Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
タンデム質量分析計において複数の前駆体イオンを処理する方法
説明

タンデム質量分析計において複数の前駆体イオンを処理する方法

タンデム質量分析計において、複数の前駆体イオンを処理する方法は、イオン源によって、複数の前駆体イオンを発生させるステップを含む。複数の前駆体イオンのうちの少なくとも一部は、イオントラップ内に捕捉される。少なくとも2つの着目前駆体イオンが、濾波雑音場によって、複数の前駆体イオンから隔離される。着目前駆体イオンは、衝突セルに向かって連続的に放出される。連続的に放出された着目前駆体イオンは、衝突セル内で分裂される。次いで、分裂されたイオンの質量対電荷比スペクトルが、質量分析計によって決定される。

【発明の詳細な説明】
【背景技術】
【0001】
本明細書に使用される見出しは、系統化目的のためだけのものであって、本願に説明される主題をいかようにも限定するものとして解釈されるべきではない。
【0002】
タンデム質量分析計(MSMSまたはMS−MS装置と称される場合もある)は、2つ以上の質量分析器を有する質量分析計である。質量分析器は、必ずしも、同一種類の質量分析器である必要はない。種々のタンデム質量分析計の幾何学形状が存在する。例えば、四重極四重極、磁場型四重極、四重極線形イオントラップ、および四重極飛行時間型質量分析計幾何学形状を有するタンデム質量分析計が存在する。タンデム質量分析計は、通常、ある形態の分子分裂または反応によって分離される、複数回の質量分析が可能である。複数回の質量分析によって、研究者は、広範囲に及ぶ分子の構造および配列研究を行うことが可能となる。
【0003】
本教示は、好適なおよび例示的な実施形態に従って、そのさらなる利点とともに、添付の図面と関連して検討される以下の発明を実施するための形態によって具体的に説明される。当業者は、以下に説明される図面が、例示目的にすぎないことを理解するであろう。図面は、必ずしも、正確な縮尺ではなく、代わりに、概して、本発明の原理を例示するために強調される。図面は、出願人の教示の範囲をいかようにも限定することを意図するものではない。
【0004】
明細書内での「一実施形態」または「ある実施形態」という語句の参照は、実施形態と併せて説明される、特定の特徴、構造、または特性が、本発明の少なくとも一実施形態に含まれることを意味する。明細書中の種々の場所における「一実施形態では」という語句の表出は、必ずしも、すべて同一実施形態を指すわけではない。
【0005】
本教示の方法の個々のステップは、本発明が動作可能のままである限り、任意の順番で、および/または同時に行ってもよいことを理解されたい。さらに、本教示の装置および方法は、本発明が動作可能のままである限り、任意の数または全部の説明される実施形態を含むことが可能であることを理解されたい。
【0006】
次に、添付の図面に示されるように、その例示的実施形態を参照して、本教示をより詳細に説明する。本教示は、種々の実施形態および実施例と併せて説明されるが、本教示をそのような実施形態に限定されることを意図するものではない。対照的に、本教示は、当業者によって理解されるように、種々の代替、修正、および均等物を包含する。本明細書の教示へのアクセスを有する当業者は、本明細書に説明されるように、本開示の範囲内にある、付加的実装、修正、および実施形態、ならびに他の使用分野を認識するであろう。
【0007】
従来のタンデム質量分析計では、イオン源からの各前駆体イオンは、MSMSのために、連続的に選択される。1つの前駆体イオンのMSMSスペクトルが得られている間、他の前駆体イオンは、並行して処理不可能であるので浪費される。前駆体イオンの混合物の連続的処理は、非効率的であって、試料材料は、浪費される。成分の濃度が非常に低い、多数の質量分析法用途では、いくつかの成分は、成分毎にMSMSスペクトルを得るための十分な時間がないので、完全に逸失され得る。
【発明の概要】
【課題を解決するための手段】
【0008】
イオントラップは、多くの飛行時間型(TOF)質量分析計において使用され、試料効率を改善する。イオントラップを有する飛行時間型質量分析計は、多重測定を行うことが可能である。線形イオントラップ(LIT)等の質量選択イオントラップは、イオン源によって発生されるイオンを捕捉し、イオントラップから、衝突セル内へ、次いで、直交注入TOF質量分析計等の質量分析計内へとイオンを選択的に放出可能である。イオントラップによって、研究者は、イオン源によって発生される実質的に全部または高割合のイオンの質量対電荷比を測定可能となる。
【0009】
いくつかの質量分析計システムおよびいくつかの質量分析計システムを動作させるモードでは、イオントラップは、比較的に大きな密度のイオンを捕捉可能であって、したがって、比較的に高いレベルの空間電荷が、イオントラップ内に存在可能である。イオントラップ内にイオンが多過ぎると、イオントラップ内の電場は、歪曲される。イオントラップ内の比較的に高い空間電荷は、イオントラップからの質量選択放出を非効率的なことにする。加えて、イオントラップ内の比較的に高い空間電荷は、イオントラップのイオン選択性を低減させる。
【0010】
比較的に高いレベルの空間電荷に付随する問題を解決する方法の1つは、有意に低減したレベルの空間電荷を被るように、着目イオンを隔離するイオントラップ内に濾波雑音場(filtered noise field)(FNF)を確立することである。例えば、異なる質量対電荷比値を有するいくつかの着目イオンが存在する場合、FNFが、イオントラップ内に印加され、着目質量対電荷比値の各々の付近の質量窓領域を隔離し、それによって着目外の全イオンを排除し、それらの着目イオンのみをイオントラップ内に残すことが可能である。しかしながら、非常に高いレベルの空間電荷がイオントラップ内に存在すると、FNFを効果的に採用して着目イオンを隔離することが、困難となる可能性がある。
【図面の簡単な説明】
【0011】
【図1】図1は、本教示に従って、濾波雑音場によって着目イオンを隔離し、多重測定を行うイオントラップを含む、タンデム質量分析計を例示する。
