説明

タイヤ

【課題】ゴム成分とカーボンブラック及び/又はシリカとの相互作用に特に優れ、これら充填材の分散性をより改善することができ、特に低発熱性及び耐摩耗性を改良した変性共役ジエン系重合体をゴム成分として含有するゴム組成物を、タイヤ部材に用いてなる低発熱性及び耐摩耗性に優れたタイヤを提供すること。
【解決手段】求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、変性剤として、特定の構造を有するシラン化合物及び/又はその部分縮合物を反応させてなる変性共役ジエン系重合体(a−1)と、特定の製造方法によって得られた変性共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物を、タイヤ部材に用いてなるタイヤである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、転がり抵抗が低く低発熱性であると共に耐摩耗性の良好なタイヤに関する。さらに詳しくは、本発明は、ゴム成分として、求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、充填材と相互作用をもつ官能基を有する特定の変性剤を反応させてなる変性共役ジエン系重合体、好ましくは変性スチレン−ブタジエン共重合体と、特定の製造方法により得られた変性共役ジエン系重合体、好ましくは分子末端にシラノール基とプロトン性第一アミノ基及び/又は保護された第一アミノ基とを有する変性アニオン重合スチレン−ブタジエン共重合体との混合物を含有するゴム組成物を、タイヤ部材、好ましくはトレッドに用いたタイヤに関するものである。
【背景技術】
【0002】
近年、省エネルギーの社会的な要請及び環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求はより過酷なものとなりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の減少が求められてきている。タイヤの転がり抵抗を下げる手法としては、タイヤ構造の最適化による手法についても検討されてきたものの、ゴム組成物としてより発熱性の低い材料を用いることが最も一般的な手法として行われている。
【0003】
このような発熱性の低いゴム組成物を得るために、これまで、シリカやカーボンブラックを充填材とするゴム組成物用の変性ゴムの技術開発が多くなされてきた。その中でも特に、有機リチウムを用いたアニオン重合で得られる共役ジエン系重合体の重合活性末端を充填材と相互作用する官能基を含有するアルコキシシラン誘導体で変性する方法が有効なものとして提案されている(例えば、特許文献1、2及び3参照)。
【0004】
これらのアルコキシシラン誘導体は、いずれも分子内に、ケイ素原子に直接結合するアルコキシ基を有すると共に、充填材と相互作用を有する含窒素官能基を含むケイ素化合物であって、これにより重合活性末端が変性されてなる変性共役ジエン系重合体は、タイヤの転がり抵抗を減少させると共に、破壊特性や耐摩耗性を向上させる効果を奏する。しかしながら、近年、省エネルギーや環境問題などの観点から、さらなる自動車の低燃費化(タイヤの転がり抵抗の減少、すなわち低発熱化)や耐摩耗性の向上が望まれている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−158837号公報
【特許文献2】特開2005−232364号公報
【特許文献3】特開2005−290355号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、このような状況下になされたもので、ゴム成分とカーボンブラック及び/又はシリカとの相互作用に特に優れ、これら充填材の分散性をより改善することができ、特に低発熱性及び耐摩耗性を改良した変性共役ジエン系重合体をゴム成分として含有するゴム組成物を、タイヤ部材に用いてなる低発熱性及び耐摩耗性に優れたタイヤを提供することを課題とするものである。
【課題を解決するための手段】
【0007】
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ゴム成分として、求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、充填材と相互作用をもつ官能基を有する特定の変性剤を反応させてなる変性共役ジエン系重合体と、特定の製造方法により得られた、分子末端にシラノール基と、該シラノール基の近傍にある官能基であって、該シラノール基と補強性充填材との反応を促進する官能基とを有する変性共役ジエン系重合体との混合物を含有するゴム組成物を、タイヤ部材に用いたタイヤにより、その課題を解決し得ることを見出した。
本発明は、かかる知見に基づいて完成したものである。
【0008】
すなわち、本発明は、
[1]求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、変性剤として、一般式(1)
【0009】
【化1】

【0010】
[式中、A1は炭素数2以上のヒドロカルビルオキシ基、A2は加水分解性官能基、R1は炭化水素基、R2は二価の炭化水素基を示し、Xは飽和環状第三アミン化合物残基、不飽和環状第三アミン化合物残基、ニトリル基、(チオ)エポキシ基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも一種の官能基を示す。A1及びA2は同一でも異なっていてもよい。]
で表されるシラン化合物及び/又はその部分縮合物を反応させてなる変性共役ジエン系重合体(a−1)と、活性部位を有する共役ジエン系重合体の該活性部位に、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と該共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有するシラン化合物を反応させる変性反応工程と、変性反応工程終了後に施される加水分解工程とを有する製造方法によって得られた変性共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とするタイヤ、
[2]一般式(1)で表される変性剤において、A1は炭素数2〜18のヒドロカルビルオキシ基、A2は炭素数1〜18のヒドロカルビルオキシ基又はハロゲン原子、R1は炭素数1〜18の炭化水素基、R2は炭素数1〜20の二価の炭化水素基である上記[1]に記載のタイヤ、
【0011】
[3]一般式(1)におけるXが、飽和環状第三アミン化合物残基、イミダゾール残基、ジヒドロイミダゾール残基、ピリジル基、ニトリル基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも1種の含窒素官能基を有する一価の基である上記[1]又は[2]に記載のタイヤ、
[4]前記求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体が、C−Li又はN−Liを含む有機アルカリ金属化合物を重合開始剤とし、共役ジエン化合物単独又は共役ジエン化合物と芳香族ビニル化合物をアニオン重合させて得られたものである上記[1]〜[3]のいずれかに記載のタイヤ、
[5]前記変性共役ジエン系重合体(a−2)において、加水分解によりシラノール基を生成する特性基がアルコキシシラン基であって、加水分解により、その10%以上がシラノール基を生成する上記[1]〜[4]のいずれかに記載のタイヤ、
[6]前記有機シラン化合物が、下記一般式(2)又は下記一般式(3)により表される有機シラン化合物である上記[1]〜[5]のいずれかに記載のタイヤ、
【0012】
【化2】

[式中、R3は単結合又は炭素数1〜20の二価の炭化水素基;R4及びR5はそれぞれ独立に水素原子又は炭素数1〜20の一価の炭化水素基;−OL1は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A3は活性部位に付加もしくは置換反応を行う事によって該有機シラン化合物と共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基であり、mは1〜10の整数である]
【0013】
【化3】

[式中、R6は単結合又は炭素数1〜20の炭化水素基;R7及びR8はそれぞれ独立に単結合、水素原子又は炭素数1〜20の炭化水素基;−OL2は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A4は活性部位と反応する官能基又は前記活性部位に付加もしくは置換反応を行う事によって該有機シラン化合物と共役ジエン系重合体とを結合させる官能基;B及びDはそれぞれ独立に前記シラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基であり;p及びqはそれぞれ独立に0〜5の整数であり、(p+q)が1以上であり、nは1〜10の整数である]
【0014】
[7]一般式(2)において、活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と共役ジエン系重合体とを結合させ、且つ該反応後にシラノール基と補強性充填材との反応を促進する官能基A3が、(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、ピリジル基、N−アルキルピロリドニル基、N−アルキルイミダゾリル基、N−アルキルピラゾリル基、(チオ)ケトン基、(チオ)アルデヒド基、イミン残基、アミド基、ケチミン基、イソシアヌル酸トリエステル残基、炭素数1〜20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1〜20の(チオ)カルボン酸金属塩の残基、炭素数1〜20のカルボン酸無水物残基、炭素数1〜20のカルボン酸ハロゲン化物残基及び炭酸ジヒドロカルビルエステル残基の中から選ばれる少なくとも一種の官能基である上記[6]に記載のタイヤ、及び
[8]前記タイヤ部材がトレッドである上記[1]〜[7]のいずれかに記載のタイヤ、
を提供するものである。
【発明の効果】
【0015】
本発明によれば、ゴム成分として、求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、充填材と相互作用をもつ官能基を有する特定の変性剤を反応させてなる変性共役ジエン系重合体、好ましくは変性スチレン−ブタジエン共重合体と、特定の製造方法により得られた変性共役ジエン系重合体、好ましくは分子末端にシラノール基とプロトン性第一アミノ基及び/又は保護された第一アミノ基とを有する変性アニオン重合スチレン−ブタジエン共重合体との混合物を含有するゴム組成物を、タイヤ部材、好ましくはトレッドに用いることにより、低発熱性及び耐摩耗性に優れたタイヤを提供することができる。
また、本発明のタイヤの製造時(押出工程等)におけるアルコール揮発量を低減できるので、タイヤ部材の寸法精度向上にも寄与することができる。
【発明を実施するための形態】
【0016】
本発明のタイヤは、求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、変性剤として、後で説明する一般式(1)で表されるシラン化合物及び/又はその部分縮合物を反応させてなる変性共役ジエン系重合体(a−1)と、活性部位を有する共役ジエン系重合体の該活性部位に、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と該共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物を反応させる変性反応工程と、変性反応工程終了後に施される加水分解工程とを有する製造方法によって得られた変性共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とする。
本発明のタイヤに用いるゴム組成物においては、ゴム成分(A)として、変性共役ジエン系重合体(a−1)と、変性共役ジエン系重合体(a−2)とを含むものが用いられる。
まず、変性共役ジエン系重合体(a−1)について説明する。
【0017】
[変性共役ジエン系重合体(a−1)]
本発明におけるゴム成分(A)において用いられる変性共役ジエン系重合体(a−1)は、求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、変性剤として、後で説明する一般式(1)で表されるシラン化合物及び/又はその部分縮合物を反応させることにより、得ることができる。
【0018】
(活性末端を有する共役ジエン系重合体)
本発明において用いられる求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体は、ジエン系モノマーを単独で、又は他のモノマーと共重合して得られるものであり、その製造方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
また、共役ジエン系重合体の分子中に存在する活性部位の金属はアルカリ金属及びアルカリ土類金属から選ばれる1種であることが好ましく、アルカリ金属が好ましく、特にリチウム金属が好ましい。
【0019】
上記溶液重合法においては、例えば有機アルカリ金属化合物、特にC−Li又はN−Liを含む化合物を重合開始剤とし、共役ジエン化合物単独又は共役ジエン化合物と芳香族ビニル化合物をアニオン重合させることにより、目的の重合体を製造することができる。
さらには、ハロゲン含有モノマーを混在させ、ポリマー中のハロゲン原子を有機金属化合物によって活性化することも有効である。例えば、イソブチレン単位、パラメチルスチレン単位及びパラブロモメチルスチレン単位を含む共重合体の臭素部分をリチオ化して活性部位とすることも有効である。
【0020】
上記共役ジエン化合物としては、例えば1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1,3−ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、2種以上組み合わせて用いてもよいが、これらの中で、1,3−ブタジエン、イソプレン及び2,3−ジメチル−1,3−ブタジエンが特に好ましい。
また、これらの共役ジエン化合物との共重合に用いられる芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロへキシルスチレン、2,4,6−トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、スチレンが特に好ましい。
【0021】
さらに、単量体として共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、それぞれ1,3−ブタジエン及びスチレンの使用が、単量体の入手の容易さなどの実用性面、及びアニオン重合特性がリビング性などの点で優れることなどから、特に好適である。
また、溶液重合法を用いた場合には、溶媒中の単量体濃度は、好ましくは5〜50質量%、より好ましくは10〜30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は55質量%以下が好ましい。
【0022】
重合開始剤のリチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。
【0023】
上記ヒドロカルビルリチウムとしては、炭素数2〜20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチル−フェニルリチウム、4−フェニル−ブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応性生物などが挙げられるが、これらの中で、特にn−ブチルリチウムが好適である。
【0024】
一方、リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ−2−エチルへキシルアミド、リチウムジデシルアミド、リチウム−N−メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミドなどが挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミドなどの環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
【0025】
これらのリチウムアミド化合物は、一般に、第二アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in−situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2〜20ミリモルの範囲で選定される。
【0026】
前記リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の共役ジエン系重合体が得られる。
【0027】
前記炭化水素系溶剤としては、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−へキセン、2−へキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
【0028】
また、所望により用いられるランダマイザーとは共役ジエン系重合体のミクロ構造の制御、例えばブタジエン−スチレン共重合体におけるブタジエン部分の1,2結合、イソプレン重合体における3,4結合の増加など、あるいは共役ジエン化合物−芳香族ビニル化合物共重合体における単量体単位の組成分布の制御、例えばブタジエンースチレン共重合体におけるブタジエン単位、スチレン単位のランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイサーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2−ビス(2−テトラヒドロフリル)−プロパン、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピぺリジノエタンなどのエーテル類及び第三アミン類などを挙げることができる。また、カリウム−tert−アミレート、カリウム−tert−ブトキシドなどのカリウム塩類、ナトリウム−tert−アミレートなどのナトリウム塩類も用いることができる。
【0029】
これらのランダマイザーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、その使用量は、リチウム化合物1モル当たり、好ましくは0.01〜1000モル当量の範囲で選択される。
【0030】
この重合反応における温度は、好ましくは0〜150℃、より好ましくは20〜130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
【0031】
この重合においては、重合開始剤、溶媒、単量体など、重合に関与する全ての原材料は、水、酸素、二酸化炭素、プロトン性化合物などの反応阻害物質を除去したものを用いることが望ましい。
得られる共役ジエン系重合体の示差熱分析法により求めたガラス転移温度(Tg)は−95℃〜−15℃であることが好ましい。ガラス転移温度を上記範囲にすることによって、粘度が高くなるのを抑え、取り扱いが容易な共役ジエン系重合体を得ることができる。
【0032】
(変性剤)
変性共役ジエン系重合体(a−1)を製造するにおいては、前記のようにして得られた求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、変性剤として、一般式(1)
【0033】
【化4】

