説明

テラヘルツ波用減光フィルタ

【課題】透過率を変更しても光路長を一定とすることができるとともに透過率の波長依存性を低減することができるテラヘルツ波用減光フィルタを提供する。
【解決手段】減光フィルタ31は、透過領域(貫通孔312が形成されている領域)と遮断領域(貫通孔312が形成されていない領域)とがテラヘルツ波の波長において周期構造を有しないよう分布していて、透過領域が占める割合に応じた透過率でテラヘルツ波を透過させる。この減光フィルタ31は、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、テラヘルツ波用の減光フィルタ、この減光フィルタを備えるテラヘルツ波測定装置、および、テラヘルツ波を減光する方法に関するものである。
【背景技術】
【0002】
テラヘルツ波は、光波と電波との中間領域に相当する0.01THz〜100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。このようなテラヘルツ波の応用として、測定対象物で透過または反射したテラヘルツ波の電場振幅の時間波形を測定することで該測定対象物の情報を取得する技術が研究されている(特許文献1および非特許文献1を参照)。
【0003】
テラヘルツ波を用いた測定対象物の情報の測定技術は、一般に以下のようなものである。すなわち、光源(例えばフェムト秒レーザ光源)から出力されたパルス光は、分岐部により2分岐されてポンプ光およびプローブ光とされる。そのうちポンプ光はテラヘルツ波発生素子(例えば非線形光学結晶や光導電アンテナ素子)に入力されて、これにより、このテラヘルツ波発生素子からパルステラヘルツ波が発生する。この発生したテラヘルツ波は、測定対象部で透過または反射されることで該測定対象物の情報(例えば、吸収係数、屈折率)を取得し、その後、プローブ光と略同一タイミングでテラヘルツ波検出素子(例えば、電気光学結晶や光導電アンテナ素子)に入射される。
【0004】
テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子では、両光の間の相関が検出される。例えば、テラヘルツ波検出素子として電気光学結晶が用いられる場合、テラヘルツ波およびプローブ光は、合波部により合波されて電気光学結晶に入射され、この電気光学結晶においてテラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。電気光学結晶におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、測定対象物の情報が得られる。
【0005】
このようなテラヘルツ波を用いた測定において、テラヘルツ波検出素子から得られる信号値(例えば、テラヘルツ波検出素子として電気光学結晶が用いられる場合には、電気光学結晶におけるプローブ光の偏光状態の変化量を表す電気信号の値)と、その信号値が表すテラヘルツ波の電場振幅との関係は、必ずしも線形関係にはない。そこで、両者の間の関係を校正するために、テラヘルツ波用の減光フィルタが必要となる。
【0006】
一般に光学用の減光フィルタとしては、ガラス基板上にクロムの金属膜をコーティングしたものであって金属膜の膜厚に応じた透過率を有するもの(以下「タイプ1」という。)、ガラス基板の中に光吸収材を混合したものであって該基板の板厚に応じた透過率を有するもの(以下「タイプ2」という。)、および、ガラス基板の中に光吸収材を混合したものであって当該混合比率に応じた透過率を有するもの(以下「タイプ3」という。)、等が知られている。
【0007】
また、光学用の減光フィルタとして、光を透過させる透過領域と光を遮断する遮断領域とが分布しているものであって、透過領域が占める割合に応じた透過率を有するもの(以下「タイプ4」という。)も知られている(例えば特許文献2および非特許文献2を参照)。
【0008】
非特許文献2に記載されているポルカ・ドット・ビーム・スプリッタは、本来は光を2分岐するビームスプリッタであるが、透過光について着目すれば減光フィルタとしても用いられ得る。この減光フィルタ(ポルカ・ドット・ビーム・スプリッタ)は、合成石英基板上の互いに離散的に配置された複数の所定領域に選択的にアルミニウム膜が蒸着されたものであって、アルミニウム膜が蒸着されている領域(遮断領域)では光を反射させ、アルミニウム膜が蒸着されていない領域(透過領域)では光を透過させることができる。非特許文献1に記載されている減光フィルタは、波長範囲250nm〜2000nmに含まれる波長の光が入射角0〜45度で入射した場合に一定の透過率を有するとされている。
【特許文献1】特開2004−354246号公報