【図2】図2は、本教示に従って、濾波雑音場によって着目イオンを隔離し、多重の測定を行う2つのイオントラップを含む、タンデム質量分析計を例示する。
【発明を実施するための形態】
【0012】
図1は、本教示に従って、濾波雑音場によって着目イオンを隔離し、多重測定を行うイオントラップ102を含む、タンデム質量分析計100を例示する。タンデム質量分析計100は、カーテンプレート106に向かって方向付けされたイオンを発生させるイオン源104を含む。エレクトロスプレーイオン源等の多数の種類のイオン源を使用可能である。オリフィスプレート108は、カーテンプレート106に隣接して配置され、質量分析計100の分析セクション内への望ましくない中性の流れを低減させる、オリフィスプレート108とカーテンプレート106との間に、カーテンガスを含有可能なカーテンチャンバ110を形成する。
【0013】
スキマープレート112は、オリフィスプレート108に隣接して配置される。中間圧力チャンバ114は、オリフィスプレート108とスキマープレート112との間に形成される。スキマープレート112は、スキマープレート112を通って、タンデム質量分析計100の第1のチャンバ116内へと通過するように設計される。第1のチャンバ116は、スキマープレート112を通過するイオンを収集および集束し、質量分析計の分析セクションへとイオンを方向付ける、イオンガイドQ0 118を含む。第1の四重極間障壁またはレンズIQ1 120は、イオントラップ102から、第1のチャンバ116を分離するように配置される。レンズIQ1 120は、イオンを通過させるための開口を有する。
【0014】
イオントラップ102は、第1のレンズIQ1 120に隣接する、入力を伴って配置される。波形発生器122の出力は、イオントラップ102に連結される。波形発生器122は、本明細書に説明されるように、イオントラップ102内の着目イオンを隔離するために使用される、濾波雑音場を発生させる。第2の四重極間障壁またはレンズIQ2 124は、イオントラップ102の出力端に配置される。
【0015】
衝突ガス127を含有する、衝突セル126は、第2のレンズIQ2 124に隣接する入力を伴って配置される。第3の四重極間障壁またはレンズIQ3 128は、衝突ガス127が衝突セル126に進入すると、比較的に高い圧力に維持可能なように、衝突セル126の出力端に配置される。本圧力は、検体依存性であって、いくつかの検体に対して、約5mTorrである可能性がある。衝突セル126によって発生される生成イオンは、レンズQ3 128を通って、出口130へと通過する。
【0016】
質量分析計132は、衝突セル126によって発生される生成イオンを受容する入力を伴って配置される。多数の種類の質量分析計132を使用可能である。例えば、質量分析計132は、QTrap線形イオントラップ、四重極質量フィルタ、または直交TOF質量分析計である可能性がある。直交TOF質量分析計は、高質量分解能および高質量精度を有するが、本質的に、直交幾何学形状のデューティサイクル損失のため、限定された効率性を被る。デューティサイクルを改善する方法は、米国特許第6,285,027号および第6,507,019号(本譲受人に譲渡される)に開示されている。これらの方法は、直交TOF質量分析計のデューティサイクルを改善し、最大試料効率およびイオン利用を達成するために使用されてもよい。
【0017】
図2は、本教示に従って、濾波雑音場によって着目イオンを隔離し、多重測定を行う、2つのイオントラップを含む、タンデム質量分析計200を例示する。タンデム質量分析計200は、図1と併せて説明された、タンデム質量分析計100に類似する。しかしながら、タンデム質量分析計200は、直列に配置される、第1の102と、第2のイオントラップ103と、を含む。波形発生器122の出力は、イオントラップ102に連結され、波形発生器123の出力は、イオントラップ103に連結される。第1の102および第2のイオントラップ103は各々、別個のイオントラップとして動作可能である。本明細書に説明されるように、波形発生器122は、イオントラップ102内の着目イオンを隔離するために使用される濾波雑音場を発生させ、波形発生器123は、イオントラップ103内の着目イオンを隔離するために使用される濾波雑音場を発生させる。
【0018】
当業者は、図1および2の表現は、概略であって、種々の付加的要素が、機能的装置を完成させるために必要となるであろうことを理解されたい。例えば、タンデム質量分析計100、200の異なる要素に、ACおよびDC電圧を送達するために、種々の電源が必要とされる。加えて、タンデム質量分析計の種々のチャンバの動作圧力を所望の動作レベルに維持するために、真空ポンプ配列が必要とされる。
【0019】
多くの質量分析用途は、複合混合物中の複数の成分の識別を必要とする。タンデム質量分析法は、多くの場合、複合混合物中の各化合物の識別を提供する最も好適な方法である。多くの用途では、混合物の成分は、液体クロマトグラフィによっては、完全に分離されず、したがって、複数の成分は、イオン源104内に混合物として存在する。質量スペクトルは、これらの複数の成分に対応する多くのピークを含有し得る。
【0020】
図1および2と併せて説明されるタンデム質量分析計は、複合試料中の複数の成分に対して、MSMSスペクトルを提供することが可能である、高効率質量分析計である。これらのタンデム質量分析計を使用して、複数の前駆体イオンを処理および特性化する、多数の動作モードならびに方法が存在する。用途に応じて、イオントラップ102は、多重化せずに、正常MSMS動作のための質量フィルタとして動作可能であるか、または着目前駆体イオンの隔離を提供する濾波雑音場によって、イオントラップとして動作可能である。動作モードに応じて、図1および2と併せて説明されるタンデム質量分析計は、本明細書に説明されるように、高いレベルの空間電荷が存在する場合でも、高効率および高選択性を伴って動作可能である。
【0021】