【0034】
で表されるシラン化合物及び/又はその部分縮合物を反応させる。
前記一般式(1)において、A1は炭素数2以上のヒドロカルビルオキシ基、A2は加水分解性官能基、R1は炭化水素基、R2は二価の炭化水素基を示し、Xは、飽和環状第三アミン化合物残基、不飽和環状第三アミン化合物残基、ニトリル基、(チオ)エポキシ基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも一種の官能基を示す。A1及びA2は同一でも異なっていてもよい。
具体的には、A1としては炭素数2〜18のヒドロカルビルオキシ基(ヒドロカルビロキシ基ともいう。)、R1としては、炭素数1〜18の炭化水素基、R2としては、炭素数1〜20の二価の炭化水素基が挙げられる。
【0035】
前記A1で表される炭素数2〜18のヒドロカルビルオキシ基としては、炭素数2〜18のアルコキシ基若しくはアルケニロキシ基、炭素数6〜18のアリーロキシ基、炭素数7〜18のアラルキロキシ基等が挙げられるが、これらの中で、良好な反応性を有する観点から、炭素数2〜10のアルコキシ基が好ましい。このアルコキシ基を構成するアルキル基は、直鎖状、枝分かれ状、環状のいずれであってもよい。このようなアルコキシ基としては、例えばエトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、各種ペントキシ基、各種ヘキソキシ基、各種ヘプトキシ基、各種オクトキシ基、各種デシロキシ基、シクロペチロキシ基、シクロヘキシロキシ基などを挙げることができ、これらの中で、反応性の観点から、炭素数2〜6のアルコキシ基が好ましく、特にエトキシ基が好ましい。
このA1がメトキシ基である場合、変性部位同士の縮合が生じやすく、その結果、導入された変性基が、充填材に対する相互作用を充分に発揮できず、本発明の目的が達せられにくい。
2は、炭素数1〜18のヒドロカルビルオキシ基又はハロゲン原子などが挙げられるが、炭素数1〜18のヒドロカルビルオキシ基が好ましい。
なお、A1及びA2はたがいに同一であっても異なっていてもよい。
【0036】
前記R1で表される炭素数1〜18の炭化水素基としては、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数6〜18のアリール基、炭素数7〜18のアラルキル基などが挙げられるが、これらの中で、変性剤の反応性や性能の観点から、炭素数1〜18のアルキル基が好ましく、炭素数1〜10のアルキル基がより好ましい。このアルキル基は、直鎖状、枝分かれ状、環状のいずれであってもよく、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基などを挙げることができる。これらの中で、変性剤の反応性や性能の観点から、炭素数1〜6のアルキル基が好ましく、特にメチル基が好ましい。
2で表される炭素数1〜20の二価の炭化水素基としては、変性剤の性能の観点から、炭素数1〜20のアルカンジイル基が好ましく、炭素数2〜10のアルカンジイル基がより好ましく、炭素数2〜6のアルカンジイル基がさらに好ましい。
炭素数2〜6のアルカンジイル基は、直鎖状、枝分かれ状のいずれであってもよく、例えばエチレン基、1,3−プロパンジイル基、1,2−プロパンジイル基、各種ブタンジイル基、各種ペンタンジイル基、各種ヘキサンジイル基などを挙げることができるが、これらの中で直鎖状のもの、例えばエチレン基、1,3−プロパンジイル基、1,4−ブタンジイル基、1,5−ペンタンジイル基、1,6−ヘキサンジイル基などが挙げられ、特に1,3−プロパンジイル基が好ましい。
【0037】
前記Xのうちの飽和環状第三アミン化合物残基としては、例えばヘキサメチレンイミノ基、ピロリジニル基、ピペリジニル基、ヘプタメチレンイミノ基、ドデカメチレンイミノ基などを挙げることができ、不飽和環状第三アミン化合物残基としては、例えばイミダゾール残基、ジヒドロイミダゾール残基、オキサゾール残基、ピリジル基などを挙げることができる。
前記Xとしては、性能の観点から、飽和環状第三アミン化合物残基、イミダゾール残基、ジヒドロイミダゾール残基、ピリジル基、ニトリル基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも1種の含窒素官能基を有する一価の基であることが好ましく、含窒素官能基が、飽和環状第三アミン化合物残基、イミダゾール残基、ジヒドロイミダゾール残基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも1種であることが好ましい。
前記Xで表される一価の基における官能基の中で、脱保護可能な保護された第二アミノ基としては、N−(トリメチルシリル)アミノ基などを挙げることができる。
(チオ)エポキシ基を含む一価の基としては、例えばグリシドキシ基、3,4−エポキシシクロヘキシル基、及びこれらの基におけるエポキシ環をチオエポキシ環に置き換えたものなどが挙げられる。
【0038】
本発明で用いる変性剤は、前記したように二官能ヒドロカルビルオキシシラン化合物及び/又はその部分縮合物である。ここで、部分縮合物とは、ヒドロカルビルオキシシラン化合物のSiOR基の一部(全部ではない)が縮合によりSiOSi結合したものをいう。
また、本発明で用いる変性剤が、ケイ素原子に直接結合したヒドロカルビルオキシ基が1つである一官能ヒドロカルビルオキシシラン化合物である場合、変性反応によってヒドロカルビルオキシ基が消費され、シリカなどの無機充填材に相互作用する変性基が導入されないため、本発明の目的が達せられない。
一方、ケイ素原子に直接結合するヒドロカルビルオキシ基が3つある三官能ヒドロカルビルオキシシラン化合物である場合、変性剤1分子に複数の活性末端を有する共役ジエン系重合体が反応することにより、ジエン系重合体1分子当たりの高効率な変性末端の導入が達成できない。
本発明における変性反応においては、用いる活性末端を有する共役ジエン系重合体は、少なくとも10%のポリマー鎖がリビング性を有するものが好ましい。
【0039】
前記一般式(1)で表される二官能ヒドロカルビルオキシシラン化合物としては、例えばXがイミダゾール残基又はジヒドロイミダゾール残基を有する場合、具体例として、1−[3−[ジエトキシ(メチル)シリル]プロピル]−イミダゾール、1−[3−[ジエトキシ(エチル)シリル]プロピル]−イミダゾール、1−[3−[ジプロポキシ(メチル)シリル]プロピル]−イミダゾール、1−[3−[ジプロポキシ(エチル)シリル]プロピル]−イミダゾール、1−[3−[ジエトキシ(メチル)シリル]プロピル]−4,5−ジヒドロイミダゾール、1−[3−[ジエトキシ(エチル)シリル]プロピル]−4,5−ジヒドロイミダゾール、1−[3−[ジプロポキシ(メチル)シリル]プロピル]−4,5−ジヒドロイミダゾール、1−[3−[ジプロポキシ(エチル)シリル]プロピル]−4,5−ジヒドロイミダゾールなどを挙げることができるが、これらの中で1−[3−[ジエトキシ(メチル)シリル]プロピル]−イミダゾール、1−[3−[ジプロポキシ(メチル)シリル]プロピル]−イミダゾール、1−[3−[ジエトキシ(メチル)シリル]プロピル]−4,5−ジヒドロイミダゾール及び1−[3−[ジプロポキシ(メチル)シリル]プロピル]−4,5−ジヒドロイミダゾールが好適である。
【0040】
前記一般式(1)で表される二官能ヒドロカルビルオキシシラン化合物としては、例えばXがピリジル基、又はニトリル基を有する場合、具体例として、2−[2−[ジエトキシ(メチル)シリル]エチル]−ピリジン、2−[2−[ジプロポキシ(メチル)シリル]エチル]−ピリジン、2−[3−[ジエトキシ(メチル)シリル]プロピル]−ピリジン、2−[3−[ジエトキシ(エチル)シリル]プロピル]−ピリジン、2−[3−[ジプロポキシ(メチル)シリル]プロピル]−ピリジン、2−[3−[ジプロポキシ(エチル)シリル]プロピル]−ピリジン、4−[2−[ジエトキシ(メチル)シリル]エチル]−ピリジン、4−[2−[ジプロポキシ(メチル)シリル]エチル]−ピリジン、4−[3−[ジエトキシ(メチル)シリル]プロピル]−ピリジン、4−[3−[ジエトキシ(エチル)シリル]プロピル]−ピリジン、4−[3−[ジプロポキシ(メチル)シリル]プロピル]−ピリジン、4−[3−[ジプロポキシ(エチル)シリル]プロピル]−ピリジンなどのピリジン化合物、1−シアノ−3−[ジエトキシ(メチル)シリル]−プロパン、1−シアノ−3−[ジエトキシ(エチル)シリル]−プロパン、1−シアノ−3−[ジプロポキシ(メチル)シリル]−プロパン、1−シアノ−3−[ジプロポキシ(エチル)シリル]−プロパンなどのシアノ化合物を挙げることができる。これらの中で、2−[3−[ジエトキシ(メチル)シリル]プロピル]−ピリジン、2−[3−[ジプロポキシ(メチル)シリル]プロピル]−ピリジン、4−[3−[ジエトキシ(メチル)シリル]プロピル]−ピリジン、4−[3−[ジプロポキシ(メチル)シリル]プロピル]−ピリジン、1−シアノ−3−[ジエトキシ(メチル)シリル]−プロパン及び1−シアノ−3−[ジプロポキシ(メチル)シリル]−プロパンが好適である。
【0041】
前記一般式(1)で表される二官能ヒドロカルビルオキシシラン化合物としては、例えばXがオキサゾール残基を有する場合、具体例として、4−[3−[ジエトキシ(メチル)シリル]プロピル]−オキサゾール、4−[3−[ジエトキシ(エチル)シリル]プロピル]−オキサゾール、4−[3−[ジプロポキシ(メチル)シリル]プロピル]−オキサゾール、4−[3−[ジプロポキシ(エチル)シリル]プロピル]−オキサゾールなどのオキサゾール化合物などを挙げることができる。これらの中で、4−[3−[ジエトキシ(メチル)シリル]プロピル]−オキサゾール及び4−[3−[ジプロポキシ(メチル)シリル]プロピル]−オキサゾールが好適である。
なお、本発明においては、オキサゾール残基はイソオキサゾール残基をも包含する。
【0042】
前記一般式(1)で表される二官能ヒドロカルビルオキシシラン化合物としては、例えばXが(チオ)エポキシ基を有する場合、具体例として、1−グリシドキシ−3−[ジエトキシ(メチル)シリル]−プロパン、1−グリシドキシ−3−[ジエトキシ(エチル)シリル]−プロパン、1−グリシドキシ−3−[ジプロポキシ(メチル)シリル]−プロパン、1−グリシドキシ−3−[ジプロポキシ(エチル)シリル]−プロパン、1−(3,4−エポキシシクロヘキシル)−3−[ジエトキシ(メチル)シリル]−プロパン、1−(3,4−エポキシシクロヘキシル)−3−[ジエトキシ(エチル)シリル]−プロパン、1−(3,4−エポキシシクロヘキシル)−3−[ジプロポキシ(メチル)シリル]−プロパン、1−(3,4−エポキシシクロヘキシル)−3−[ジプロポキシ(エチル)シリル]−プロパンなどのエポキシ化合物、及び上記エポキシ化合物におけるエポキシ基をチオエポキシ基に置き換えたチオエポキシ化合物などを挙げることができる。これらの中で、1−グリシドキシ−3−[ジエトキシ(メチル)シリル]−プロパン、1−グリシドキシ−3−[ジプロポキシ(メチル)シリル]−プロパン、1−(3,4−エポキシシクロヘキシル)−3−[ジエトキシ(メチル)シリル]−プロパン及び1−(3,4−エポキシシクロヘキシル)−3−[ジプロポキシ(メチル)シリル]−プロパンが好適である。
【0043】
本発明において、求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に反応させる、前記一般式(1)で表される二官能ヒドロカルビルオキシシラン化合物及び/又はその部分縮合物からなる変性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
この変性剤による変性反応は、溶液反応で行うのが好ましく、該溶液中には、重合時に使用した単量体が含まれていてもよい。また、変性反応の反応形式は特に制限されず、バッチ式でも連続式でもよい。更に、変性反応の反応温度は、反応が進行する限り特に限定されず、重合反応の反応温度をそのまま採用してもよい。なお、変性剤の使用量は、共役ジエン系重合体の製造に使用した重合開始剤1molに対し、0.25〜3.0molの範囲が好ましく、0.5〜1.5molの範囲が更に好ましい。
【0044】
(縮合促進剤)
本発明においては、前述の変性剤として用いる二官能ヒドロカルビルオキシシラン化合物が関与する縮合反応を促進するために、変性反応を行ったのち、必要に応じて縮合促進剤の存在下で縮合反応を行ってもよい。
この縮合促進剤としては、周期表の4族、13族、14族及び15族の少なくとも一つに属する元素の化合物が用いられる。
当該縮合促進剤としては、チタンの化合物、スズの化合物、ジルコニウムの化合物、ビスマスの化合物及びアルミニウムの化合物の中から選ばれる少なくとも1種が好ましく用いられ、より好ましくは、上記各元素のアルコキシド、カルボン酸塩及びアセチルアセトナート錯塩であり、さらに好ましくは、チタンのアルコキシド、チタンのカルボン酸塩、スズのカルボン酸塩、ビスマスのカルボン酸塩、ジルコニウムのアルコキシド、ジルコニウムのカルボン酸塩、アルミニウムのアルコキシド及びアルミニウムのカルボン酸塩である。
【0045】
チタン化合物からなる縮合促進剤としては、テトラキス(2−エチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−メチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−プロピル−1,3−ヘキサンジオラト)チタン、テトラキス(2−ブチル−1,3−ヘキサンジオラト)チタン、テトラキス(1,3−ヘキサンジオラト)チタン、テトラキス(1,3−ペンタンジオラト)チタン、テトラキス(2−メチル−1,3−ペンタンジオラト)チタン、テトラキス(2−エチル−1,3−ペンタンジオラト)チタン、テトラキス(2−プロピル−1,3−ペンタンジオラト)チタン、テトラキス(2−ブチル−1,3−ペンタンジオラト)チタン、テトラキス(1,3−ヘプタンジオラト)チタン、テトラキス(2−メチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−エチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−プロピル−1,3−ヘプタンジオラト)チタン、テトラキス(2−ブチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−エチルヘキソキシ)チタン、テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトラ−n−ブトキシチタンオリゴマー、テトライソブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン、ビス(オレート)ビス(2−エチルヘキサノエート)チタン、チタンジプロポキシビス(トリエタノールアミネート)、チタンジブトキシビス(トリエタノールアミネート)、チタントリブトキシステアレート、チタントリプロポキシステアレート、チタントリプロポキシアセチルアセトネート、チタンジプロポキシビス(アセチルアセトネート)、チタントリプロポキシ(エチルアセトアセテート)、チタンプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタントリブトキシアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)、チタントリブトキシエチルアセトアセテート、チタンブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタンテトラキス(アセチルアセトネート)、チタンジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)チタンオキサイド、ビス(ラウレート)チタンオキサイド、ビス(ナフテネート)チタンオキサイド、ビス(ステアレート)チタンオキサイド、ビス(オレエート)チタンオキサイド、ビス(リノレート)チタンオキサイド、テトラキス(2−エチルヘキサノエート)チタン、テトラキス(ラウレート)チタン、テトラキス(ナフテネート)チタン、テトラキス(ステアレート)チタン、テトラキス(オレエート)チタン、テトラキス(リノレート)チタン、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)、チタンオキサイドビス(テトラメチルヘプタンジオネート)、チタンオキサイドビス(ペンタンジオネート)、チタンテトラ(ラクテート)などが挙げられる。中でも、テトラキス(2−エチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−エチルヘキソキシ)チタン、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)が好ましい。
【0046】
スズ化合物からなる縮合促進剤としては、例えば二価のスズのカルボン酸塩や、四価のジヒドロカルビルスズのジカルボン酸塩を好ましく挙げることができ、特にビス(2−エチルヘキサン酸)スズが好適である。
ビスマス化合物からなる縮合促進剤としては、例えば、トリス(2−エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテネート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマスなどが挙げられる。これらの中で、トリス(2−エチルヘキサノエート)が好適である。
【0047】
ジルコニウム化合物からなる縮合促進剤としては、例えばテトラエトキシジルコニウム、テトラn−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラn−ブトキシジルコニウム、テトラsec−ブトキシジルコニウム、テトラtert−ブトキシジルコニウム、テトラ(2−エチルヘキソキシ)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテネート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2−エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテネート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウムなどが挙げられる。これらの中で、テトラn−プロポキシジルコニウム、ビス(2−エチルヘキサノエート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ジルコニウムテトラキス(アセチルアセトネート)が好適である。
【0048】
アルミニウム化合物からなる縮合促進剤としては、例えばトリエトキシアルミニウム、トリn−プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリn−ブトキシアルミニウム、トリsec−ブトキシアルミニウム、トリtert−ブトキシアルミニウム、トリ(2−エチルヘキソキシ)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2−エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテネート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウムなどを挙げられる。
これらの中でトリイソプロポキシアルミニウム、トリsec−ブトキシアルミニウム、トリス(2−エチルヘキサノエート)アルミニウム、トリス(ステアレート)アルミニウム、アルミニウムトリス(アセチルアセトネート)が好適である。
【0049】
当該縮合促進剤の使用量としては、上記化合物のモル数が、反応系内に存在するケイ素原子に結合したヒドロカルビロキシ基総量に対するモル比として、0.1〜10となることが好ましく、0.5〜5が特に好ましい。縮合促進剤の使用量を上記範囲にすることによって縮合反応が効率よく進行する。
縮合促進剤の添加時期としては、通常、変性反応開始5分〜5時間後、好ましくは変性反応開始15分〜1時間後である。
【0050】
本発明における縮合反応は、水の存在下で行うことが好ましく、縮合反応時の温度は85〜180℃が好ましく、さらに好ましくは100〜170℃、特に好ましくは110〜150℃である。
縮合反応時の温度を上記範囲にすることによって、縮合反応を効率よく進行完結することができ、得られる変性共役ジエン系重合体(a−1)の経時変化によるポリマーの老化反応などによる品質の低下などを抑えることができる。
【0051】
縮合反応時間は、通常、5分〜10時間、好ましくは15分〜5時間程度である。縮合反応時間を上記範囲にすることによって縮合反応を円滑に完結することができる。
縮合反応時の反応系の圧力は、通常、0.01〜20MPa、好ましくは0.05〜10MPaである。
縮合反応の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器などの装置を用いて連続式で行ってもよい。また、この縮合反応と脱溶媒を同時に行っても良い。
なお、変性剤として、保護された第二アミノ基を有する二官能ヒドロカルビルオキシシラン化合物を用いた場合には、該保護アミノ基におけるシリル保護基を加水分解することによって遊離したイミノ基に変換することができる。これを脱溶媒処理することにより、第二アミノ基を有する乾燥したポリマーが得られる。なお、前記縮合処理を含む段階から、脱溶媒して乾燥ポリマーまでのいずれかの段階において必要に応じて変性剤由来の保護第二アミノ基の脱保護処理を行うことができる。
【0052】
次に、変性共役ジエン系重合体(a−2)について説明する。
[変性共役ジエン系重合体(a−2)]
本発明におけるゴム成分(A)において用いられる変性共役ジエン系重合体(a−2)は、活性部位を有する共役ジエン系重合体の該活性部位に、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と該共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物を反応させる変性反応工程と、変性反応工程終了後に施される加水分解工程とを有する製造方法によって得られ、分子鎖末端にシラノール基が付与されたものとなる。
本発明においては、前記の加水分解によりシラノール基を生成する特性基は、アルコキシシラン基であって、加水分解により、その10%以上がシラノール基を生成するものであることが、本発明の効果の点から好ましい。
【0053】
加水分解によりシラノール基を生成する特性基は、補強性充填材、特にシリカと反応する場合、反応によりシラノール基になる必要があるが、最初からシラノール基であれば、シリカとの反応性はより高くなり、ゴム組成物中のシリカの分散性が向上し、且つゴム組成物の低発熱性が向上するという大きな効果を奏する。さらに、加水分解によりシラノール基を生成する特性基がアルコキシ基である場合は揮発性有機化合物(VOC、特にアルコール)を発生するが、シラノール基は発生しないので、作業環境上好ましい。
【0054】
なお、本発明において、「ある有機シラン化合物の中で、ある官能基がシラノール基を生成する特性基の近傍に存在する」とは、該有機シラン化合物の中で、該官能基が該特性基から好ましくは炭素数で1から20の範囲(珪素原子を介しても良い)内に、より好ましくは炭素数で1から15の範囲(珪素原子を介しても良い)内に、さらに好ましくは炭素数で1から12の範囲(珪素原子を介しても良い)内に、特に好ましくは炭素数で1から10の範囲(珪素原子を介しても良い)内に、さらに特に好ましくは炭素数で1から5の範囲(珪素原子を介しても良い)内に、存在することをいう。
「シラノール基と、該シラノール基の近傍にある官能基」の場合の「近傍」も上記と同義である。
【0055】
前記加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)前記活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と前記共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物が、下記一般式(2)又は下記一般式(3)により表わされる有機シラン化合物であることが好ましい。
【0056】
【化5】

