説明

ナノファイバー集合体

【課題】 繊維・繊維製品形状に制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーを提供する。
【解決手段】 繊維・繊維製品形状に制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーを提供するため、数平均による単糸繊度が1×10-7〜2×10-4dtexであり、繊度比率の60%以上が単糸繊度1×10-7〜2×10-4dtexの範囲である、ポリアミドからなるナノファイバー集合体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、従来には無かった単糸繊度ばらつきの小さなナノファイバー集合体に関するものである。
【背景技術】
【0002】
ナイロン6(N6)やナイロン66(N66)に代表されるポリアミドは適度な力学特性と耐熱性を有するため、従来から衣料用途や産業資材用途の繊維に好適に用いられてきた。
【0003】
ポリアミド繊維は衣料用途に用いられてきたこともあり、ポリマー改質だけでなく、繊維の断面形状や極細糸による性能向上の検討も活発に行われてきた。このような検討の一つとして、海島複合紡糸を利用した超極細糸が生み出され、スエード調の人工皮革という大型新製品に結実していった。また、この超極細糸は衣料用途のみならず、ワイピングクロスといった生活資材や産業資材用途にも展開され、超極細繊維は現在の合成繊維の世界で確固たる地位を築いている。特に最近では、特開2001−1252号公報や特開2002−224945号公報に記載のようにコンピューターのハードディスク用の表面研磨布や、特開2002−102332号公報や特開2002−172163号公報に記載のように細胞吸着材のようなメディカル材料にまで応用が拡がっている。
【0004】
このため、さらにレベルの高い人工皮革や高質感衣料を得るために、より細い繊維が望まれていた。また、IT産業の隆盛を支えるためハードディスクの大容量化が推進されているが、このためにはさらにハードディスクの記録密度を上げることが必須であり、そのためには、現在平均表面粗さが1nm以上であるハードディスク表面をさらに平滑化することが必要である(目標は平均表面粗さ0.5nm以下)。このため、ハードディスク表面を磨くための研磨布に用いる繊維をさらに極細化したナノファイバーが望まれていた。
【0005】
しかしながら、現在の海島複合紡糸技術では単糸繊度は0.04dtex(直径2μm相当)が限界であり、ナノファイバーに対するニーズに充分応えられるレベルではなかった。また、ポリマーブレンド繊維により超極細糸を得る方法が、特開平3−113082号公報や特開平6−272114号公報に記載されているが、ここで得られる単糸繊度も最も細くとも0.001dtex(直径0.4μm相当)であり、やはりナノファイバーに対するニーズに充分応えられるレベルではなかった。しかも、ここで得られる超極細糸の単糸繊度はポリマーブレンド繊維中での島ポリマーの分散状態で決定されるが、該公報で用いられているポリマーブレンド系では島ポリマーの分散が不十分であるため、得られる超極細糸の単糸繊度ばらつきが大きいものであった。また、静止混練器を利用したポリマーブレンド繊維により超極細糸を得る方法(特許文献1)もあるが、該公報実施例2には、静止混練器の分割数から計算した理論単糸繊度は1×10-4dtex(直径100nm程度)とナノファイバーが得られることになるが、これから得られる超極細糸の単糸繊度を実測すると1×10-4dtex〜1×10-2dtex(直径1μm程度)となり、単糸直径が揃ったナノファイバーを得ることができなかったことが記載されている。これは、ポリマーブレンド繊維中で島ポリマーが合一し、島ポリマーをナノサイズで均一に分散できなかったためと考えられる。このように、これら従来技術で得られる超極細糸の単糸繊度ばらつきが大きく、製品の性能が太い単糸群で決定され超極細糸のメリットが十分発揮されないばかりか、品質安定性等にも問題があった。さらに、前述のハードディスク用の表面研磨布に用いた場合、繊度ばらつきが大きいことに起因し、砥粒を研磨布に均一坦持することができず、結果的にハードディスク表面の平滑性がかえって低下する問題もあった。
【0006】