本教示に従う種々の方法では、イオン源104は、典型的には、多くの前駆体イオンから構成されるイオンの混合物を発生させる。イオンの混合物は、カーテンプレート106および隣接するオリフィスプレート108に向かって方向付けされる。カーテンガスは、カーテンチャンバ110内へと流入し、質量分析計の分析セクション内への望ましくない中性の流れを低減させることが可能である。いくつかの動作モードでは、オリフィスプレート108とスキマープレート112との間の中間圧力チャンバ114内の圧力は、約2Torrである。イオンの混合物は、スキマープレート112を通って、質量分析計100の第1のチャンバ116内へと通過する。
【0022】
イオンガイドQ0 118は、スキマープレート112を通過するイオンを収集および集束し、質量分析計100の分析セクションへとイオンを方向付ける。種々の動作モードでは、イオン源104からの前駆体イオンは、Q0イオンガイド118内に捕捉または留保され得る一方、前駆体イオンのバッチは、処置される。すなわち、イオンの混合物は、イオンガイドQ0 118内に捕捉され得る一方、イオンは、イオントラップ102および/または103内で処理される。これは、本方法の全体的デューティサイクルを向上させ、着目前駆体イオンが浪費されないように、前駆体イオンを保存する。
【0023】
第1の四重極間障壁またはレンズIQ1 120は、第1のチャンバ116からイオントラップ102に、イオンを通過させる。いくつかの方法では、質量スペクトル測定は、濾波雑音場によって、着目前駆体イオンを隔離する前に、すべての前駆体イオンを識別するように行われる。
【0024】
波形発生器122は、イオントラップ102に印加される複数のノッチを有する濾波雑音場信号を発生させる。イオントラップ102は、複数の前駆体イオンから、少なくとも2つの着目前駆体イオンを捕捉または隔離する。いくつかの方法では、着目前駆体イオンは、数ミリ秒の間、イオントラップ102内の衝突によって冷却される。次いで、所望の前駆体イオンは、分裂のために、イオントラップ102から、衝突セル126に向かって、その中へと軸方向に放出される。
【0025】
本発明は、着目前駆体イオンを捕捉または隔離する種々のモードを想定する。一動作モードでは、いかなるイオンも浪費することなく、着目前駆体イオンを捕捉し、次いで、前駆体イオンの各々の生成イオンスペクトル(または、いくつかの所望の生成イオンスペクトルのサブセット)を得ることが望ましい。本動作モードは、小試料のみが利用可能であるときに、非常に効率的かつ有用である。
【0026】
着目前駆体イオンを捕捉または隔離する別のモードでは、前駆体イオンの一部が、フィルタリングによって選択され、次いで、選択された前駆体イオンのみが、分裂のために、衝突セル126内へと伝送される。本捕捉モードでは、四重極イオントラップ102は、質量フィルタとして使用され、イオンは、イオントラップ103内に捕捉される。例えば、四重極質量フィルタ102は、低い分解能で動作し、イオンが捕捉される、イオントラップ103へと、比較的に広い質量範囲を伝送可能である。質量フィルタ102は、着目質量範囲内ではない全イオンを排除することによって、イオントラップ103内の空間電荷を実質的に減少させる。例えば、質量範囲350乃至450amuは、四重極質量フィルタ102によって、イオントラップ103内へと伝送され得る。次いで、伝送される質量範囲内の着目前駆体イオンは、その質量対電荷比に従って、イオントラップ103から、衝突セル126に向かって連続的に放出される。本明細書で使用されるように、用語「連続的に放出される」とは、一度に全部または瞬時にではなく、一定の時間にわたってイオンが放出されることを意味する。本教示は、多数の種類の順序を想定する。例えば、一方法では、1つの前駆体イオンが、イオントラップ102から、分裂のために、衝突セル126を通って放出された後、第2の前駆体イオンが、イオントラップ102から、衝突セル126内へと放出される。各標的前駆体イオンは、順序通り、選択された前駆体イオンのすべてが処理されるまで、分裂のために放出される。
【0027】
前駆体イオンの質量対電荷比値は、非連続的であってもよい。例えば、m/z382が、最初に放出され得る。次いで、m/z403が、放出され得る。次いで、m/z422が、放出され得る。代替として、着目イオンは、そのm/z値の順番を考慮せずに、放出され得る。本実施例を使用して、着目イオンは、m/z403、次いで、382、次いで、422の順番で放出され得る。これは、RF周波数またはRF振幅を変更することによって、双極励起の周波数および/または着目イオンのq−値を変更することによって達成可能である。本明細書に説明される種々の方法では、着目イオンの連続的放出は、各々、波形発生器122または123から適切な電圧および波形を印加することによって、イオントラップ102またはイオントラップ103から行うことが可能である。
【0028】
前駆体イオンは、いくつかの方法のうちの任意の1つによって放出可能である。例えば、前駆体イオンは、当技術分野において周知である、共鳴励起によって放出可能である。共鳴励起によって、RF四重極内の異なる質量対電荷比値のイオンが、最初に、電極上に固定RF電圧とともに捕捉される。特定の質量対電荷比値のイオンまたは質量対電荷値の範囲が、2つの対向ロッド間に双極励起を印加することによって、または4つのロッドに四重極AC励起電圧を印加することによって、励起される。
【0029】
放射励起は、着目イオンの振動の永年周波数に対応する周波数で印加され、イオントラップ102からの出口に印加されるDC障壁を越えて、選択された質量対電荷値のイオンを軸方向に放出させる。いくつかの方法では、前駆体イオンは、径方向閉込め場によって、軸方向の高調波DCウェルの中に捕捉される。特定の質量対電荷値の選択的放出は、着目イオンの振動周波数と共鳴する周波数において、軸方向内に前駆体イオンの運動を励起することによって達成可能である。励起は、イオントラップ102から、出口近傍の障壁を越えてイオンを放出可能である。
【0030】
衝突セル126は、連続的に放出された着目前駆体イオンを生成イオンへと分裂させる。種々の方法では、生成イオンは、さらなる処理のために、衝突セル126内に捕捉可能である、または第2の質量分析計に向かって伝送可能である。質量分析計132は、生成イオンまたは選択された標的生成イオンの質量スペクトルを記録する。
【0031】
