来るが、使用上問題ないレベル。
【0340】
×:干渉ムラが確認出来、使用上問題となるレベル。
【0341】
【表3】

表3から平均一次粒子径0.1〜1.0μmの微粒子を含有し、相対標準偏差を1〜20%とし、かつ該セロルースエステルフィルム表面のピーク密度が1000〜8000(1/mm2)である試料は、ヘイズが低く、透明性に優れ、そしてフィルム原反の保存性にも優れていることがわかる。さらに、透明性とハードコート塗布後の干渉ムラの両方により優れることがわかる。また、延伸したことによるヘイズの劣化はほとんど観察されておらず、本発明の微粒子とセルロースエステルとの相溶性の良さを見出したといえる。
【0342】
実施例2
〈セルロースエステルフィルム16〜23の作製〉
(主ドープ液組成C)
セルロースエステル(酢化度60.9%) 89.5質量部
トリフェニルフォスフェート 7.0質量部
ビフェニルジフェニルフォスフェート 3.5質量部なる固形分に
メチレンクロライド 82.0質量部
メタノール 15.0質量部
n−ブタノール 3.0質量部なる混合溶液を適宜添加、攪拌溶解しドープを調製した。ドープの固形分濃度は23.0%であった。このドープを濾紙(東洋濾紙(株)製,『#63』)で濾過し、更に燒結金属フィルター(日本精線(株)製,『06N』)で濾過し、更に燒結金属フィルター(日本精線(株)製,『12N』、公称孔径40μm)で濾過した。
【0343】
(インライン添加液Xの作製)
2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロルベンゾトリアゾール 5.40質量部
2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール 10.79質量部
シリカ(日本アエロジル(株)製、アエロジルR972) 0.39質量部
セルローストリアセテート(酢化度60.9%) 2.58質量部
トリフェニルフォスフェート 0.28質量部
ビフェニルジフェニルフォスフェート 0.14質量部
メチレンクロライド 67.71質量部
メタノール 10.86質量部
n−ブタノール 1.85質量部なる溶液を調製し、アトライターにて添加液での平均粒子径が0.6μmになるように分散を行った。分散後の溶液を濾紙(東洋濾紙(株)製,『#63』)で濾過し、更に燒結金属フィルター(日本精線(株)製,『07N』)にて濾過した。
【0344】
上記のドープAに対し、スタチックミキサーを用い、上記インライン添加液Bを、ドープ中の固形分に対し紫外線吸収剤量が1.14質量%になるよう調節しつつ、ドープの配管経路において添加、混合した。混合後のドープを図2に示すようなドラム流延システムで流延した。ドラム13の表面温度は−3℃であった。ドープが自己支持性を持ったところで剥ぎ取り、フィルムとして剥離した。このフィルムをテンター式乾燥機20に導入し、両端を保持して張力を与えつつ乾燥した。以降ローラー乾燥ゾーン30にて乾燥して巻き芯40にて巻き取った。ローラー乾燥ゾーン内で、フィルム表面温度を最高139℃まで加熱した。完成したフィルムの膜厚は80μmであった。尚、厚み方向レターデーションRtが90nmになるように、流延条件、乾燥条件等を調整した。以上のようにしてセルロースエステルフィルム16を作製した。
【0345】
次いで下記インライン添加液b〜hを作製し、同様にしてセルロースエステルフィルム17〜23を作製した。
【0346】
(インライン添加液bの作製)
トリアジン系下記化合物UVT−1 16.19質量部
実施例1の酸化ケイ素微粒子B 0.39質量部
セルロースエステル(酢化度60.9%) 2.58質量部
トリフェニルフォスフェート 0.28質量部
ビフェニルジフェニルフォスフェート 0.14質量部