ところで、繊維を極細化する技術として近年脚光を浴びているものにエレクトロスピニングという技術がある。これは、ポリマーを電解質溶液に溶解し、口金から押し出すのであるが、その際、ポリマー溶液に数千〜3万ボルトという高電圧を印加し、ポリマー溶液の高速ジェットおよびそれに引き続くジェットの折れ曲がり、膨張により極細化する技術である。この技術を用いると、単糸繊度は10-5dtexオーダー(単糸直径で数十nm相当)と従来のポリマーブレンド技術によるものに比べ、繊度で1/100以下、直径で1/10以下にすることができる場合もある。対象となるポリマーはコラーゲン等の生体ポリマーや水溶性ポリマーが多いのであるが、熱可塑性ポリマーを有機溶媒に溶解してエレクトロスピニングする例もある。しかしながら、Polymer, vol.40, 4585(1999). に記載されているように、超極細糸部分である“string”はポリマー溜まり部分である“bead”(直径0.5μm程度)により連結されている場合が多く、超極細糸集合体として見た時に、大きな単糸繊度ばらつきがあった。このため、“bead”の生成を抑制して繊維径を均一にしようという試みもなされているが、そのばらつきは未だに大きいものであった(非特許文献1)。また、エレクトロスピニングで得られる繊維・繊維製品の形状は不織布に限定されるとともに、繊維化の過程で溶媒が蒸発するため得られた繊維集合体は配向結晶化していない場合が多く、強度も通常の繊維製品に比べてごく弱い物しか得られておらず、応用展開に大きな制約があった。さらに、エレクトロスピニングは製法としても大きな問題を抱えており、得られる繊維製品の大きさはせいぜい100cm2程度であること、また生産性が最大でも数g/時間と通常の溶融紡糸に比べ非常に低いという問題があった。さらに、高電圧を必要とすること、有害な有機溶媒や超極細糸が空気中に浮遊することから感電、爆発、中毒といった危険が常につきまとうという問題もあった。
【0007】
ところで、ナノファイバーを得る特殊な方法として、メソポーラスシリカに重合触媒を坦持しておき、そこでPEの重合を行うことで直径が30〜50nm(5×10-6〜2×10-5dtex相当)のPEナノファイバーを得る方法がある(非特許文献2)。しかし、この方法ではナノファイバーの綿状塊しか得られておらず、そこから繊維を引き出すことは不可能である。また、扱えるポリマーもPEのような付加重合系ポリマーのみであり、ポリエステルやポリアミドといった重縮合系ポリマーは重合過程で脱水が必要であるため、原理上扱うことは困難である。このため、この方法で得られるナノファイバーには応用展開に大きな制約があった。
【0008】
以上説明したように、繊維・繊維製品形状やポリマーに制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーが求められていた。
【特許文献1】USP4,686,074(19thカラム)
【非特許文献1】Polymer, vol.43, 4403(2002).
【非特許文献2】Science, vol.285, 2113(1999).
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、繊維・繊維製品形状やポリマーに制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーを提供するものである。
【課題を解決するための手段】
【0010】
上記目的は、数平均による単糸繊度が1×10-7〜2×10-4dtexであり、繊度比率の60%以上が単糸繊度1×10-7〜2×10-4dtexの範囲である、ポリアミドからなるナノファイバー集合体により達成される。
【発明の効果】
【0011】
本発明の単糸繊度ばらつきの小さなナノファイバー集合体により、これまでにない風合いの布帛や高性能研磨布を得ることができる。
【発明を実施するための最良の形態】
【0012】
本発明でいうポリアミドとは、主鎖にアミド結合を持つポリマーを言うものであり、例えば、ナイロン6、ナイロン66などが挙げられる。また、ポリアミドの融点は165℃以上であるとナノファイバーの耐熱性が良好であり好ましい。また、ポリアミドには粒子、難燃剤、帯電防止剤等の添加物を含有させていても良い。またポリアミドの性質を損なわない範囲で他の成分が共重合されていても良い。
【0013】
本発明で言うナノファイバーとは、単糸直径が1〜250nmの繊維を言うものであり、それが集合したものをナノファイバー集合体と言う。そして、本発明では、このナノファイバー集合体中の単糸繊度の平均値およびばらつきが重要である。これは、ナノファイバー集合体の横断面を透過型電子顕微鏡(TEM)で観察し、同一横断面内で無作為抽出した300本以上の単糸直径を測定するが、これを少なくとも5カ所以上で行い、合計1500本以上の単糸直径を測定することで求めることができる。これらの測定位置は、ナノファイバー集合体から得られる繊維製品の均一性を保証する観点から、ナノファイバー集合体長として互いに10m以上離して行うことが好ましい。本発明のナノファイバーの繊維横断面写真の一例を図1に示す。
