説明

センサー装置

【課題】コンクリート構造物のコンクリート中の塩化物イオン濃度変化をコンクリートのpH変化と区別して測定し、その測定情報をコンクリート構造物の計画的な保全に活用することができるセンサー装置を提供すること。
【解決手段】本発明のセンサー装置1は、局所的に形成された凹部31を備え、第1の金属材料で構成された第1の電極3と、第1の電極3に対して離間して設けられ、第2の金属材料で構成された第2の電極4と、第1の電極3と第2の電極4との電位差を測定する機能を有する機能素子51とを有し、機能素子51で測定された電位差に基づいて、測定対象部位の状態を測定し得るように構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサー装置に関するものである。
【背景技術】
【0002】
センサー装置としては、例えば、コンクリート中の鉄筋の腐食状態を測定するものが知られている(例えば、特許文献1参照)。
施工直後のコンクリート構造物中のコンクリートは、通常、強アルカリ性を呈する。そのため、施工直後のコンクリート構造物中の鉄筋は、その表面に不動態膜が形成されるため、安定である。しかし、施工後に酸性雨や排気ガス等の影響を受けたコンクリート構造物は、コンクリートが徐々に酸性化(中性化)していくため、鉄筋が腐食することとなる。また、コンクリート構造物は、コンクリートへ侵入した塩化物イオンによっても鉄筋が腐食する。
【0003】
例えば、特許文献1に記載の装置では、参照電極および対極を備えたプローブをコンクリートに埋設して、鉄筋の腐食による電位変化および分極抵抗を測定することにより、鉄筋の腐食を予測する。
しかし、かかる装置では、鉄筋の腐食の原因がコンクリート中へ侵入した塩化物イオンによるものなのか、コンクリートの中性化によるものなのかを特定することができず、その結果、コンクリート構造物の適切な保全を行うことができないという問題があった。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平6−222033号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の目的は、コンクリート構造物のコンクリート中の塩化物イオン濃度変化をコンクリートのpH変化と区別して測定し、その測定情報をコンクリート構造物の計画的な保全に活用することができるセンサー装置を提供することにある。
【課題を解決するための手段】
【0006】
このような目的は、下記の本発明により達成される。
本発明のセンサー装置は、局所的に形成された凹部または貫通孔を備え、第1の金属材料で構成された第1の電極と、
前記第1の電極に対して離間して設けられ、第2の金属材料で構成された第2の電極と、
前記第1の電極と前記第2の電極との電位差を測定する機能を有する機能素子とを有し、
前記機能素子で測定された電位差に基づいて、測定対象部位の状態を測定し得るように構成されたことを特徴とする。
このように構成されたセンサー装置によれば、第1の電極に局所的に凹部または貫通孔が形成されているので、測定対象部位の塩化物イオン濃度が第2の電極の腐食が生じない比較的低い状態であっても、第1の電極を孔食により腐食させることができる。
そのため、測定対象部位の塩化物イオン濃度が比較的低い状態であっても、第1の電極と第2の電極との電位差が生じ、かかる電位差に基づいて塩化物イオンの侵入を検知することができる。
【0007】
本発明のセンサー装置では、前記凹部または前記貫通孔の幅をWとし、前記凹部または前記貫通孔の深さをDとしたときに、
D/Wが1以上であることが好ましい。
これにより、第1の電極の孔食を効果的に生じさせることができる。
本発明のセンサー装置では、前記第1の電極は、前記凹部または前記貫通孔に引っ張り応力を生じさせた状態で保持されていることが好ましい。
これにより、第1の電極の孔食による腐蝕速度を高めることができる。
【0008】
本発明のセンサー装置では、前記第1の電極は、前記凹部として、局所的に形成された第1の凹部を備え、
前記第2の電極は、前記第1の凹部とは深さおよび幅のうちの少なくとも一方が異なり、局所的に形成された第2の凹部を備えることが好ましい。
これにより、測定対象部位の塩化物イオン濃度を段階的に検知することができる。
【0009】
本発明のセンサー装置では、前記第1の金属材料および前記第2の金属材料は、それぞれ、前記測定部位の環境変化に伴って表面に不動態膜を形成するか、または、表面に存在した不動態膜を消失させる金属材料であることが好ましい。
これにより、測定対象部位のpHが所定値以上である場合に、第1の電極および第2の電極の表面に不動態膜が形成される。
【0010】
ここで、第2の電極に形成された不動態膜は、測定対象部位の塩化物イオン濃度が比較的高くなるまで破壊されず、また、局所的な破壊が一旦生じても、pHが所定値以上の環境下では再生する。そのため、測定対象部位のpHが所定値以上である場合、測定対象部位の塩化物イオン濃度が比較的高くなるまでの間、第2の電極の自然電位が高い状態(貴化した状態)に安定して維持される。
【0011】
一方、第1の電極に形成された不動態膜は、測定対象部位の塩化物イオン濃度が比較的低くても、第1の電極の凹部または貫通孔に侵入した塩化物イオンによる局所的な破壊が一旦生じると、かかる凹部内または貫通孔内において、第1の電極から溶出した金属イオンの濃度が増大し、それに伴って、塩化物イオンの濃度が増大するため、再生されない。そのため、測定対象部位のpHが所定値以上である場合、測定対象部位に塩化物イオンが存在しないときには、第1の電極の自然電位が高い状態(貴化した状態)に安定して維持されるが、測定対象部位に塩化物イオンが侵入すると、第1の電極の孔食が進行し、第1の電極の自然電位が低くなる(卑化する)。
このようなことから、第1の電極と第2の電極との電位差に基づいて、測定対象部位に塩化物イオンが侵入したことを高感度に検知することができる。
【0012】
本発明のセンサー装置では、前記第1の金属材料および前記第2の金属材料は、同種の金属材料で構成されることが好ましい。
これにより、第1の電極および第2の電極の表面にそれぞれ不動態膜が形成された状態において、第1の電極と第2の電極との電位差が測定対象部位の塩化物イオン濃度に応じたものとなる。そのため、第1の電極と第2の電極との電位差に基づいて、測定対象部位に塩化物イオンが侵入したことをより高感度に検知することができる。
【0013】
本発明のセンサー装置では、前記第1の金属材料および前記第2の金属材料は、異なる金属材料で構成されることが好ましい。
これにより、第1の電極の不動態膜が形成または消失するタイミングと、第2の電極の不動態膜が形成または消失するタイミングとを異ならせることができる。そのため、第1の電極と第2の電極との電位差に基づいて、測定対象部位のpHが設定値以下か否かを検知することができる。
【0014】
本発明のセンサー装置では、前記第1の金属材料および前記第2の金属材料は、それぞれ、鉄または鉄系材料であることが好ましい。
鉄または鉄系合金(鉄系材料)は比較的安価で入手が容易である。また、例えば、センサー装置をコンクリート構造物の状態測定に用いた場合、第1の電極および第2の電極の少なくとも一方の電極をコンクリート構造物中の鉄筋と同一材料(または近似した材料)で構成することが可能であり、コンクリート構造物中の鉄筋の腐食状態を効果的に検知することができる。
【0015】
本発明のセンサー装置では、前記機能素子は、前記第1の電極と前記第2の電極との電位差に基づいて、前記測定対象部位のpHまたは塩化物イオン濃度が設定値以下か否かを検知する機能をも有することが好ましい。
これにより、測定対象物のpH変化あるいは塩化物イオン濃度変化に伴う状態変化を検知することができる。
【0016】
本発明のセンサー装置では、アンテナと、
前記アンテナに給電する機能を有する通信用回路とを有し、
前記機能素子は、前記通信用回路を駆動制御する機能をさらに有することが好ましい。
これにより、無線により測定対象物の外部へ測定結果を送信することができる。
【図面の簡単な説明】
【0017】
【図1】本発明の第1実施形態に係るセンサー装置の使用状態の一例を示す図である。
【図2】図1に示すセンサー装置の概略構成を示すブロック図である。
【図3】図2に示す第1の電極、第2の電極および機能素子を説明するための平面図である。
【図4】図2に示す第1の電極および第2の電極を説明するための断面図(図3中のA−A線断面図)である。
【図5】図2に示す機能素子を説明するための断面図(図3中のB−B線断面図)である。
【図6】図2に示す第1の電極の塩化物イオンによる腐食を説明する模式図である。
【図7】図2に示す機能素子に備えられた差動増幅回路を示す回路図である。