【特許文献2】特開2007−027206号公報
【非特許文献1】阪井清美、「テラヘルツ時間領域分光法」、分光研究、第50巻、第6号(2001)、pp.261〜273
【非特許文献2】エドモンド・オプティクス・ジャパン社の2007年度版光学部品・製品総合カタログ、J074A、第54頁
【発明の開示】
【発明が解決しようとする課題】
【0009】
ところで、上記のタイプ1〜4の減光フィルタは、何れも、紫外域,可視域および赤外域の光学用のものである。テラヘルツ波用の減光フィルタは、提案または試作のレベルのものを含めて未だ知られておらず、少なくとも市販されてはいない。
【0010】
前述したように、テラヘルツ波は、光波と電波との中間領域に相当する周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。このことから、上記のタイプ1〜4の光学用の減光フィルタを用いて、テラヘルツ波を減光することが考えられる。しかし、この場合には以下のような問題が生じることを本発明者は見出した。
【0011】
タイプ1〜3の減光フィルタでは、透過率を変更すると光路長も変化する。すなわち、タイプ1の減光フィルタでは、ガラス基板上にコーティングした金属膜の膜厚を変更すると、透過率が変化するだけでなく、光路長も変化する。タイプ2の減光フィルタでは、光吸収材を混合したガラス基板の板厚を変更すると、透過率が変化するだけでなく、光路長も変化する。また、タイプ3の減光フィルタでは、ガラス基板の中の光吸収材の混合比率を変更すると、屈折率が変化して、透過率が変化するだけでなく、光路長も変化する。
【0012】
テラヘルツ波を用いた測定対象物の情報の測定では、テラヘルツ波検出素子に入射されるテラヘルツ波とプローブ光とのタイミングが走査されることで、テラヘルツ波の電場振幅の時間波形が測定される。このような測定の場合に、減光フィルタの挿入によりテラヘルツ波の光路長が変化すると、精確な測定が行われ得ない。したがって、タイプ1〜3の減光フィルタは、テラヘルツ波を用いた測定に使用するには不適切である。
【0013】
一方、タイプ4の減光フィルタは、透過領域が占める割合を変更することで透過率を変化させることができる。タイプ4の減光フィルタは、基板の厚み及び材質を一定とすれば光路長を一定とすることができるので、上記の光路長変化の問題を解消し得るものであると期待される。しかし、本発明者は、タイプ4の減光フィルタを試作し、その減光フィルタを用いてテラヘルツ波を減光することを試みたところ、その減光フィルタの透過率がテラヘルツ波の周波数に依存することを見出した。
【0014】
本発明は、上記問題点を解消する為になされたものであり、透過率を変更しても光路長を一定とすることができるとともに透過率の波長依存性を低減することができるテラヘルツ波用減光フィルタおよびテラヘルツ波減光方法を提供することを目的とする。また、本発明は、このような減光フィルタを備え精確なテラヘルツ波測定を行うことができるテラヘルツ波測定装置を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明に係るテラヘルツ波用の減光フィルタは、テラヘルツ波を透過させる透過領域とテラヘルツ波を遮断する遮断領域とがテラヘルツ波の波長において周期構造を有しないよう分布しており、一方の側から入射されたテラヘルツ波を他方の側へ、透過領域が占める割合に応じた透過率で透過させることを特徴とする。このように構成される減光フィルタは、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【0016】
本発明に係るテラヘルツ波測定装置は、(1) 光を出力する光源と、(2) 光源から出力された光を2分岐して、その2分岐した光のうち一方をポンプ光とし他方をプローブ光として出力する分岐部と、(3) 分岐部から出力されたポンプ光を入力することでテラヘルツ波を発生し出力するテラヘルツ波発生素子と、(4) テラヘルツ波発生素子から出力され測定対象物で透過または反射されたテラヘルツ波と、分岐部から出力されたプローブ光とを入力し、これらテラヘルツ波とプローブ光との間の相関を検出するテラヘルツ波検出素子と、(5) テラヘルツ波発生素子からテラヘルツ波検出素子に到るまでの光路であって、テラヘルツ波およびプローブ光のうちテラヘルツ波のみが伝播する光路に挿入され、入射されたテラヘルツ波を減光して透過させ出射する上記の本発明に係る減光フィルタと、を備えることを特徴とする。
【0017】
