説明

トンネル施工管理方法

【課題】好適なトンネルの施工を可能にするトンネル施工管理方法を実現する。
【解決手段】切羽1b前方を穿孔探査した探査結果と、切羽1b後方の支保1cの逆解析結果から地山弾性係数や地山初期応力等を求め、これらを入力値とした数値解析によって支保1cの構造を設定する。支保1cを実際にトンネル1に施工した後、支保1cの変位計測を行って、計測時の変位量と収束時の最終予測変位量を評価し、それらを基にした逆解析を実施する。この解析結果より支保構造が過小な設計であったか過大な設計であったか見直すことができるので、地山評価方法や解析方法を合理的に見直すことが可能となる。また、支保耐力が不足している場合には、逆解析結果を基にして合理的な補強構造の設計が可能となる。これらの工程を繰り返し行うことで好適なトンネルの施工が可能になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トンネル施工管理方法に関する。
【背景技術】
【0002】
従来、トンネルを施工する地山について、地表踏査、ボーリング調査、弾性波探査などの事前調査を行い、その調査結果に基づいて設計された支保工を施してトンネルを施工する技術が知られている(例えば、特許文献1、非特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平5−202694号公報
【非特許文献】
【0004】
【非特許文献1】土木学会:トンネル標準示方書 山岳工法・同解説,丸善(株),pp.19-20,pp.54-55,平成18年7月
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記従来技術の場合、実際にトンネルの掘削を開始すると、事前調査の結果とは掛け離れた条件の地山であることがあり、支保構造が過大設計であった場合、無駄な工費をかけた不経済なトンネルを施工してしまうことになる。また、支保構造が過小設計であった場合、不安定なトンネルを施工してしまったことで、補強などの追加対策が必要となり、工費が大幅に増大してしまう恐れがある。
【0006】
また、事前調査で得られた各種パラメータに基づき詳細な数値解析を行って、支保部材に発生する応力やトンネルの変形を予測し、支保構造を設計することも可能ではあるが、解析結果に大きな影響を与える入力パラメータ(例えば、地山初期応力、地山弾性係数など)を正確に評価することは困難である。そのため、定量的な予測解析の信頼性は低く、特殊な条件を除いて数値解析はほとんど実施されていないのが現状である。これらの理由によって、トンネルの構造設計および施工管理は経験的で定性的な評価に留まっており、上記のような問題が生じている。
【0007】
本発明の目的は、好適なトンネルの施工を可能にするトンネル施工管理方法を提供することである。
【課題を解決するための手段】
【0008】
以上の課題を解決するため、請求項1に記載の発明は、トンネル施工管理方法であって、
トンネル切羽の掘削方向前方の地山の穿孔探査を行って計測された穿孔エネルギー(Ed’)に対応する地山弾性係数(E)と、前記トンネル切羽の後方に施工された支保の施工後の変位(δ)とに基づく地山初期応力(σ)に応じた支保構造を設定する支保構造設定工程と、
前記穿孔探査を行った探査区間の地山を掘進した掘削壁面に、前記支保構造設定工程により設定された前記支保構造の支保を施工する支保施工工程と、
前記支保施工工程により施工された前記支保の変位を計測し、その計測結果に基づいて前記支保の経時的な変位量を予測して、前記支保の支保構造が適正であったか否か判断する判断工程と、
前記判断工程により、前記支保構造が適正でなかったと判断された場合に、前記支保構造設定工程における穿孔エネルギー(Ed’)と地山弾性係数(E)との対応を見直す支保構造修正工程と、
を備えることを特徴とする。
【0009】
請求項2に記載の発明は、請求項1に記載のトンネル施工管理方法において、
前記支保構造設定工程で用いられる前記地山初期応力(σ)は、前記支保施工工程によって既に施工された前記支保を計測して得られた前記変位(δ)と、前記穿孔探査の結果がフィードバックされた地山弾性係数(E)とが入力される逆解析によって求められることを特徴とする。