【図8】図2に示す機能素子に備えられた差動増幅回路を示す回路図である。
【図9】図1に示すセンサー装置の作用の一例を説明するための図である。
【図10】本発明の第2実施形態に係るセンサー装置の使用状態の一例を示す図である。
【図11】本発明の第3実施形態に係るセンサー装置の使用状態の一例を示す図である。
【図12】図11に示す第1の電極および第2の電極を説明するための断面図である。
【図13】本発明の第4実施形態に係るセンサー装置の概略構成を示す図である。
【図14】図13に示す第1の電極を説明するための図である。
【図15】本発明の第5実施形態に係るセンサー装置の概略構成を示す図である。
【図16】図15に示す第1の電極を説明するための図である。
【図17】本発明の第6実施形態に係るセンサー装置の概略構成を示す図である。
【図18】図17に示す第1の電極を説明するための図である。
【発明を実施するための形態】
【0018】
以下、本発明のセンサー装置の好適な実施形態について、添付図面を参照しつつ説明する。
<第1実施形態>
まず、本発明の第1実施形態を説明する。
図1は、本発明の第1実施形態に係るセンサー装置の使用状態の一例を示す図、図2は、図1に示すセンサー装置の概略構成を示すブロック図、図3は、図2に示す第1の電極、第2の電極および機能素子を説明するための平面図、図4は、図2に示す第1の電極および第2の電極を説明するための断面図(図3中のA−A線断面図)、図5は、図2に示す機能素子を説明するための断面図(図3中のB−B線断面図)、図6は、図2に示す第1の電極の塩化物イオンによる腐食を説明する模式図、図7および図8は、それぞれ、図2に示す機能素子に備えられた差動増幅回路を示す回路図、図9は、図1に示すセンサー装置の作用の一例を説明するための図である。
【0019】
なお、以下では、本発明のセンサー装置をコンクリート構造物の品質測定に用いる場合を例に説明する。
図1に示すセンサー装置1は、コンクリート構造物100の品質を測定するものである。
コンクリート構造物100は、コンクリート101内に複数の鉄筋102が埋設されている。そして、センサー装置1は、コンクリート構造物100のコンクリート101内の鉄筋102付近に埋設されている。なお、センサー装置1は、コンクリート構造物100を打設する際に、コンクリート101の打設前に鉄筋に固定して埋め込んでもよいし、打設後に硬化したコンクリート101に穿孔して埋め込んでもよい。
このセンサー装置1は、本体2と、その本体2上に設けられた第1の電極3、第2の電極4および第3の電極7とを有する。
【0020】
本実施形態では、第1の電極3、第2の電極4および第3の電極7は、鉄筋102よりもコンクリート構造物100の外表面側において、コンクリート構造物100の外表面からの距離が互いに等しくなるように設置されている。また、第1の電極3、第2の電極4および第3の電極7は、それぞれ、電極面がコンクリート構造物100の外表面に平行または略平行となるように設置されている。そして、第1の電極3および第2の電極4は、コンクリート101の測定対象部位の状態変化に伴って、これらの間の電位差が変化するように構成されている。なお、第1の電極3、第2の電極4および第3の電極7については、後に詳述する。
また、センサー装置1は、図2に示すように、第1の電極3、第2の電極4および第3の電極7に電気的に接続された機能素子51と、電源52と、温度センサー53と、通信用回路54と、アンテナ55と、発振器56とを有し、これらが本体2内に収納されている。
【0021】
以下、センサー装置1を構成する各部を順次説明する。
(本体)
本体2は、第1の電極3、第2の電極4、第3の電極7および機能素子51等を支持する機能を有する。
このような本体2は、図4および図5に示すように、第1の電極3、第2の電極4、第3の電極7および機能素子51を支持する基板21を有する。なお、基板21は、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56をも支持するが、図3〜5では、説明の便宜上、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56の図示を省略している。
【0022】
この基板21は、絶縁性を有する。基板21としては、特に限定されず、例えば、アルミナ基板、樹脂基板等を用いることができる。
図4に示すように、この基板21上には、例えばソルダーレジストのような絶縁性の樹脂組成物で構成された絶縁層23が設けられている。そして、この絶縁層23を介して基板21上には、第1の電極3、第2の電極4、第3の電極7および機能素子51が実装されている。
【0023】
図5に示すように、この基板21上には、機能素子51(集積回路チップ)が保持され、機能素子51の導体部61、62、63(電極パッド)が第1の電極3、第2の電極4および第3の電極7と接続されている。
この導体部61は、第1の電極3と、導体部516a、516dおよびトランジスタ514aのゲート電極とを電気的に接続している。また、導体部62は、第2の電極4と、導体部516b、516eおよびトランジスタ514bのゲート電極とを電気的に接続している。第1の電極3と第2の電極4は、各々、トランジスタ514a、514bのゲート電極と接続しているためフローテイング状態にある。515aと515bは、集積回路の層間絶縁膜であり、25は、集積回路の保護膜である。
【0024】
また、本体2は、機能素子51、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56を収納する機能を有する。
特に、本体2は、機能素子51、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56を液密的に収納するように構成されている。
具体的には、図4および図5に示すように、本体2は、封止部24を有する。この封止部24は、機能素子51、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56を封止する機能を有する。これにより、センサー装置1を水分やコンクリートの存在下に設置した場合に、機能素子51、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56の劣化を防止することができる。
【0025】
ここで、封止部24は、開口部241を有し、この開口部241から第1の電極3、第2の電極4および第3の電極7を露出させつつ、第1の電極3、第2の電極4および第3の電極7以外の各部を覆うように設けられている(図3および図4参照)。これにより、封止部24が第1の電極3、第2の電極4および第3の電極7以外の各部の劣化を防止しつつ、センサー装置1が測定を行うことができる。なお、開口部241は、第1の電極3、第2の電極4および第3の電極7のそれぞれの少なくとも一部を露出するように形成されていればよい。
【0026】
封止部24の構成材料としては、例えば、アクリル系樹脂、ウレタン系樹脂、オレフィン系樹脂のような熱可塑性樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂のような熱硬化性樹脂等の各種樹脂材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
なお、封止部24は、必要に応じて設ければよく、省略することもできる。
【0027】
(第1の電極、第2の電極)
第1の電極3および第2の電極4は、図4に示すように、それぞれ、前述した本体2の外表面上(より具体的には基板21上)に設けられている。特に、第1の電極3および第2の電極4は、同一平面上に設けられている。そのため、第1の電極3および第2の電極4の設置環境の差が生じるのを防止することができる。
【0028】
また、第1の電極3および第2の電極4は、互いに電位の影響を受けない程度(例えば数mm)に離間している。
本実施形態では、第1の電極3および第2の電極4は、それぞれ、板状またはシート状をなしている。また、第1の電極3および第2の電極4の平面視形状は、それぞれ、四角形をなしている。また、第1の電極3および第2の電極4は、平面視にて、互いの形状および面積が等しくなっている。なお、第1の電極3および第2の電極4の平面視での形状および面積は、互いに異なっていてもよい。
【0029】
本実施形態では、第1の電極3の上面(すなわち基板21とは反対側の面)には、局所的に凹部31が形成されている。
このような凹部31を備える第1の電極3では、測定対象部位の塩化物イオン濃度が第2の電極4の腐食が生じない比較的低い状態であっても、第1の電極3を孔食により腐食させることができる。
【0030】