本発明に係るテラヘルツ波減光方法は、テラヘルツ波を透過させる透過領域とテラヘルツ波を遮断する遮断領域とがテラヘルツ波の波長において周期構造を有しないよう分布している減光フィルタを用い、その減光フィルタの一方の側から入射されたテラヘルツ波を他方の側へ、透過領域が占める割合に応じた透過率で透過させることで、テラヘルツ波を減光することを特徴とする。このようにしてテラヘルツ波を減光する方法は、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【発明の効果】
【0018】
本発明によれば、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【発明を実施するための最良の形態】
【0019】
以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0020】
先ず、本実施形態に係るテラヘルツ波測定装置1の構成について説明する。図1は、本実施形態に係るテラヘルツ波測定装置1の構成図である。この図に示されるテラヘルツ波測定装置1は、テラヘルツ波を用いて透過測定法により測定対象物Sの情報を取得するものであって、光源11、分岐部12、チョッパ13、光路長差調整部14、偏光子15、合波部16、テラヘルツ波発生素子20、減光フィルタ30、テラヘルツ波検出素子40、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55を備える。
【0021】
光源11は、一定の繰返し周期でパルス光を出力するものであり、好適にはパルス幅がフェムト秒程度であるパルスレーザ光を出力するフェムト秒パルスレーザ光源である。分岐部12は、例えばビームスプリッタであり、光源11から出力されたパルス光を2分岐して、その2分岐したパルス光のうち一方をポンプ光としてミラーM1へ出力し、他方をプローブ光としてミラーM4へ出力する。
【0022】
チョッパ13は、分岐部12とミラーM1との間のポンプ光の光路上に設けられ、一定の周期でポンプ光の通過および遮断を交互に繰り返す。分岐部12から出力されチョッパ13を通過したポンプ光は、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生素子20に入力される。なお、分岐部12からテラヘルツ波発生素子20に到るまでのポンプ光の光学系を、以下では「ポンプ光学系」という。
【0023】
テラヘルツ波発生素子20は、ポンプ光を入力することでパルステラヘルツ波を発生し出力するものであり、例えば、非線形光学結晶(例えばZnTe)、光導電アンテナ素子(例えばGaAsを用いた光スイッチ)、半導体(例えばInAs)および超伝導体の何れかを含んで構成される。テラヘルツ波発生素子20が非線形光学結晶を含む場合、このテラヘルツ波発生素子20は、ポンプ光入射に伴って発現する非線形光学現象によりテラヘルツ波を発生することができる。
【0024】
テラヘルツ波は、光波と電波との中間領域に相当する0.01THz〜100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。また、パルステラヘルツ波は、一定の繰返し周期で発生し、パルス幅が数ピコ秒程度である。テラヘルツ波発生素子20から出力されたテラヘルツ波は、測定対象物Sを透過することで測定対象物Sの情報(例えば、吸収係数、屈折率)を取得し、その後、合波部16に入力される。なお、テラヘルツ波発生素子20から合波部16に到るまでのテラヘルツ波の光学系を、以下では「テラヘルツ波光学系」という。
【0025】
一方、分岐部12から出力されたプローブ光は、ミラーM4〜M8により順次に反射され、偏光子15を通過して、合波部16に入力される。なお、分岐部12から合波部16に到るまでのプローブ光の光学系を、以下では「プローブ光学系」という。4個のミラーM4〜M7は光路長差調整部14を構成している。すなわち、ミラーM5およびM6が移動することで、ミラーM4およびM7とミラーM5およびM6との間の光路長が調整され、プローブ光学系の光路長が調整される。これにより、光路長差調整部14は、分岐部12から合波部16に到るまでのポンプ光学系およびテラヘルツ波光学系の光路長と、分岐部12から合波部16に到るまでのプローブ光学系の光路長との差を、調整することができる。
【0026】
合波部16は、テラヘルツ波発生素子20から出力され測定対象物Sを透過したテラヘルツ波と、分岐部12から出力されて到達したプローブ光とを入力し、これらテラヘルツ波およびプローブ光を互いに同軸となるように合波してテラヘルツ波検出素子40へ出力する。この合波部16は、堅固な支持枠に接着され薄く引き伸ばされたフィルム状のミラーであるペリクルであるのが好適である。
【0027】