ここで、R3は単結合又は炭素数1〜20の二価の炭化水素基;R4及びR5はそれぞれ独立に水素原子又は炭素数1〜20の一価の炭化水素基;−OL1は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A3は前記活性部位に付加もしくは置換反応を行う事によって前記有機シラン化合物と前記共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と前記補強性充填材との反応を促進する官能基であり、mは1〜10の整数である。
【0057】
【化6】

ここで、R6は単結合又は炭素数1〜20の炭化水素基;R7及びR8はそれぞれ独立に単結合、水素原子又は炭素数1〜20の炭化水素基;−OL2は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A4は前記活性部位と反応する官能基又は前記活性部位に付加もしくは置換反応を行う事によって前記有機シラン化合物と前記共役ジエン系重合体とを結合させる官能基;B及びDはそれぞれ独立に前記シラノール基と前記補強性充填材との反応を促進する官能基を少なくとも一つ含む基であり;p及びqはそれぞれ独立に0〜5の整数であり、(p+q)が1以上であり、nは1〜10の整数である。
【0058】
ここで、加水分解によりSiと共にシラノール基を生成する加水分解性官能基としては、例えば、炭素数1〜12のアルコキシ基、フェノキシ基、ベンジルオキシ基、−OM(1/x)等が好適に挙げられる。炭素数1〜20のアルコキシ基がさらに好ましく、炭素数1〜12のアルコキシ基が特に好ましい。炭素数1〜20のアルコキシ基としては、具体的には、メトシキ基、エトシキ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、tert−ブトキシ基等を挙げることができる。
上記の式−OM(1/x)において、Mは、水素を除く第1族元素(即ち、アルカリ金属);第2〜12族元素;ホウ素を除く第13族元素;炭素及びケイ素を除く第14族元素;窒素、リン及びヒ素を除く第15族元素及び希土類元素から選ばれる金属原子であり、xはその金属原子の価数である。第2族元素は、Be、Mg及びアルカリ土類金属である。これらの金属原子の内、アルカリ金属、Mg、アルカリ土類金属、Sn、Al、Ti、Feがより好ましく、Li、Na、K、Mg、Ca、Ba、Sn、Al、Ti、Feが特に好ましい。
【0059】
前記一般式(2)において、前記活性部位に付加もしくは置換反応を行う事によって前記有機シラン化合物と前記共役ジエン系重合体とを結合させ、且つ該反応後に前記シラノール基と前記補強性充填材との反応を促進する官能基A3としては、例えば、(チオ)エポキシ基(グリシドキシ基を含む)、(チオ)イソシアネート基、ニトリル基(シアノ基)、ピリジル基、N−アルキルピロリドニル基、N−アルキルイミダゾリル基、N−アルキルピラゾリル基、(チオ)ケトン基、(チオ)アルデヒド基、イミン残基、アミド基、ケチミン基、イソシアヌル酸トリエステル残基、炭素数1〜20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1〜20の(チオ)カルボン酸金属塩の残基、炭素数1〜20のカルボン酸無水物残基、炭素数1〜20のカルボン酸ハロゲン化物残基又は炭酸ジヒドロカルビルエステル残基が挙げられる。炭素数1〜20のカルボン酸ハロゲン化物残基のハロゲンとしては、塩素、臭素又はフッ素が好ましい。炭素数1〜20のカルボン酸無水物残基としては、無水マレイン酸残基、無水フタル酸残基、無水酢酸残基等が好ましい。これらは、共役ジエン系重合体の活性部位に結合する基であると共に、シリカとの反応を促進させる基でもある。
【0060】
前記一般式(3)において、前記活性部位と反応する官能基又は前記活性部位に付加もしくは置換反応を行う事によって該有機シラン化合物と前記共役ジエン系重合体とを結合させる官能基A4としては、下記式(3−a)
−RdSiX3 ・・・・・(3−a)
[式中、Rdは単結合、炭素数1〜10の置換もしくは無置換のアルキレン基又は−ORe(Reは炭素数1〜10の置換もしくは無置換のアルキレンである。)を示し、Xはハロゲン原子又は炭素数1〜10のアルコキシ基を示し、複数のXは同一でも異なっていてもよい。]で表される官能基、あるいは(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、イミダゾリル基、ケチミン基、(チオ)ケトン基又は保護された第一もしくは第二アミノ基などを挙げることができる。
【0061】
また、変性共役ジエン系重合体(a−2)における共役ジエン系重合体の活性部位と反応する官能基A4とは、活性部位と化学的に反応し得る官能基A4をいい、例えば、炭素数1〜20のアルコキシ基、フェノキシ基、ベンジルオキシ基、ハロゲン基等が好適に挙げられる。炭素数1〜20のアルコキシ基がさらに好ましく、炭素数1〜12のアルコキシ基が特に好ましい。炭素数1〜20のアルコキシ基としては、具体的には、メトシキ基、エトシキ基、プロピルオキシ基、イソプロピルオキシ基、n−ブトキシ基、tert−ブトキシ基等を挙げることができる。ハロゲンとしては、塩素、臭素又はフッ素が好ましい。
【0062】
また、前記一般式(3)において、シラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基B及びDとしては、それぞれ独立に、例えば、第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)エポキシ基(グリシドキシ基を含む)、(チオ)イソシアネート基、ニトリル基(シアノ基)、ピリジル基、N−アルキルピロリドニル基、N−アルキルイミダゾリル基、N−アルキルピラゾリル基、イミノ基、アミド基、ケチミン基、イミン残基、イソシアヌル酸トリエステル残基、炭素数1〜20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1〜20の(チオ)カルボン酸金属塩の残基、炭素数1〜20のカルボン酸無水物残基、炭素数1〜20のカルボン酸ハロゲン化物残基、炭酸ジヒドロカルビルエステル残基又は一般式−E−F−Gで表わされる官能基が挙げられる。
ここで、Eはイミノ基、2価のイミン残基、2価のピリジン残基又は2価のアミド残基、Fは炭素数1〜20のアルキレン基、フェニレン基又は炭素数8〜20のアラルキレン基、Gは第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、ケチミン基、ニトリル基(シアノ基)、アミド基、ピリジン基又は(チオ)イソシアネート基である。
一般式−E−F−Gで表わされる官能基の具体例としては、例えば、−NH−C24−NH2、−NH−C24−N(CH32、及びこれらの−C24−を−C612−又はフェニレン基に置き換えた官能基等が挙げられる。
【0063】
前記一般式(3)において、ケイ素原子にハロゲン原子又はアルコキシ基が結合したケイ素含有基、及び式(3−a)で示される−RdSiX3基は、共役ジエン系重合体の活性部位に結合する基であり、一方、(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、イミダゾリル基、ケチミン基、(チオ)ケトン基又は保護された第1もしくは第2アミノ基は、シリカとの反応を促進させる基である。
【0064】
シラノール基と補強性充填材との反応を促進する官能基がシラノール基の近傍に存在すると、補強性充填材、特にシリカ表面のヒドロキシ基、シラノール基及びシラノール基と補強性充填材との反応を促進する官能基中の不対電子を有する原子(酸素原子、硫黄原子又は窒素原子)の三者により安定構造をとることが考えられ、シラノール基のシリカへの反応性が向上する。これにより、変性共役ジエン系重合体(a−2)を用いたゴム組成物の低発熱性が向上することとなる。
【0065】
上記一般式(2)及び上記一般式(3)において、R3、R6、pが1である場合のR7又はqが1である場合のR8である炭素数1〜20の炭化水素基の具体例としては、メチレン基、エチレン基、プロパン−1,3−ジイル基、ブタン−1,3−ジイル基、ブタン−1,4−ジイル基、ペンタン−1,3−ジイル基、ペンタン−1,5−ジイル基、ヘキサン−1,3−ジイル基、ヘキサン−1,6−ジイル基、ヘプタン−1,3−ジイル基、ヘプタン−1,7−ジイル基、オクタン−1,8−ジイル基、ノナン−1,9−ジイル基、デカン−1,10−ジイル基、シクロペンタン−1,3−ジイル基、シクロヘキサン−1,4−ジイル基等が挙げられる。これらの中で、プロパン−1,3−ジイル基が特に好ましい。
ここで、pが0である場合のR7及びqが0である場合のR8は、R4及びR5と同様に水素原子又は炭素数1〜20の一価の炭化水素基となる。即ち、R7の価数は(p+1)であり、R8の価数は(q+1)である。
【0066】
また、上記一般式(2)及び上記一般式(3)において、R4、R5、pが0である場合のR7又はqが0である場合のR8である炭素数1〜20の一価の炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、ステアリル基等が挙げられる。これらの中で、メチル基又はエチル基が特に好ましい。
【0067】
上記一般式(2)により表わされる有機シラン化合物の具体例としては、(チオ)エポキシ基含有シラン化合物として、(2−グリシドキシエチル)ジメチルメトキシシラン、(2−グリシドキシエチル)ジエチルメトキシシラン、(2−グリシドキシエチル)ジメチルエトキシシラン、(2−グリシドキシエチル)ジエチルエトキシシラン、(3−グリシドキシプロピル)ジメチルメトキシシラン、(3−グリシドキシプロピル)ジエチルメトキシシラン、(3−グリシドキシプロピル)ジメチルエトキシシラン、(3−グリシドキシプロピル)ジエチルエトキシシラン、2−(3、4−エポキシシクロヘキシル)エチル(ジメチル)メトキシシラン、2−(3、4−エポキシシクロヘキシル)エチル(ジエチル)メトキシシラン、2−(3、4−エポキシシクロヘキシル)エチル(ジメチル)エトキシシラン、2−(3、4−エポキシシクロヘキシル)エチル(ジエチル)エトキシシラン及びこれらの化合物におけるエポキシ基をチオエポキシ基に置き換えたものを挙げることができる。これらの中で、特に(3−グリシドキシプロピル)ジメチルメトキシシラン、(3−グリシドキシプロピル)ジエチルメトキシシラン、2−(3、4−エポキシシクロヘキシル)エチル(ジメチル)メトキシシラン及び2−(3、4−エポキシシクロヘキシル)エチル(ジエチル)メトキシシランが好適である。
【0068】
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、イミン残基含有シラン化合物として、N−(1,3−ジメチルブチリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−(1,3−ジメチルブチリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミン、N−(1−メチルエチリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−(1−メチルエチリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミン、N−エチリデン−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−エチリデン−3−(ジエチルエトキシシリル)−1−プロパンアミン、N−(1−メチルプロピリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−(1−メチルプロピリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミン、N−(4−N,N−ジメチルアミノベンジリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−(4−N,N−ジメチルアミノベンジリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミン、N−(シクロヘキシリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−(シクロヘキシリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミン等を挙げることができる。これらの中で特に、N−(1−メチルプロピリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン、N−(1−メチルプロピリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミン、N−(1,3−ジメチルブチリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン及びN−(1,3−ジメチルブチリデン)−3−(ジエチルエトキシシリル)−1−プロパンアミンが好適である。
【0069】
上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、イミノ(アミジン)基含有化合物として、1−〔3−(ジメチルエトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジエチルエトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジメチルメトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジエチルメトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、3−〔10−(ジメチルエトキシシリル)デシル〕−4−オキサゾリン、3−〔10−(ジエチルエトキシシリル)デシル〕−4−オキサゾリン、3−(1−ヘキサメチレンイミノ)プロピル(ジメチルエトキシ)シラン、3−(1−ヘキサメチレンイミノ)プロピル(ジエチルエトキシ)シラン、(1−ヘキサメチレンイミノ)メチル(ジメチルメトキシ)シラン、(1−ヘキサメチレンイミノ)メチル(ジエチルメトキシ)シラン、1−〔3−(ジメチルエトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジエチルエトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジメチルメトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール及び1−〔3−(ジエチルメトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール等を挙げることができるが、これらの中で、3−(1−ヘキサメチレンイミノ)プロピル(ジメチルエトキシ)シラン、3−(1−ヘキサメチレンイミノ)プロピル(ジエチルエトキシ)シラン、(1−ヘキサメチレンイミノ)メチル(ジメチルメトキシ)シラン、(1−ヘキサメチレンイミノ)メチル(ジエチルメトキシ)シラン、1−〔3−(ジメチルエトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジエチルエトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール、1−〔3−(ジメチルメトキシシリル)プロピル〕−4,5−ジヒドロイミダゾール及び1−〔3−(ジエチルメトキシシリル)プロピル〕−4,5−ジヒドロイミダゾールを好ましく挙げることができる。
【0070】
そして、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、カルボン酸エステル基含有化合物として、(3−メタクリロイロキシプロピル)ジメチルエトキシシラン、(3−メタクリロイロキシプロピル)ジエチルエトキシシラン、(3−メタクリロイロキシプロピル)ジメチルメトキシシラン、(3−メタクリロイロキシプロピル)ジエチルメトキシシラン、(3−メタクリロイロキシプロピル)ジメチルイソプロポキシシラン、(3−メタクリロイロキシプロピル)ジエチルイソプロポキシシラン等が挙げられ、これらの内、好ましいのは(3−メタクリロイロキシプロピル)ジメチルメトキシシラン及び(3−メタクリロイロキシプロピル)ジエチルメトキシシランである。
【0071】
さらに、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、イソシアネート基含有化合物として、(3−イソシアナトプロピル)ジメチルメトキシシラン、(3−イソシアナトプロピル)ジエチルメトキシシラン、(3−イソシアナトプロピル)ジメチルエトキシシラン、(3−イソシアナトプロピル)ジエチルエトキシシラン、(3−イソシアナトプロピル)ジメチルイソプロポキシシラン、(3−イソシアナトプロピル)ジエチルイソプロポキシシラン等が挙げられ、これらの内、好ましいのは(3−イソシアナトプロピル)ジメチルエトキシシラン及び(3−イソシアナトプロピル)ジエチルエトキシシランである。
【0072】
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、カルボン酸無水物含有化合物として、3−(ジメチルエトキシ)シリルプロピルサクシニック無水物、3−(ジエチルエトキシ)シリルプロピルサクシニック無水物、3−(ジメチルメトキシ)シリルプロピルサクシニック無水物、3−(ジエチルメトキシ)シリルプロピルサクシニック無水物等が挙げられ、これらの内、好ましいのは3−(ジメチルエトキシ)シリルプロピルサクシニック無水物及び3−(ジエチルエトキシ)シリルプロピルサクシニック無水物である。
【0073】
上記一般式(3)により表わされる有機シラン化合物としては、保護基が−SiRabcで表わされるトリアルキルシリル基(ここで、Ra、Rb及びRcはそれぞれ独立に炭素数1〜12のアルキル基であり、メチル基、エチル基、プロピル基、プロピル基又はブチル基が好ましい。)を2つ有する、保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物が挙げられる。この保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物の具体例としては、N,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン等を好ましく挙げることができる。これらの中で、特に好ましくは、N,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン又はN,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランである。