【0010】
請求項3に記載の発明は、請求項2に記載のトンネル施工管理方法において、
前記逆解析によって求められた前記地山初期応力(σ)は、前記支保構造設定工程にフィードバックされて、その地山初期応力(σ)と前記地山弾性係数(E)とが入力される順解析によって求められる前記支保及び前記地山の応力と、前記支保に関する前記変位(δ)とに基づいて、前記支保構造が設定されることを特徴とする。
【0011】
請求項4に記載の発明は、請求項1〜3の何れか一項に記載のトンネル施工管理方法において、
前記判断工程により、前記支保構造が適正でなかったと判断された場合に、その適正でなかった前記支保を補強するための補強構造を設定する補強構造設定工程を備えることを特徴とする。
【発明の効果】
【0012】
本発明によれば、トンネル切羽の掘削方向前方の穿孔探査を行うことで、支保を施工する範囲の地山評価を行うことができるので、穿孔探査した探査区間に適した支保構造を設定することができ、好適な支保を施工することができる。
特に、地山の穿孔探査を行って計測された穿孔エネルギー(Ed’)に対応する地山弾性係数(E)と、トンネル切羽の後方に施工された支保の施工後の変位(δ)とに基づく地山初期応力(σ)に応じた支保構造を設定することができる。
ここで、地山初期応力(σ)は、地山弾性係数(E)と変位(δ)が入力される逆解析によって求められるデータである。地山弾性係数(E)は、穿孔探査によって得られたデータがフィードバックされたデータであり、変位(δ)は施工された支保の経時的な変位計測によって得られるデータである。
つまり、トンネル切羽の掘削方向前方の地山を穿孔探査して得られた地山弾性係数(E)をフィードバックして、その地山弾性係数(E)と、既設の支保の変位(δ)とを入力データとする逆解析によって地山初期応力(σ)を求めることと、その逆解析によって求められた地山初期応力(σ)をフィードバックして、その地山初期応力(σ)と、地山弾性係数(E)とを入力データとする順解析によって地山および支保の応力(σ)等を求めることを、相互に関連付けて、穿孔探査した探査区間の支保構造を決定することが可能になる。
そして、これから支保を施工する区間の穿孔探査と、既に施工した支保の変位計測とを密接に関連付けて、経時的な支保の変位の程度に応じて、穿孔探査で得られるデータである穿孔エネルギーに対応付けられている地山弾性係数を見直すように、地山評価方法を見直すことで、より実際の地山の地質や強度に即した支保構造を有する支保を施工することが可能となって、好適なトンネルの施工管理を行うことができる。
【図面の簡単な説明】
【0013】
【図1】本発明の実施形態に係るトンネル施工管理システムの概要を示す説明図(トンネル縦断図)である。
【図2】図1のII−II線における矢視図であり、施工管理を行うトンネルを示す説明図(トンネル断面図)である。
【図3】本発明の実施形態に係るトンネル施工管理方法を示すフローチャートである。
【図4】トンネル施工管理における穿孔探査を示す説明図である。
【図5】トンネル施工管理における数値解析(順解析)を示す説明図である。
【図6】トンネル施工管理における支保の変位計測に関する説明図である。
【図7】トンネル施工管理における数値解析(逆解析)を示す説明図である。
【図8】トンネル施工管理における支保の現状評価と最終予測の表示例を示す説明図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して、本発明の実施形態について説明する。
【0015】
図1、図2は、本発明を適用した一実施形態の構成を示すものであり、施工管理を行うトンネル1と、そのトンネル1に設置されるトータルステーション10と、トータルステーション10に接続される演算装置20と、工事車両30である。
そして、本実施形態におけるトンネル施工管理システムは、トータルステーション10と演算装置20を、互いにデータの送受信が可能な状態に接続してなるものである。このトータルステーション10と演算装置20との接続は、有線通信または無線通信でなされている。
