説明

ターボエンジンの制御エレメントの機能試験を実行するためのデバイス及び方法

第1のプロセス制御エレメント(5)と、第2のプロセス制御エレメント(8)と、第1のプロセス制御エレメントを試験するための試験システムとを備えたターボエンジンであって、第1のプロセス制御エレメント及び第2のプロセス制御エレメントが同じプロセス変量に影響を及ぼすターボエンジンが開示される。試験システムは、第1のプロセス制御エレメント(5)を試験するために、第2のプロセス制御エレメント(8)によってプロセス変量を修正する。第2のプロセス制御エレメント(8)によるプロセス変量の前記修正は、第1のプロセス制御エレメント(5)を使用して補償される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ターボマシンの制御部材の機能試験、詳細には弁の部分ストローク試験を実行するためのデバイス及び方法を対象としている。
【背景技術】
【0002】
特許文献1及び特許文献2に、タービン全体に作動媒体を供給する複数の制御弁のうちの1つを試験するための試験システムが開示されている。試験中の制御弁が閉じると、対応する比率の作動媒体が残りの制御弁によって供給されるため、タービンの運転に支障を来たすことはない。
【0003】
多くの技術的なシステムでは、例えば弁等の特定の制御部材またはプロセス制御エレメントは、長期間にわたる運転周期の間、その位置が変化しない状態で放置される。緊急または故障状況の下でしか使用されることのないプロセス制御エレメントの場合は特にそうである。プロセス制御エレメントはめったに駆動されないため、例えば堆積、摩耗または熱変形による部分的または全面的な障害が生じることがある。このプロセス制御エレメントが緊急時にのみ開く弁である場合、その弁は、これらの障害による欠陥弁であったとしてもそのまま放置され、実際に緊急事態が発生して駆動されるまで見過ごされることになる。
【0004】
ターボ圧縮機のサージ制限制御弁は、この種の保護システムの一例である。サージ制限制御弁は、その名の通りサージから保護している。サージは、流量が減少するかあるいは最終圧力まで上昇してターボ圧縮機の動作点が動作マップの不安定領域に入ると生じる。サージが生じると、圧縮ガスが循環流になるかあるいは逆流することになる。圧縮ガスが循環流になるかあるいは逆流すると、ターボ圧縮機が激しく振動し、圧力衝撃が生じ、また、ターボ圧縮機の温度が急激に上昇することになる。そのため、場合によっては軸受、ロータまたはブレードが損傷し、また、それらに関連する動作上の機能停止が生じることがある。サージ制限制御弁は、それらが使用されるのが緊急時のみであり、めったに駆動されないため、それらが適切に機能していることを定期的にチェックしなければならない。
【0005】
従来技術では、弁が抱えているこの問題は、いわゆる部分ストローク試験によって対処されている。この部分ストローク試験では、そのリフティング運動の微小部分を弁が移動する方法で、一定の時間間隔で弁が駆動される。この方法で弁のリフティング運動がモニタされ、且つ、その機能が試験される。
【0006】
従来技術で知られている部分ストローク試験の欠点は、弁を駆動することによってターボマシンの下流側のプロセス全体の動作に影響することである。そのため、動作に対する影響を可能な限り最小限に抑えるために、移動するストロークが極めて短く、あるいは試験時間が最短時間に短縮されている。サージ制限制御弁は、通常、約200%の定格圧縮機容量で設計されている。サージ制限制御弁を5%しか開かない場合、プロセスに引き渡される流量は10%未満である。ほとんどのプロセスの場合、これは、許容不可能な動作不良を意味している。一方、多くのアプリケーションの場合、リフトが5%未満の弁の試験は、その弁がより大きいストローク領域に沿って同じく安全に動作するであろうことを確認するには不十分である。
【0007】
部分ストローク試験は、部分ストロークを問題なく適切に移動した弁が、だからと言ってその部分ストローク以外の部分でブロックされることになる可能性が全くないことを保証しているわけではない。最短継続期間の試験、従って弁の突発的な調整では、例えば弁の低速調整における弁の非均質な移動に、その障害自体を表す前兆を見出すことはできない。
【特許文献1】米国特許出願公開第2006/067810号明細書
【特許文献2】米国特許第4512185号明細書
【非特許文献1】”Ein Beitrag zur digitalen Pumpschutzregelung von Turbokompressoren”, Schriftreiche des Lehrstuhls fuer Regelungssyteme und Steuerungstechnik Ruhr Universitaet Bochum, Heft 31
【発明の開示】
【発明が解決しようとする課題】
【0008】
従って本発明の目的は、ターボマシンの下流側のプロセスに実質的に影響を及ぼすことなく、ターボマシンのプロセス制御エレメントに対する信頼性の高い試験の実施を可能にするデバイス及び方法を提供することである。
【課題を解決するための手段】
【0009】