メチレンクロライド 67.71質量部
メタノール 10.86質量部
n−ブタノール 1.85質量部
【0347】
【化26】

なる溶液を調整し、ナノマイザーにて、下記分散条件で分散を行った。それ以外は、インライン添加液Xと同様にしてインライン添加液bを作製した。
【0348】
分散条件:貫通型ジェネレーターKD、圧力10MPa、2パス
(インライン添加液cの作製)
インライン添加液bの酸化ケイ素微粒子Bを実施例1の酸化ケイ素微粒子Cに変更した以外は同様にしてインライン添加液cを作製した。
【0349】
(インライン添加液dの作製)
インライン添加液bの酸化ケイ素微粒子Bを実施例1の酸化ケイ素微粒子Dに変更した以外は同様にしてインライン添加液dを作製した。
【0350】
(インライン添加液eの作製)
インライン添加液bの酸化ケイ素微粒子Bを実施例1の酸化ケイ素微粒子Eに変更した以外は同様にしてインライン添加液eを作製した。
【0351】
(インライン添加液fの作製)
インライン添加液bの酸化ケイ素微粒子Bを実施例1の酸化ケイ素微粒子Fに変更した以外は同様にしてインライン添加液fを作製した。
(インライン添加液gの作製)
インライン添加液bの酸化ケイ素微粒子Bを実施例1の酸化ケイ素微粒子Gに変更した以外は同様にしてインライン添加液gを作製した。
(インライン添加液hの作製)
インライン添加液bの酸化ケイ素微粒子Bを実施例1の酸化ケイ素微粒子Hに変更した以外は同様にしてインライン添加液hを作製した。
【0352】
以上のようにして作製したセルロースエステルフィルムの表面上に、下記防眩層用塗布液を押し出しコートし、次いで80℃に設定された乾燥部で乾燥した後、紫外線を150mJ/cm2照射して塗布層を硬化させ、厚さ3μmの防眩性ハードコート層(屈折率1.52)を形成し、防眩性ハードコートフィルム16〜23を作製した。
【0353】
〈防眩層用塗布液〉
ジペンタエリスリトールヘキサアクリレート 100質量部
光反応開始剤 5質量部
(イルガキュア184(チバ・スペシャルティ・ケミカルズ(株)製))
酢酸エチル 120質量部
プロピレングリコールモノメチルエーテル 120質量部
シリコーン化合物 0.4質量部
(BYK−307(ビックケミージャパン社製))
架橋ポリスチレン粒子(綜研化学製SX350H 粒径3.5μm) 10質量部
酸化ケイ素微粒子(アエロジルR972V(日本アエロジル(株)製))5質量部
作製した試料について、実施例1と同様な評価及び下記に示す測定方法に従って、濃淡ムラ及びRt変化を評価した。結果を表4に示す。
【0354】
(濃淡ムラ)
セルロースエステルフィルムの防眩性ハードコート層が形成された反対の面をサンドペーパーで擦り、その後艶消しの黒色塗料を塗布し、防眩性ハードコート層形成側からセルロースエステルフィルムを観察し、濃淡ムラを下記レベルにランク分けした。
【0355】
◎:濃淡ムラが無く、きれいに見える。
【0356】
○:濃淡ムラが確認出来るが、使用上問題ないレベル。
【0357】
×:濃淡ムラが確認出来、使用上問題となるレベル。
【0358】
(Rt変化)
サンシャインウェザーメーター500時間、UVカットフィルター無しでの条件で強制劣化処理前後の、セルロースエステルフィルムの厚み方向のリターデーションRt変化を測定した。
【0359】
Rt変化=((強制劣化前のRt/強制劣化後のRt)−1)×100
【0360】
【表4】

表4から、本発明のセルロースエステルフィルムは、実施例1を再現し、かつ1,3,5−トリアジン環を有する芳香族化合物を含むことで、紫外線照射後のリターデーションRt変化にも優れていることがわかる。また、防眩層の濃淡ムラもなく、天井に配置した蛍光灯を写しこんでその反射像のボケ具合を観察した所、比較例に対して防眩効果が優れていることを確認した。