次いで、生成イオンの質量対電荷比スペクトルは、質量分析計132によって、決定可能である。本教示は、飛行時間型質量分析計、四重極質量分析計、イオントラップ質量分析計、軌道トラップ質量分析計、およびFTMS質量分析計等の多数の種類の質量分析計を想定する。加えて、本教示は、質量定量分析を行うために使用する一般的方法である、選択的反応監視(SRM)または複数の反応監視(MRM)等の多数の種類の反応監視を想定する。
【0032】
実際は、多数のイオンの存在は、運動のイオン周波数が、イオントラップ102内の空間電荷の量の関数であるように、イオントラップ102内の電場を修正する、高いレベルの空間電荷をもたらす。質量選択の効率および選択性は、イオンの共鳴周波数が、イオントラップ内のイオンの数に伴って変換するので、有意に低減される可能性がある。本教示の種々の方法は、イオントラップ102内の空間電荷に寄与する、望ましくないイオンを放出させることによって、イオントラップ102内の高いレベルの空間電荷の影響を克服する。これらの方法では、望ましくないイオンは、イオントラップ102から、イオントラップ102のロッド上で損失されるように、半径方向に放出される。空間電荷の量は、望ましくないイオンが放出されると減少し、その結果、着目イオンの励起周波数は、より正確に予測可能となる。
【0033】
本教示は、イオントラップ102内の比較的に高い空間電荷の存在の下においてイオンを効率的に隔離し、高イオン電流によって、タンデム質量分析計の感度および動的範囲を改善するためのいくつかの方法を含む。イオントラップ102内の多数の望ましくないイオンを排除する方法の1つは、着目前駆体イオンの周波数に対応する、広周波数範囲内のノッチによって、広範囲の励起周波数を有する波形をイオントラップ102に印加することである。そのような波形は、当技術分野において、濾波雑音場(FNF)波形と称される。FNF波形は、望ましくないイオンが、イオントラップのロッドに損失されるまで、半径方向に励起される一方、着目イオンが励起されないように、選択される。
【0034】
イオントラップ内の空間電荷が比較的に高いレベルにある、いくつかの動作モードでは、FNF波形を印加することは、望ましくないイオンを排除し、着目イオンを留保することに有効ではないであろう。この非有効性は、空間電荷のレベルが、着目イオンの共鳴周波数がその予測された共鳴周波数から有意に変化するほど十分に高くないときに生じる。この状況では、FNF波形内のノッチは、着目前駆体イオンの共鳴周波数と整合しない。したがって、着目前駆体イオンの周波数は、ノッチのないFNF波形内の領域へとシフトし、その結果、これらの着目イオンは、イオントラップ102から放出される。本教示は、高い空間電荷に関するこれらの問題を克服して、着目イオンを隔離することにおいて良好な選択性を提供するためのいくつかの方法を含む。方法は、MSMSに先立って、前駆体イオンを隔離するか、またはn番目のMSまたはイオン反応等の他の処理を行うことに先立って、MSMSまたは他の手段によって既に処理された着目イオンを隔離するために使用することが可能である。
【0035】
そのような方法の1つでは、波形発生器122は、広いかまたは粗い隔離窓領域を有するFNF波形を発生させ、次いで、短時間の間、信号をイオントラップ102に印加する。そのようなFNF波形を印加することは、空間電荷を有意に減少させ、また、イオントラップ102内に、着目前駆体イオンとともに、着目イオンの各々の質量対電荷比値の付近の窓領域内にある質量対電荷比値を有する他のイオンを残すであろう。いくつかの方法では、波形発生器122は、次いで、望ましくないイオンの数をさらに減少させる、段階的に細かくなるステップにおいて、徐々に細かくなるノッチを含む、FNF波形を発生させる。故に、FNF波形は、着目イオンの各々の付近の隔離窓領域を、したがって、着目イオンが被る空間電荷効果を効果的に縮小させる。
【0036】
別の方法では、FNF波形は、所望の着目イオンの各々の付近を中心とする広範囲の質量対電荷比値を除く、比較的に広いノッチとともに発生される。広ノッチを含むことによって、所望の前駆体イオンの共鳴周波数が、空間電荷の存在によってシフトされる場合でも、共鳴周波数が、依然として、広ノッチの幅内に残留することが保証される。広ノッチを有するそのようなFNF波形は、着目前駆体イオンが存在しない波形スペクトルの領域内の有意な数の望ましくないイオンの放出をもたらす、したがって、空間電荷を有意に低減させることが可能である。
【0037】
広ノッチを有するFNF波形が、実質的な数の望ましくないイオンを放出させるために十分な長い時間の間、印加された後、より狭いノッチを有する第2のFNF波形が印加される。第2のFNF波形は、着目イオンの質量対電荷比に近い質量対電荷比を有する、望ましくないイオンを排除することによって、空間電荷をさらに減少させる。
【0038】
徐々に狭くなるノッチを印加し、着目前駆体イオンのみをより選択的に留保するプロセスは、イオントラップ102内の空間電荷が、ある閾値または標的レベルを下回って減少させられるまで継続される。次いで、特定の前駆体イオンが、イオントラップ102から、衝突セル126内へと連続的に放出される。次いで、衝突セル126内に発生された生成イオンは、MSMS分析のために、質量分析計132へと通過される。
【0039】
上述のように、段階的ステップにおいて、FNF波形をイオントラップ102に印加した後、実質的に着目前駆体イオンのみが、さらなる処理のために、イオントラップ102内に残留する。大部分の他のイオンは、イオントラップ102から、実質的に放出される。着目前駆体イオンは、いくつかの大きく異なる質量対電荷比値にある可能性がある。望ましくないイオンの放出は、イオントラップ内に遥かにより小さい集団のイオンを、したがって、イオントラップ内に遥かに少ない空間電荷をもたらす。その結果、望ましくないイオンの放出は、着目前駆体イオンの励起周波数を遥かにより予測可能にし、したがって、着目イオンは、イオントラップから衝突セル102に向かって、より選択的に放出可能となる。
【0040】