この目的は、特許請求の範囲の独立請求項によって達成される。ターボマシンは、複数のプロセス制御エレメントを装備していることがしばしばであり、これらのプロセス制御エレメントの各々は、例えば累積的に、つまり共同して同じプロセス変量に影響を及ぼしており、あるいは互いに独立して同じプロセス変量に影響を及ぼしている。ターボ圧縮機の場合、圧縮機の容量は、第1のプロセス制御エレメント、例えば調整可能案内ブレードによって変わる。サージ制限制御弁は、エンジンを保護するためのシステムの一部として、圧縮機の流量が安定限界(サージ限界)未満に減少すると、安定限界未満に減少しないよう、サージ制限制御弁を制御された方法で開くことによって圧縮機のスループットを十分に大きいスループットに維持する役割を担っている。その一方で、これは、圧縮機が定常動作している間にサージ制限制御弁が開くと、プロセスの流量が減少することになることを意味している。この範囲までは、調整可能案内ブレード及びサージ制限制御弁は、個々の制御部材によってスループットをプロセス内で多少変更することができる点で交互に作用している。蒸気タービンまたはターボエキスパンダの場合、複数の弁が並列に設置されることがしばしばであり、速度を正確に調整するためにスタガー方式で動作させることができる。これらの制御部材は、この範囲までは、それらが共同してタービンへの総体積流量を画定している点で累積的に作用している。複数のターボマシンが直列運転または並列運転で動作している間、すべてのターボマシンは、その個々の容量を整合させるための少なくとも1つの制御部材を有している。すべての圧縮機の容量を適合させるための個々の制御部材によって、並列運転における圧縮機の共通吸込み圧力及び最終圧力に累積的に影響を及ぼすことができる。個々のターボマシンの制御部材が交互に作用する、つまり個々のターボマシンの制御部材がそれぞれ総スループットを変更することができる直列運転の圧縮機の流量についても同様である。
【0010】
本発明には、プロセス変量自体を一切変化させることなく制御エレメントの機能試験を実行するために、複数のプロセス制御エレメントによって同じプロセス変量に影響を及ぼすことができることが利用されている。
【0011】
本発明による試験システムによれば、第1のプロセス制御エレメントを試験するために、第2のプロセス制御エレメントによってプロセス変量が変更される。この変更は、第1のプロセス制御エレメントの静止位置に応じて実施される。これは、例えば第1のプロセス制御エレメントが、問題なく動作している間に閉じるかあるいは部分的に開き、開いたときにターボ圧縮機を通って流れる流量が減少する弁である場合、ターボ圧縮機によって生成される流量が第2のプロセス制御エレメント、例えば調整可能案内ブレードによって増加することを意味している。プロセス変量の変化は、第1のプロセス制御エレメントによって補償される。この例の場合、これは、第1のプロセス制御エレメントとしての弁が開いて、弁を通って流れる流量の変化が補償され、従ってターボマシンによって生成される増加した流量が更に減少することを意味している。
【0012】
試験中、本発明によるデバイスによってプロセス制御エレメントの可動部品が駆動され、それによりプロセス制御エレメント内のとりわけほとんど動作しない場所が洗浄される。試験中に移動するストロークが総ストロークのたとえごく一部であるとしても、この部分ストローク試験によれば、試験の影響が補償されない従来技術でこれまで可能であった経路より実質的に長い経路を移動させることができる。また、本発明によれば、ターボマシンのプロセス制御エレメントの機能を試験するための方法が提供される。
【0013】
以下、本発明について、いくつかの図面を参照して、本発明の具体的な実施形態のフレームワーク内でより詳細に説明する。
【発明を実施するための最良の形態】
【0014】
図1は、溶鉱炉のための噴射空気供給におけるターボ圧縮機2のアプリケーションを示したものである。サージ制限制御弁5は、ターボ圧縮機2の下流側に配置されている。サージ制限制御弁5の目的は、サージ制限制御弁5を制御された方法で開けることによって不安定な運転範囲における運転から圧縮機を保護することである。
【0015】
図1に示されているように、サージ制限制御弁5は、ターボ圧縮機2の吐出側つまり圧力側に配置されている弁である。サージ制限制御弁5を開けると、圧縮機の流量が増加し、従って運転がサージ領域外になる。サージ制限制御弁5から流出するガスの量は、常に効率の損失を意味している。従って設備は、常に、圧縮機が問題なく動作している状態でサージ制限制御弁が完全に閉じ、攪乱運転時または始動及び停止のためにのみ開くように設計されている。
【0016】
従って、運転中にターボ圧縮機のサージ制限制御弁5の機能を試験することは、サージ制限制御弁5が開いてプロセスへの流量が減少し、延いては圧縮機の下流側のプロセスの圧力が低くなるため、総合設備の運転挙動の減損を意味している。これは、サージ制限制御弁5を開く時間が極めて短時間であり、且つ/または部分ストロークのためであっても同様である。
【0017】
ターボ圧縮機2は、蒸気タービン1によって駆動される。圧縮機の流量は、タービンの速度を変えるか、あるいはターボ圧縮機の案内ブレードを調整することによって適合される。サージ制限コントロール4は従来技術で知られており、サージに起因する損傷から圧縮機を保護している。