【0361】
実施例3
上記作製したハードコートフィルム1〜23を用いて下記の反射防止層を形成し、反射防止層付きハードコートフィルム1〜23を作製した。
【0362】
《多層反射防止層の形成》
(中屈折率層塗布組成物)
テトラ(n)ブトキシチタン 250質量部
末端反応性ジメチルシリコーンオイル(日本ユニカー社製L−9000)
0.48質量部
アミノプロピルトリメトキシシラン(信越化学社製KBE903) 22質量部
UV硬化性エポキシ樹脂(旭電化社製KR500) 21質量部
プロピレングリコールモノメチルエーテル 4900質量部
イソプロピルアルコール 4840質量部
(高屈折率層塗布組成物)
テトラ(n)ブトキシチタン 310質量部
末端反応性ジメチルシリコーンオイル(日本ユニカー社製L−9000)
0.4質量部
アミノプロピルトリメトキシシラン(信越化学社製KBE903) 4.8質量部
UV硬化性エポキシ樹脂(旭電化社製KR500) 4.6質量部
プロピレングリコールモノメチルエーテル 4900質量部
イソプロピルアルコール 4800質量部
(テトラエトキシシラン加水分解物Aの調製)
テトラエトキシシラン580gとエタノール1144gを混合し、これにクエン酸水溶液(クエン酸1水和物5.4gを水272gに溶解したもの)を添加した後に、25℃にて1時間攪拌することでテトラエトキシシラン加水分解物Aを調製した。
【0363】
(低屈折率層塗布組成物)
テトラエトキシシラン加水分解物A 1020質量部
末端反応性ジメチルシリコーンオイル(日本ユニカー社製L−9000)
0.42質量部
プロピレングリコールモノメチルエーテル 2700質量部
イソプロピルアルコール 6300質量部
上記ハードコートフィルム1〜23を用いて、中屈折率層、高項屈折率層、低屈折率層の順番でハードコート層の上に、ダイを用いて塗布し、120℃で乾燥した後、ハードコート層形成時と同様の条件で紫外線照射を行い各反射防止層を硬化させ、多層反射防止層を形成した。形成される層の膜厚をオンラインで測定しながら流量条件を制御した。この様にして、中屈折層(厚さ:75nm)、高屈折層(厚さ:70nm)、低屈折率層(厚さ:93nm)を形成し、多層反射防止層を有する反射防止層付きハードコートフィルム1〜23を作製した。
【0364】
各層の屈折率と膜厚は、各層を単独で塗工したサンプルについて、分光光度計の分光反射率の測定結果から求める。分光光度計はU−4000型(日立製作所製)を用いて、サンプルの裏面を粗面化した後、黒色のスプレーで光吸収処理を行い、裏面の光の反射を防止して、5度正反射の条件にて可視光領域(400〜700nm)の反射率測定を行う。
【0365】
出来上がった各層単独の屈折率は中屈折率層1.65、高屈折率層1.90、低屈折率層1.45であった。
【0366】
《偏光板の作製》
厚さ120μmのポリビニルアルコールフィルムをヨウ素1kg、ヨウ化カリウム2kg、ホウ酸4kgを含む水溶液100kgに浸漬し50℃で4倍に延伸し、幅1.4mの偏光膜を作製した。
【0367】
上記作製した反射防止層付きハードコートフィルムを2mol/Lの水酸化ナトリウム水溶液に60℃で1分間浸漬し、ケン化処理した。反射防止層付きハードコートフィルムの反射防止層はポリエステル製の保護フィルム(膜厚40μm)を張り付けてアルカリから保護した。
【0368】
偏光膜の片面に同様にケン化処理したコニカミノルタオプト(株)製KC8UX2Mの易接着層面にポリビニルアルコール重合体(クラレ社製:PVA203、ケン化度86.5〜89.5%、平均重合度300)の10%水溶液を滴下して積層し、また、その反対面に反射防止層付きハードコートフィルムの反射防止層を設けた面とは反対の面にも同様にポリビニルアルコール重合体の10%水溶液を滴下して積層した。