比較的に高い空間電荷またはイオン電流の存在の下において、イオンを効率的に隔離する、別の方法は、第1のイオントラップ102内にイオンを捕捉し、次いで、経時的に、イオントラップ103内へと前駆体イオンをゆっくりと転移させる一方、波形発生器123が、濾波雑音場をイオントラップ103に印加するというものである。前駆体イオンをゆっくりと転移させることは、イオンすべてが、FNFを印加する前に、イオントラップ103内にともに捕捉される他の方法と比較して、充填されることに伴ってイオントラップ103内の空間電荷を減少させる。本方法では、イオントラップ103内のイオンは、イオントラップ103内のイオンの数が、隔離の際、大幅に縮小され得るため、空間電荷の減少を被る。
【0041】
イオントラップ102内の比較的に高い空間電荷の存在下、イオンを効率的に隔離する、さらに別の方法は、イオントラップ102内にイオンすべてを捕捉し、次いで、段階的に、それらをイオントラップ103へと転移させ、そこで、着目前駆体イオンは、FNF波形によって隔離されるというものである。イオントラップ103内の小さい割合のイオンの隔離は、空間電荷効果の低減によって達成可能である。イオントラップ103内の第1の割合のイオンを隔離した後、イオントラップ102内の第2の割合のイオンが、イオントラップ103に転移可能となり、次いで、FNFが、再印加され、着目前駆体イオンを隔離可能となる。本プロセスは、実質的に全イオンがイオントラップ103内に隔離されるまで、繰り返すことが可能である。本プロセスでは、イオントラップ103内のイオンは、イオントラップ103内のイオンの数が、隔離の間、大幅に減少され得るので、隔離ステップの間、空間電荷効果の低減を被る。
【0042】
本教示に従って、高い空間電荷の存在の下において有効である、FNF波形を発生させるさらに別の方法では、イオン源104からの全前駆体イオンが、最初に、イオントラップ102から下流の衝突セル126内に捕捉される。次いで、衝突セル126内に捕捉された前駆体イオンの一部が、衝突セル126から、イオントラップ102内へと逆転移される。次いで、FNF波形が、イオントラップ102に印加され、着目前駆体イオンを隔離させる。本方法では、イオントラップ102内の空間電荷の量を着目前駆体イオンの効率的な隔離を得るために十分な低レベルまで減少させるために十分な少量の捕捉されたイオンが、イオントラップ102内へと逆転移されることが可能である。
【0043】
FNF波形を印加後のある時点において、衝突セル126内に捕捉された前駆体イオンの別の一部が、衝突セル126から、イオントラップ102内へと逆転移される。次いで、FNF波形が、イオントラップ102に再印加される。本プロセスは、実質的に全イオンが、イオントラップ102に逆転移され、隔離されるまで、繰り返すことが可能である。段階的方法によって、FNF波形は、大量のイオンおよびそれに付随するより高いレベルの空間電荷の存在下、着目前駆体イオンの漸増的隔離によって、効果的に使用される。例えば、特定の方法の1つでは、イオンの約10%が、各ステップにおいて、転移される。転移されるイオンの量は、増加前に、短い時間の間、レンズIQ2 124上の電圧を降下させることによって制御可能である。電圧が降下する時間の長さによって、転移されるイオンの数を制御可能である。実際は、転移させるステップの時間周期は、イオントラップ102内のイオンが枯渇することに伴って、漸増的に増加可能である。衝突セル126内に軸方向電場を印加し、イオントラップ102に向かって、イオン流を制御するのを補助することは、有用であり得る。例えば、軸方向場は、電圧が降下すると、イオンが障壁に接近するように、障壁として作用するレンズIQ2 124に向かって方向付けされてもよい。
【0044】
本教示に従って、高い空間電荷の存在の下で有効である、FNF波形を発生させる別の方法は、最初に、イオン源からのイオンをイオントラップ102から下流の衝突セル126内に捕捉するというものである。FNF波形は、イオントラップ102に継続的に印加される一方、前駆体イオンは、衝突セル126から、イオントラップ102内へと、ゆっくりとではあるが、継続的に逆転移される。衝突セル126からイオントラップ102内へとイオンを段階的に転移させることは、衝突セル126とイオントラップ102との間のポテンシャル障壁として作用する、レンズIQ2 124上の電圧を徐々に降下させることによって達成可能である。障壁は、下方に徐々に傾斜させられ、徐々により多くのイオンをイオントラップ102内へと分散可能である。ポテンシャル障壁が降下される速度は、イオンがイオントラップ102内へと転移される速度を制御可能である。プロセスを段階的にすることによって、FNFをイオントラップ102に印加しながら、イオントラップ102内のイオンの数は、空間電荷が、着目前駆体イオンの効果的隔離を可能にするために十分な低い値に維持されるように制御可能である。例えば、レンズIQ2 124上の電圧は、100msにわたって、イオンが転移不可能な値から、全イオンが転移される値まで、線形的に減少させることが可能である。いくつかのイオンは、他のイオンよりもエネルギー性であるので、よりエネルギー性のまたは熱的により熱いイオンは、最初に、電圧が降下されることに伴って障壁を越え、転移され、低いエネルギー性のイオンは、傾斜において、後に転移されるであろう。ある場合には、レンズIQ2 124に印加される電圧勾配は、時間的に非線形であってもよい。
【0045】
前駆体イオンが、完全に転移され、イオントラップ102内に隔離されると、それらは、分裂のために、衝突セル126内へと連続的に放出される。衝突セル126内の軸方向電場は、出口130に向かって、イオンを押動させるために使用可能である。選択された前駆体イオンの各MSMSスペクトル測定は、ほんの10−20msだけを必要としてもよい。合計取得時間は、比較的に短い可能性がある。例えば、イオントラップ102を充填するステップが、約10msかかり、段階的隔離ステップが、約100msかかる場合、10個のMSMSスペクトルは、合計時間約210乃至310ms内で取得することが可能であると推定される。
【0046】