【0018】
図2は、ターボ圧縮機2のサージ制限制御弁5に対する部分ストローク試験を実行するためのデバイスを示したものである。本発明による部分ストローク試験システムによれば、試験のためにサージ制限制御弁が開かれ、案内ブレード8を圧縮機の出力がより高くなる方向へ開くことによって圧縮機の流量の減少を補償する方法でサージ制限制御弁5が試験される。この特定の構造とは別に、プロセス制御エレメントは、プロセス変量を変更するための任意のアクチュエータであってもよく、例えば速度を変化させるためのデバイス、絞り弁、等々であってもよい。サージ制限制御弁を開くことによって生じる圧縮機の出力の損失を補償するために、この損失を補償することができる任意のプロセス制御エレメントを使用することができる。説明されているアプリケーションの場合、調整すべきプロセス変量は、適切なポイントで測定される流量であり、案内ブレードは、この流量を調整するために自動的に調整される。
【0019】
圧縮機を介して運ばれる流量は、流量コントローラ9によって、流量のための基準値発生器10によって与えられる値に調整される。流量を調整するために提供されるアクチュエータは、案内ブレード駆動機構であることが好ましいが、速度を変更するためのデバイスであっても、あるいはその2つの組合せであってもよい。時間経過におけるこの時点までは、サージ制限制御弁5は依然として閉じているか、あるいは部分負荷運転で一定の量だけ開いている。
【0020】
制御部材機能試験の場合、流量コントローラ9は、その最後の出力量を内部的に保持する。積分器によって常に変更することができる試験信号15が生成される。流量のための基準値発生器10からの基準流量値と流量測定デバイス7からの実際の流量値との間の差が、目下のところは流量を基準流量値に調整する役割を担っているサージ制限制御弁5の下流側に配置されている位置コントローラからサージ制限コントローラ16、17、18に切り換えられる。流量コントローラ9の出力は、連続的に徐々に大きくなる試験信号15の加法重ね合わせによって、案内ブレードが更に開く方向及び/または速度がより速くなる方向へ移動する。圧縮機流量のこの増加によってプロセスへの流量が増加する。
【0021】
サージ制限コントローラ17を流れる基準流量と実際の流量との間の比較は、この増加を認識し、位置コントローラ19によってサージ制限制御弁を開くことによってそれを補償する。
【0022】
サージ制限制御弁5の位置の基準値と実際の値とを比較することにより、弁がプリセットされた基準値を十分な精度で追従しているか否かが分かる。流量コントローラ9の後段の加算点の出力は、その出力が上側の制限値に到達するまで連続的に大きくなる。次に信号が一時的に保持される。従って、静止最終位置に正確に到達する機会がサージ制限コントローラ17に与えられる。次に、試験信号15が再びゼロに向かって徐々に減少する。試験信号15がゼロの値に到達するか、あるいはサージ制限制御弁が完全に閉じると、流量コントローラが再び自動運転に切り換えられ、設備の運転を更に調整する役割を担う。
【0023】
圧縮機に複数のサージ制限制御弁を装備しなければならない場合、この試験は、すべての弁が同じ方向、つまり並列に制御される方法で実行することができる。しかしながら、試験は、すべての弁が個々に試験される方法で実行されることが好ましい。これは、第1の弁の試験が完了すると、同じ種類の試験を第2の弁及び追加弁毎に実行しなければならないことを意味している。
【0024】
サージ制限制御弁5の機能は、実際の位置と基準位置とを比較することによってチェックされる。弁が正常である場合、測定位置がシステム特化判別閾値としての基準値から逸脱することはない。これは、例えば比較器を使用して連続的にモニタすることができる(閾値モニタリング)。差が第1の制限値12を超えると、警報が発せられる。差が例えば2倍の大きさである第2の制限値20に達すると、第1の判別閾値の場合と同様、第2の警報が発せられ、直ちに試験が中止されて、直ちに弁の検査を実行するよう、運転職員に注意が喚起される。
【0025】
近代の制御システムを使用して、1つまたは複数のサージ制限制御弁の位置基準値と測定位置フィードバックとの間の関係をディジタル的に記録し、且つ、ラインチャートとして、あるいは縦座標として基準値を使用し、また、横座標として弁の位置を使用したx/yグラフとして表示することができる。
【0026】
図3に示されている第2の有利な実施形態によれば、本発明により、サージ制限制御弁を適応調整することによってプロセスの破壊を防止するためのデバイスが提供される。図3は実質的に図2に対応しており、拡張されているのは、関数発生器21に接続された加算ユニットのみである。
【0027】
図2による第1の実施形態の場合、サージ制限制御弁5を開くことによる速度及び/または案内ブレード位置の調整の結果としての流量の増加をサージ制限コントローラ17が補償することができるよう、徐々に大きくなる試験信号を使用しなければならない。図3によれば、試験信号15が、更に、その数学符号に応じてサージ制限コントローラの出力に切り換えられる点でこの実施形態の改善が可能である。従ってサージ制限制御弁5は、流量が実際に増加する前に既に開いている。変更コマンド変数が加算ユニットからのオフセットに無関係にサージ制限コントローラに切り換えられるこの予備制御によって応答特性が改善される。