そのため、測定対象部位の塩化物イオン濃度が比較的低い状態であっても、第1の電極3と第2の電極4との電位差が生じ、かかる電位差に基づいて塩化物イオンの侵入を検知することができる。
本実施形態では、凹部31は、平面視にて帯状をなしている。すなわち、凹部31は、一方向に延在する溝である。
【0031】
また、本実施形態では、凹部31は、V字溝であり、凹部31の横断面は、開口部側から底部側に向けて幅が漸減する三角形をなしている。
また、凹部31の幅(本実施形態では平面視にて延在方向に対して垂直な方向での長さ)をWとし、凹部31の深さ(最大深さ)をDとしたきに、D/Wは、1以上であるのが好ましく、1以上4以下であるのがより好ましく、2以上3以下であるのがさらに好ましい。これにより、第1の電極3の孔食を効果的に生じさせることができる。
【0032】
これに対し、D/Wが小さすぎると、後述するような凹部31内での金属イオンの滞留が生じ難く、その結果、第1の電極3の孔食を効果的に生じさせることが難しい。一方、D/Wが大きすぎると、第1の電極3の形状、構成材料等によっては、凹部31の形成が難しく、また、D/Wを大きくしても、第1の電極3の孔食を生じさせる効果はほとんど変わらない。
【0033】
なお、凹部31は、その延在方向での少なくとも一部において、前述したようなD/Wの関係を満たせばよい。また、「凹部31の幅」とは、凹部31の横断面における開口端の幅をいう。
この凹部31は、例えば、第1の電極3をエッチング(ドライエッチングまたはウエットエッチング)することにより形成することができる。このようにして凹部31を形成することにより、後述するような第1の電極3の塩化物イオンによる腐食(孔食)を促進し得る凹部31を簡単かつ確実に形成することができる。なお、凹部31の形成方法としては、これに限定されるものではなく、例えば、レーザー、機械加工等を用いることもできる。
【0034】
また、この凹部31の深さ(最大深さ)Dは、特に限定されないが、例えば、1μm以上100μm以下であるのが好ましく、10μm以上80μm以下であるのがより好ましく、20μm以上60μm以下であるのがさらに好ましい。これにより、後述するような第1の電極3の孔食を生じさせ得る凹部31を簡単かつ確実に形成することができる。
また、凹部31の幅Wは、特に限定されないが、例えば、1μm以上100μm以下程度であるのが好ましい。
【0035】
また、凹部31の延在方向での長さは、特に限定されない。なお、凹部31の平面視形状は、帯状に限定されず、円形、四角形等であってもよい。
また、凹部31の数は、本実施形態では1つであるが、第1の電極3の孔食を促進することができれば、2つ以上であってもよい。
また、第1の電極3は、その少なくとも表面付近が緻密体で構成されているのが好ましい。これにより、第1の電極3は、塩化物イオンの存在下において、最も腐食が生じやすい部分が最初に腐食し、その最初に腐食を生じた部位の腐食し易さが他の部分に比してさらに大きくなるため、局所的な腐食(孔食)が生じる。
【0036】
一方、第2の電極4は、その少なくとも表面付近が多孔質体で構成されているのが好ましい。これにより、第2の電極4の表面には腐食の生じやすい部分として微細な多数の凹部が均一に分散して形成される。そのため、第2の電極4の表面は、塩化物イオンの存在下において、均一に腐食が生じ、局所的な腐食(孔食)が抑制される。
また、上述したように第2の電極4を多孔質体を用いて構成した場合、その多孔質体の空孔の平均径は、前述したような塩化物イオンによる孔食を防止し得る範囲であれば、特に限定されないが、例えば、2nm以上50nm以下であるのが好ましい。すなわち、かかる空孔は、メソ孔であるのが好ましい。また、かかる多孔質体の空孔率は、前述したように塩化物イオンによる孔食を防止し得る範囲であれば、特に限定されないが、例えば、10%以上90%以下であるのが好ましい。
【0037】
かかる範囲内の平均径の空孔を有する多孔質体で第2の電極4が構成されていることにより、前述したような第2の電極4の塩化物イオンによる孔食を防止するとともに、細孔による毛管凝縮効果により、より低い相対湿度で、第2の電極4上に水分を結露させることができる。そのため、第2の電極4上に安定して液体の水を存在させることができる。すなわち、仮に第2の電極4が緻密体で構成された場合に第2の電極4上に結露が生じないような低い相対湿度においても、第2の電極4上にそれぞれ結露させて液体の水を存在させることができる。
【0038】
このようなことから、外部環境の湿度や温度の変化に伴ってコンクリート101内の相対湿度が変化しても、第2の電極4上の水分量の変動を防止することができる。その結果、外部環境の湿度や温度の変化によって第2の電極4の自然電位が変動するのを防止し、コンクリート101の測定対象部位の状態を高精度に測定することができる。
ここで、第1の電極3および第2の電極4の構成材料について説明する。
【0039】
第1の電極3は、不動態膜(第1の不動態膜)を形成する第1の金属材料(以下、単に「第1の金属材料」とも言う)で構成されている。このように構成された第1の電極3は、pHの変化によって不動態膜が形成されたり破壊されたりする。このような第1の電極3は、不動態膜が形成された状態(不動態化した状態)では不活性(貴)であり、自然電位が高くなる(貴化する)。一方、第1の電極3は、不動態膜が破壊された状態(消失された状態)では活性(卑)である。そのため、第1の電極3の電位は、pH変化に伴う不動態膜の有無により急峻に変化する。
第1の金属材料としては、不動態膜が形成される限り、特に限定されないが、例えば、Fe、Ni、Mg、Znまたはこれらを含む合金等が挙げられる。
【0040】
例えば、Feは、pHが9よりも大きいときに不動態膜を形成する。また、FeAl(Al0.8%)系炭素鋼は、pHが4よりも大きいときに不動態膜を形成する。また、Niは、pHが8〜14であるときに不動態膜を形成する。また、Mgは、pHが10.5よりも大きいときに不動態膜を形成する。また、Znは、pHが6〜12であるときに不動態膜を形成する。また、SUS304は、pHが2〜13であるときに不動態膜を形成する。
【0041】
また、例えば、炭素鋼(SD345)は、塩化物イオン濃度が約1.2kg/mを超えたときに不動態膜の破壊が始まる。
中でも、第1の金属材料は、FeまたはFeを含む合金(Fe系合金)、すなわち鉄系材料(具体的には、炭素鋼、合金鋼、SUS等)であるのが好ましい。鉄系材料は安価で入手が容易である。また、本実施形態のように、センサー装置1をコンクリート構造物100の状態測定に用いた場合、第1の金属材料をコンクリート構造物100の鉄筋102と同一または近似の材料とすることが可能であり、鉄筋102の腐食環境状態を効果的に検知することができる。例えば、第1の電極3がFeで構成されている場合、pHが9以上か否かの判断ができる。
【0042】
一方、第2の電極4は、第2の金属材料(以下、単に「第2の金属材料」とも言う)で構成されている。
この第2の金属材料としては、第2の電極4が電極として機能し得るものであれば、特に限定されず、各種金属材料を用いることができる。
また、第2の金属材料は、前述した第1の金属材料と同種の材料(同一または近似した材料)で構成されていてもよいし、前述した第1の金属材料と異なる材料で構成されていてもよい。
また、第2の金属材料は、不動態膜を形成するものであってもよいし、不動態膜を形成しないものであってもよい。
【0043】
第1の金属材料および第2の金属材料が互いに同種である場合、第1の電極3および第2の電極4は、測定対象部位のpH変化に対して、互いに同一または近似して状態が変化する。したがって、測定対象部位のpHが変化しても、第1の電極3と第2の電極4との電位差は、全く変化しないか、あるいは、ほとんど変化しない。そのため、測定対象部位の塩化物イオン濃度変化を測定対象部位のpH変化と区別して測定することができる。
すなわち、第1の電極3および第2の電極4の表面にそれぞれ不動態膜が形成された状態において、第1の電極3と第2の電極4との電位差が測定対象部位の塩化物イオン濃度に応じたものとなる。そのため、第1の電極3と第2の電極4との電位差に基づいて、測定対象部位に塩化物イオンが侵入したことをより高感度に検知することができる。
【0044】
一方、第1の金属材料および第2の金属材料が互いに異なる種類である場合、第2の金属材料が不動態膜(第2の不動態膜)を形成するものであると、第1の電極3の不動態膜が形成または消失するタイミングと、第2の電極4の不動態膜が形成または消失するタイミングとを異ならせることができる。そのため、第1の電極と第2の電極との電位差に基づいて、測定対象部位のpHが設定値以下か否かを検知することができる。