本教示に従って、高い空間電荷の存在の下において有効である、FNF波形を発生させる別の方法は、FNF波形をイオントラップ102に印加する一方、前駆体イオンが、イオントラップ102を通って流動し、(分裂せずに)衝突セル126内に捕捉されるというものである。本方法では、イオンは、イオントラップ102内に捕捉されない。イオントラップ102を通る前駆体イオンの典型的な遷移時間は、約1ms未満である。本流入動作モードは、着目前駆体イオンの粗い隔離のみを提供する。しかしながら、流入動作モードは、衝突セル126に到達する前に、有意な数の望ましくない前駆体イオンを除去する。したがって、衝突セル126内に捕捉される、望ましくない前駆体イオンの数は、有意に減少される。
【0047】
衝突セル126が、所望の程度にまで充填されると、次いで、イオンは、イオントラップ102内に逆転移される一方、イオン源104からの前駆体イオンは、イオンガイドQ0 118内の上流に捕捉される。イオントラップ102内に捕捉される前駆体イオンは、さらに処理され、より長い時間にわたってFNF波形をイオントラップ102に再印加することによって、MSMSのために、全標的前駆体イオンを隔離可能である。加えて、前駆体イオンの混合物もまた、分裂のために、着目前駆体イオンを衝突セル126内へと連続的に放出させることによって処理可能である。
【0048】
本教示に従う、図2とともに説明されたタンデム質量分析計200等の2つのイオントラップを含む、タンデム質量分析計は、空間電荷の効果を低減させる付加的動作モードを達成可能である。例えば、2つのイオントラップを有するタンデム質量分析計は、2ステップの軸方向放出プロセスによって、着目前駆体イオンの隔離を提供可能である。イオンは、最初に、イオントラップ102内に捕捉される。次いで、中程度に高い振幅の励起波形が、着目前駆体イオンの周波数に対応する周波数において、イオントラップ102に印加される。例えば、10個の着目前駆体イオンが存在する場合、当技術分野において周知のように、双極または四重極励起を使用して、10個の異なる励起周波数をイオントラップ102に印加可能である。励起振幅が比較的に高い場合、各標的値の付近の比較的に広範囲のイオン質量対電荷比値が、障壁レンズIQ2を越えて、イオントラップ103内へと励起および転移されるであろう。空間電荷が、着目イオンの周波数をシフトさせる場合でも、各標的質量対電荷比値の付近の比較的に広い質量範囲が転移される場合、イオントラップ103内へと転移可能となる。
【0049】
例えば、標的イオン質量対電荷比値が、m/z432であって、高い空間電荷が、イオントラップ102内に存在する場合、m/z432の永年周波数は、実際には、m/z425のイオンに対応する周波数であってもよい。しかしながら、中程度に高い振幅励起が印加される場合、m/z425にある着目イオンを含む、値420と450との間のm/zのイオンは、転移されてもよい。これは、イオントラップ102からイオントラップ103へのある範囲のイオンの高速かつ粗い転移を提供する。全着目前駆体イオンとともに、異なる質量対電荷比値の多くの他のイオンが、イオントラップ103内に捕捉されるように、複数の高振幅波形が、粗い分解能によってイオントラップ102から103内へと着目イオンを転移させるように印加可能である。しかしながら、多くのイオンは、依然として、イオントラップ102内に残留するであろうが、いかなるノッチも伴わない高振幅FNFによって、または他の方法によって、排除可能である。イオントラップ103内に残留するイオンは、イオントラップ102内にあったときより少ない空間電荷を有するであろう。
【0050】
さらに、本明細書に説明されるFNF方法は、イオントラップ103内に個々の着目前駆体イオンを隔離するために使用可能である。着目イオンは、衝突セル126内へと連続的に放出可能である。代替として、イオントラップ102からイオントラップ103内へとイオンを転移させた後、空間電荷は、周波数が空間電荷によって影響を受けないように十分に低い値まで低減されてもよい。次いで、着目イオンは、FNFを印加せずに、イオントラップ103から連続的に放出され、イオンをさらに隔離可能となる。
【0051】
いくつかの動作モードでは、イオントラップ102内の空間電荷の量を減少させる必要性はない。例えば、イオン源104によって発生されるイオンの強度は、空間電荷が転移プロセスに影響を及ぼさないように十分に低くてもよい。これらの動作モードでは、FNF波形を使用して、前駆体イオンを隔離する必要はない。実質的に全イオンが、イオントラップ102内に捕捉可能となり、数ミリ秒の間、冷却される。次いで、着目前駆体イオンは、分裂のために、衝突セル126に連続的に転移され、次いで、測定のために、質量分析計132に転移可能である。これは、特に、イオンがイオンガイドQ0 118内に留保される一方、前駆体イオンがイオントラップ102内および衝突セル126内で処理される場合、全着目前駆体イオンの高い効率処理を可能にする。
【0052】
本教示に従って、タンデム質量分析計を動作させる種々のモードでは、MSMSスペクトルは、イオン源によって発生される前駆体イオンの一部または全部に対して取得可能である。例えば、動作モードの1つでは、全イオンが、イオントラップ102内に捕捉され、次いで、前駆体イオンが、その質量対電荷比に従って、順序通り、連続的に放出される。特定の動作モードの1つでは、前駆体イオンは、最低の質量対電荷比値から開始し、最高の質量対電荷比値まで進むように放出される。本動作モードでは、MSMS測定は、高い効率性によって、1回の実験において全前駆体イオンに対して取得可能である。
【0053】
本教示に従う、タンデム質量分析計の別の動作モードでは、ある特定の前駆体イオンおよび/または生成イオンのみの強度が、継続的に測定される。そのような測定は、高速で取得可能である。本動作モードでは、着目前駆体イオンを捕捉し、次いで、放出させることによってイオンを処理することは、不必要または望ましくない場合がある。タンデム質量分析計100は、イオントラップ102を通して、分裂される前駆体イオンを伝送させることによって、捕捉することなく動作可能である。代わりに、イオントラップ102は、RF/DC分解モードで動作し、所望の順序において、1つの選択された前駆体から別の選択された前駆体へと進み、次いで、MSMSスペクトルを取得する。
【0054】