テラヘルツ波検出素子40は、テラヘルツ波とプローブ光との間の相関を検出するものである。テラヘルツ波検出素子40が電気光学結晶を含む場合、このテラヘルツ波検出素子40は、合波部16から出力されたテラヘルツ波およびプローブ光を入力し、テラヘルツ波の伝搬に伴いポッケルス効果により複屈折が誘起され、その複屈折によりプローブ光の偏光状態を変化させて、そのプローブ光を出力する。このときの複屈折量はテラヘルツ波の電場強度に依存するので、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化量はテラヘルツ波の電場強度に依存する。
【0028】
偏光分離素子52は、例えばウォラストンプリズムであり、テラヘルツ波検出素子40から出力され1/4波長板51を経たプローブ光を入力し、この入力したプローブ光を互いに直交する2つの偏光成分に分離して出力する。光検出器53A,53Bは、例えばフォトダイオードを含み、偏光分離素子52により偏光分離されたプローブ光の2つの偏光成分のパワーを検出して、その検出したパワーに応じた値の電気信号を差動増幅器54へ出力する。
【0029】
差動増幅器54は、光検出器53A,53Bそれぞれから出力された電気信号を入力し、両電気信号の値の差に応じた値を有する電気信号をロックイン増幅器55へ出力する。ロックイン増幅器55は、チョッパ13におけるポンプ光の通過および遮断の繰返し周波数で、差動増幅器54から出力される電気信号を同期検出する。このロックイン増幅器55から出力される信号は、テラヘルツ波の電場強度に依存する値を有する。このようにして、測定対象物Sを透過したテラヘルツ波とプローブ光との間の相関を検出し、テラヘルツ波の電場振幅を検出して、測定対象物Sの情報を得ることができる。
【0030】
また、このテラヘルツ波測定装置1では、テラヘルツ波発生素子20から合波部16に到るまでのテラヘルツ波光学系の光路上に減光フィルタ30が挿入されている。減光フィルタ30は、テラヘルツ波発生素子20と測定対象物Sとの間の光路上に挿入されてもよいし、測定対象物Sと合波部16との間の光路上に挿入されてもよい。減光フィルタ30は、一方の側から入射されたテラヘルツ波を他方の側へ或る透過率で透過させるものであり、そのテラヘルツ波を減光することができる。
【0031】
このテラヘルツ波測定装置1は以下のように動作する。光源11から出力されたパルス光は、分岐部12により2分岐されてポンプ光およびプローブ光とされる。分岐部12から出力されたポンプ光は、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生素子20に入力される。テラヘルツ波発生素子20では、ポンプ光の入力に応じてテラヘルツ波が発生し出力される。テラヘルツ波発生素子20から出力されたテラヘルツ波は、測定対象部Sを透過して合波部16に入力される。このとき合波部16に入力されるテラヘルツ波の強度は、減光フィルタ30により調整される。一方、分岐部12から出力されたプローブ光は、ミラーM4〜M8により順次に反射され、偏光子15により直線偏光とされ、合波部16に入力される。
【0032】
合波部16に入力されたテラヘルツ波およびプローブ光は、合波部16により互いに同軸となるように合波されて、略同一タイミングでテラヘルツ波検出素子40に入力される。テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子40では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。そして、このテラヘルツ波検出素子40におけるプローブ光の偏光状態は、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55により検出される。このようにして、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、測定対象物Sの特性が得られる。
【0033】
光路長差調整部14においてミラーM4およびM7とミラーM5およびM6との間の光路長が調整され、プローブ光学系の光路長が調整されることで、テラヘルツ波検出素子40に入力されるテラヘルツ波およびプローブ光それぞれのタイミング差が調整される。前述したように、一般に、テラヘルツ波のパルス幅はピコ秒程度であるのに対して、プローブ光のパルス幅はフェムト秒程度であり、テラヘルツ波と比べてプローブ光のパルス幅は数桁狭い。このことから、光路長差調整部14によりテラヘルツ波検出素子40へのプローブ光の入射タイミングが掃引されることで、パルステラヘルツ波の電場振幅の時間波形が得られる。
【0034】