【0028】
速度または案内ブレード位置と圧縮機を通って流れる流量との間の関係は、一般的には非線形であり、一方、サージ制限制御弁の位置と弁を通って流れる流量の間の関係は線形である。関数発生器21部分で調整することができる、適切に選択された非線形関数を使用することにより、サージ制限制御弁5が試験信号15に応じて十分に遠くまで正確に開き、延いては速度の増加及び/または案内ブレードの開きが大きくなることによって生じる圧縮機流量の増加と、サージ制限制御弁5が開くことによって生じる流量の減少が正確に整合することを保証することができる。従って、サージ制限コントローラ17は作用する必要がなく、また、プロセスに不利な影響を及ぼすことなく部分ストローク試験が進行する。また、サージ制限制御弁の位置とこの弁を通って流れる流量の間の関係が非線形である場合、非線形関数を適切に選択することによってこの非線形性を修正することができる。
【0029】
操作された2つの変数による補償が、例えば関数発生器21の不適切な調整のため、あるいは較正誤差のために完全に成功しない場合、サージ制限コントローラは、残りの残留誤差を修正する。
【0030】
図4に示されている本発明の第3の実施形態によれば、試験信号15をサージ制限コントローラ17の出力に加える代わりに、数学符号に従ってサージ制限コントローラ17の入力のオフセットに試験信号15が加えられる。これには、サージ制限コントローラ17の出力信号とサージ制限制御弁5のための基準値が常に一致する利点がある。サージ制限コントローラ17は、言わば常に係合している。
【0031】
また、関数発生器のためのデータの調整は、圧縮機2及びサージ制限制御弁5のための設計データから決定することができる。詳細には、第1の試験における変数の正確な相関は実験によって決定することができ、また、引き続いてシステムをこれらの値に調整することができる。
【0032】
本発明のもう1つの有利な構造では、試験の開始時に試験信号とサージ制限コントローラの出力信号の差が取られ、且つ、最小選択MINの仮想オフセットとしてサージ制限コントローラの開始に切り換えられる。試験信号が大きくなると、サージ制限コントローラは、試験信号の要求に応じてサージ制限制御弁を十分に遠くまで正確に開くオフセットを獲得する。試験を開始する前にサージ制限制御弁が既に部分的に開いている場合、これは、試験の開始時におけるサージ制限制御弁の位置が基準値として採用される点で補償される。試験中、試験信号によって決定された開度より更に大きくサージ制限制御弁を開かなければならない方法で圧縮機の動作点がサージを制限する方向にシフトする場合、最小選択だけサージ制限コントローラの自動オーバライドが存在する。
【0033】
試験信号とプロセスへの流量との間の非線形の関係が他のパラメータに対する依存性、例えば圧縮機の圧力に対する依存性を有するすべてのアプリケーションでは、この影響は、性能線図すなわち性能マップによって補償することができる。このマップには、様々な圧力に対する一連の非線形補償曲線が含まれており、測定された最終圧力に応じて、対応する曲線が選択される。測定された圧力が2つの特性ラインの間に存在している場合、これらの特性ラインの間で補間が実行される。
【0034】
サージ制限制御弁の適応調整が適切に設定されると、減結合によってプロセス運転における攪乱が防止されるため、所望の速さで試験信号を調整することができる。しかしながら、プロセス制御エレメントの駆動速度が制限される可能性があることを考慮しなければならない。操作される変数は、プロセス制御エレメントが追従することができる速度より速い速度で調整することができないことを保証しなければならない。
【0035】
本発明の第4の実施形態によれば、図5に示されているように、低速プロセス制御エレメントの欠点を補償するオブザーバ27が提供される。プロセス制御エレメントは、部分的には設計によってその駆動速度が故意に制限されている。空気圧式制御弁は、しばしば、1秒当たり10%を超えない総リフトをカバーすることができる。サージ制限制御弁及び案内ブレード駆動機構を閉じる速度は、動作点がサージ制限に許容不可能に高速接近するのを防止するために故意に制限されている。部分ストローク試験を実施する場合、さもなければ警報が誤って発せられることがあるため、このことを考慮しなければならない。
【0036】
オブザーバ27を使用する場合、サージ制限制御弁の測定位置は、その位置に対する基準値とは直接比較されないが、オブザーバの出力変数と比較される。ばね圧力によって開くサージ制限制御弁は、電気油圧式変換器22の吸込み24中のチョーク23による限られた駆動速度でのみ閉じることができる。チョーク23の断面が狭いほど、弁が閉じる速度が遅くなる。
【0037】
オブザーバ27は、駆動機構28を備えたこのサージ制限制御弁の動的シミュレーションモデルである。例えば非特許文献1に、この種のオブザーバが記載されている。
【0038】