【0045】
例えば、測定対象部位のpHの低下に伴う、第1の電極3の不動態膜が消失するタイミングが、第2の電極4の不動態膜が消失するタイミングよりも早い場合、第2の電極4は、前述したように不動態膜の有無により第1の電極3の電位が変化する際に、不導体膜の形成や破壊(消失)が無く、急激な電位の変化がない。そのため、前述したように不動態膜の有無により第1の電極3の電位が変化する際に、第1の電極3と第2の電極4との電位差が急峻に変化する。そのため、第1の電極3および第2の電極4の設置環境(本実施形態ではコンクリート101の鉄筋102付近)のpHが設定値以下か否かを正確に検知することができる。
また、第2の金属材料が不動態膜(第2の不動態膜)を形成するものである場合、第2の金属材料として、上述の第1の金属材料として例示した金属を挙げることができる。
【0046】
第1の金属材料および第2の金属材料の双方が不動態膜を形成する金属材料である場合、第1の金属材料が不動態膜を形成するpHの範囲の下限値を第1のpH(第1の不動態化pH)とし、第2の金属材料が不動態膜を形成するpHの範囲の下限値を第2のpH(第2の不動態化pH)としたとき、第1のpHおよび第2のpHが互いに異なるのが好ましい。すなわち、第1の金属材料は、第1のpHよりも大きいpHとなったときに不動態膜を形成し、第2の金属材料は、第1のpHとは異なる第2のpHよりも大きいpHとなったときに不動態膜を形成するのが好ましい。これにより、第1の電極3および第2の電極4が設置された環境のpHが第1のpH以下か否かおよび第2のpH以下か否かをそれぞれ正確に検知することができる。
【0047】
この場合、第1のpHが8以上10以下であり、かつ、第2のpHが7以下であるのが好ましい。これにより、第1のpH以下か否かを検知することにより、第1の電極3および第2の電極4の設置環境が中性状態に近付いていることを事前に知ることができる。このようなことから、本実施形態にように、センサー装置1をコンクリート構造物100の状態測定に用いた場合、鉄筋102の腐食防止の対策を事前に行うことができる。また、第2のpH以下か否かを検知することにより、第1の電極3および第2の電極4の設置環境(測定対象部位)が酸性状態になってしまったことを知ることもできる。
【0048】
また、この場合、第2の金属材料は、Feを含む合金(Fe系合金)、すなわち鉄系材料であるのが好ましい。鉄系材料は安価で入手が容易である。また、本実施形態のように、センサー装置1をコンクリート構造物100の状態測定に用いた場合、第1の金属材料を鉄筋102と同一材料とすることが可能であり、第2の金属材料を鉄筋102と同種材料(Fe系合金)とすることにより、鉄筋102の腐食状態を効果的に検知することができる。
【0049】
一方、第2の金属材料が不動態膜を形成しないものである場合、第2の金属材料として、Pt、Au等を挙げることができる。第2の金属材料が不動態膜を形成しないものである場合、第1の電極3および第2の電極4の設置環境が強アルカリ状態から強酸性状態へ変化するとき、その変化を1段階で高精度に検知することができる。
この場合、第1の金属材料は、3以上5以下のpH、または、8以上10以下のpHよりも大きいpHとなったときに不動態膜を形成するものであるのが好ましい。3以上5以下のpH以下か否かを検知することにより、第1の電極3および第2の電極4の設置環境が酸性状態になってしまったことを知ることができる。また、8以上10以下のpH以下か否かを検知することにより、第1の電極3および第2の電極4の設置環境が中性状態に近付いていることを事前に知ることができる。
このような第1の電極3および第2の電極4の形成方法としては、それぞれ、特に限定されず、公知の成膜法を用いることができる。
【0050】
以上説明したような第1の電極3および第2の電極4によれば、それぞれ前述したような不動態膜を形成する金属材料で構成されている場合、第2の電極4に形成された不動態膜は、測定対象部位の塩化物イオン濃度が比較的高くなるまで破壊されず、また、局所的な破壊が一旦生じても、pHが所定値以上の環境下では再生する。そのため、測定対象部位のpHが所定値以上である場合、測定対象部位の塩化物イオン濃度が比較的高くなるまでの間、第2の電極4の自然電位が高い状態(貴化した状態)に安定して維持される。
【0051】
一方、第1の電極3に形成された不動態膜は、測定対象部位の塩化物イオン濃度が比較的低くても、第1の電極3の凹部31内に侵入した塩化物イオンによる局所的な破壊が一旦生じると、かかる凹部31内において、第1の電極3から溶出した金属イオンの濃度が増大し、それに伴って、塩化物イオンの濃度が増大するため、再生されない。そのため、測定対象部位のpHが所定値以上である場合、測定対象部位に塩化物イオンが存在しないときには、第1の電極3の自然電位が高い状態(貴化した状態)に安定して維持されるが、測定対象部位に塩化物イオンが侵入すると、第1の電極3の孔食が進行し、第1の電極3の自然電位が低くなる(卑化する)。
このようなことから、第1の電極3と第2の電極4との電位差に基づいて、測定対象部位に塩化物イオンが侵入したことを高感度に検知することができる。
【0052】
以下、図6に基づいて、凹部31を有する第1の電極3の塩化物イオンによる腐食(孔食)についてより具体的に説明する。
第1の電極3が塩化物イオン(Cl)の存在下にあるとき、凹部31内に侵入した塩化物イオンにより、第1の電極3の表面に形成された不動態膜の局所的な破壊が一旦生じると、第1の電極3を構成する第1の金属材料が金属イオン(Mnn+)として凹部31内に溶出する。
【0053】
例えば、第1の金属材料が純鉄(Fe)である場合、
Fe→Fe2++2e
の反応により、凹部31内に金属イオンとしてFe2+が溶出する。
このように凹部31内に溶出した金属イオンは、拡散速度が遅く、凹部31内に滞留する。これにより、凹部31内での金属イオンの濃度が増加する。
【0054】
すると、凹部31内での電気的中性を保つように、凹部31外から凹部31内へ塩化物イオンが泳動し、塩化物イオンが凹部31内に集中する。これにより、凹部31内での塩化物イオンの濃度も増加する。
そのため、凹部31外における塩化物イオンの濃度に比し、凹部31内における塩化物イオンの濃度が高くなる。
また、凹部31内では、金属イオンと塩化物イオンと水との反応により、水素イオンが発生し、凹部31内の水素イオン濃度が増加、すなわち凹部31内のpHが低下する。
【0055】
例えば、第1の金属材料が純鉄(Fe)である場合、
Fe2++2Cl→FeCl
FeCl+2HO→Fe(OH)+HCl
の反応により、凹部31内の水素イオンの濃度が増加する。
そのため、凹部31外における水素イオンの濃度に比し、凹部31内における水素イオンの濃度が高くなる。
以上のようなことから、凹部31外における塩化物イオンおよび水素イオンの濃度が比較的少なくても、凹部31内の塩化物イオン濃度および水素イオン濃度が高まり、第1の電極3の腐食(孔食)が進行することとなる。
【0056】
ここで、第1の電極3の表面は、孔食が生じる部分(凹部31の壁面付近)がアノード領域となり、凹部31の外側に露出した部分がカソード領域となる。
例えば、第1の金属材料が純鉄(Fe)である場合、
第1の電極3のアノード領域では、Fe→Fe2++2eのアノード反応が生じ、
第1の電極3のカソード領域では、1/2O+HO+2e→2OH−のカソード反応が生じる。
【0057】
このようなカソード反応は、第1の電極3のカソード領域を大きくすることにより、アノード反応が促進される。そのため、第1の電極3の表面の凹部31の外側に露出した部分の面積を大きくすることにより、測定対象部位の塩化物イオン濃度がより低い状態においても、第1の電極3の孔食が生じるため、測定対象部位への塩化物イオンの侵入をより高感度に検知することができる。
【0058】
(第3の電極)
第3の電極(比較用電極)7は、図4に示すように、前述した本体2の外表面上(より具体的には基板21上)に設けられている。また、第3の電極7は、前述した第1の電極3および第2の電極4と同一平面上に設けられている。なお、第3の電極7を省略してもよく、この場合でも、第1の電極3と第2の電極4との間の電位差を測定することができる。
【0059】
また、第3の電極7は、第1の電極3および第2の電極4に対して間隔を隔てて設けられている。
このような第3の電極7の電位を基準として、第1の電極3および第2の電極4の電位を検知することができる。そして、その2つの電位とともに、第1の電極3と第2の電極4との電位差の経時変化を把握することができる。これにより、塩化物イオン濃度とpHの経時変化をより高確度に測定することができる。
【0060】
本実施形態では、第3の電極7は、薄膜状をなしている。