また、テラヘルツ波光学系の光路上に減光フィルタ30が挿入されて、その減光フィルタ30の透過率を種々のものとすることで、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化量を表すロックインアンプ55の出力値と、その値が表すテラヘルツ波の電場振幅との関係が校正され得る。また、本実施形態に係る減光フィルタ30は、後述するように、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができるものである。このことから、この減光フィルタ30を備えるテラヘルツ波測定装置1は、精確なテラヘルツ波測定を行うことができる。
【0035】
なお、図1に示されたテラヘルツ波測定装置1では測定対象物Sを透過したテラヘルツ波が測定されたが、測定対象物Sで反射(全反射を含む。)されたテラヘルツ波が測定されてもよい。テラヘルツ波の透過および反射の何れであっても、上記と同様にして、パルステラヘルツ波の電場振幅の時間波形が得られ、測定対象物Sの特性が得られる。
【0036】
次に、本発明に係る減光フィルタの実施形態について説明する。以下に説明する実施形態の減光フィルタ31〜34は、上記のテラヘルツ波測定装置1に含まれる減光フィルタ30として好適に用いられ得るものである。
【0037】
図2は、第1実施形態に係る減光フィルタ31の斜視図である。この図に示される減光フィルタ31は、テラヘルツ波を遮断することが可能で厚みが一定である平板311において、両主面の間で貫通する複数の貫通孔312が設けられたものである。平板311の全体がテラヘルツ波を遮断する材料からなっていてもよいし、平板311の主面付近の一定厚の部分がテラヘルツ波を遮断する材料からなっていてもよい。テラヘルツ波を遮断する材料としては例えば金属が挙げられる。
【0038】
この減光フィルタ31では、複数の貫通孔312が形成されている領域は、テラヘルツ波を透過させる透過領域となる。また、平板311において貫通孔312が形成されていない領域は、テラヘルツ波を遮断する遮断領域となる。減光フィルタ31は、一方の主面に入射されたテラヘルツ波のうち貫通孔312に入射された部分を選択的に他方の主面の側から出射させることができる。
【0039】
また、この減光フィルタ31では、透過領域(貫通孔312が形成されている領域)と、遮断領域(貫通孔312が形成されていない領域)とは、テラヘルツ波の波長において周期構造を有しないよう分布している。複数の貫通孔312それぞれは、形状、寸法および位置の何れかに関してランダムに配置されていればよい。図2に示された減光フィルタ31では、複数の貫通孔312それぞれは、同一形状・同一寸法であるが、ランダムな位置に配置されていて、これにより、テラヘルツ波の波長において周期構造を有しないようになっている。また、この減光フィルタ31では、透過して出射されるテラヘルツ波の強度が空間的に均一になるように、透過領域または遮断領域がテラヘルツ波の波長より小さい構造であることが望ましい。
【0040】
図3は、減光フィルタ31を透過して出射されるパルステラヘルツ波の電場振幅の時間波形を示す図である。ここでは、4種類の減光フィルタ31を用意し、平板311において透過領域である複数の貫通孔312が占める割合を30%,60%,70%,90%として、それぞれについてパルステラヘルツ波の電場振幅の時間波形を示す。また、この割合が100%である場合(すなわち、減光フィルタを配置しない場合)についても、パルステラヘルツ波の電場振幅の時間波形を示す。このパルステラヘルツ波の電場振幅の時間波形は、図1に示されるテラヘルツ波測定装置1において測定対象物Sを挿入しない状態で測定されたものである。
【0041】
この図に示されるように、減光フィルタ31におけるテラヘルツ波の透過率は、平板311において透過領域である複数の貫通孔312が占める割合に応じたものとなる。また、減光フィルタ31を透過して出射されるパルステラヘルツ波のピークの時間位置は、透過率によらず一定である。
【0042】
図4は、減光フィルタ31の透過率の波長依存性を示す図である。ここでは、平板311において透過領域である複数の貫通孔312が占める割合が異なる3種類の減光フィルタ31A,31B,31Cそれぞれについて透過率の波長依存性を示す。これらのうち、減光フィルタ31A,31Bは、平板311において複数の貫通孔312がテラヘルツ波の波長において周期構造を有しないように配置されている本実施形態のものである。一方、減光フィルタ31Cは、平板311において同一形状の複数の貫通孔312が一定間隔で周期的に正方格子状に配置されている比較例のものである。
【0043】