なお、本実施形態のトンネル1は、例えば、NATM工法によって形成されるものであり、地山を掘進した掘削壁面に覆工された吹き付けコンクリート11Cやロックボルト11Bからなる支保1cが施工されている。
【0016】
トータルステーション10は、例えば、視準用望遠鏡から視準点に向けて出射した測距光(レーザ光)とその戻り光により器械点から視準点までの距離を測距する測距手段と、視準用望遠鏡の視準軸に対する視準点の水平角と鉛直角を測角する測角手段と、これら測距・測角手段によって得られた測量データを記憶する記憶手段と、視準用望遠鏡を水平方向および鉛直方向に旋回駆動させる旋回駆動手段と、演算装置20とデータの送受信を行う通信手段と、これら測距手段、測角手段、記憶手段、旋回駆動手段、通信手段をマイコン制御する制御手段等を備えているものである。
このトータルステーション10は、視準点に測距光を照射し、戻ってくる僅かな乱反射光を使って視準点までの距離を測定することで、従来のような測距光を反射するターゲットであるプリズムを必要としないノンプリズム型のものである。また、このトータルステーション10は、旋回駆動手段を備えているので、測距光を任意の方向へ照射することができる。なお、このトータルステーション10は、ターゲットであるプリズムを用いるプリズム方式によっても測量可能である。
【0017】
そして、トータルステーション10は、図1、図2に示すように、例えば、トンネル1の天端1aに固定された図示しない設置台に設置されるように、このトンネル1の天端1a近傍に据え付けられており、トンネル1内における所定の測定ポイントの観測を行うようになっている。
特に、トータルステーション10は、トンネル1に施された支保1cの観測を行い、支保1cの経時的変化による変位を計測して、その変位に関する測定データを演算装置20に送信する。
【0018】
演算装置20は、トータルステーション10とデータの送受信が可能な管理用コンピュータであり、予めトンネル1に関する設計データや、地山に関するデータ、支保に関するデータ等が記憶されている。
また、この演算装置20には、トータルステーション10から送信されたトンネル1の支保1cの変位に関する測定データと、後述する工事車両30により測定された地山の探査データとが入力されるようになっており、それらデータを記憶することができるようになっている。その他、この演算装置20には、トンネル施工に関する様々なデータが格納されている。
そして、演算装置20は、トンネル1の施工管理として、各種データの数値解析を行って、トンネルを施工する箇所の地山評価や、施工した支保の強度評価を行うことを可能にする。
なお、演算装置20は、データ入力や操作入力を行うためのキーボードやタッチパネルなどの入力部と、様々なデータや演算結果等を表示するための表示パネルやモニタなどの表示部を備えている。
【0019】
工事車両30は、例えば、油圧削岩機を備えており、その油圧削岩機でトンネル1の切羽1bから掘削方向前方の地山に穿孔を施して、地山の穿孔探査を行う。
この油圧削岩機によって地山に穿孔を施す際に、穿孔エネルギー、穿孔速度(のみ下がり)、ダンピング圧(穿孔反力)などの地山評価パラメータを測定する探査を行い、その地山評価に関する探査データを取得する。取得した探査データは、演算装置20に入力される。
【0020】
次に、トンネル1を施工する際の、トンネル施工管理方法について、図3に示すフローチャート等に基づいて説明する。
【0021】
まず、演算装置20に、トンネル1に関する設計データ、地山に関するデータ、支保に関するデータ等を入力して、トンネル施工管理基準を設定する(ステップS1)。
ここでは、例えば、穿孔エネルギー(Ed’)に対応する地山弾性係数(E)についてのデータ、FEM,FDMなどの数値解析(順解析)を行うためのデータ、地山評価に対応する支保構造についてのデータ等が入力されて設定される。
また、例えば、DBAP,FDM,FEMなどの数値解析(逆解析)を行うためのデータ、特に、施工された支保1cの経時的な変位量であり、その変位量の収束予測を解析するためのデータ等が入力されて設定される。
【0022】