このような第3の電極7は、化学的に安定で、かつ、導電性を有する材料で構成されている。かかる材料としては、特に限定されないが、例えば、SUS、または、Pt、Au、Ag等の金属材料(貴金属)を用いることができる。これにより、安定した基準電位を取得することができる。また、簡単かつ確実に、第3の電極7を形成することができる。また、貴金属は化学的に安定であり、イオンに対する感応性が極めて低いとともに優れた導電性を有する。そのため、貴金属は第3の電極7の構成材料として適している。
このような第3の電極7は、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング(低温スパッタリング)、イオンプレーティング等の乾式メッキ法、電解メッキ、浸漬メッキ、無電解メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等により形成することができる。
【0061】
(機能素子)
機能素子51は、前述した本体2の内部に埋設されている。
この機能素子51は、第1の電極3と第2の電極4との電位差を測定する機能を有する。これにより、第2の電極4の電位に対する第1の電極3の電位の変化を検知することができる。そのため、第1の電極3と第2の電極4との電位差に基づいて、pHをより高精度に測定することができる。
【0062】
また、機能素子51は、第1の電極3と第2の電極4との電位差に基づいて、測定対象部位のpHまたは塩化物イオン濃度が設定値以下か否かを検知する機能をも有する。これにより、測定対象物のpH変化あるいは塩化物イオン濃度変化に伴う状態変化を検知することができる。
このような機能素子51は、例えば、集積回路である。より具体的には、機能素子51は、例えば、MCU(マイクロコントロールユニット)であり、図2に示すように、CPU511と、A/D変換回路512と、差動増幅回路514とを有する。
【0063】
この機能素子51は、図5に示すように、基板513と、基板513上に設けられた複数のトランジスタ514a、514b、514cと、トランジスタ514a、514b、514cを覆う層間絶縁膜515a、515bと、配線および導体ポストを構成する導体部516a、516b、516c、516d、516e、516fと、保護膜25と、電極パッドを構成する導体部61、62、63とを有する。
【0064】
基板513は、例えばSOI基板であり、CPU511およびA/D変換回路512が形成されている。基板513としてSOI基板を用いることにより、トランジスタ514a〜514cをSOI型MOSFETとすることができる。
複数のトランジスタ514a、514b、514cは、それぞれ例えば電界効果トランジスタ(FET)であり、差動増幅回路514の一部を構成するものである。
【0065】
差動増幅回路514は、図7に示すように、3つのトランジスタ514a〜514cと、カレントミラー回路514dとで構成されている。
また、差動増幅回路514は、図8に示すように、演算増幅器201、202と、演算増幅器203とを有する。
演算増幅器201は、第3の電極7を基準として第1の電極3の電位を検出する。また、演算増幅器202は、第3の電極7を基準として第2の電極4の電位を検出する。また、演算増幅器203は、演算増幅器201の出力電位と演算増幅器202の出力電位との差を検出する。
【0066】
導体部516aは、その一端がトランジスタ514aのゲート電極に接続され、他端が前述した導体部516dに接続されている。導体部516dは、導体部61を介して第1の電極3に電気的に接続されている。これにより、トランジスタ514aのゲート電極と第1の電極3とが電気的に接続されている。そのため、第1の電極3の電位の変化に応じて、トランジスタ514aのドレイン電流が変化する。
【0067】
同様に、導体部516bは、その一端がトランジスタ514bのゲート電極に接続され、他端が前述した導体部516eに接続されている。導体部516eは、導体部62を介して第2の電極4に電気的に接続されている。これにより、トランジスタ514bのゲート電極と第2の電極4とが電気的に接続されている。そのため、第2の電極4の電位の変化に応じて、トランジスタ514bのドレイン電流が変化する。
【0068】
また、導体部516cは、その一端がトランジスタ514cのゲート電極に接続され、他端が前述した導体部516fに接続されている。
また、機能素子51は、導体部63を介して第3の電極7に電気的に接続されている。
また、機能素子51は、電源52からの通電により作動する。電源52は、機能素子51を動作可能な電力を供給できるものであれば、特に限定されず、例えば、ボタン型電池のような電池であってもよいし、圧電素子のような発電機能を有する素子を用いた電源ものであってもよい。
【0069】
また、機能素子51は、温度センサー53の検知温度情報を取得し得るように構成されている。これにより、測定部位の温度に関する情報も得ることができる。このような温度に関する情報を用いることにより、測定部位の状態をより正確に測定したり、測定部位の変化を高精度に予想したりすることができる。
温度センサー53は、測定対象物であるコンクリート構造物100の測定部位の温度を検知する機能を有する。このような温度センサー53としては、特に限定されず、例えば、サーミスター、熱電対等の公知の様々な種類の温度センサーを用いることができる。
【0070】
また、機能素子51は、通信用回路54を駆動制御する機能をも有する。例えば、機能素子51は、第1の電極3と第2の電極4との電位差に関する情報(以下、単に「電位差情報」ともいう)と、測定部位のpHに関する情報(以下、単に「pH情報」ともいう)とをそれぞれ通信用回路54に入力する。また、機能素子51は、温度センサー53によって検知された温度に関する情報(以下、単に「温度情報」ともいう)も併せて通信用回路54に入力する。
【0071】
通信用回路54は、アンテナ55に給電する機能(送信機能)を有する。これにより、通信用回路54は、入力された情報をアンテナ55を介して無線送信することができる。送信された情報は、コンクリート構造物100の外部に設けられた受信機(リーダー)で受信される。
この通信用回路54は、例えば、電磁波を送信するための送信回路、信号を変調する機能を有する変調回路等を有する。なお、通信用回路54は、信号の周波数を小さく変換する機能を有するダウンコンバータ回路、信号の周波数を大きく変換する機能を有するアップコンバータ回路、信号を増幅する機能を有する増幅回路、電磁波を受信するための受信回路、信号を復調する機能を有する復調回路等を有していてもよい。
【0072】
また、アンテナ55は、特に限定されないが、例えば、金属材料、カーボン等で構成され、巻線、薄膜等の形態をなす。
また、機能素子51は、発振器56からのクロック信号を取得し得るように構成されている。これにより、各回路の同期をとったり、各種情報に時刻情報を付加したりすることができる。
【0073】
発振器56は、特に限定されないが、例えば、水晶振動子を利用した発振回路で構成されている。
以上説明したように構成されたセンサー装置1を用いた測定方法は、センサー装置1を測定対象物であるコンクリート構造物100内にそれぞれ埋設し、第1の電極3と第2の電極4との電位差に基づいて、コンクリート構造物100の状態を測定する。
【0074】
以下、第1の電極3および第2の電極4がそれぞれ炭素鋼(SD345)で構成されている場合を例として、センサー装置1の作用を説明する。
打設直後のコンクリート構造物100において、通常、適切に打設されていれば、コンクリート101は強アルカリ性を呈する。そのため、このとき、測定対象部位に塩化物イオンが侵入していなければ、第1の電極3および第2の電極4は、それぞれ、安定な不動態膜を形成する。すなわち、図9(a)に示すように、第1の電極3は、その表面に不動態膜33が形成され、第2の電極4は、その表面に不動態膜43が形成される。これにより、第1の電極3および第2の電極4の自然電位がそれぞれ上がっている(貴化している)。そのため、コンクリートの打設直後における第1の電極3と第2の電極4との電位差は小さくなる。
【0075】
その後、不動態膜33、43が形成されている状態において、コンクリート構造物100のコンクリート101の測定対象部位に塩化物イオンが侵入すると、その塩化物イオン濃度が炭素鋼を腐食させる限界濃度に達するまでの間、第2の電極4に形成された不動態膜43は、塩化物イオンの存在下においても、腐食せず、自然電位がほとんど変化せず貴化した状態(高い状態)に維持される。一方、第1の電極3に形成された不動態膜は、塩化物イオン濃度が炭素鋼を腐食させる限界濃度に達していなくても、塩化物イオンの存在下において、局所的な腐食(孔食)が生じる。すなわち、第1の電極3の不動態膜33には、図9(b)に示すように、貫通した欠損部331が形成され、その欠損部331を介して第1の電極3の不動態化されていない部分が露出し、第1の電極3が腐食、すなわち第1の電極3が孔食する。これにより、第1の電極3の自然電位が卑化する(下がる)。