オブザーバ27の出力信号は、その機能が損なわれていない限り、常にサージ制限制御弁5の位置に対応している。オブザーバが弁の実際の制御挙動を正しく模擬し、且つ、弁が適切に動作している限り、たとえ弁基準値の突発的な変化が存在し、また、オイル吸込みが極めて急激に絞られた場合であっても、オブザーバの出力は常に実際の弁の位置に対応している。
【0039】
部分ストローク試験は、手動、半自動または全自動で実行することができる。手動で実行する場合、オペレータによって手動で試験信号が与えられる。同様に、弁フィードバックの観察もオペレータによって実行される。全自動の場合、一定の時間間隔で試験が開始され、その後は完全に自動的に進行する。最後の弁に対する最後の試験の実行が終了すると、自動試験システムが開始状態にリセットされ、次の試験の準備が整う。試験の結果も同じく完全に自動的に得られる。
【0040】
本発明の他の構造によれば、プロセス変量に対する試験信号の影響を適切に補償することができない場合、試験値が変化する速度を基準値とプロセス変量の実際の値の間の差に応じて変化させることによってこの影響を抑制することができる。偏差がゼロである場合、試験は、最大許容可能速度または最大可能速度で実行される。基準値とプロセス変量の実際の値の間の偏差が大きいほど、プロセス変量の変化が遅くなる。極端な場合、基準値とプロセス変量の実際の値の間の差が再び許容可能な差になるまでの間、試験信号を調整することができなくするか、更には反対方向に調整することができるようにすることさえ可能である。
【0041】
図6は、本発明によるサージ制限制御弁のための部分ストローク試験システムの第5の実施形態のブロック図を示したものである。上で説明した実施形態に使用されている構成要素と同じ構成要素には同じ参照番号が振られている。
【0042】
第5の実施形態による部分ストローク試験システムは、最小選択18を介してサージ制限コントローラ17にその出力が供給されるサージ制限監視ユニット16を備えている。従って、サージを防止するためにサージ制限監視ユニット16によって与えられる、サージ制限制御弁5のための対応する操作変数が、必要に応じて、サージ制限制御弁5を対応的に駆動する位置コントローラ19に切り換えられるため、同じく試験操作の間、圧縮機2のサージを防止することができる。
【0043】
位置測定ユニット6によって検出されたサージ制限制御弁5の位置は、加算ユニットにフィードバックされ、そこで、サージ制限コントローラ17によって与えられる基準位置から減算される。基準位置と実際の位置の間の差が第1または第2の制限値12または20を超えると警報が発せられ、また、第2の制限値を超えると、制御された方法で試験が中止される。この位置監視により、サージ制限制御弁5の開閉におけるヒステリシスの増加として現われる弁5の障害の前兆を適宜にかなった方法で検出することができる。
【0044】
試験を開始する前に、最初に、利用可能な十分な容量の予備量が存在しているかどうかがチェックされる。十分な容量の予備量が存在している場合にのみ試験が実行される。そのために、例えば最大可能案内ブレード開度の95%に相当する決定済み制限値までしか案内ブレード駆動機構8が駆動されないか否かがチェックされる。また、試験中、試験を目的として開かれるサージ制限制御弁5からの流出を補償するだけの十分な容量が依然として存在しているかどうか、つまり案内ブレードがそれらの最大流量断面の95%以上まで未だ調整されていないことが常にチェックされることが好ましい。案内ブレードがそれ以上開き、従ってサージ制限制御弁5からの更に大量の流出をもはや補償することができない危険が存在し、また、プロセスを破壊する可能性がある場合、制御された方法で直ちに試験が中止される。
【0045】
試験の開始時に、積分器13は、正の、好ましくは一定の被積分関数が記憶装置14から積分器13に供給されるまでの間、最初は時間と共に大きくなる試験信号11を生成する。試験を終了するために、次に、時間と共に小さくなる試験信号11を供給する、相応じた負の被積分関数が積分器13に供給される。この試験信号11は、加算ユニット内で流量コントローラ9の出力に切り換えられ、その結果、案内ブレード駆動機構8は、試験信号11が大きくなるとより大きい案内ブレード開度、つまりより大量の流量をもたらす操作変数を獲得し、また、試験信号11が小さくなるとより小さい案内ブレード開度、つまりより少量の流量をもたらす操作変数を獲得する。
【0046】
この方法によれば、最初に、制御された方法で、基準流量値を調整するために必要と思われる範囲を超えて案内ブレードを開き、次に、流量値が再確立される正確な位置まで復帰させることができる。これは、例えば、試験操作の前半部分の間、一定の正の被積分関数が積分器13に供給され、また、試験操作の後半部分の間、同じ量の負の被積分関数が積分器13に供給される点で単純な方法で実現することができる。また、制御された方法で試験を中止するために、試験の開始から経過した時間の間、同じ量の負の被積分関数を単純に積分器13に供給することも可能である。好ましい修正では、被積分関数は、試験信号11がより低速で変化して基準値と実際の値の間の差がより大きくなり、攪乱を補償する機会が流量コントローラに与えられるよう、基準値と流量コントローラの実際の値の間の偏差に対して量を補完的にすることも可能である。