【0074】
上記一般式(3)により表わされる有機シラン化合物の別の例として、保護基が−SiRabcで表わされるトリアルキルシリル基(Ra、Rb及びRcは上記と同じである。)を1つ有する、保護された第二アミノ基を有するヒドロカルビルオキシシラン化合物が挙げられる。この保護された第二アミノ基を有するヒドロカルビルオキシシラン化合物の具体例としては、N,N−メチル(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−エチル(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−メチル(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N−エチル(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N−メチル(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N−エチル(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N−メチル(トリメチルシリル)アミノエチルメチルジエトキシシラン、N,N−エチル(トリメチルシリル)アミノエチルメチルジエトキシシラン等を好ましく挙げることができる。
【0075】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、N−(1,3−ジメチルブチリデン)−3−(メチルジエトキシシリル)−1−プロパンアミン、N−(1−メチルエチリデン)−3−(メチルジエトキシシリル)−1−プロパンアミン、N−エチリデン−3−(メチルジエトキシシリル)−1−プロパンアミン、N−(1−メチルプロピリデン)−3−(メチルジエトキシシリル)−1−プロパンアミン、N−(4−N,N−ジメチルアミノベンジリデン)−3−(メチルジエトキシシリル)−1−プロパンアミン、N−(シクロヘキシリデン)−3−(メチルジエトキシシリル)−1−プロパンアミン及びこれらのメチルジエトキシシリル化合物に対応するメチルジメトキシシリル化合物、エチルジエトキシシリル化合物、エチルジメトキシシリル化合物等のイミン残基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で特に、N−(1−メチルプロピリデン)−3−(メチルジエトキシシリル)−1−プロパンアミン及びN−(1,3−ジメチルブチリデン)−3−(メチルジエトキシシリル)−1−プロパンアミンが好適である。
【0076】
さらに、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、3−ジメチルアミノプロピル(ジエトキシ)メチルシラン、3−ジメチルアミノプロピル(ジメトキシ)メチルシラン、3−ジエチルアミノプロピル(ジエトキシ)メチルシラン、3−ジエチルアミノプロピル(ジメトキシ)メチルシラン、2−ジメチルアミノエチル(ジエトキシ)メチルシラン、2−ジメチルアミノエチル(ジメトキシ)メチルシラン等の非環状第三アミノ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で特に、3−ジメチルアミノプロピル(ジメトキシ)メチルシラン及び3−ジメチルアミノプロピル(ジエトキシ)メチルシランが好適である。
【0077】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、3−メチルアミノプロピル(ジエトキシ)メチルシラン、3−メチルアミノプロピル(ジメトキシ)メチルシラン、3−エチルアミノプロピル(ジエトキシ)メチルシラン、3−エチルアミノプロピル(ジメトキシ)メチルシラン、2−メチルアミノエチル(ジエトキシ)メチルシラン、2−メチルアミノエチル(ジメトキシ)メチルシラン等の非環状第二アミノ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で特に、3−メチルアミノプロピル(ジエトキシ)メチルシラン及び3−メチルアミノプロピル(ジメトキシ)メチルシランが好適である。
【0078】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、3−(1−ヘキサメチレンイミノ)プロピル(メチルジエトキシ)シラン、3−(1−ヘキサメチレンイミノ)プロピル(メチルジメトキシ)シラン、(1−ヘキサメチレンイミノ)メチル(メチルジメトキシ)シラン、(1−ヘキサメチレンイミノ)メチル(メチルジエトキシ)シラン、2−(1−ヘキサメチレンイミノ)エチル(メチルジエトキシ)シラン、2−(1−ヘキサメチレンイミノ)エチル(メチルジメトキシ)シラン、3−(1−ピロリジニル)プロピル(メチルジエトキシ)シラン、3−(1−ピロリジニル)プロピル(メチルジメトキシ)シラン、3−(1−ヘプタメチレンイミノ)プロピル(メチルジエトキシ)シラン、3−(1−ドデカメチレンイミノ)プロピル(メチルジエトキシ)シラン、3−(1−ヘキサメチレンイミノ)プロピル(エチルジエトキシ)シラン、3−〔10−(メチルジエトキシシリル)デシル〕−4−オキサゾリン等の環状第三アミノ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で、3−(1−ヘキサメチレンイミノ)プロピル(メチルジエトキシ)シラン及び(1−ヘキサメチレンイミノ)メチル(メチルジメトキシ)シランをより好ましく挙げることができる。特に、3−(1−ヘキサメチレンイミノ)プロピル(メチルジエトキシ)シランが好適である。
【0079】
そして、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、N−(3−メチルジメトキシシリルプロピル〕−4,5−ジヒドロイミダゾール、N−(3−メチルジエトキシシリルプロピル)−4,5−ジヒドロイミダゾール等のアミジン基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも、N−(3−メチルジエトキシシリルプロピル)−4,5−ジヒドロイミダゾールが好ましい。
【0080】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、(2−グリシドキシエチル)メチルジメトキシシラン、(2−グリシドキシエチル)メチルジエトキシシラン、(2−グリシドキシエチル)エチルジメトキシシラン、(2−グリシドキシエチル)エチルジエトキシシラン、(3−グリシドキシプロピル)メチルジメトキシシラン、(3−グリシドキシプロピル)メチルジエトキシシラン、(3−グリシドキシプロピル)エチルジメトキシシラン、(3−グリシドキシプロピル)エチルジエトキシシラン、2−(3、4−エポキシシクロヘキシル)エチル(メチルジメトキシ)シラン、2−(3,4−エキシシクロヘキシル)エチル(メチルジエトキシ)シラン2−(3、4−エポキシシクロヘキシル)エチル(エチルジメトキシ)シラン、2−(3,4−エキシシクロヘキシル)エチル(エチルジエトキシ)シラン等のエポキシ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で、特に(3−グリシドキシプロピル)メチルジメトキシシラン及び(3−グリシドキシプロピル)メチルジエトキシシランが好適である。
そして、上記のエポキシ基含有ヒドロカルビルオキシシラン化合物のエポキシ基をエピチオ基に置き換えたエピチオ基含有ヒドロカルビルオキシシラン化合物をも好ましく挙げることができる。
【0081】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、(3−イソシアナトプロピル)メチルジメトキシシラン、(3−イソシアナトプロピル)メチルジエトキシシラン、(3−イソシアナトプロピル)エチルジメトキシシラン、(3−イソシアナトプロピル)エチルジエトキシシラン、(3−イソシアナトプロピル)メチルジイソプロポキシシラン、3−(イソシアナトプロピル)エチルジイソプロポキシシラン等のイソシアネート基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも(3−イソシアナトプロピル)メチルジエトキシシランが好ましい。
【0082】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、3−メタクリロイロキシプロピルメチルジエトキシシラン、3−メタクリロイロキシプロピルメチルジメトキシシラン、3−メタクリロイロキシプロピルエチルジメトキシシラン、3−メタクリロイロキシプロピルエチルジエトキシシラン、3−メタクリロイロキシプロピルメチルジイソプロポキシシラン等のカルボン酸ヒドロカルビルエステル残基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも、3−メタクリロイロキシプロピルメチルジメトキシシラン、3−メタクリロイロキシプロピルメチルジエトキシシランが好ましい。
【0083】
また、上記一般式(3)により表わされる有機シラン化合物の別の具体例としては、例えば、3−(メチルジエトキシシリル)プロピルコハク酸無水物、3−(メチルジメトキシシリル)プロピルコハク酸無水物等のカルボン酸無水物残基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも、3−(メチルジエトキシシリル)プロピルコハク酸無水物が好ましい。
さらに、2−(メチルジメトキシシリルエチル)ピリジン、2−(メチルジエトキシシリルエチル)ピリジン、2−シアノエチルメチルジエトキシシラン等を挙げることができる。
【0084】
上述の上記一般式(3)により表わされる各種有機シラン化合物の中で、アミノ基又はイミン残基を有するヒドロカルビルオキシシラン化合物が低発熱性向上の観点から好ましく、それらの中でも、上述の保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物が特に好ましい。第一アミノ基を変性共役ジエン系重合体の分子鎖末端に導入することにより、変性共役ジエン系重合体(a−2)を含有するゴム組成物の低発熱性を大幅に向上するからである。
【0085】
変性共役ジエン系重合体(a−2)の製造方法は、所望により、前記有機シラン化合物を反応させる変性反応工程の前に、前記共役ジエン系重合体の前記活性部位に、ヒドロカルビルオキシシラン化合物を反応させる予備変性反応工程をさらに含んでも良い。
ここで、予備変性反応工程で用いられるヒドロカルビルオキシシラン化合物は、複数のヒドロカルビルオキシシリル基を有することが好ましい。前記共役ジエン系重合体の前記活性部位との反応により一つのヒドロカルビルオキシシリル基が消費されても、残ったヒドロカルビルオキシシリル基により、変性共役ジエン系重合体(a−2)の製造方法に必要な変性反応工程を実施することができるからである。
【0086】
変性共役ジエン系重合体(a−2)の製造方法における共役ジエン系重合体に用いられる共役ジエン単量体としては、例えば1.3−ブタジエン、イソプレン、1.3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1、3−ヘキサジエン等が挙げられる。これらは単独で用いてもよく、二種以上組み合わせて用いても良いが、これらの中で、1、3−ブタジエンが特に好ましい。
また、共役ジエン系重合体に用いられる芳香族ビニル単量体としては、例えばスチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロへキシルスチレン、2,4,6−トリメチルスチレン等が挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いても良いが、これらの中で、スチレンが特に好ましい。
【0087】
変性共役ジエン系重合体(a−2)の製造方法における共役ジエン系重合体は、ポリブタジエン、ポリイソプレン、ブタジエン−イソプレン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体又はスチレン−イソプレン−ブタジエン三元共重合体であることが好ましく、これらの中で、ポリブタジエン及びスチレン−ブタジエン共重合体が特に好ましい。
【0088】
変性共役ジエン系重合体(a−2)の製造方法を詳述する。当該製造方法の変性反応工程における、共役ジエン系重合体の活性部位と上記一般式(2)又は上記一般式(3)により表わされる有機シラン化合物とを反応させるためには、使用する共役ジエン系重合体は、少なくとも10%のポリマー鎖がリビング性又は擬似リビング性を有するものが好ましい。このようなリビング性を有する重合反応としては、アニオン重合又は配位アニオン重合が好ましく、上述の予備変性反応工程を必要としない点でアニオン重合が特に好ましい。
【0089】
当該製造方法の変性反応工程における、共役ジエン系重合体の活性部位とは、共役ジエン系重合体の活性末端(分子鎖末端の活性部位)、主鎖中の活性部位、側鎖中の活性部位のいずれでも良いが、アニオン重合又は配位アニオン重合により、共役ジエン系重合体の活性部位を得る場合は、活性末端であることが好ましい。
【0090】
(アニオン重合)
アニオン重合の開始剤として用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。有機リチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性末端である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性末端である共役ジエン系重合体が得られる。
前記ヒドロカルビルリチウム及びリチウムアミド化合物については、その使用量も含め、前述した変性共役ジエン系重合体(a−1)の製造において説明したとおりである。
【0091】
前記有機リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン単量体又は共役ジエン単量体と芳香族ビニル単量体を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有する共役ジエン系重合体が得られる。
また、有機リチウム化合物を重合開始剤として用いた場合には、前述のランタン系列希土類元素化合物を含む触媒を用いた場合に比べ、活性末端を有する共役ジエン重合体のみならず、活性末端を有する共役ジエン−芳香族ビニル共重合体も効率よく得ることができる。
前記有機溶剤の種類;溶媒中の単量体濃度;ランダマイザーの作用や種類、使用量;重合反応条件などについては、前述の変性共役ジエン系重合体(a−1)の製造において説明したとおりである。
【0092】
次に、配位アニオン重合について説明する。
(配位アニオン重合)
配位アニオン重合の重合触媒系としては、有機溶媒中でランタン系列希土類元素化合物を含む触媒が用いられる。
ランタン系列希土類元素化合物を含む触媒としては、
(a)成分:周期律表の原子番号57〜71の希土類元素含有化合物、又はこれらの化合物とルイス塩基との反応物、
(b)成分:下記一般式(4):
AlR91011 ・・・(4)
(ここで、R9及びR10は同一又は異なり、炭素数1〜10のヒドロカルビル基又は水素原子で、R11は炭素数1〜10のヒドロカルビル基であり、但し、R11は上記R9又はR10と同一又は異なっていても良い)で表される有機アルミニウム化合物、並びに
(c)成分:ルイス酸、金属ハロゲン化物と、ルイス塩基との錯化合物、及び活性ハロゲンを含む有機化合物の少なくとも一種からなる触媒系により共役ジエン単量体を重合するのが好ましい。
【0093】
また、本発明において、ランタン系列希土類元素化合物を含む触媒系には、上記(a)〜(c)成分の他に、さらに(d)成分として、有機アルミニウムオキシ化合物、所謂アルミノキサンを添加するのが好ましい。ここで、前記触媒系は、前記(a)成分、(b)成分、(c)成分、(d)成分及び共役ジエン単量体の存在下で予備調製されてなるのが、さらに好ましい。
【0094】
本発明において、ランタン系列希土類元素化合物を含む触媒系の(a)成分は、周期律表の原子番号57〜71の希土類元素を含有する化合物、又はこれらの化合物とルイス塩基との反応物である。ここで、原子番号57〜71の希土類元素の中でも、ネオジム、プラセオジム、セリウム、ランタン、ガドリニウム、サマリウム等、又はこれらの混合物が好ましく、ネオジムが特に好ましい。
【0095】
前記希土類元素含有化合物としては、炭化水素溶媒に可溶な塩が好ましく、具体的には、前記希土類元素のカルボン酸塩、アルコキサイド、β−ジケトン錯体、リン酸塩及び亜リン酸塩が挙げられ、これらの中でも、カルボン酸塩及びリン酸塩が好ましく、カルボン酸塩が特に好ましい。
ここで、炭化水素溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4〜10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5〜20の飽和脂環式炭化水素、1−ブテン、2−ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、トリクロロエチレン、パークロロエチレン、1,2−ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。
【0096】
上記希土類元素のカルボン酸塩としては、下記一般式(5):
(R12−CO231 ・・・(5)
(式中、R12は炭素数1〜20のヒドロカルビル基で、M1は周期律表の原子番号57〜71の希土類元素である)で表される化合物が挙げられる。ここで、R12は、飽和又は不飽和でもよく、アルキル基及びアルケニル基が好ましく、直鎖状、分岐状及び環状のいずれでも良い。また、カルボキシル基は、1級、2級又は3級の炭素原子に結合している。該カルボン酸塩として、具体的には、オクタン酸、2−エチルヘキサン酸、オレイン酸、ネオデカン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸[シェル化学(株)製の商品名であって、カルボキシル基が3級炭素原子に結合しているカルボン酸]等の塩が挙げられ、これらの中でも、2−エチルヘキサン酸、ネオデカン酸、ナフテン酸、バーサチック酸の塩が好ましい。