【0076】
このようなことから、測定対象部位へ塩化物イオンが侵入すると、第1の電極3と第2の電極4との電位差が大きくなる。そのため、第1の電極3と第2の電極4との電位差に基づいて、測定対象部位の塩化物イオン濃度変化を測定することができる。
また、コンクリート構造物100は、二酸化炭素、酸性雨、排気ガス等の影響により、コンクリート101のpHが徐々に酸性側に変化(中性化)していく。
【0077】
そして、コンクリート101のpHが9程度にまで下がると、図9(c)に示すように、第1の電極3および第2の電極4は、不動態膜33、43がともに崩壊し始め、それぞれ自然電位が下がる(卑化する)。このとき、第1の電極3および第2の電極4は、ともに自然電位が下がっているので、第1の電極3と第2の電極4との電位差は、小さくなる。また、第1の電極3と比較用電極7との電位差、および、第2の電極4と比較用電極7との電位差がそれぞれ急峻に変化する。そのため、測定対象部位のpHが9程度となったことを高精度に検知することができる。なお、このとき、第1の電極3および第2の電極4の腐食がそれぞれ進む。
【0078】
このような検知結果を利用することにより、コンクリート構造物100の打設後の品質の経時変化をモニタリングすることができる。そのため、鉄筋102が腐食する前に、コンクリート101の劣化(中性化や塩分侵入)を把握することができる。これにより、鉄筋102が腐食する前に、コンクリート構造物100に塗装や防腐剤混入モルタル等による補修工事を行うことが可能となる。
【0079】
また、コンクリート構造物100の打設時に異常があった否かを判断することもできる。そのため、コンクリート構造物100の初期トラブルを防止し、コンクリート構造物100の品質を向上させることができる。
以上説明したように第1実施形態のセンサー装置1によれば、第1の電極3に局所的に凹部31が形成されているので、測定対象部位の塩化物イオン濃度が第2の電極4の塩化物イオンによる腐食が生じない比較的低い状態であっても、第1の電極3を孔食により腐食させることができる。そのため、測定対象部位の塩化物イオン濃度が比較的低い状態であっても、第1の電極3と第2の電極4との電位差が生じ、かかる電位差に基づいて塩化物イオンの侵入を検知することができる。
【0080】
<第2実施形態>
次に、本発明の第2実施形態を説明する。
図10は、本発明の第2実施形態に係るセンサー装置の使用状態の一例を示す図である。
以下、第2実施形態について、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0081】
第2実施形態のセンサー装置は、第1の電極および第2の電極の数が異なる以外は、第1実施形態のセンサー装置とほぼ同様である。なお、前述した実施形態と同様の構成には、同一符号を付してある。
本実施形態のセンサー装置1Aは、本体2Aと、その本体2Aの表面に露出した複数の第1の電極3a、3b、3cおよび複数の第2の電極4a、4b、4cとを有する。なお、図示しないが、センサー装置1Aは、前述した第1実施形態の第3の電極7と同様に、第1の電極3a、3b、3cおよび複数の第2の電極4a、4b、4cと対応して設けられた第3の電極を有する。
【0082】
本実施形態では、第1の電極3a、3b、3cおよび第2の電極4a、4b、4cは、互いに離間して設けられている。また、第1の電極3a、3b、3cおよび第2の電極4a、4b、4cは、それぞれ、電極面がコンクリート構造物100の外表面に対して垂直または略垂直となるように設置されている。
また、複数の第1の電極3a、3b、3cは、コンクリート構造物100の外表面からの距離が互いに異なる。具体的には、コンクリート構造物100の外表面側から内側へ、複数の第1の電極3a、3b、3cがこの順に並んで設けられている。
【0083】
同様に、複数の第2の電極4a、4b、4cは、コンクリート構造物100の外表面からの距離が互いに異なる。具体的には、コンクリート構造物100の外表面側から内側へ、複数の第2の電極4a、4b、4cがこの順に並んで設けられている。
さらに、第1の電極3aおよび第2の電極4aは、コンクリート構造物100の外表面からの距離が互いに等しくなるように設置されている。また、第1の電極3bおよび第2の電極4bは、コンクリート構造物100の外表面からの距離が互いに等しくなるように設置されている。第1の電極3cおよび第2の電極4cは、コンクリート構造物100の外表面からの距離が互いに等しくなるように設置されている。
【0084】
このような第1の電極3a、3b、3cおよび第2の電極4a、4b、4cでは、第1の電極3aと第2の電極4aとが対をなし、第1の電極3bと第2の電極4bとが対をなし、第1の電極3cと第2の電極4cとが対をなす。
本実施形態では、センサー装置1Aは、第1の電極3aと第2の電極4aとの電位差、第1の電極3bと第2の電極4bとの電位差、および、第1の電極3cと第2の電極4cとの電位差をそれぞれ図示しない機能素子により測定することができるように構成されている。
【0085】
このような第2実施形態に係るセンサー装置1Aによれば、第1の電極3aおよび第2の電極4aの設置環境、第1の電極3bおよび第2の電極4bの設置環境、および、第1の電極3cおよび第2の電極4cの設置環境のpHや塩化物イオン濃度がそれぞれ設定値以下か否かを正確に検知することができる。すなわち、コンクリート構造物100の外表面からの深さが異なる位置でのpHがそれぞれ設定値以下か否かを正確に検知することができる。これにより、コンクリート101のpHが酸性側に変化する速度や塩化物イオン濃度が増加する速度を知ることができる。そのため、コンクリート構造物100の中性化や塩害の深さ方向への侵入予測を効果的に行うことができる。
【0086】
<第3実施形態>
次に、本発明の第3実施形態を説明する。
図11は、本発明の第3実施形態に係るセンサー装置の使用状態の一例を示す図、図12は、図11に示す第1の電極および第2の電極を説明するための断面図である。
以下、第3実施形態について、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0087】
第3実施形態のセンサー装置は、第1の電極および第2の電極の構成が異なる以外は、第1実施形態のセンサー装置とほぼ同様である。なお、前述した実施形態と同様の構成には、同一符号を付してある。
本実施形態のセンサー装置1Bは、図11に示すように、本体2Bと、その本体2B上に設けられた第1の電極3Bおよび第2の電極4Bとを有する。
また、図示しないが、センサー装置1Bは、前述した第1実施形態の第3の電極7と同様に構成された第3の電極を有する。
【0088】
本実施形態では、第1の電極3Bおよび第2の電極4Bは、コンクリート構造物100の外表面からの距離が、コンクリート構造物100の外表面と鉄筋102との間に距離(すなわち鉄筋102のかぶり深さ)とほぼ等しくなるように設置されている。
第1の電極3Bおよび第2の電極4Bは、図12に示すように、それぞれ、前述した本体2Bの外表面上に設けられている。
【0089】
第1の電極3Bは、局所的に形成された第1の凹部31Bを備えている。
また、第2の電極4Bは、局所的に形成された第2の凹部41Bを備えている。
そして、第1の凹部31Bおよび第2の凹部41Bは、互いに深さが異なる。これにより、第1の電極3Bおよび第2の電極4Bの塩化物イオンによる孔食の発生しやすさを互いに異ならせることができる。そのため、測定対象部位の塩化物イオン濃度を段階的に検知することができる。
【0090】
より具体的には、第1の凹部31Bの深さは、第2の凹部41Bの深さよりも深くなっている。これにより、第1の電極3Bの第1の凹部31Bによる孔食は、第2の電極4Bの第2の凹部41Bによる孔食よりも生じやすくなっている。そのため、第1の電極3Bの第1の凹部31Bによる孔食は、第2の電極4Bの第2の凹部41Bによる孔食よりも先に生じることとなる。
【0091】
本実施形態では、第1の凹部31Bおよび第2の凹部41Bは、互いに幅が等しくなっている。これにより、第1の凹部31Bおよび第2の凹部41Bの深さを互いに異ならせることにより、第1の凹部31Bおよび第2の凹部41Bのアスペクト比(D/W)を互いに異ならせることができる。なお、第1の凹部31Bおよび第2の凹部41Bは、幅が互いに異なっていてもよい。
【0092】