【0014】
ここで、単糸繊度の平均値は以下のようにして求める。すなわち、測定した単糸直径から繊度を計算し、それの単純な平均値を求める。これを「数平均による単糸繊度」と本発明では呼ぶ。本発明では、数平均による単糸繊度は1×10-7〜2×10-4dtex(単糸直径で1〜150nm相当)であることが重要である。これは、従来の海島複合紡糸による超極細糸に比べ1/100〜1/100000という細さであり、従来の超極細糸とは全く異なる質感を持った衣料用布帛や従来よりもはるかにハードディスクの平滑性を向上し得る研磨布を得ることができるのである。数平均による単糸繊度は好ましくは1×10-7〜1×10-4dtex(単糸直径で1〜100nm相当)、より好ましくは0.8×10-5〜6×10-5dtex(単糸直径で30〜80nm相当)である。
【0015】
また、ナノファイバーの単糸繊度ばらつきは、以下のようにして評価する。すなわち、ナノファイバーそれぞれの単糸繊度をdtiとしその総和を総繊度(dt1+dt2+…+dtn)とする。また、同じ単糸繊度を持つナノファイバーの頻度(個数)を数え、その積を総繊度で割ったものをその単糸繊度の繊度比率とする。これは全体(ナノファイバー集合体)に対する各単糸繊度成分の重量分率(体積分率)に相当し、これが大きい単糸繊度成分がナノファイバー集合体の性質に対する寄与が大きいことになる。本発明では、繊度比率の60%以上が1×10-7〜2×10-4dtex(単糸直径で1〜150nm相当)の範囲にあることが重要である。すなわち、2×10-4dtex(単糸直径で150nm相当)より大きいナノファイバーの存在がゼロに近いことを意味するものである。これにより、ナノファイバーの機能を充分発揮することができ、また製品の品質安定性も良好とすることができ、さらに、前述のハードディスク用の表面研磨布に用いた場合、繊度ばらつきが小さいため、ナノファイバーでも砥粒を均一坦持することが可能となり、結果的にハードディスク表面の平滑性を飛躍的に向上することができるのである。好ましくは、繊度比率の60%以上が1×10-7〜1×10-4dtex(単糸直径で1〜100nm相当)、より好ましくは1×10-7〜6×10-5dtex(単糸直径で1〜80nm相当)の範囲である。さらに好ましくは、繊度比率の75%以上が1×10-7〜6×10-5dtex(単糸直径で1〜80nm相当)の範囲である。
【0016】
また、繊度ばらつきのもう一つの指標が単糸直径差が30nmの幅に入る単糸の繊度比率であるが、これは、中心繊度付近へのばらつきの集中度を意味しており、この繊度比率が高いほどばらつきが小さいことを意味している。本発明では、単糸直径差が30nmの幅に入る単糸の繊度比率が50%以上であることが好ましい。より好ましくは70%以上である。
【0017】
また、本発明ではナノファイバー集合体は長繊維および/または紡績糸形状となっていることが好ましい。ここで、長繊維および/または紡績糸形状とは以下の状態を言うものである。すなわち、ナノファイバー同士が1次元で配向した集合体が有限の長さで連続している状態を言うものである。本発明のナノファイバー集合体の側面写真の一例を図3に示す。これに対して、エレクトロスピニングで得られる不織布ではナノファイバーは全く配向していない2次元集合体である点で、全く異なる形態である。本発明は、1次元に配向したナノファイバー集合体であるり、この点が非常に新規なものである。本発明の長繊維および/または紡績糸形状のナノファイバー集合体の長さは通常の長繊維や紡績糸同様に数m以上であると好ましい。これにより、織物、編物はもとより短繊維や不織布、熱圧縮成形体等様々な繊維製品とすることができるのである。
【0018】
また、本発明のナノファイバー集合体は単糸直径が従来の超極細糸の1/10〜1/100であるため、比表面積が飛躍的にに大きくなるという特徴がある。このため、通常の超極細糸程度では見られなかったナノファイバー特有の性質を示す。
【0019】
例えば、吸着特性の大幅な向上が挙げられる。実際に、水蒸気の吸着、すなわち吸湿性能を本発明のポリアミドナノファイバー集合体と通常のポリアミド超極細糸で比較してみると、通常のポリアミド超極細糸では吸湿率が2%程度なのに比べ本発明のポリアミドナノファイバー集合体では吸湿率が6%に達する場合もあった。吸湿性能は衣料用途では快適性の点から非常に重要な特性であり、本発明では4%以上とすることが好ましい。
【0020】
さらに、本発明のナノファイバー集合体では、ナノファイバー同士に多数の数nm〜数100nm程度の隙間が生まれるため、超多孔性材料のような特異的な性質を示す場合もある。