例えば、イオントラップ102は、本伝送モードでは、質量フィルタとして動作し、1amuの小ステップサイズを有する選択された質量範囲を通して進み、各前駆体イオンに関するMSMSスペクトルを取得可能である。例えば、MSMSスペクトルの取得速度は、10ms毎に約1つのMSMSスペクトル、または5ms毎に約1つのMSMSスペクトルであることさえ可能である。本動作モードは、より高速であるが、潜在的に低感度を有する分析もたらす。また、動作モードは、試料を効率的に使用せず、いくつかの用途に対して好適ではなくなる。
【0055】
本教示に従う、タンデム質量分析計の別の動作モードでは、非常に狭い範囲の前駆体イオン質量対電荷比のみが測定される。本動作モードでは、イオントラップ102は、高分解能質量選別器であって、処理のために、衝突セル126内への幅1amuを遥かに下回り得る、非常に狭い範囲の質量対電荷比値を可能にするように構成される。例えば、特定の方法の1つでは、前駆体イオン質量対電荷比値の範囲は、幅0.1amu未満である。この高分解能モードは、狭い質量範囲にわたってイオントラップ102を非常にゆっくりと走査することによって達成可能である。非常にゆっくりとした走査は、小質量窓領域内の等重の成分を分離するために、非常に狭い質量範囲にわたって行うことが可能である(「ズーム走査」)か、またはフル走査を完了するためにより長い時間を必要とする、より広い質量範囲にわたって行われてもよい。本方法では、同一公称質量であるが、異なる正確な質量の前駆体イオンを分離することが可能である。本方法は、複合試料内の信号対雑音(S/N)を改善する。
【0056】
当業者は、本教示に従う、タンデム質量分析計の動作が、イオントラップ102が前駆体イオン選択のためのRF/DC四重極質量フィルタである動作モードから、本明細書に説明されるように、軸方向電場によってイオンが捕捉され、次いで、イオントラップ102から放出される動作モードに容易に変更可能であることを理解するであろう。例えば、いくつかの質量分析計では、動作モードは、ソフトウェアによって完全に制御可能である。
【0057】
(均等物)
出願人の教示は、種々の実施形態と併せて説明されるが、出願人の教示がそのような実施形態に限定されることを意図するものではない。対照的に、出願人の教示は、当業者によって理解されるように、教示の精神および範囲から逸脱することなく、本明細書に成され得る、種々の代替、修正、および均等物を包含する。

【特許請求の範囲】
【請求項1】
タンデム質量分析計において、複数の前駆体イオンを処理する方法であって、該方法は、
a.イオン源によって、複数の前駆体イオンを発生させることと、
b.該複数の前駆体イオンの少なくとも一部をイオントラップ内に捕捉することと、
c.濾波雑音場によって、少なくとも2つの着目前駆体イオンを該複数の前駆体イオンから隔離することと、
d.着目前駆体イオンを衝突セルに向かって連続的に放出させることと、
e.該連続的に放出された着目前駆体イオンを衝突セル内で分裂させることと、
f.質量分析計によって、該分裂されたイオンの質量対電荷比スペクトルを決定することと
を含む、方法。
【請求項2】
前記着目前駆体イオンを隔離することは、徐々に狭くなるノッチを有する濾波雑音場を印加することを含む、請求項1に記載の方法。
【請求項3】
着目前駆体イオンを隔離することは、線形イオントラップ内において着目前駆体イオンを隔離することを含む、請求項1に記載の方法。
【請求項4】
前記分裂されたイオンの質量対電荷比スペクトルを決定することは、飛行時間型質量分析計、四重極質量分析計、イオントラップ質量分析計、軌道トラップ質量分析計、およびFTMS質量分析計のうちの少なくとも1つによって、該質量対電荷比スペクトルを決定することを含む、請求項1に記載の方法。
【請求項5】
前記着目前駆体イオンを連続的に放出させることは、共鳴励起によって、該着目前駆体イオンを連続的に放出させることを含む、請求項1に記載の方法。
【請求項6】
前記着目前駆体イオンを隔離する前に、前記複数の前駆体イオンの中の前駆体イオンを識別することをさらに含む、請求項1に記載の方法。
【請求項7】
タンデム質量分析計において、複数の前駆体イオンを処理する方法であって、該方法は、
a.イオン源によって、複数の前駆体イオンを発生させることと、
b.該複数の前駆体イオンの少なくとも一部をイオントラップ内に捕捉することと、
c.濾波雑音場によって、該複数の前駆体イオンから少なくとも2つの着目前駆体イオンを隔離することと、
d.第1の標的前駆体イオンを放出させることと、
e.該放出された第1の標的前駆体イオンを分裂させることと、
f.質量分析計によって、該分裂された第1の標的前駆体イオンの質量対電荷比スペクトルを決定することと、
g.第2の標的前駆体イオンを放出させることと、
h.該放出された第2の標的前駆体イオンを分裂させることと、
i.質量分析計によって、該分裂された第2の標的前駆体イオンの質量対電荷比スペクトルを決定することと
を含む、方法。
【請求項8】
前記少なくとも2つの着目前駆体イオンを隔離することは、徐々に狭くなるノッチを有する濾波雑音場を印加することを含む、請求項7に記載の方法。
【請求項9】
前記着目前駆体イオンを隔離する前に、前記複数の前駆体イオンの中の前駆体イオンを識別することをさらに含む、請求項7に記載の方法。
【請求項10】
タンデム質量分析計において、複数の前駆体イオンを処理する方法であって、該方法は、
a.イオン源によって、複数の前駆体イオンを発生させることと、
b.第1のイオントラップ内に該複数の前駆体イオンを捕捉することと、
c.該第1のイオントラップから第2のイオントラップまで、該複数の前駆体イオンの一部を転移させることと、
d.濾波雑音場によって、該第2のイオントラップ内の少なくとも2つの着目前駆体イオンを隔離することと、
e.該第2のイオントラップから、該着目前駆体イオンを連続的に放出させることと、
f.該連続的に放出された着目前駆体イオンを衝突セル内で分裂させることと、
g.質量分析計によって、該分裂された着目前駆体イオンの質量対電荷比スペクトルを決定することと
を含む、方法。
【請求項11】
前記濾波雑音場によって、前記イオントラップ内の少なくとも2つの着目前駆体イオンを隔離することは、徐々に狭くなる幅のノッチを適用することを含む、請求項10に記載の方法。