そして、図4に示すように、工事車両30の油圧削岩機でトンネル1の切羽1bから掘削方向前方の地山に穿孔を施して、地山の穿孔探査を行う(ステップS2)。
例えば、ここで行う穿孔探査方式はDRISS(Drilling Survey System)によるものであって、切羽1bから例えば30〜50mの探査区間の探査を行う。
この穿孔探査による地山評価項目は、穿孔エネルギー(単位体積あたりの地山を掘削することに要するエネルギー)分布、穿孔速度(のみ下がり)、ダンピング圧(穿孔反力)、クリコや湧水等の目視情報などであり、各地山評価パラメータの測定が行われる。そして、測定された地山評価についての探査データは、演算装置20に入力される。
この穿孔探査を行った探査区間における穿孔エネルギー(Ed’)の分布等に基づき、その探査区間を例えば3つの区間(第1〜第3区間)に分割し、それぞれの穿孔エネルギーの代表値を、第1区間でEd’=400J/cm、第2区間でEd’=150J/cm、第3区間でEd’=800J/cmと設定することができる。
【0023】
次いで、穿孔探査により測定された地山評価についての探査データの解析を、演算装置20にて行う(ステップS3)。
例えば、探査データである穿孔エネルギー(Ed’)に対応する地山弾性係数(E)を求めるデータ解析を行う。なお、穿孔エネルギーと岩盤強度の相関や岩盤強度と地山弾性係数の相関等の周知の相関関係、または現地での試験結果に基づいて、穿孔エネルギー(Ed’)に対応する地山弾性係数(E)を取得することができる。例えば、第1区間(Ed’=400J/cm)の地山弾性係数はE=500MPa、第2区間(Ed’=150J/cm)の地山弾性係数はE=200MPa、第3区間(Ed’=800J/cm)の地山弾性係数はE=1000MPaと推定し、それぞれの区間に対する地山弾性係数の代表値を設定することができる。
なお、この地山弾性係数(E)を取得するための算出式や推定方法は、施工中のトンネルや支保の計測データ等を用いて適宜修正し、その精度を向上させることができる。
また、ここで得られた地山弾性係数(E)は、ステップS6にフィードバックして、逆解析の入力データとして用いられる。
【0024】
次いで、所定の数値解析(順解析)を実施して支保構造の設定を行う。数値解析の入出力パラメータを図5に示す。
図5に示すように、地山弾性係数(E)および地山初期応力(σ)と、既知のデータである単位体積重量(γ)、ポアソン比(ν)、支保部材の仕様などを入力データとするFEM,FDMなどの数値解析(順解析)を行い、地山および支保部材の応力(σ)やひずみ(ε)、トンネルの変位(δ)に関する出力データを求める。なお、この順解析において、地山弾性係数(E)はステップS2〜S3の前方探査および探査データ解析により求めた値を採用し、地山初期応力(σ)は後述するステップS6における計測変位等を基にした逆解析により求めた値を採用することにより、通常よりも信頼性の高い解析を実施する。
そして、順解析により得られた地山および支保部材の応力(σ)やひずみ(ε)、トンネルの変位(δ)などに基づき、その探査区間の支保構造を演算装置20にて設定する(ステップS4)。
こうして、穿孔探査の結果により分割した区間毎に数値解析(順解析)を実施して、支保構造を設定する。
例えば、Ed’=400J/cmで、E=500MPaである第1区間には、支保パターン「DI」の支保構造が設定される。
また、Ed’=150J/cmで、E=200MPaである第2区間には、支保パターン「DII」の支保構造が設定される。
また、Ed’=800J/cmで、E=1000MPaである第3区間には、支保パターン「CII」の支保構造が設定される。
なお、設定する支保構造は、解析した支保部材をそのまま採用する方法もあるが、解析結果に最も近い既往の支保構造(支保パターン)を選定する方法でもよい。
この支保パターンの「B」「CI」「CII」「DI」「DII」などは、岩盤強度や亀裂状況などにより評価する地山等級に対応して建設工事の事業主によって定められたものであり、使用する鋼材の種類や数、吹き付けるコンクリートの厚みなど、施工する支保の構造を定めるものである。