【0047】
プロセスの非線形性のため、決定された案内ブレードの開度を補償するためには、圧縮機マップ上の圧縮機2の動作点の位置に応じてサージ制限制御弁を別様に開く必要がある。そのために、本発明のこの第5の実施形態による試験システムには、計算及び実験によって決定することができる補償機能が提供されている。そのために、例えば圧縮機マップにおける最終圧力体積流量を、2つの異なる圧力の間(例えば2バールと3バールの間、3バールと4バールの間、等々)及び2つの異なる案内ブレード位置の間(例えば10%開度と20%開度の間、10%開度と20%開度の間、等々)を展開している領域に分割することができる。次に、案内ブレードの位置がこれらの領域を画定している2つの案内ブレード位置の一方の位置からもう一方の位置へ変化した場合に、どれだけ流量が変化するか、つまり、例えば案内ブレードが2バールで10%から20%まで増加した場合に、どれだけ流量が増加するかを、これらの領域を画定しているこれらの圧力毎に決定することができる。次に、サージ制限制御弁5の設計曲線から弁の調整を決定し、流量の変化を正確に補償する個々のパラメータ対(圧力、案内ブレード位置の変化)と相関させることができる。
【0048】
関数発生器21内では、サージ制限制御弁の対応する位置変化は、この時点で、この補償機能、つまり、実行された案内ブレード調整によって生じる流量の変化を正確に補償するその弁調整に基づいて、圧縮機2によって実際に生成される圧力p、例えば2バールと結合しており、また、案内ブレード駆動機構8に与えられる操作変数、例えば10%開度から20%開度への変化と結合している。
【0049】
次に、この弁調整がサージ制限制御弁5の実際の位置に加えられ、且つ、新しい基準値としてサージ制限コントローラ17に供給される。圧縮機2のサージを防止するために、オーバライドするサージ制限監視ユニット16の出力を上で説明した最小選択が切り換えない限り、サージ制限コントローラ17は、実行される案内ブレードの調整が実際に優勢な圧力で正確に補償される方法で、位置コントローラ19を介してサージ制限制御弁5の位置を変化させる。
【0050】
補償機能によってもたらされる弁調整を実際の位置に加えることにより、一方ではプロセスの非線形性を考慮し、他方では、サージ制限制御弁が最初に完全に閉じていない場合、試験を開始することも可能である。
【0051】
補償機能は、圧縮機の後段の最終圧力の代わりに、その圧力比またはエンタルピー差に基づくことも可能である。
【0052】
上で説明した実施形態では、試験すべき設備は、容量を調整するための手段を既に有しており、流量は、流量測定デバイス7によって検出され、流量コントローラ9に供給され、且つ、基準値発生器10によって与えられる基準流量を更新するために流量コントローラ9によって使用される。この種の容量調整のない設備の場合、試験の間のみ動作する補助容量コントローラによってプロセス運転の破壊、例えば不完全な補償機能を有利に補償することができ、あるいは少なくとも抑制することができる。
【0053】
そのために、本発明の他の構造では、試験の開始時に、圧縮機2の後段の実際の圧力値が検出され、且つ、記憶される。この圧力値は、この時点では、試験中の基準圧力値として、例えば比例積分(PI)コントローラとして構築することができる補助容量コントローラまたは流量コントローラに供給される。補助容量コントローラは、基準圧力値と実際の圧力値の間の差から、第2のプロセス制御エレメント、例えば案内ブレードドライブまたは速度コントロールのための操作変数を形成する。この操作変数は、試験のために第2のプロセス制御エレメントに切り換えられる操作変数、つまり、例えば案内ブレードを台形の形で開閉させることになる操作変数に加えられる。
【0054】
従って、一方では、試験のための第1のプロセス制御エレメント、例えばサージ制限制御弁の調整を補償するために、試験の間、第2のプロセス制御エレメントが故意に調整される。他方では、少なくとも実質的に同じプロセス変量、例えば試験の開始時に優勢な圧力、つまり正規の運転における優勢な圧力が、引き続くプロセスにおいても同じく優勢であることが保証される。この方法によれば、不正確性、詳細には例えば上で言及した補償機能を決定する際に生じる不正確性、あるいは他の攪乱を実質的に補償することができる。
【0055】
試験の終了時に、オフセットがゼロになるよう、つまり補助容量コントローラの出力が同じくゼロに復帰するよう、補助容量コントローラの基準値が実際の優勢な圧力に更新される。そのために、リミッタによって減衰させることができる補助容量コントローラの出力が、例えば継電器によって、反対の数学符号を有するオフセットとしてスイッチオンされる。
【0056】
以上、本発明について、好ましい実施形態を参照して説明した。当然、同じく修正が可能である。詳細には、個々の実施形態においては、様々な実施形態の個々のエレメントを組み合わせ、且つ/または省略することができる。
【図面の簡単な説明】
【0057】
【図1】ターボ圧縮機を備えた溶鉱炉設備を示す略図である。
【図2】サージ制限制御弁のための部分ストローク試験システムの第1の実施形態を示すブロック図である。