【0097】
上記希土類元素のアルコキサイドとしては、下記一般式(6):
(R13O)32 ・・・(6)
(式中、R13は炭素数1〜20のヒドロカルビル基で、M2は周期律表の原子番号57〜71の希土類元素である)で表される化合物が挙げられる。R13Oで表されるアルコキシ基としては、2−エチル−ヘキシルオキシ基、オレイルオキシ基、ステアリルオキシ基、フェノキシ基、ベンジルオキシ基等が挙げられる。これらの中でも、2−エチル−ヘキシルオキシ基、ベンジルオキシ基が好ましい。
【0098】
上記希土類元素のβ−ジケトン錯体としては、上記希土類元素のアセチルアセトン錯体、ベンゾイルアセトン錯体、プロピオニトリルアセトン錯体、バレリルアセトン錯体、エチルアセチルアセトン錯体等が挙げられる。これらの中でも、アセチルアセトン錯体、エチルアセチルアセトン錯体が好ましい。
【0099】
上記希土類元素のリン酸塩及び亜リン酸塩としては、上記希土類元素と、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、(1−メチルヘプチル)(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸等との塩が挙げられ、これらの中でも、上記希土類元素と、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、ビス(2−エチルヘキシル)ホスフィン酸との塩が好ましい。
【0100】
上記希土類元素含有化合物の中でも、ネオジムのリン酸塩、及びネオジムのカルボン酸塩がさらに好ましく、特にネオジムの2−エチルヘキサン酸塩、ネオジムのネオデカン酸塩、ネオジムのバーサチック酸塩等のネオジムの分岐カルボン酸塩が最も好ましい。
【0101】
また、(a)成分は、上記希土類元素含有化合物とルイス塩基との反応物でも良い。該反応物は、ルイス塩基によって、希土類元素含有化合物の溶剤への溶解性が向上しており、また、長期間安定に貯蔵することができる。上記希土類元素含有化合物を溶剤に容易に可溶化させるため、また、長期間安定に貯蔵するために用いられるルイス塩基は、希土類元素1モル当り0〜30モル、好ましくは1〜10モルの割合で、両者の混合物として、又は予め両者を反応させた生成物として用いられる。ここで、ルイス塩基としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N−ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、1価又は2価のアルコールが挙げられる。
【0102】
以上に述べた(a)成分としての希土類元素含有化合物又はこれらの化合物とルイス塩基との反応物は、一種単独で使用することも、二種以上を混合して用いることもできる。
【0103】
本発明において、末端活性重合体の重合に用いる触媒系の(b)成分である上記一般式(4)で表される有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(b)成分としての有機アルミニウム化合物は、一種単独で使用することも、二種以上を混合して用いることもできる。
【0104】
本発明において、末端活性重合体の重合に用いる触媒系の(c)成分は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物、及び活性ハロゲンを含む有機化合物からなる群から選択される少なくとも一種のハロゲン化合物である。
【0105】
上記ルイス酸は、ルイス酸性を有し、炭化水素に可溶である。具体的には、二臭化メチルアルミニウム、二塩化メチルアルミニウム、二臭化エチルアルミニウム、二塩化エチルアルミニウム、二臭化ブチルアルミニウム、二塩化ブチルアルミニウム、臭化ジメチルアルミニウム、塩化ジメチルアルミニウム、臭化ジエチルアルミニウム、塩化ジエチルアルミニウム、臭化ジブチルアルミニウム、塩化ジブチルアルミニウム、セスキ臭化メチルアルミニウム、セスキ塩化メチルアルミニウム、セスキ臭化エチルアルミニウム、セスキ塩化エチルアルミニウム、二塩化ジブチルスズ、三臭化アルミニウム、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化ケイ素等が例示できる。これらの中でも、塩化ジエチルアルミニウム、セスキ塩化エチルアルミニウム、二塩化エチルアルミニウム、臭化ジエチルアルミニウム、セスキ臭化エチルアルミニウム、及び二臭化エチルアルミニウムが好ましい。
また、トリエチルアルミニウムと臭素の反応生成物のようなアルキルアルミニウムとハロゲンの反応生成物を用いることもできる。
【0106】
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
【0107】
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
【0108】
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、通常0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
【0109】
また、(d)成分であるアルミノキサンとしては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、クロロアルミノキサン等が挙げられる。(d)成分としてアルミノキサンを加えることで、分子量分布がシャープになり、触媒としての活性も向上する。
【0110】
本発明で使用する触媒系の各成分の量又は組成比は、その目的又は必要性に応じて適宜選択される。このうち、(a)成分は、1,3−ブタジエン 100gに対し、0.00001〜1.0ミリモル用いるのが好ましく、0.0001〜0.5ミリモル用いるのがさらに好ましい。(a)成分の使用量を上記範囲内にすることによって優れた重合活性が得られ、脱灰工程の必要性がなくなる。
また、(a)成分と(b)成分の割合は、モル比で、(a)成分:(b)成分が通常1:1〜1:700、好ましくは1:3〜1:500である。
さらに、(a)成分と(c)成分中のハロゲンの割合は、モル比で、通常1:0.1〜1:30、好ましくは1:0.2〜1:15、さらに好ましくは1:2.0〜1:5.0である。
また、(d)成分中のアルミニウムと(a)成分との割合は、モル比で、通常1:1〜700:1、好ましくは3:1〜500:1である。これらの触媒量又は構成成分比の範囲内にすることで、高活性な触媒として作用し、また、触媒残渣を除去する工程の必要性がなくなるため好ましい。
また、上記の(a)〜(c)成分以外に、重合体の分子量を調節する目的で、水素ガスを共存させて重合反応を行っても良い。
【0111】
触媒成分として、上記の(a)成分、(b)成分、(c)成分及び必要により用いられる(d)成分以外に、必要に応じて、1,3−ブタジエン等の共役ジエン単量体を少量、具体的には、(a)成分の化合物1モル当り0〜1000モルの割合で用いても良い。触媒成分としての1,3−ブタジエン等の共役ジエン単量体は必須ではないが、これを併用すると、触媒活性が一段と向上する利点がある。
【0112】
上記触媒の製造は、例えば、溶媒に(a)成分〜(c)成分を溶解させ、さらに必要に応じて、1,3−ブタジエン等の共役ジエン単量体を反応させる。
その際、各成分の添加順序は、特に限定されず、さらに(d)成分としてアルミノキサンを添加しても良い。重合活性の向上、重合開始誘導期間の短縮の観点からは、これら各成分を、予め混合して、反応させ、熟成させることが好ましい。
ここで、熟成温度は、0〜100℃程度であり、20〜80℃が好ましい。0℃未満では、充分に熟成が行われにくく、100℃を超えると、触媒活性の低下や、分子量分布の広がりが起こる場合がある。
また、熟成時間は、特に制限なく、重合反応槽に添加する前にライン中で接触させることでも熟成でき、通常は、0.5分以上あれば充分であり、数日間は安定である。
【0113】
上記末端活性を有する共役ジエン系重合体の製造においては、前記ランタン系列希土類元素含有化合物を含む触媒系を用いて有機溶媒中で、共役ジエン単量体単独又は、共役ジエン単量体と他の共役ジエン単量体の溶液重合を行なうことによって得られる。ここで、重合溶媒としては、不活性の有機溶媒を用いる。不活性の有機溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4〜10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5〜20の飽和脂環式炭化水素、1−ブテン、2−ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、1,2−ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。
これらの中でも、炭素数5〜6の脂肪族炭化水素、脂環式炭化水素が特に好ましい。これらの溶媒は、一種単独で使用してもよく、二種以上を混合して使用しても良い。
この配位アニオン重合に用いられる溶媒中の単量体濃度は、好ましくは5〜50質量%、より好ましくは10〜30質量%である。
【0114】
本発明において、配位アニオン重合反応における温度は、好ましくは−80〜150℃、より好ましくは−20〜120℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
【0115】
配位アニオン重合反応により得られた活性末端を有する共役ジエン系重合体の該活性末端を変性する場合は、上述の予備変性反応工程において予めヒドロカルビルオキシシラン化合物を反応させた後、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と該共役ジエン系重合体とを結合し且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物を反応させることが変性反応を円滑に進める見地から好ましい。
【0116】
上述のアニオン重合及び配位アニオン重合においては、重合開始剤、溶媒、単量体等、重合に関与する全ての原材料は、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を除去したものを用いることが望ましい。
上記重合反応は、回分式及び連続式のいずれで行っても良い。
このようにして活性末端を有する共役ジエン系重合体が得られる。
【0117】
変性共役ジエン系重合体(a−2)の製造方法における変性反応工程においては、以上のようにして得られた活性末端を有する共役ジエン系重合体に、上述の上記一般式(2)又は上記一般式(3)により表わされる有機シラン化合物を、該共役ジエン系重合体の活性末端に対して、好ましくは化学量論的量又はそれより過剰に加え、該重合体に結合している活性末端と反応させる。
当該変性反応工程及び予備変性反応工程は、通常、重合反応と同じ温度、圧力条件で実施される。
【0118】
次に、変性共役ジエン系重合体の製造方法における加水分解工程を説明する。加水分解工程においては、変性反応工程終了後、水の存在下、酸性、中性又はアルカリ性の条件で加水分解反応が行われる。これにより、変性共役ジエン系重合体に結合した加水分解性官能基が効率よく加水分解され、シラノール基が変性共役ジエン系重合体の末端又は側鎖に生成する。
この加水分解反応に用いる水の量は、開始剤のLiなどのモル量より過剰なモル量、例えば2〜4倍のモル量であることが好ましい。加水分解時間は、通常10分〜数時間程度である。
なお、アルカリ性条件で加水分解反応を行う場合には、塩基性化合物として、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属、好ましくは水酸化ナトリウムを加えることが望ましく、酸性条件で加水分解反応を行う場合には、酸性化合物として、塩酸、硫酸、硝酸などの無機酸、酢酸、ギ酸などのカルボン酸、四塩化ケイ素などを加えることが望ましい。
【0119】
本発明においては、前記変性反応工程と加水分解工程との間、又は加水分解工程後に、さらに縮合促進剤の存在下に縮合反応させる縮合反応工程を設けることができる。
【0120】
縮合反応で用いる縮合促進剤は、変性反応後、及び縮合反応開始前に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端にヒドロカルビロキシ基が導入されない場合がある。また、縮合反応開始後に添加した場合、縮合促進剤が均一に分散せずその触媒性能が低下する場合がある。
縮合促進剤の添加時期としては、変性反応工程と加水分解工程との間に縮合反応工程を設ける場合には、通常変性反応開始5分〜5時間後、好ましくは変性反応開始15分〜1時間後である。加水分解工程後に縮合反応工程を設ける場合には、通常加水分解反応開始
5分〜5時間後、好ましくは10分〜2時間後である。
【0121】
縮合促進剤としては、金属元素を含むものが好ましく、周期律表の2族〜15族に属する金属の少なくとも一種を含有する化合物であることがより好ましい。
前記金属元素を含む縮合促進剤としては、Ti、Sn、Bi、Zr及びAlの中から選ばれる少なくとも一種を含み、かつ前記金属のアルコキシド、カルボン酸塩又はアセチルアセトナート錯塩であるものが好適である。
なお、縮合促進剤の具体例、使用量、添加時期、縮合反応の条件などについては、前述した変性共役ジエン系重合体(a−1)の製造において説明したとおりである。
【0122】
上述の加水分解工程又は加水分解工程と縮合反応工程とを終了後、2,6−ジ−t−ブチル−p−クレゾール(BHT)のイソプロパノール溶液等を重合反応系に加えて、重合反応を停止する。
その後、水蒸気を吹き込んで溶剤の分圧を下げるスチームストリッピング等の脱溶媒処理や真空乾燥処理を経て変性共役ジエン系重合体(a−2)が得られる。
ここで、前記変性反応工程において、上記一般式(3)により表わされる有機シラン化合物として保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物を用いる場合は、上述した加水分解工程やスチームストリッピング等の水蒸気を用いる脱溶媒処理工程において保護された窒素原子の保護基を脱離させ第一アミノ基を生成する脱保護処理が同時になされるが、それ以外に、変性反応工程終了後から、脱溶媒して乾燥ポリマーとなるまでのいずれかの段階において必要に応じて種々の方法で第一アミノ基上の保護基を加水分解することによって遊離した第一アミノ基に変換し、ヒドロカルビルオキシシラン化合物由来の保護された第一アミノ基の脱保護処理を行うことができる。
【0123】
本発明においては、変性共役ジエン系重合体(a−2)としては、低発熱性(転がり抵抗が低い)及び耐摩耗性の良好なタイヤを与える観点から、ポリブタジエン、ポリイソプレン、ブタジエン−イソプレン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体又はスチレン−イソプレン−ブタジエン三元共重合体の変性化物であるものが好ましく、分子末端にシラノール基と、プロトン性第一アミノ基、プロトン性第二アミノ基、保護された第一アミノ基、保護された第二アミノ基及び第三アミノ基の中から選ばれる少なくとも一種の窒素含有基とを有する変性アニオン重合スチレン−ブタジエン共重合体であるものがより好ましく、特に分子末端にシラノール基と、プロトン性第一アミノ基及び/又は保護された第一アミノ基とを有する、変性アニオン重合スチレン−ブタジエン共重合体であるものが好ましい。
【0124】
次に、本発明のタイヤにおいて、タイヤ部材に用いるゴム組成物について説明する。
[ゴム組成物]
(ゴム成分(A))
当該ゴム組成物においては、ゴム成分(A)として、前述した変性共役ジエン系重合体(a−1)と、変性共役ジエン系重合体(a−2)とを、質量比5:95〜95:5、好ましくは80:20〜20:80、より好ましくは40:60〜60:40の割合で含むものが用いられる。
このゴム成分(A)としては、変性共役ジエン系重合体(a−1)と変性共役ジエン系重合体(a−2)とを、合計含有量で10質量%以上含むものが好ましい。ゴム成分中の該変性共役ジエン系重合体(a−1)と(a−2)のより好ましい合計含有量は30質量%以上であり、特に40質量%以上が好適である。ゴム成分中の変性共役ジエン系重合体(a−1)と(a−2)の合計含有量を10質量%以上にすることによって、低発熱性及び耐摩耗性の良好なタイヤを与えるゴム組成物を得ることができる。
この変性共役ジエン系重合体(a−1)及び(a−2)は、それぞれ1種用いてもよく、2種以上を組み合わせて用いてもよい。また、この変性共役ジエン系重合体(a−1)及び(a−2)と併用される他のゴム成分として、天然ゴム、合成イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、エチレン−α−オレフィン共重合ゴム、エチレン−α−オレフィン−ジエン共重合ゴム、クロロブレンゴム、ハロゲン化ブチルゴム及びハロゲン化メチル基をもつスチレンとイソブチレンとの共重合体の中から選ばれる少なくとも1種90〜0質量%を含むことが好ましく、70〜0質量%を含むことがより好ましく、60〜0質量%を含むことが特に好ましい。
【0125】
(充填材)
当該ゴム組成物は、充填材としてシリカ及び/又はカーボンブラック(B)を含有することが好ましい。
上記シリカとしては特に制限はなく、従来ゴムの補強用充填材として慣用されているものの中から任意に選択して用いることができる。
このシリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられるが、中でも破壊特性の改良効果並びにウェットグリップ性の両立効果が最も顕著である湿式シリカが好ましい。
【0126】
カーボンブラックとしても特に制限はなく、例えばSRF、GPF、FEF、HAF、N339、IISAF、1SAF、SAFなどが用いられ、ヨウ素吸着量(IA)が60mg/g以上、かつジブチルフタレート吸油量(DBP)が80ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、グリップ性能及び耐破壊特性の改良効果は大きくなるが、耐摩耗性に優れるHAF、N339、IISAF、ISAF、SAFが特に好ましい。
シリカ及び/又はカーボンブラックは、1種用いてもよく2種以上を組み合わせて用いてもよい。
【0127】
シリカ及び/又はカーボンブラックは合計で、ゴム成分100質量部に対して、20〜120質量部配合されることが好ましく、補強性とそれによる諸物性の改良効果の観点から25〜100質量部がさらに好ましい。カーボンブラック及び/又はシリカの量を上記範囲にすることによって混練作業性などの工場作業性に優れ、ゴム組成物として、所望の破壊特性を得ることができる。