また、数値解析を行うことなく、穿孔探査により得られる地山物性値や切羽後方の逆解析結果から得られる初期応力パラメータ等の分布状況から支保構造を設定する方法でもよい。前記した情報やパラメータが得られれば、既往の地山分類との比較によって既往の支保パターンを選定することも可能である。
また、数値解析結果の蓄積により、支保構造のノモグラム化を行って、新たな解析を行うことなく支保構造を選定する方法でもよい。
【0025】
次いで、探査区間であった地山を所定の掘削方式(発破または機械掘削)で掘進し、地山が掘削された掘削壁面に対して、その探査区間に設定された支保構造の支保1cを施工する(ステップS5)。
ここで支保1cとは、NATMの場合では、鋼製支保工、ロックボルトおよび吹付けコンクリート等を示し、矢板工法の場合では、鋼アーチ支保工や覆工コンクリート等を示すものである。ただし、NATMの場合において、覆工コンクリートを構造部材とする場合には、覆工コンクリートも支保1cに含めるものとする。
【0026】
次いで、図6に示すように、トータルステーション10による観測によって、トンネル1に施工された支保1cの変位を測定ポイント毎に計測して、支保1cの応力やひずみを求めるための数値解析(逆解析)を、演算装置20にて行う(ステップS6)。
なお、図6には、3箇所の測定ポイントA、B、Cが例示されている。
ここで、例えば、測定ポイントとされたトンネル1の支保1cにおける天端1a側のアーチ部分には、測定ポイント毎に3つのプリズムが三角形の頂点となる配置に設置されており、トータルステーション10によって各プリズムの配置が測定されるようになっている。そして、トータルステーション10によって所定期間毎(例えば、数時間毎)に、測定ポイントの支保1cに設置されたプリズムの配置が測定され、そのプリズムの配置データが演算装置20に送信される。演算装置20において累積されたプリズムの配置データの経時的変化を計測することで、図6に示すように、支保1cの経時的な変位量(δ)の計測が可能になる。なお、トータルステーション10によって測定された各プリズムの配置データに基づき、各プリズム間の変位(例えば、プリズムが配置された三角形の辺に相当する部分の変位)を測定するようにして、支保1cの変位量(δ)が計測されるようになっている。
そして、図7に示すように、計測されたトンネル1の支保1cの変位量(δ)と、既知のデータである単位体積重量(γ)、ポアソン比(ν)、地山弾性係数(E)等を入力データとする、DBAP,FDM,FEMなどの数値解析(逆解析)を行い、支保や地山の応力(σ)やひずみ(ε)、支保やトンネルの変位(δ)、初期応力パラメータ(地山初期応力/地山弾性係数:σ/E)等の出力データを求める。
ここで、トータルステーション10によって計測された変位量(δ)をそのまま入力値とする場合は、計測時点での支保部材の応力やひずみを評価するものとなる。
また、計測変位が収束する前の初期段階では、計測変位に基づく関数モデルによる補間等によって収束時の最終変位(δ’)を予測し、その値(δ’)を逆解析の入力値とする。これによって、変位収束時の最終的な支保部材の応力やひずみを評価することが可能となり、掘削直後の早期対応が可能になる。但し、地山の応力・ひずみを評価する場合には、上記変位に先行変位を加えた値を入力値とする必要がある。
【0027】
また、地山初期応力(σ)は、逆解析によって得られる初期応力パラメータ(σ/E)を逆解析断面の位置で過去に実施した穿孔探査から求めた地山弾性係数(E)で乗算することによって求めることができる。ただし、地山初期応力を求めるための逆解析では、変位収束時の最終的な変位量(δ’)を入力値とする。ここで、切羽後方の変位計測断面(逆解析断面)と切羽前方の探査解析断面(順解析断面)の位置を十分近くすることによって、両断面の地山初期応力は等しいとすることができる。この逆解析によって得られた地山初期応力(σ)をステップS4にフィードバックして、順解析の入力データとして用いることができる。
そして、演算装置20の表示部に解析結果が表示され、例えば、図8に示す表示画面が表示される。図8に示す表示画面には、変位計測時における地山や支保1cの変形状況および応力状態と、解析により予測される地山や支保1cの最終的な変形状況および応力状態が表示されており、支保部材の現状評価と最終予測を行うことができる。