【請求項12】
前記イオントラップから、前記着目前駆体イオンを連続的に放出させることは、共鳴励起によって、該着目前駆体イオンを連続的に放出させることを含む、請求項10に記載の方法。
【請求項13】
前記質量分析計によって、前記分裂された着目前駆体イオンの質量対電荷比スペクトルを決定することは、飛行時間型質量分析計、四重極質量分析計、およびQtrap質量分析計のうちの少なくとも1つによって、該質量対電荷比スペクトルを決定することを含む、請求項10に記載の方法。
【請求項14】
前記衝突セルの複数の前駆体イオンを捕捉する前に、該複数の前駆体イオンの少なくとも一部を識別することをさらに含む、請求項10に記載の方法。
【請求項15】
前記第2のイオントラップから前記第1のイオントラップまで、前記複数の前駆体イオンの一部を転移させ、前記濾波雑音場によって、該イオントラップ内で着目前駆体イオンを隔離することを1回以上繰り返すことをさらに含む、請求項10に記載の方法。
【請求項16】
前記第2のイオントラップは、前記衝突セルを備える、請求項15に記載の方法。
【請求項17】
タンデム質量分析計において、複数の前駆体イオンを処理する方法であって、該方法は、
a.イオン源によって、複数の前駆体イオンを発生させることと、
b.第1のイオントラップ内で該複数の前駆体イオンを捕捉することと、
c.該第1のイオントラップから、着目前駆体イオンを放出させることと、
d.第2のイオントラップによって、該放出された着目前駆体イオンを捕捉することと、
e.該第2のイオントラップから、該着目前駆体イオンを連続的に放出させることと、
f.該第2のイオントラップから放出された該着目前駆体イオンを分裂させることと、
g.質量分析計によって、該放出された分裂着目前駆体イオンの質量対電荷比スペクトルを決定することと
を含む、方法。
【請求項18】
前記第1および前記第2のイオントラップのうちの少なくとも1つから、前記着目前駆体イオンを放出させることは、共鳴励起によって、該着目前駆体イオンを放出させることを含む、請求項17に記載の方法。
【請求項19】
前記質量分析計によって、前記連続的に放出された分裂着目前駆体イオンの質量対電荷比スペクトルを決定することは、飛行時間型質量分析計、四重極質量分析計、およびQtrap質量分析計のうちの少なくとも1つによって、該質量対電荷比スペクトルを決定することを含む、請求項17に記載の方法。
【請求項20】
前記第2のイオントラップから、前記着目前駆体イオンを連続的に放出させる前に、濾波雑音場によって、該第2のイオントラップ内の該着目前駆体イオンを隔離することをさらに含む、請求項17に記載の方法。
【請求項21】
前記イオントラップ内の複数の着目前駆体イオンを処理することは、徐々に狭くなる幅ノッチを有する濾波雑音場を印加することを含む、請求項17に記載の方法。
【請求項22】
タンデム質量分析計において、複数の前駆体イオンを処理する方法であって、該方法は、
a.イオン源によって、複数の前駆体イオンを発生させることと、
b.濾波雑音場をイオントラップに印加することと、
c.該濾波雑音場によって、該複数の前駆体イオンに該イオントラップを通過させることと、
d.該イオントラップからの該複数の前駆体イオンを第2のイオントラップ内に捕捉することと、
e.該第2のイオントラップ内の該複数の前駆体イオンの一部を該第1のイオントラップに逆転移させることと、
f.該イオントラップから、着目前駆体イオンをそれらの質量対電荷比に従って、連続的に放出させることと、
g.衝突セル内で該連続的に放出された着目前駆体イオンを分裂させることと、
h.質量分析計によって、該連続的に放出された着目前駆体イオンの質量対電荷比スペクトルを決定することと
を含む、方法。
【請求項23】
前記質量分析計によって、前記連続的に放出された着目前駆体イオンの質量対電荷比スペクトルを決定することは、飛行時間型質量分析計、四重極質量分析計、およびQtrap質量分析計のうちの少なくとも1つによって、該質量対電荷比スペクトルを決定することを含む、請求項22に記載の方法。
【請求項24】
濾波雑音場によって、前記イオントラップ内で前駆体イオンを隔離することをさらに含む、請求項22に記載の方法。
【請求項25】
前記濾波雑音場によって、前記イオントラップ内で前駆体イオンを隔離することは、徐々に狭くなるノッチを有する濾波雑音場を印加することを備える、請求項24に記載の方法。
【請求項26】
タンデム質量分析計において、複数の前駆体イオンを処理する方法であって、該方法は、
a.イオン源によって、複数の前駆体イオンを発生させることと、
b.第1のイオントラップ内に該複数の前駆体イオンの少なくとも一部を捕捉することと、
c.第2のイオントラップ内へと該複数の前駆体イオンの少なくとも一部を放出させることと、
d.第2のイオントラップ内に該イオンを捕捉することと、
e.該第2のイオントラップから衝突セル内へと標的前駆体イオンを連続的に放出させることと、
f.該連続的に放出された標的前駆体イオンを分裂させることと、
g.質量分析計によって、該分裂された標的前駆体イオンの質量対電荷比スペクトルを決定することと
を含む、方法
【請求項27】
濾波雑音場によって、前記第2のイオントラップ内で標的前駆体イオンを隔離することをさらに含む、請求項26に記載の方法。
【請求項28】
徐々に狭くなる幅ノッチを有する濾波雑音場を印加することをさらに備える、請求項27に記載の方法。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2012−521002(P2012−521002A)
【公表日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2012−500329(P2012−500329)
【出願日】平成22年3月17日(2010.3.17)
【国際出願番号】PCT/IB2010/000555
【国際公開番号】WO2010/109288
【国際公開日】平成22年9月30日(2010.9.30)
【出願人】(510075457)ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド (35)
【Fターム(参考)】