【図3】サージ制限制御弁のための部分ストローク試験システムの第2の実施形態を示すブロック図である。
【図4】サージ制限制御弁のための部分ストローク試験システムの第3の実施形態を示すブロック図である。
【図5】サージ制限制御弁のための部分ストローク試験システムの第4の実施形態を示すブロック図である。
【図6】サージ制限制御弁のための部分ストローク試験システムの第5の実施形態を示すブロック図である。
【符号の説明】
【0058】
1 蒸気タービン
2 圧縮機(ターボ圧縮機)
3 切換え速度の測定を含む案内ブレードコントロール(任意選択)
4 サージ制限コントロール
5 サージ制限制御弁
6 位置測定(位置測定ユニット)
7 流量測定デバイス
8 案内ブレード駆動機構(案内ブレード)
9 流量コントローラ
10 流量のための基準値発生器
11 試験信号
12 制限値発生器1(第1の制限値)
13 積分器
14 記憶装置(フリップ−フロップ)
15 試験(試験信号)
16 サージ制限監視(サージ制限コントローラ、サージ制限監視ユニット)
17 サージ制限コントローラ
18 最小選択(サージ制限コントローラ)
19 位置コントローラ
20 制限値発生器2(第2の制限値)
21 関数発生器(非線形増幅器エレメント、非線形関数エレメント)
22 電気油圧式変換器
23 チョーク
24 吸込み
25 出口
26 弁基準値
27 オブザーバ
28 駆動機構

【特許請求の範囲】
【請求項1】
第1のプロセス制御エレメント(5)と、第2のプロセス制御エレメント(8)と、前記第1のプロセス制御エレメント(5)を試験するための試験システムとを備え、
前記第1のプロセス制御エレメント(5)及び前記第2のプロセス制御エレメント(8)が同じプロセス変量を制御するために提供されたターボマシン(2)であって、
前記第1のプロセス制御エレメント(5)の試験のために、前記試験システムが、前記プロセス変量に対する調整の影響が実質的に除去されるよう、前記2つのプロセス制御エレメント(5、8)を互いに反対方向に調整することを特徴とするターボマシン。
【請求項2】
前記第1のプロセス制御エレメントの調整による前記第2のプロセス制御エレメント(8)の調整、詳細には連続調整による前記プロセス変量の変化を補償するために、プロセス変量を制御するためのコントローラ(17/19)が提供されたことを特徴とする請求項1に記載のターボマシン。
【請求項3】
前記2つのプロセス制御エレメントの前記互いに反対方向の調整が、前記ターボマシンの下流側のプロセスを実質的に減損させることなく試験プロセスが実行される方法で平衡することを特徴とする請求項1または2に記載のターボマシン。
【請求項4】
前記第1のプロセス制御エレメント(5)が弁であり、詳細にはサージ制限制御弁であることを特徴とする請求項1から3のいずれか一項に記載のターボマシン。
【請求項5】
前記試験システムが部分ストロークシステムであることを特徴とする請求項1から4のいずれか一項に記載のターボマシン。
【請求項6】
前記ターボマシンがターボ圧縮機であることを特徴とする請求項1から5のいずれか一項に記載のターボマシン。
【請求項7】
前記プロセス変量が前記ターボ圧縮機を通って流れる流量及び/または最終圧力及び/または吸込み圧力及び/または出力であり、
前記第2のプロセス制御エレメントが、案内ブレードを調整するためのデバイス及び/または前記ターボ圧縮機の速度を変化させるためのデバイス及び/または絞り弁及び/または出口案内弁及び/またはバイパス弁であることを特徴とする請求項6に記載のターボマシン。
【請求項8】
前記案内ブレードを調整するための前記デバイスを通って流れる流量の変化が連続する流量の増加であり、
この連続する流量の増加は、最大値に到達した後、出力値まで再び連続的に減少することを特徴とする請求項7に記載のターボマシン。
【請求項9】
前記試験システムが補助容量コントローラを有し、該補助容量コントローラの出力が前記プロセス制御エレメント(5)または(8)のうちの一方のための制御信号に加法的に重畳され、
該補助容量コントローラの基準値が、試験中、試験開始時の前記プロセス変量に対応し、
該補助容量コントローラの操作変数が試験終了時にゼロにリセットされ、それが前記第1のプロセス制御エレメントまたは前記第2のプロセス制御エレメントに作用することを特徴とする請求項1から8のいずれか一項に記載のターボマシン。
【請求項10】
第1のプロセス制御エレメント(5)、第2のプロセス制御エレメント(8)及び前記第1のプロセス制御エレメント(5)を試験するための試験システムが提供され、
また、前記第1のプロセス制御エレメント(5)及び前記第2のプロセス制御エレメント(8)が同じプロセス変量を制御するために提供されたターボマシンのプロセス制御エレメントの機能を試験するための方法であって、
前記第1のプロセス制御エレメント(5)を試験するために、前記プロセス変量を変化させる方法で前記第2のプロセス制御エレメント(8)が駆動され、
また、前記プロセス変量の前記変化が前記第2のプロセス制御エレメントによって実質的に補償される方法で前記第1のプロセス制御エレメントが駆動されることを特徴とする方法。
【請求項11】
前記第1のプロセス制御エレメント(5)の前記試験が、前記第2のプロセス制御エレメント(8)を、調整、詳細には連続的に調整する方法で実行され、