【0028】
次いで、ステップS6における解析により予測・評価された、支保1cの最終変位量や最終応力状態などの最終予測結果や現状評価に基づいて、支保構造の妥当性、補強工の要否および支保構造の設定方法の見直しの必要性について検討を行う。そして、施工された支保1cの支保構造が適正であったか否かの判断が、演算装置20にて行われる(ステップS7)。
既設の支保1cの支保構造が適正であると判断された場合(ステップS7;Yes)、ステップS10へ進む。
【0029】
一方、既設の支保1cの支保構造が適正でなかったと判断された場合(ステップS7;No)、特に、現状において支保部材の耐力が不足している場合または将来的に耐力が不足すると予測される場合は、所定の数値解析を実施して、支保1cに関する支保部材の補強構造を設定する(ステップS8)。
例えば「追加で打設するロックボルトの仕様、本数および打設位置」など、あるいは「増し吹付けするコンクリートの強度、厚みおよび範囲」などを解析的に設定することができる。
また、ここでの解析には、ステップS6での逆解析で求めた地山初期応力(σ)や、ステップS3での穿孔探査で求めた地山弾性係数(E)を用いる。これにより、信頼性の高い設計を行うことができる。
そして、この解析で設計された補強構造に従って現場の補強工事を実施する。ここでの補強構造には、覆工コンクリートを鉄筋等で補強する場合を含むものとする。
【0030】
そして、演算装置20において、適正でなかったと判断された支保構造の設定方法の見直しを行う(ステップS9)。
具体的には、例えば、穿孔探査による穿孔エネルギーと地山弾性係数との関係式など、穿孔エネルギーと地山弾性係数との対応の見直しを行って、支保構造の設定方法や地山評価方法の修正を行う。
ここで、支保1cの支保構造が適正でなかったと判断されて、現状において支保部材の耐力が不足している場合または将来的に耐力が不足すると予測される場合では、先に行ったステップS2の穿孔探査において穿孔エネルギーに対応付けられていた地山弾性係数の値が大きすぎたものとして、その値を小さくするように対応関係を見直す修正を行う。
そして、ステップS1に戻り、この見直し方法に従って施工管理用データを更新して、トンネル施工管理を繰り返す。
なお、支保構造の設定方法の見直しは、穿孔エネルギーと地山弾性係数との対応関係の見直しに限らない。
例えば、数値解析において、吹付けコンクリートの要素を梁要素から棒要素へ変更するなどの支保部材のモデル化の変更を行うような見直しでもよい。
また、数値解析で過大な支保を設定する傾向にある場合は、解析結果の1ランク下の支保構造を選定するような見直しでもよい。また、数値解析で過小な支保を設定する傾向にある場合は、解析結果の1ランク上の支保構造を選定するような見直しでもよい。
【0031】
ステップS10において、トンネル1に対する全ての支保1cの施工が終わり、トンネル1の施工が完了したか否かの判断が、演算装置20にて行われる(ステップS10)。
トンネル1の施工が完了しいていないと判断されると(ステップS10;No)ステップS2に戻り、次の探査区間の穿孔探査を行う。
一方、トンネル1の施工が完了したと判断されると(ステップS10;Yes)、演算装置20等によるトンネル施工管理を終了する。
【0032】
以上のように、本発明によれば、トンネル1の主要構造である支保1cや支保部材(ロックボルト11B、吹き付けコンクリート11C)に関して、経済的で合理的な施工管理が可能になる。
これは、トンネル1の切羽1b前方の地山を穿孔探査して得られた地山弾性係数(E)をフィードバックして、その地山弾性係数(E)と、既設の支保1cの変位(δ)とを入力データとする逆解析によって地山初期応力(σ)を求めることと、その逆解析によって求められた地山初期応力(σ)をフィードバックして、その地山初期応力(σ)と、地山弾性係数(E)とを入力データとする順解析によって地山および支保の応力(σ)やひずみ(ε)等を求めることを、相互に関連付けて、穿孔探査した探査区間の支保構造を決定することを可能にしたことによる。