この図に示されるように、比較例の減光フィルタ31Cでは、透過率の波長依存性が平坦ではなく、或る波長域において透過率が大きくなる。これに対して、本実施形態の減光フィルタ31A,31Bでは、透過率の波長依存性が平坦となっている。この違いは以下の理由により生じると考えられる。
【0044】
すなわち、比較例の減光フィルタ31Cでは、平板311において複数の貫通孔312が一定間隔で周期的に正方格子状に配置されていることから、或る波長のテラヘルツ波が入射されると表面プラズモンポラリトンが発生する。そして、比較例の減光フィルタ31Cでは、この表面プラズモンポラリトンの影響により、透過率の波長依存性が平坦ではなく、表面プラズモンポラリトンの共鳴周波数に対応するテラヘルツ波の波長域において透過率が大きくなると考えられる。
【0045】
これに対して、本実施形態の減光フィルタ31A,31Bでは、表面プラズモンポラリトンの共鳴周波数がテラヘルツ波の波長域に強く現れないように、平板311において複数の貫通孔312がテラヘルツ波の波長において周期構造を有しないように配置されており、このことにより、透過率の波長依存性が平坦となっている。
【0046】
以上のように、第1実施形態に係る減光フィルタ31は、透過領域(貫通孔312が形成されている領域)と遮断領域(貫通孔312が形成されていない領域)とがテラヘルツ波の波長において周期構造を有しないよう分布していて、透過領域が占める割合に応じた透過率でテラヘルツ波を透過させる。この減光フィルタ31は、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【0047】
図5は、第2実施形態に係る減光フィルタ32の斜視図である。この図に示される減光フィルタ32は、テラヘルツ波を透過させることが可能で厚みが一定である第1平板320と、テラヘルツ波を遮断することが可能で厚みが一定である第2平板321と貼り合わされていて、第2平板321において、両主面の間で貫通する複数の貫通孔322が設けられたものである。
【0048】
第2実施形態における第2平板321は、第1実施形態における平板311と同様のものである。第2実施形態における複数の貫通孔322は、第1実施形態における複数の貫通孔312と同様のものであり、テラヘルツ波の波長において周期構造を有しないよう、形状、寸法および位置の何れかに関してランダムに配置されている。図5に示された減光フィルタ32では、複数の貫通孔322それぞれは、同一形状・同一寸法であるが、ランダムな位置に配置されていて、これにより、テラヘルツ波の波長において周期構造を有しないようになっている。
【0049】
テラヘルツ波を透過させることができる第1平板320の材料としては、例えば、プラスチック、PTFE(ポリテトラフルオロエチレン)、紙およびOHPシート等が挙げられる。この減光フィルタ32は、例えば、第1平板320の一方の主面上に所定の離散的な開口部を有するパターンで金属材料を第1平板321として熱転写することで製造され得る。離散的な開口部は、テラヘルツ波を透過させる貫通孔322となる。この熱転写に際して例えばパソコン用のプリンタが用いられ得る。
【0050】
ここで、第1平板320が紙などのように薄い場合、テラヘルツ波に対して透明なPTFEなどの支持板に紙などを接着材で貼り付けて、この貼り付けたものを第1平板320としてもよい。なお、このときに使用する接着剤もテラヘルツ波で透明であることが必要である。また、PTFEなどの支持板を2枚用いて、これら2枚の支持板で紙などを挟んだ構造としてもよい。この場合、接着剤を用いる必要がなく好適である。
【0051】
第2実施形態に係る減光フィルタ32は、透過領域(貫通孔322が形成されている領域)と遮断領域(貫通孔322が形成されていない領域)とがテラヘルツ波の波長において周期構造を有しないよう分布していて、透過領域が占める割合に応じた透過率でテラヘルツ波を透過させる。この減光フィルタ32は、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【0052】
図6は、第3実施形態に係る減光フィルタ33の斜視図である。この図に示される減光フィルタ33は、テラヘルツ波を透過させることが可能で厚みが一定である平板330の一方の主面上に、テラヘルツ波を遮断することが可能な複数の遮断材331が貼り合わされたものである。
【0053】
第3実施形態における平板330は、第2実施形態における第1平板320と同様のものである。第3実施形態における複数の複数の遮断材331それぞれは、同一形状・同一寸法であるが、ランダムな位置に配置されていて、これにより、テラヘルツ波の波長において周期構造を有しないようになっている。この減光フィルタ33は、例えば、平板330の一方の主面上に所定の離散的パターンで金属材料を遮断材331として熱転写することで製造され得る。