【0128】
(シランカップリング剤(C))
当該ゴム組成物においては、補強用充填材としてシリカを用いる場合、その補強性及び低発熱性をさらに向上させる目的で、シランカップリッグ剤(C)を配合することができる。
このシランカップリング剤としては、例えばビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−卜リエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィドなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3−トリエトキシシリルプロピル)ポリスルフィド及び3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
【0129】
当該ゴム組成物においては、ゴム成分として、分子活性部位にシリカとの親和性の高い官能基が導入された変性重合体が用いられているため、シランカップリング剤の配合量は、通常の場合より低減することができる。好ましいシランカップリング剤の配合量は、シランカップリング剤の種類などにより異なるが、シリカに対して、好ましくは1〜20質量%の範囲で選定される。この量が1質量%未満ではカップリング剤としての効果が充分に発揮されにくく、また、20質量%を超えるとゴム成分のゲル化を引き起こすおそれがある。カップリング剤としての効果及びゲル化防止などの点から、このシランカップリング剤の好ましい配合量は、5〜15質量%の範囲である。
【0130】
(ゴム組成物の調製、用途)
当該ゴム組成物には、本発明の目的が損なわれない範囲で、所望により、通常、ゴム工業界で用いられる各種薬品、例えば加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有させることができる。
また、当該ゴム組成物は、ロールなどの開放式混練機、バンバリーミキサーなどの密閉式混練機などの混練り機を用いて混練りすることによって得られ、成形加工後に加硫を行ない、タイヤ部材に用いられる。例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、サイド補強ゴム、ビード部(特にビードフィラー)などのタイヤ部材、特に、低発熱性及び耐摩耗性に優れた、低燃費用タイヤ、大型タイヤ、高性能タイヤのトレッドとして好適に使用される。
【0131】
[タイヤ]
本発明のタイヤは、前述したゴム組成物をタイヤ部材に用いたことを特徴とする。タイヤ部材としては、トレッド、ベーストレット、サイドウォール、サイド補強ゴム及びビードフィラーを好ましく挙げることができ、これらのいずれかに、当該ゴム組成物を用いることができるが、特にトレッドに用いることが好ましい。
当該ゴム組成物をトレッドに用いたタイヤは、転がり抵抗が低く、低発熱性及び耐摩耗性に優れる。なお、本発明のタイヤに充填する気体としては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスが挙げられる。ゴム組成物をトレッドに用いる場合は、例えばトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
【実施例】
【0132】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
なお、変性スチレン−ブタジエンゴム(変性SBR)の共役ジエン部分の結合ビニル含量、結合スチレン含量、シラノール生成率(変性SBR(a−2))及び重量平均分子量、並びに低発熱性及び耐摩耗性を下記の方法によって求めた。
(1)変性SBRの共役ジエン部分の結合ビニル含量(ジエン部分全体に対する質量%)
赤外法(モレロ法)によって求めた。
(2)変性SBRの結合スチレン含量(共重合体中の質量%)
270MHz1H−NMRによって求めた。
【0133】
(3)変性SBR(a−2)のシラノール生成率
アルコキシシラン基の加水分解量については、エトキシシリル基の例で説明する。1H−NMRにおいて、変性された重合体のSiOCH2CH3に特徴づけられる3.6−3.7ppm付近の多重バンドと、ベース部分の数平均分子量から計算を行い、重合体のアルコキシシラン量M(%)を算出した。GPCの注入サンプル量対比のベース同等成分のピーク面積から、GPCでの未カップリング成分の比率RGPC%を計算した。カップリングなどの後反応成分を減ずるために、前記M(%)とRGPC%との差を求め、これをシラノール生成数を100として計算した。シラノール生成率に用いる数平均分子量は、Mark-Houwink式で校正したGPCから求めた数平均分子量を適用した。
(4)重量平均分子量
GPC[東ソー製、HLC−8020]により検出器として屈折計を用いて測定し、単分散ポリスチレンを標準としたポリスチレン換算で示した。なお、カラムはGMHXL[東ソー製]で、溶離液はテトラヒドロフランである。
【0134】
(5)低発熱性
供試タイヤのトレッドから切り出した加硫ゴム試料を用いて、粘弾性測定装置(レオメトリックス社製)を使用し、温度60℃、歪み5%、周波数15Hzでtanδを測定した。表3においては比較例1の低発熱性を100として下記式にて指数表示した。指数値が大きい程、低発熱性であり、ヒステリシスロスが小さいことを示す。
低発熱性(指数)=(比較例1のタイヤトレッドのtanδ/対比する供試タイヤトレッドのtanδ)×100
【0135】
(6)耐摩耗性
供試タイヤのトレッドから切り出した試料を用いて、JIS K 6264−2:2005に準拠し、ランボーン型摩耗試験機により、室温(23℃)におけるスリップ率60%の摩耗量を測定した。表3においては比較例1の耐摩耗性を100として、以下の式により指数表示した。指数が大きい方が良好となる。
耐摩耗性(指数)=(比較例1のタイヤトレッドの摩耗量/対比する供試タイヤトレッドの摩耗量)×100
【0136】
合成例1 変性剤Aの合成
乾燥し、窒素置換された300ミリリットルの耐圧ガラス容器に、1−イソシアナト−3−トリエトキシシリルプロパン1モル/リットルシクロヘキサン溶液を調製し、これと等モルとなるように、メチルリチウムの1モル/リットルジエチルエーテル溶液を滴下し、よく攪拌することにより、変性剤Aとしての1−イソシアナト−3−[ジエトキシ(メチル)シリル]−プロパンの変性剤溶液(A)を調製した。
【0137】
合成例2 変性剤Bの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミンを用いた以外は、合成例1と同様にして、変性剤BとしてのN−(1,3−ジメチルブチリデン)−3−[ジエトキシ(メチル)シリル]−1−プロパンアミンの変性剤溶液(B)を調製した。
【0138】
合成例3 変性剤Cの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、N−(1,3−ジメチルブチリデン)−3−(トリプロポキシシリル)−1−プロパンアミンを用いた以外は、合成例1と同様にして、変性剤CとしてのN−(1,3−ジメチルブチリデン)−3−[ジプロポキシ(メチル)シリル]−1−プロパンアミンの変性剤溶液(C)を調製した。
【0139】
合成例4 変性剤Dの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、1−シアノ−3−トリエトキシシリルプロパンを用いた以外は、合成例1と同様にして、変性剤Dとしての1−シアノ−3−[ジエトキシ(メチル)シリル]−プロパンの変性剤溶液(D)を調製した。
【0140】
合成例5 変性剤Eの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、1−(3−トリエトキシシリルプロピル)−イミダゾールを用いた以外は、合成例1と同様にして、変性剤Eとしての1−[3−[ジエトキシ(メチル)シリル]プロピル]−イミダゾールの変性剤溶液(E)を調製した。
【0141】
合成例6 変性剤Fの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、2−(2−トリエトキシシリルエチル)−ピリジンを用いた以外は、合成例1と同様にして、変性剤Fとしての2−[2−[ジエトキシ(メチル)シリル]エチル]−ピリジンの変性剤溶液(F)を調製した。
【0142】
合成例7 変性剤Gの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、4−(3−トリエトキシシリルプロピル)−オキサゾールを用いた以外は、合成例1と同様にして、変性剤Gとしての4−[3−[ジエトキシ(メチル)シリル]プロピル]−オキサゾールの変性剤溶液(G)を調製した。
【0143】
合成例8 変性剤Hの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、1−グリシドキシ−3−トリエトキシシリルプロパンを用いた以外は、合成例1と同様にして、変性剤Hとしての1−グリシドキシ−3−[ジエトキシ(メチル)シリル]−プロパンの変性剤溶液(H)を調製した。
【0144】
合成例9 変性剤Iの合成
合成例1において、1−イソシアナト−3−トリエトキシシリルプロパンの代わりに、N−メチル−N−(トリメチルシリル)アミノプロピルトリエトキシシランを用いた以外は、合成例1と同様にして、変性剤IとしてのN−メチル−N−(トリメチルシリル)アミノプロピルメチルジエトキシシランの変性剤溶液(I)を調製した。
【0145】
合成例10 変性剤Jの合成
窒素雰囲気下、攪拌機を備えたガラスフラスコ中のジクロロメタン溶媒400ml中にアミノシラン部位として36gの3−アミノプロピルメチルジエトキシシラン(Gelest社製)を加えた後、さらに保護部位として塩化トリメチルシラン(Aldrich社製)48ml、トリエチルアミン53mlを溶液中に加え、17時間室温下で攪拌し、その後反応溶液をエバポレーターにかけることにより溶媒を取り除き、反応混合物を得、さらに得られた反応混合物を5mm/Hg条件下で減圧蒸留することにより、130〜135℃留分として変性剤Jとしての有機シラン化合物{N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン}を40g得た。
【0146】
合成例11 変性剤Kの合成
乾燥し、窒素置換された300ミリリットルの耐圧ガラス容器に、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミンの1モル/リットル シクロヘキサン溶液を調製し、これの2倍モル量となるように、メチルリチウム(MeLi)の2モル/リットル ジエチルエーテル溶液を滴下し、よく撹拌することにより、変性剤Kとしての有機シラン化合物{N−(1,3−ジメチルブチリデン)−3−(ジメチルエトキシシリル)−1−プロパンアミン}の変性剤溶液(K)を調製した。
なお、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミンは、チッソ(株)製、商標「サイラエース S340」を用いた。
【0147】
合成例12 変性剤Lの合成
乾燥し、窒素置換された300ミリリットルの耐圧ガラス容器に、3−ジメチルアミノプロピルトリメトキシシランの1モル/リットル シクロヘキサン溶液を調製し、これと等モルとなるように、メチルリチウム(MeLi)の1モル/リットル ジエチルエーテル溶液を滴下し、よく撹拌することにより、変性剤Lとしての有機シラン化合物{3−ジメチルアミノプロピル(ジメトキシ)メチルシラン}の変性剤溶液(L)を調製した。
【0148】
合成例13 変性剤Mの合成
乾燥し、窒素置換された300ミリリットルの耐圧ガラス容器に、N−(3−トリエトキシシリルプロピル〕−4,5−ジヒドロイミダゾールの1モル/リットル シクロヘキサン溶液を調製し、これと等モルとなるように、メチルリチウム(MeLi)の1モル/リットル ジエチルエーテル溶液を滴下し、よく撹拌することにより、変性剤Mとしての有機シラン化合物{N−(3−メチルジエトキシシリルプロピル〕−4,5−ジヒドロイミダゾール}の変性剤溶液(M)を調製した。
【0149】
以上、変性剤A〜Iの9種は、後述の製造例1〜9における変性剤として、変性剤J〜Mの4種は、後述の製造例10〜13の変性剤として使用する。
【0150】
製造例1 変性SBR(a−1)グループの変性SBR−Aの製造
<活性末端を有するSBRの製造>
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3−ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3−ブタジエン60g及びスチレン15gとなるように加え、2,2−ジテトラヒドロフリルプロパン0.70mmolを加え、更にn−ブチルリチウム(BuLi)0.70mmolを加えた後、50℃の温水浴中で1.5時間重合反応を行なった。この際の重合転化率は、ほぼ100%であった。
<変性反応工程>
次に、重合反応系に変性剤Aをリチウム(Li)対比等モルとなる量を加えて、更に50℃で30分間変性反応を行った。
<重合後処理>
次に、重合反応系に、2,6−ジ−tert−ブチル−p−クレゾール(BHT)のイソプロパノール溶液を加えて重合反応を停止させた。その後、水蒸気を吹き込んで溶剤の分圧を下げて(スチームストリッピング)脱溶媒した後、真空乾燥して変性SBR−Aを得た。得られた変性SBR−Aの結合スチレン含量及びブタジエン部分の結合ビニル含量を表1に示す。
【0151】
製造例2〜9 変性SBR(a−1)グループの変性SBR−B〜Iの製造
製造例1において、変性剤Aの代わりに、変性剤B〜Iを用いた以外は、製造例1と同様にして、それぞれ変性SBR−B〜Iを得た。得られた変性SBR−B〜Iの結合スチレン含量及びブタジエン部分の結合ビニル含量を表1に示す。
【0152】
製造例10 変性SBR(a−2)グループの変性SBR−Jの製造
<活性末端を有する共役ジエン共重合体の製造>
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3−ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3−ブタジエン60g及びスチレン15gとなるように加え、2,2−ジテトラヒドロフリルプロパン0.70mmolを加え、さらにn−ブチルリチウム(BuLi)0.70mmolを加えた後、50℃の温水浴中で1.5時間重合反応を行なった。この際の重合転化率は、ほぼ100%であった。
<変性反応工程>
次に、重合反応系に合成例10で得た変性剤Jのリチウム(Li)対比等モルとなる量を加えて、さらに50℃で30分間変性反応を行った。
<加水分解工程及びその後の工程>
その後、重合反応系に、希塩酸1.5mlを少量ずつ加え、次に水をリチウム(Li)対比3倍のモル量加え、30分間撹拌した。次に、重合反応系に、2,6−ジ−tert−ブチル−p−クレゾール(BHT)のイソプロパノール溶液を加えて重合反応を停止させた。その後、水蒸気を吹き込んで溶剤の分圧を下げて(スチームストリッピング)脱溶媒した後、真空乾燥して変性SBR−Jを得た。得られた変性SBR−Jのスチレン含有量及びブタジエン部分のビニル結合含有量並びにシラノール生成率を表1に示す。
なお、変性SBR−Jの重量平均分子量は186,000であった。
【0153】
製造例11〜13 変性SBR(a−2)グループの変性SBR−K〜Mの製造
製造例10で用いた変性剤Jの代わりに合成例11〜13で得た変性剤K〜Mを用いた以外は製造例10と同様にして変性SBR−K〜Mを得た。得られた変性SBR−K〜Mのスチレン含有量及びブタジエン部分のビニル結合含有量並びにシラノール生成率を表1に示す。
なお、変性SBR−Kの重量平均分子量は184,000、変性SBR−Lの重量平均分子量は185,000、変性SBR−Mの重量平均分子量は183,000であった。
【0154】
製造例14:無変性SBR−Nの製造
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3−ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3−ブタジエン60g及びスチレン15gとなるように加え、2,2−ジテトラヒドロフリルプロパン0.70mmolを加え、さらにn−ブチルリチウム(BuLi)0.70mmolを加えた後、50℃の温水浴中で1.5時間重合反応を行なった。この際の重合転化率は、ほぼ100%であった。次に、重合反応系に、2,6−ジ−tert−ブチル−p−クレゾール(BHT)のイソプロパノール溶液を加えて重合反応を停止させた。その後、真空乾燥して無変性SBR−Nを得た。得られた無変性SBR−Nのスチレン含有量及びブタジエン部分のビニル結合含有量を表1に示す。
なお、無変性SBR−Nの重量平均分子量は188,000であった。
【0155】
製造例15:変性SBR−Oの製造
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3−ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3−ブタジエン60g及びスチレン15gとなるように加え、2,2−ジテトラヒドロフリルプロパン0.70mmolを加え、さらにn−ブチルリチウム(BuLi)0.70mmolを加えた後、50℃の温水浴中で1.5時間重合反応を行なった。この際の重合転化率は、ほぼ100%であった。次に、重合反応系にジメチルジクロロシランのリチウム(Li)対比等モルとなる量を加えて、さらに50℃で30分間変性反応を行った。その後、重合反応系に、2,6−ジ−tert−ブチル−p−クレゾール(BHT)のイソプロパノール溶液を加えて重合反応を停止させた後、水蒸気を吹き込んで溶剤の分圧を下げて(スチームストリッピング)脱溶媒した後、真空乾燥して変性SBR−Oを得た。得られた変性SBR−Oのスチレン含有量及びブタジエン部分のビニル結合含有量を表1に示す。
なお、無変性SBR−Oの重量平均分子量は283,000であった。
【0156】
製造例16:変性SBR−Pの製造
製造例15で用いたジメチルジクロロシランの代わりにテトラエトキシシランを用いた以外は製造例15と同様にして変性SBR−Pを得た。得られた変性SBR−Pのスチレン含有量及びブタジエン部分のビニル結合含有量を表1に示す。
なお、無変性SBR−Pの重量平均分子量は322,000であった。
【0157】
【表1】