つまり、これから支保1cを施工する区間の穿孔探査と、既に施工した支保1cの変位計測とを密接に関連付けて、経時的な支保1cの変位の程度に応じて、穿孔探査で得られるデータである穿孔エネルギーに対応付けられている地山弾性係数を見直すように、地山評価方法を見直すことで、より実際の地山の地質や強度に即した支保構造を有する支保1cを施工することが可能となって、合理的なトンネルの施工管理を行うことができるのである。
【0033】
また、支保1cの変位計測等により、地山評価方法や解析方法の妥当性を評価することができるため、施工が進むほどに解析精度を向上させて行くことができる。例えば、施工した支保部材の耐力が不足すると予測される場合には、変位計測に基づいた数値解析によって早期に的確な補強構造を設計する事ができる。逆に、施工した支保部材の耐力が過大設計であれば、地山評価方法や解析方法を合理的に見直すことができる。
さらに、地山や支保部材の応力やひずみ、変形等をいわゆるトンネルカルテとして記録することにより、トンネル供用後の維持管理における基礎資料として活用することができる。
また、穿孔探査、変位計測およびそれらを基にした数値解析等の処理を現場事務所等に設置した演算装置20によって実施することで、探査区間の支保構造設定、既掘削箇所における支保構造の健全性評価および補強構造の設定をリアルタイムに一元管理することができる。なお、演算装置20が管理の内容をウエブ等で公開することにより、関係者の共有情報とすることができる。
【0034】
なお、本発明の適用は上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
【符号の説明】
【0035】
1 トンネル
1a 天端
1b 切羽
1c 支保
11B ロックボルト
11C 吹き付けコンクリート
10 トータルステーション
20 演算装置
30 工事車両

【特許請求の範囲】
【請求項1】
トンネル切羽の掘削方向前方の地山の穿孔探査を行って計測された穿孔エネルギーに対応する地山弾性係数と、前記トンネル切羽の後方に施工された支保の施工後の変位とに基づく地山初期応力に応じた支保構造を設定する支保構造設定工程と、
前記穿孔探査を行った探査区間の地山を掘進した掘削壁面に、前記支保構造設定工程により設定された前記支保構造の支保を施工する支保施工工程と、
前記支保施工工程により施工された前記支保の変位を計測し、その計測結果に基づいて前記支保の経時的な変位量を予測して、前記支保の支保構造が適正であったか否か判断する判断工程と、
前記判断工程により、前記支保構造が適正でなかったと判断された場合に、前記支保構造設定工程における穿孔エネルギーと地山弾性係数との対応を見直す支保構造修正工程と、
を備えることを特徴とするトンネル施工管理方法。
【請求項2】
前記支保構造設定工程で用いられる前記地山初期応力は、前記支保施工工程によって既に施工された前記支保を計測して得られた前記変位と、前記穿孔探査の結果がフィードバックされた地山弾性係数とが入力される逆解析によって求められることを特徴とする請求項1に記載のトンネル施工管理方法。
【請求項3】
前記逆解析によって求められた前記地山初期応力は、前記支保構造設定工程にフィードバックされて、その地山初期応力と前記地山弾性係数とが入力される順解析によって求められる前記支保及び前記地山の応力と、前記支保に関する前記変位とに基づいて、前記支保構造が設定されることを特徴とする請求項2に記載のトンネル施工管理方法。
【請求項4】
前記判断工程により、前記支保構造が適正でなかったと判断された場合に、その適正でなかった前記支保を補強するための補強構造を設定する補強構造設定工程を備えることを特徴とする請求項1〜3の何れか一項に記載のトンネル施工管理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−52373(P2011−52373A)
【公開日】平成23年3月17日(2011.3.17)
【国際特許分類】
【出願番号】特願2009−199330(P2009−199330)
【出願日】平成21年8月31日(2009.8.31)
【出願人】(000195971)西松建設株式会社 (329)