【0369】
上記3層の積層フィルムを、PVA水溶液が乾燥しないうちにロール トゥ ロールで圧着し、70℃3分間の乾燥ゾーンを通過させた後、巻き取った。その後、偏光板を打ち抜き、偏光板を得た。
【0370】
《評価》
得られた偏光板について下記方法により平面性を評価した。
【0371】
(平面性)
上記偏光板を蛍光灯の下に配置し、目視によって蛍光灯の反射光を確認したところ、本発明のセルロースエステルフィルムを用いた偏光板は歪みの少ない反射像であったのに対して、比較例の偏光板は反射像の歪みが認められた。
【0372】
《液晶表示装置の作製》
上記作製した偏光板用いて、シャープ製液晶パネルLL−T1620との組み合わせで、該液晶パネルに予め貼合されていた偏光板を剥がし、液晶セルの両面に偏光板の透過軸が、予め貼合されていた偏光板の透過軸と同じ方向になるように粘着剤を介して偏光板を貼合して、液晶表示装置を作製した。
【0373】
作製した液晶表示装置の視認性、反射色ムラの評価を目視で行ったところ、本発明のセルロースエステルを用いた偏光板により作製した本発明の液晶表示装置は、視認性、反射色ムラに優れ、長時間の鑑賞でも目が疲れかった。それに対し比較例の偏光板を用いた比較例の液晶表示装置は、色むらや波打ちムラが見られ表示品質が劣っていた。
【図面の簡単な説明】
【0374】
【図1】フィルムの溶液流延製膜法の好ましい一例を示す模式図である。
【図2】ドラム流延システムの一例を示す模式図である。
【符号の説明】
【0375】
1 鏡面帯状金属流延支持体
2 ダイス
3 フィルム剥離点
4 剥離されたフィルム
5 テンター搬送・乾燥工程
6 張力カット手段
7 巻き取られたロール状のフィルム
8 ロール搬送・乾燥工程
10 流延部
11 乾燥室
12 流延ダイ
13 ドラム
20 テンター式乾燥機
21 乾燥部
22 保持部
30 ローラー乾燥ゾーン
32 搬送ロール
40 巻き芯
51、82 排気口
52、83 乾燥風取り入れ口
81 乾燥箱
84 上部搬送用ロール
85 下部搬送用ロール

【特許請求の範囲】
【請求項1】
平均一次粒子径が0.1〜1.0μmでありかつ相対標準偏差が1〜20%である微粒子を含有し、表面のピーク密度が1000〜8000(1/mm2)であることを特徴とするセルロースエステルフィルム。
【請求項2】
前記セルロースエステルフィルムが、製膜方向(MD方向)又は幅手方向(TD方向)の少なくとも一方に1.05〜1.3倍延伸したものであることを特徴とする請求項1に記載のセルロースエステルフィルム。
【請求項3】
1,3,5−トリアジン環を有する芳香族化合物を含むことを特徴とする請求項1又は2のいずれか1項に記載のセルロースエステルフィルム。
【請求項4】
前記セルロースエステルフィルムが光学フィルムであることを特徴とする請求項1〜3いずれかに記載のセルロースエステルフィルム。
【請求項5】
請求項1〜4いずれかに記載のセルロースエステルフィルムを有することを特徴とする偏光板。
【請求項6】
請求項1〜5いずれかに記載のセルロースエステルフィルムを有することを特徴とする液晶表示装置

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2006−22306(P2006−22306A)
【公開日】平成18年1月26日(2006.1.26)
【国際特許分類】
【出願番号】特願2005−72201(P2005−72201)
【出願日】平成17年3月15日(2005.3.15)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】