【0158】
[注]
変性剤O: ジメチルジクロロシラン
変性剤P: テトラエトキシシラン
【0159】
実施例1〜12及び比較例1〜18
製造例1〜16で得た、変性SBR−A〜I(a−1グループ)、変性SBR−J〜M(a−2グループ)、無変性SBR−N(比較例用)及び変性SBR−O〜P(比較例用)を用い、表2に示す配合処方に従い、実施例1〜12及び比較例1〜18の30種類のゴム組成物を調製した。
次に、それら30種類のゴム組成物を用い、タイヤ部材として30種類のトレッド(キャップ/ベース2層構造のキャップ・トレッド)を調製して、定法に従ってタイヤサイズ185/70R14の30種類の空気入りタイヤを製作し、それらの低発熱性、耐摩耗性及びアルコール揮発量を評価した。それらの結果を表3に示す。
【0160】
【表2】

[注]
1) 変性SBR又は無変性SBR: 製造例1〜16で得た変性SBR−A〜I(a−1グループ)、変性SBR−J〜M(a−2グループ)、無変性SBR−N(比較例用)及び変性SBR−O〜P(比較例用)
2) プロセスオイル: 三共油化工業(株)製、商品名「A/O ミックス」
3) カーボンブラック: ISAF、旭カーボン(株)製、商品名「旭#80」
4) シリカ: 東ソー・シリカ(株)製、商品名「Nipsil AQ」
5) シランカップリング剤: デグッサ社製、 商品名「Si75」
6) 老化防止剤6C: N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、精工化学(株)製、商品名「オゾノン 6C」
7) 加硫促進剤DPG: ジフェニルグアニジン、大内新興化学工業(株)製、商品名「ノクセラー D」
8) 加硫促進剤DM: ジ−2−ベンゾチアゾリルジスルフィド、大内新興化学工業(株)製、商品名「ノクセラー DM」
9) 加硫促進剤CZ: N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製、商品名「ノクセラー CZ」
【0161】
【表3】