また、本実施形態では、第1の凹部31Bおよび第2の凹部41Bは、それぞれ、U字溝である。
また、第1の凹部31Bの幅(平面視にて延在方向に対して垂直な方向での長さ)をW1とし、第1の凹部31Bの深さ(最大深さ)をD1としたきに、D1/W1は、1以上であるのが好ましく、1以上4以下であるのがより好ましく、2以上3以下であるのがさらに好ましい。これにより、第1の電極3Bの孔食を効果的に生じさせることができる。
【0093】
なお、第1の凹部31Bは、その延在方向での少なくとも一部において、前述したようなD1/W1の関係を満たせばよい。また、「第1の凹部31Bの幅」とは、第1の凹部31Bの横断面における開口端の幅をいう。
また、この第1の凹部31Bの深さ(最大深さ)D1は、特に限定されないが、例えば、1μm以上100μm以下であるのが好ましく、10μm以上80μm以下であるのがより好ましく、20μm以上60μm以下であるのがさらに好ましい。これにより、第1の電極3Bの孔食を生じさせ得る第1の凹部31を簡単かつ確実に形成することができる。
【0094】
また、第1の凹部31Bの幅Wは、特に限定されないが、例えば、1μm以上100μm以下程度であるのが好ましい。
また、第2の凹部41Bの幅(平面視にて延在方向に対して垂直な方向での長さ)をW2とし、第2の凹部41Bの深さ(最大深さ)をD2としたきに、D2/W2は、1以下であるのが好ましく、0.5以上1以下であるのがより好ましい。これにより、第1の電極3Bの孔食よりも発生タイミングが遅いものの、第2の電極4Bの孔食を生じさせることができる。
【0095】
なお、第2の凹部41Bは、その延在方向での少なくとも一部において、前述したようなD2/W2の関係を満たせばよい。また、「第2の凹部41Bの幅」とは、第2の凹部41Bの横断面における開口端の幅をいう。
また、この第2の凹部41Bの深さ(最大深さ)D2は、特に限定されないが、例えば、1μm以上50μm以下であるのが好ましく、1μm以上30μm以下であるのがより好ましい。
【0096】
また、第2の凹部41Bの幅Wは、特に限定されないが、例えば、1μm以上100μm以下程度であるのが好ましい。
以上説明したような第3実施形態のセンサー装置1Bによっても、コンクリート構造物100のコンクリート101中の塩化物イオン濃度変化をコンクリート101のpH変化と区別して測定し、その測定情報をコンクリート構造物100の計画的な保全に活用することができる。
【0097】
<第4実施形態>
次に、本発明の第4実施形態を説明する。
図13は、本発明の第4実施形態に係るセンサー装置の概略構成を示す図、図14は、図13に示す第1の電極を説明するための図である。
以下、第4実施形態について、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0098】
第4実施形態のセンサー装置は、第1の電極および第2の電極の構成が異なる以外は、第1実施形態のセンサー装置とほぼ同様である。なお、前述した実施形態と同様の構成には、同一符号を付してある。
本実施形態のセンサー装置1Cは、図13に示すように、本体2Cと、その本体2C上に設けられた第1の電極3Cおよび第2の電極4Cとを有する。
【0099】
本実施形態では、第1の電極3Cおよび第2の電極4Cは、それぞれ、長尺状をなしている。そして、第1の電極3Cおよび第2の電極4Cの一端部がそれぞれ機能素子51に電気的に接続されている。
第1の電極3Cは、その途中に局所的に形成された切欠き状の凹部31Cを有する。
特に、第1の電極3Cは、凹部31Cに引っ張り応力を生じさせた状態で保持されている。これにより、第1の電極3Cの孔食による腐蝕速度を高めることができる。
より具体的に説明すると、第1の電極3Cは、2つの導体34a、34bと、この2つの導体34a、34bを接合する接合部34cとを有する。
【0100】
導体34aは、本体2Cに固定された柱体35aに固着されている。また、導体34bは、本体2Cに固定された柱体35bに固着されている。なお、図13では、導体34bに凹部31Cが形成されているが、導体34aに凹部31Cが形成されていてもよい。
接合部34cは、柱体35a、35bを弾性変形させつつ導体34a、34bに引っ張り応力を生じさせた状態で、導体34aと導体34bとを接合している。
【0101】
このような第1の電極3Cは、図14(a)に示すように、接合前の導体34a、34bを互いに離間した状態で柱体35a、35bに固着させ、その後、柱体35a、35bを弾性変形させつつ導体34a、34bを互いに接近する方向に移動させた状態で、例えば溶接により導体34aと導体34bとを接合する。これにより、図14(b)に示すように、柱体35a、35bを弾性変形させつつ導体34a、34bに引っ張り応力を生じさせた状態で、導体34aと導体34bとを接合する接合部34cを形成することができる。
以上説明したような第4実施形態のセンサー装置1Cによっても、コンクリート構造物100のコンクリート101中の塩化物イオン濃度変化をコンクリート101のpH変化と区別して測定し、その測定情報をコンクリート構造物100の計画的な保全に活用することができる。
【0102】
<第5実施形態>
次に、本発明の第5実施形態を説明する。
図15は、本発明の第5実施形態に係るセンサー装置の概略構成を示す図、図16は、図15に示す第1の電極を説明するための図である。
以下、第5実施形態について、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0103】
第5実施形態のセンサー装置は、第1の電極および第2の電極の構成が異なる以外は、第1実施形態のセンサー装置とほぼ同様である。なお、前述した実施形態と同様の構成には、同一符号を付してある。
本実施形態のセンサー装置1Dは、図15に示すように、本体2Dと、その本体2D上に設けられた第1の電極3Dおよび第2の電極4Dとを有する。
【0104】
図15および図16に示すように、第1の電極3Dは、棒状の絶縁体36aの両端に固着した導体36b、36cと、絶縁体36aの外周面上に螺旋状に巻回された導体36dとを有する。
絶縁体36aは、四角柱状をなしている。すなわち、絶縁体36aの横断面は、四角形をなしている。これにより、絶縁体36aに巻回された導体36dは、絶縁体36aの角部に対応する部分に生じる引っ張り応力を大きくすることができる。
【0105】
この絶縁体36aの構成材料としては、測定対象物内で比較的安定して存在し得る絶縁性材料であれば、特に限定されないが、例えば、SiO、Si等の絶縁性セラミックス材料、PSF(ポリサルフォン)、PAI(プリアミドイミド)、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)等の樹脂材料等を用いることができる。
【0106】
導体36b、36cは、絶縁体36aの両端に例えば接着剤または嵌合により固着されている。
この導体36b、36cの構成材料としては、導電性を有するものであれば、特に限定されないが、導体36dの構成材料と同様のものを用いるのが好ましい。
導体36dは、長尺状をなし、絶縁体36aの外周に巻回されており、一端部が導体36bに半田等により固定され、他端部が導体36cに半田等により固定されている。これにより、導体36dにその長手方向に沿って引っ張り応力を生じさせることができる。
【0107】
また、導体36dの途中には、切欠き状の複数の凹部31Dが形成されている。この凹部31Dは、導体36dの、絶縁体36aの角部に対応する部位に設けられている。前述したように、絶縁体36aが四角柱状をなすことにより、絶縁体36aに巻回された絶縁体36aの角部に対応する部分に大きな生じる引っ張り応力が生じる。そのため、凹部31Dを絶縁体36aの角部に対応する部位に設けることにより、凹部31Dに引っ張り応力を効果的に生じさせることができる。
以上説明したような第5実施形態のセンサー装置1Dによっても、コンクリート構造物100のコンクリート101中の塩化物イオン濃度変化をコンクリート101のpH変化と区別して測定し、その測定情報をコンクリート構造物100の計画的な保全に活用することができる。
【0108】
<第6実施形態>
次に、本発明の第6実施形態を説明する。
図17は、本発明の第6実施形態に係るセンサー装置の概略構成を示す図、図18は、図17に示す第1の電極を説明するための図である。
以下、第6実施形態について、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0109】
第6実施形態のセンサー装置は、第1の電極および第2の電極の構成が異なる以外は、第1実施形態のセンサー装置とほぼ同様である。なお、前述した実施形態と同様の構成には、同一符号を付してある。