【0054】
第3実施形態に係る減光フィルタ33は、透過領域(遮断材331が形成されていない領域)と遮断領域(遮断材331が形成されている領域)とがテラヘルツ波の波長において周期構造を有しないよう分布していて、透過領域が占める割合に応じた透過率でテラヘルツ波を透過させる。この減光フィルタ33は、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【0055】
図7は、第4実施形態に係る減光フィルタ34の平面図である。この図に示される減光フィルタ34は、テラヘルツ波を遮断することが可能で厚みが一定である平板341において、両主面の間で貫通する複数の貫通孔342が設けられたものである。
【0056】
第4実施形態における平板341は、第1実施形態における平板311と同様のものである。第4実施形態における複数の貫通孔342は、形状、寸法および位置の何れに関してもランダムに配置されている。
【0057】
第4実施形態に係る減光フィルタ34は、透過領域(貫通孔342が形成されている領域)と遮断領域(貫通孔342が形成されていない領域)とがテラヘルツ波の波長において周期構造を有しないよう分布していて、透過領域が占める割合に応じた透過率でテラヘルツ波を透過させる。この減光フィルタ34は、透過率を変更しても光路長を一定とすることができるとともに、透過率の波長依存性を低減することができる。
【図面の簡単な説明】
【0058】
【図1】本実施形態に係るテラヘルツ波測定装置1の構成図である。
【図2】第1実施形態に係る減光フィルタ31の斜視図である。
【図3】第1実施形態に係る減光フィルタ31を透過して出射されるパルステラヘルツ波の電場振幅の時間波形を示す図である。
【図4】第1実施形態に係る減光フィルタ31の透過率の波長依存性を示す図である。
【図5】第2実施形態に係る減光フィルタ32の斜視図である。
【図6】第3実施形態に係る減光フィルタ33の斜視図である。
【図7】第4実施形態に係る減光フィルタ34の平面図である。
【符号の説明】
【0059】
1…テラヘルツ波測定装置、11…光源、12…分岐部、13…チョッパ、14…光路長差調整部、15…偏光子、16…合波部、20…テラヘルツ波発生素子、30〜34…減光フィルタ、40…テラヘルツ波検出素子、51…1/4波長板、52…偏光分離素子、53A,53B…光検出器、54…差動増幅器、55…ロックイン増幅器、M1〜M8…ミラー、S…測定対象物。

【特許請求の範囲】
【請求項1】
テラヘルツ波を透過させる透過領域とテラヘルツ波を遮断する遮断領域とがテラヘルツ波の波長において周期構造を有しないよう分布しており、一方の側から入射されたテラヘルツ波を他方の側へ、前記透過領域が占める割合に応じた透過率で透過させることを特徴とするテラヘルツ波用の減光フィルタ。
【請求項2】
光を出力する光源と、
前記光源から出力された光を2分岐して、その2分岐した光のうち一方をポンプ光とし他方をプローブ光として出力する分岐部と、
前記分岐部から出力されたポンプ光を入力することでテラヘルツ波を発生し出力するテラヘルツ波発生素子と、
前記テラヘルツ波発生素子から出力され測定対象物で透過または反射されたテラヘルツ波と、前記分岐部から出力されたプローブ光とを入力し、これらテラヘルツ波とプローブ光との間の相関を検出するテラヘルツ波検出素子と、
前記テラヘルツ波発生素子から前記テラヘルツ波検出素子に到るまでの光路であって、テラヘルツ波およびプローブ光のうちテラヘルツ波のみが伝播する光路に挿入され、入射されたテラヘルツ波を減光して透過させ出射する請求項1記載の減光フィルタと、
を備えることを特徴とするテラヘルツ波測定装置。
【請求項3】
テラヘルツ波を減光する方法であって、
テラヘルツ波を透過させる透過領域とテラヘルツ波を遮断する遮断領域とがテラヘルツ波の波長において周期構造を有しないよう分布している減光フィルタを用い、
その減光フィルタの一方の側から入射されたテラヘルツ波を他方の側へ、前記透過領域が占める割合に応じた透過率で透過させることで、テラヘルツ波を減光する、
ことを特徴とするテラヘルツ波減光方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−298980(P2008−298980A)
【公開日】平成20年12月11日(2008.12.11)
【国際特許分類】
【出願番号】特願2007−143742(P2007−143742)
【出願日】平成19年5月30日(2007.5.30)
【出願人】(000236436)浜松ホトニクス株式会社 (1,479)
【Fターム(参考)】