【産業上の利用可能性】
【0162】
本発明のタイヤは、低発熱性及び耐摩耗性に優れるタイヤであり、各種タイヤ、特に、乗用車用、軽乗用車用、軽トラック用、トラック・バス用等の各種空気入りラジアルタイヤに好適に用いられる。

【特許請求の範囲】
【請求項1】
求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体の該活性末端に、変性剤として、一般式(1)
【化1】

[式中、A1は炭素数2以上のヒドロカルビルオキシ基、A2は加水分解性官能基、R1は炭化水素基、R2は二価の炭化水素基を示し、Xは飽和環状第三アミン化合物残基、不飽和環状第三アミン化合物残基、ニトリル基、(チオ)エポキシ基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも一種の官能基を示す。A1及びA2は同一でも異なっていてもよい。]
で表されるシラン化合物及び/又はその部分縮合物を反応させてなる変性共役ジエン系重合体(a−1)と、活性部位を有する共役ジエン系重合体の該活性部位に、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と該共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有するシラン化合物を反応させる変性反応工程と、変性反応工程終了後に施される加水分解工程とを有する製造方法によって得られた変性共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とするタイヤ。
【請求項2】
一般式(1)で表される変性剤において、A1は炭素数2〜18のヒドロカルビルオキシ基、A2は炭素数1〜18のヒドロカルビルオキシ基又はハロゲン原子、R1は炭素数1〜18の炭化水素基、R2は炭素数1〜20の二価の炭化水素基である請求項1に記載のタイヤ。
【請求項3】
一般式(1)で表される変性剤において、A2が炭素数1〜18のヒドロカルビルオキシ基である請求項2に記載のタイヤ。
【請求項4】
一般式(1)におけるR2が、炭素数2〜10のアルカンジイル基である、請求項2又は3に記載のタイヤ。
【請求項5】
一般式(1)におけるA1がエトキシ基である、請求項2〜4のいずれかに記載のタイヤ。
【請求項6】
一般式(1)におけるR1がメチル基である、請求項2〜5のいずれかに記載のタイヤ。
【請求項7】
一般式(1)において、Xにおける不飽和環状第三アミン化合物残基が、イミダゾール残基、ジヒドロイミダゾール残基、オキサゾール残基又はピリジル基である請求項1〜6のいずれかに記載のタイヤ。
【請求項8】
一般式(1)におけるXが、飽和環状第三アミン化合物残基、イミダゾール残基、ジヒドロイミダゾール残基、ピリジル基、ニトリル基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも1種の含窒素官能基を有する一価の基である、請求項1〜7のいずれかに記載のタイヤ。
【請求項9】
前記含窒素官能基が、飽和環状第三アミン化合物残基、イミダゾール残基、ジヒドロイミダゾール残基及び脱離可能な官能基を有する第二アミノ基の中から選ばれる少なくとも1種である、請求項8に記載のタイヤ。
【請求項10】
前記求核反応性を有する有機金属活性末端をもつ共役ジエン系重合体が、C−Li又はN−Liを含む有機アルカリ金属化合物を重合開始剤とし、共役ジエン化合物単独又は共役ジエン化合物と芳香族ビニル化合物をアニオン重合させて得られたものである請求項1〜9のいずれかに記載のタイヤ。
【請求項11】
前記共役ジエン化合物が、1,3−ブタジエン、イソプレン及び2,3−ジメチル−1,3−ブタジエンの中から選ばれる少なくとも1種である請求項10に記載のタイヤ。
【請求項12】
前記芳香族ビニル化合物がスチレンである請求項10又は11に記載のタイヤ。
【請求項13】
前記変性共役ジエン系重合体(a−2)において、加水分解によりシラノール基を生成する特性基がアルコキシシラン基であって、加水分解により、その10%以上がシラノール基を生成する請求項1〜12のいずれかに記載のタイヤ。
【請求項14】
前記有機シラン化合物が、下記一般式(2)又は下記一般式(3)により表される有機シラン化合物である請求項1〜13のいずれかに記載のタイヤ。
【化2】

[式中、R3は単結合又は炭素数1〜20の二価の炭化水素基;R4及びR5はそれぞれ独立に水素原子又は炭素数1〜20の一価の炭化水素基;−OL1は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A3は活性部位に付加もしくは置換反応を行う事によって該有機シラン化合物と共役ジエン系重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基であり、mは1〜10の整数である]
【化3】

[式中、R6は単結合又は炭素数1〜20の炭化水素基;R7及びR8はそれぞれ独立に単結合、水素原子又は炭素数1〜20の炭化水素基;−OL2は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A4は活性部位と反応する官能基又は前記活性部位に付加もしくは置換反応を行う事によって該有機シラン化合物と共役ジエン系重合体とを結合させる官能基;B及びDはそれぞれ独立に前記シラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基であり;p及びqはそれぞれ独立に0〜5の整数であり、(p+q)が1以上であり、nは1〜10の整数である]
【請求項15】
一般式(2)において、活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と共役ジエン系重合体とを結合させ、且つ該反応後にシラノール基と補強性充填材との反応を促進する官能基A3が、(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、ピリジル基、N−アルキルピロリドニル基、N−アルキルイミダゾリル基、N−アルキルピラゾリル基、(チオ)ケトン基、(チオ)アルデヒド基、イミン残基、アミド基、ケチミン基、イソシアヌル酸トリエステル残基、炭素数1〜20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1〜20の(チオ)カルボン酸金属塩の残基、炭素数1〜20のカルボン酸無水物残基、炭素数1〜20のカルボン酸ハロゲン化物残基及び炭酸ジヒドロカルビルエステル残基の中から選ばれる少なくとも一種の官能基である請求項14に記載のタイヤ。
【請求項16】
一般式(3)において、活性部位と反応する官能基又は活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と共役ジエン系重合体とを結合させる官能基A4が、下記式(3−a)
−RdSiX3 ・・・(3−a)
[式中、Rdは単結合、炭素数1〜10の置換もしくは無置換のアルキレン基又は−ORe(Reは炭素数1〜10の置換もしくは無置換のアルキレン基である。)を示し、Xはハロゲン原子又は炭素数1〜10のアルコキシ基を示し、複数のXは同一でも異なっていてもよい。]で表される官能基、あるいは(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、イミダゾリル基、ケチミン基、(チオ)ケトン基又は保護された第一もしくは第二アミノ基である請求項14に記載のタイヤ。
【請求項17】
一般式(3)において、活性部位と反応する官能基A4が、炭素数1〜20のアルコキシ基、フェノキシ基、ベンジルオキシ基及びハロゲン基の中から選ばれる少なくとも一種の官能基である請求項14に記載のタイヤ。
【請求項18】
一般式(3)において、シラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基B及びDが、それぞれ独立に第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、ピリジル基、N−アルキルピロリドニル基、N−アルキルイミダゾリル基、N−アルキルピラゾリル基、イミノ基、アミド基、ケチミン基、イミン残基、イソシアヌル酸トリエステル残基、炭素数1〜20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1〜20の(チオ)カルボン酸金属塩の残基、炭素数1〜20のカルボン酸無水物残基、炭素数1〜20のカルボン酸ハロゲン化物残基、炭酸ジヒドロカルビルエステル残基及び一般式−E−F−Gで表される官能基の中から選ばれる少なくとも一種の官能基である請求項14、16又は17に記載のタイヤ。
[式中、Eはイミノ基、2価のイミン残基、2価のピリジン残基又は2価のアミド残基、Fは炭素数1〜20のアルキレン基、フェニレン基又は炭素数8〜20のアラルキレン基、Gは第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、ケチミン基、ニトリル基、アミド基、ピリジン基又は(チオ)イソシアネート基である]
【請求項19】
一般式(2)又は(3)において、加水分解性官能基が、炭素数1〜12のアルコキシ基、フェノキシ基、ベンジルオキシ基又は−OM(1/x)である請求項14〜18のいずれかに記載のタイヤ。
[式中、Mは、水素を除く第1族元素;第2〜12族元素;ホウ素を除く第13族元素;炭素及びケイ素を除く第14族元素;窒素、リン及びヒ素を除く第15族元素及び希土類元素から選ばれる金属原子であり、xはその金属原子の価数である]
【請求項20】
前記変性共役ジエン系重合体(a−2)が、ポリブタジエン、ポリイソプレン、ブタジエン−イソプレン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体又はスチレン−イソプレン−ブタジエン三元共重合体の変性化物である請求項1〜19のいずれかに記載のタイヤ。
【請求項21】
前記変性共役ジエン系重合体(a−2)が、分子末端にシラノール基と、プロトン性第一アミノ基、プロトン性第二アミノ基、保護された第一アミノ基、保護された第二アミノ基及び第三アミノ基の中から選ばれる少なくとも一種の窒素含有基とを有する変性アニオン重合スチレン−ブタジエン共重合体である請求項20に記載のタイヤ。
【請求項22】
前記変性共役ジエン系重合体(a−2)が、分子末端にシラノール基と、プロトン性第一アミノ基及び/又は保護された第一アミノ基とを有する、変性アニオン重合スチレン−ブタジエン共重合体である請求項21に記載のタイヤ。
【請求項23】
前記ゴム成分(A)が、前記変性共役ジエン系重合体(a−1)と前記変性共役ジエン系重合体(a−2)との合計10〜100質量%と、天然ゴム、合成イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、エチレン−α−オレフィン共重合ゴム、エチレン−α−オレフィン−ジエン共重合ゴム、クロロプレンゴム、ハロゲン化ブチルゴム及びハロゲン化メチル基を持つスチレンとイソブチレンの共重合体の中から選ばれる少なくとも1種90〜0質量%とからなる請求項1〜22のいずれかに記載のタイヤ。
【請求項24】
前記ゴム組成物が、前記ゴム成分(A)100質量部に対し、シリカ及び/又はカーボンブラック(B)を20〜120質量部の割合で含む請求項1〜23のいずれかに記載のタイヤ。
【請求項25】
前記タイヤ部材がトレッドである請求項1〜24のいずれかに記載のタイヤ。

【公開番号】特開2011−93989(P2011−93989A)
【公開日】平成23年5月12日(2011.5.12)
【国際特許分類】
【出願番号】特願2009−247896(P2009−247896)
【出願日】平成21年10月28日(2009.10.28)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】