本実施形態のセンサー装置1Eは、図17に示すように、本体2Eと、その本体2E上に設けられた第1の電極3Cおよび第2の電極4Cとを有する。
【0110】
本実施形態では、第1の電極3Eおよび第2の電極4Eは、それぞれ、長尺状をなしている。そして、第1の電極3Eおよび第2の電極4Eの一端部がそれぞれ機能素子51に電気的に接続されている。
第1の電極3Eは、その途中に局所的に形成された切欠き状の凹部31Eを有する。
特に、第1の電極3Eは、凹部31Eに引っ張り応力を生じさせた状態で保持されている。これにより、第1の電極3Eの孔食による腐蝕速度を高めることができる。
【0111】
具体的に説明すると、第1の電極3Eは、その途中が折り曲げられた状態で、保持部材37に保持されている。
保持部材37は、本体2Eに固定されている。また保持部材37には、第1の電極3Eが挿通される2つの貫通孔38a、38bが形成されている。これにより、第1の電極3Eを折り曲げた状態で保持することができる。
【0112】
このように折り曲げられた状態で保持された第1の電極3Eは、その折り曲げられた部分の外側に引っ張り応力が生じる。そして、凹部31Eは、かかる部分に形成されている。
このような保持部材37の構成材料としては、測定対象物内で比較的安定して存在し得る絶縁性材料であれば、特に限定されないが、例えば、SiO、Si等の絶縁性セラミックス材料、PSF(ポリサルフォン)、PAI(プリアミドイミド)、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)等の樹脂材料等を用いることができる。
【0113】
以上説明したような第6実施形態のセンサー装置1Eによっても、コンクリート構造物100のコンクリート101中の塩化物イオン濃度変化をコンクリート101のpH変化と区別して測定し、その測定情報をコンクリート構造物100の計画的な保全に活用することができる。
以上、本発明のセンサー装置を、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0114】
例えば、本発明のセンサー装置では、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。
また、前述した実施形態では、孔食を促進させるために第1の電極に凹部を設けた例を説明したが、かかる凹部は、第1の電極を貫通していてもよい。すなわち、孔食を促進させるために第1の電極に貫通孔を形成してもよい。
【0115】
また、第1の電極の凹部の横断面形状は、第1の電極の孔食を促進し得るものであれば、前述した実施形態のものに限定されない。
また、前述した実施形態では第1の電極および第2の電極がそれぞれ基板上に設けられた場合を例に説明したが、これに限定されず、例えば、第1の電極および第2の電極は、例えば、センサー装置の本体の封止樹脂で構成された部分の外表面上に設けてもよい。
【0116】
また、前述した実施形態では第1の電極および第2の電極がそれぞれ薄膜状または長尺状をなす場合を例に説明したが、これに限定されず、第1の電極および第2の電極の形状は、それぞれ、例えば、ブロック状等をなしていてもよい。また、前述した実施形態では第1の電極および第2の電極をそれぞれセンサー装置の本体の外表面に沿って設けているが、第1の電極および第2の電極をそれぞれセンサー装置の本体の外表面から突出させてもよい。また、第1の電極および第2の電極の設置位置、大きさ(大小関係)等についても、前述したような測定が可能であれば、前述した実施形態に限定されず、任意である。
【0117】
また、前述した実施形態では機能素子がCPU、A/D変換回路および差動増幅回路を有する場合を例に説明したが、これに限定されず、例えば、機能素子には、ROM、RAM、各種駆動回路等の他の回路が組み込まれていてもよい。
また、前述した実施形態では測定情報をアクティブタグ通信により無線送信によりセンサー装置外部へ送信する場合を例に説明したが、これに限定されず、例えば、パッシブタグ通信を用いて情報をセンサー装置の外部へ送信してもよいし、有線により情報をセンサー装置の外部へ送信してもよい。
【0118】
また、前述した実施形態では機能素子51、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56を本体2内に収納し、これらを第1の電極3および第2の電極4とともに測定対処物であるコンクリート構造物100内に埋設する場合を例に説明したが、機能素子51、電源52、温度センサー53、通信用回路54、アンテナ55および発振器56を測定対象物の外部に設けてもよい。
【符号の説明】
【0119】
1、1A、1B、1C、1D、1E‥‥センサー装置 2、2A、2B、2C、2D、2E‥‥本体 3、3a、3b、3c、3B、3C、3D、3E‥‥第1の電極 4、4a、4b、4c、4B、4C、4D、4E‥‥第2の電極 7‥‥第3の電極(比較用電極) 21‥‥基板 23‥‥絶縁層 24‥‥封止部 25‥‥保護膜 31、31C、3D、3E‥‥凹部 31B‥‥第1の凹部 33、43‥‥不動態膜 34a、34b‥‥導体 34c‥‥接合部 35a、35b‥‥柱体 36a‥‥絶縁体 36b、36c、36d‥‥導体 37‥‥保持部材 38a、38b‥‥貫通孔 41B‥‥第2の凹部 51‥‥機能素子 52‥‥電源 53‥‥温度センサー 54‥‥通信用回路 55‥‥アンテナ 56‥‥発振器 61‥‥導体部 62、63‥‥導体部 100‥‥コンクリート構造物 101‥‥コンクリート 102‥‥鉄筋 201、202、203‥‥演算増幅器 241‥‥開口部 331‥‥欠損部 511‥‥CPU 512‥‥A/D変換回路 513‥‥基板 514‥‥差動増幅回路 514a、514b、514c‥‥トランジスタ 514d‥‥カレントミラー回路 515a、515b‥‥層間絶縁膜 516a、516b、516c、516d、516e、516f‥‥導体部

【特許請求の範囲】
【請求項1】
局所的に形成された凹部または貫通孔を備え、第1の金属材料で構成された第1の電極と、
前記第1の電極に対して離間して設けられ、第2の金属材料で構成された第2の電極と、
前記第1の電極と前記第2の電極との電位差を測定する機能を有する機能素子とを有し、
前記機能素子で測定された電位差に基づいて、測定対象部位の状態を測定し得るように構成されたことを特徴とするセンサー装置。
【請求項2】
前記凹部または前記貫通孔の幅をWとし、前記凹部または前記貫通孔の深さをDとしたときに、
D/Wが1以上である請求項1に記載のセンサー装置。
【請求項3】
前記第1の電極は、前記凹部または前記貫通孔に引っ張り応力を生じさせた状態で保持されている請求項1または2に記載のセンサー装置。
【請求項4】
前記第1の電極は、前記凹部として、局所的に形成された第1の凹部を備え、
前記第2の電極は、前記第1の凹部とは深さおよび幅のうちの少なくとも一方が異なり、局所的に形成された第2の凹部を備える請求項1ないし3のいずれかに記載のセンサー装置。
【請求項5】
前記第1の金属材料および前記第2の金属材料は、それぞれ、前記測定部位の環境変化に伴って表面に不動態膜を形成するか、または、表面に存在した不動態膜を消失させる金属材料である請求項1ないし4のいずれかに記載のセンサー装置。
【請求項6】
前記第1の金属材料および前記第2の金属材料は、同種の金属材料で構成される請求項5に記載のセンサー装置。
【請求項7】
前記第1の金属材料および前記第2の金属材料は、異なる金属材料で構成される請求項5に記載のセンサー装置。
【請求項8】
前記第1の金属材料および前記第2の金属材料は、それぞれ、鉄または鉄系材料である請求項5ないし7のいずれかに記載のセンサー装置。
【請求項9】
前記機能素子は、前記第1の電極と前記第2の電極との電位差に基づいて、前記測定対象部位のpHまたは塩化物イオン濃度が設定値以下か否かを検知する機能をも有する請求項1ないし8のいずれかに記載のセンサー装置。
【請求項10】
アンテナと、
前記アンテナに給電する機能を有する通信用回路とを有し、
前記機能素子は、前記通信用回路を駆動制御する機能をさらに有する請求項1ないし9のいずれかに記載のセンサー装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2013−88299(P2013−88299A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−229471(P2011−229471)
【出願日】平成23年10月19日(2011.10.19)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】