前記第1のプロセス制御エレメント(5)が前記第2のプロセス制御エレメント(8)の調整による前記プロセス変量の変化を補償する前に、コントローラ(17、19)内でプロセス変量コントロールが起動されることを特徴とする請求項10に記載の方法。
【請求項12】
前記第1のプロセス制御エレメント(5)の前記機能試験が、前記第1のプロセス制御エレメント及び前記第2のプロセス制御エレメントを、互いに反対の方向に調整、詳細には連続的に調整する方法で実行され、
とりわけ、試験信号(11)が数学符号に従って先行するコントローラの出力変数に加えられ、
前記2つのプロセス制御エレメントの前記調整が、間に置かれた非線形増幅器エレメント(21)によって、前記プロセス変量がほとんど変化しない方法で、あるいは全く変化しない方法で実行されることを特徴とする請求項10または11に記載の方法。
【請求項13】
基準値からの前記プロセス変量の偏差に応じた前記試験信号の変化の勾配が、前記偏差が大きいほど前記試験変数の変化が小さくなる方法で変化することを特徴とする請求項12に記載の方法。
【請求項14】
前記第1のプロセス制御エレメントの前記機能試験が、前記第1のプロセス制御エレメント(5)に先行するコントローラ(17、19)を、前記試験開始時の前記コントローラの出力変数からの追加オフセット及び変更可能な試験信号、詳細には連続的に変更可能な試験信号を形成する方法で実行し、
このオフセットが、このループの最終制御変数のオフセットを第2の入力として獲得する最小選択に切り換えられ、
前記第1のプロセス制御エレメント(5)のための前記試験信号が、前記プロセス変量がほとんど変化しないか、あるいは全く変化しないように構成されることを特徴とする請求項10から13のいずれか一項に記載の方法。
【請求項15】
前記第1のプロセス制御エレメント(5)及び前記第2のプロセス制御エレメント(8)に切り換えられる試験信号が、非線形関数エレメント(21)によって、前記プロセス変量がほとんど変化しないか、あるいは全く変化しない方法で変化するように互いに適合されたことを特徴とする請求項10から14のいずれか一項に記載の方法。
【請求項16】
前記第1及び前記第2のプロセス制御エレメントに切り換えられる前記試験信号が、非線形性能線図によって、一定に維持しなければならない前記プロセス変量及び/または他のプロセス変量に応じて前記試験信号を互いに適合させるために特性ラインが選択される方法で互いに適合されるように調整され、前記プロセス変量が2つの特性ラインの間に存在している場合、2つの特性ラインの間で補間が実行されることを特徴とする請求項10から15のいずれか一項に記載の方法。
【請求項17】
一定に維持すべき前記プロセス変量または前記他のプロセス変量が、前記ターボマシンの最終圧力、圧力比及び/またはエンタルピー差からなることを特徴とする請求項16に記載の方法。
【請求項18】
前記プロセス制御エレメントのうちの一方または両方の位置の基準値と実際の値との比較から、前記プロセス制御エレメントが前記基準値を正しく追従しているか否かが決定され、許容不可能な逸脱が生じている場合、警報が発せられることを特徴とする請求項10から17のいずれか一項に記載の方法。
【請求項19】
前記基準値と前記実際の値の間に偏差、詳細には、制限値(12、20)を超えるかなりの偏差が存在している場合、前記試験が中止されることを特徴とする請求項18に記載の方法。
【請求項20】
オブザーバ(27)が介在し、該オブザーバ(27)は、該オブザーバの出力が前記プロセス制御エレメントの期待制御挙動に対応する方法で前記第1のプロセス制御エレメント(5)及び/または第2のプロセス制御エレメント(8)の動的挙動を模擬することを特徴とする請求項10から19のいずれか一項に記載の方法。
【請求項21】
複数のプロセス制御エレメントが並列に設置され、且つ、それらを試験しなければならない場合、すべての並列プロセス制御エレメントが同時に、及び/または同じ方向に制御される方法で前記試験が実行されることを特徴とする請求項10から20のいずれか一項に記載の方法。
【請求項22】
複数のプロセス制御エレメントが並列に設置され、且つ、それらを試験しなければならない場合、一部の量の前記プロセス制御エレメントのみが部分量毎に順次試験され、詳細には、複数のプロセス制御エレメントが1つずつ順次試験される方法で前記試験が実行されることを特徴とする請求項10から20のいずれか一項に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2009−541756(P2009−541756A)
【公表日】平成21年11月26日(2009.11.26)
【国際特許分類】
【出願番号】特願2009−516985(P2009−516985)
【出願日】平成19年6月27日(2007.6.27)
【国際出願番号】PCT/EP2007/005683
【国際公開番号】WO2008/000459
【国際公開日】平成20年1月3日(2008.1.3)
【出願人】(501473888)マン ターボ アーゲー (21)
【氏名又は名称原語表記】MAN TURBO AG
【Fターム(参考)】