【0021】
例えば、通常のポリアミド超極細糸では吸水による糸長手方向の膨潤率が3%程度なのに比べ本発明のポリアミドナノファイバー集合体では膨潤率が7%に達する場合もある。しかもこの吸水膨潤は乾燥すると元の長さに戻るため、可逆的な寸法変化である。この可逆的な吸水/乾燥による糸長手方向の膨潤は布帛のソイルリリース性の観点からは重要な特性であり、本発明では5%以上とすることが好ましい。ここで、ソイルリリース性とは、洗濯によって汚れが落ちやすい性質のことを言う。これは上述したように、吸水することによりナノファイバー集合体が糸長手方向に吸水膨潤し織物や編物中の繊維間空隙(織目、編目)を拡げるため、繊維間に付着した汚れが容易に除去できるためである。
【0022】
また、本発明のナノファイバー集合体は優れた吸着・吸収特性を示すため、様々な機能性薬剤を坦持することができる。ここで言う機能性薬剤とは、繊維の機能を向上し得る物質のことを言い、例えば吸湿剤、保湿剤、難燃剤、撥水剤、保冷剤、保温剤もしくは平滑剤なども対象として用いることができる。あるいは、その性状も、微粒子状のものだけに限られず、ポリフェノールやアミノ酸、タンパク質、カプサイシン、ビタミン類等の健康・美容促進のための薬剤や、水虫等の皮膚疾患の薬剤なども対象として用いることができる。さらには、消毒剤、抗炎症剤、鎮痛剤等の医薬品なども用いることができる。あるいは、さらにポリアミンや光触媒ナノ粒子というような有害物質の吸着・分解するための薬剤を用いることもできるものである。
【0023】
さらに機能性薬剤の担持方法にも特に制限はなく、浴中処理やコーティング等により後加工でナノファイバーに担持させても良いし、ナノファイバーの前駆体であるポリマーアロイ繊維に含有させておいても良い。また、機能性薬剤はそのものを直接ナノファイバー集合体に担持させても良いし、機能性薬剤の前駆体物質をナノファイバーに担持させた後、その前駆体物質を所望の機能性薬剤に変換することもできる。後者の方法のより具体的な例としては、ナノファイバー集合体に有機モノマーを含浸させ、その後それを重合する方法や、易溶解性物質を浴中処理によりナノファイバー集合体に含浸させた後、酸化還元反応や配位子置換、カウンターイオン交換反応などにより難溶解性にする方法などがある。また、紡糸過程で機能性薬剤の前駆体を担持させる場合には、紡糸過程では耐熱性の高い分子構造にしておき、後加工により機能性が発現する分子構造に戻すという方法も採用可能である。
【0024】
また、本発明のナノファイバー集合体は様々な機能性分子を取り込むだけでなく、徐放性にも優れている。このため、機能性分子や薬の優れた徐放性基材としたり、ドラッグデリバリーシステム等にも応用可能であることを意味しているのである。
【0025】
なお、本発明のナノファイバー集合体を衣料用途に用いると、絹のようなきしみ感やレーヨンのようなドライ感のある優れた風合いの繊維製品を得ることができる。さらに、バフィング等により、ナノファイバー集合体からナノファイバーを開繊させることにより、従来では考えられなかった超ピーチ感や人肌のようなしっとりとしたタッチの優れた風合いの繊維製品を得ることもできる。
【0026】
本発明のナノファイバー集合体の製造方法は特に限定されるものではないが、例えば以下のような方法を採用することができる。
【0027】
すなわち、2種類以上の溶剤に対する溶解性の異なるポリマーをアロイ化したポリマーアロイ溶融体となし、これを紡糸した後、冷却固化して繊維化する。そして必要に応じて延伸・熱処理を施しポリマーアロイ繊維を得る。そして、易溶解性ポリマーを溶剤で除去し、難溶解性ポリマーであるポリアミドを残すことにより本発明のポリアミドからなるナノファイバー集合体を得ることができる。
【0028】
ここで、ナノファイバー集合体の前駆体であるポリマーアロイ繊維中で易溶解性ポリマーが海(マトリックス)、難溶解性ポリマーであるポリアミドが島(ドメイン)となし、その島サイズを制御することが重要である。ここで、島サイズは、ポリマーアロイ繊維の横断面を透過型電子顕微鏡(TEM)観察し、直径換算で評価したものである。前駆体中での島サイズによりナノファイバーの直径がほぼ決定されるため、島サイズの分布は本発明のナノファイバーの直径分布に準じて設計される。このため、アロイ化するポリマーの混練が非常に重要であり、本発明では混練押出機や静止混練器等によって高混練することが好ましい。なお、単純なチップブレンド(例えば特開平6−272114号公報)では混練が不足するため、本発明のような数十nmサイズで島を分散させることは困難である。
【0029】
具体的に混練を行う際の目安としては、組み合わせるポリマーにもよるが、混練押出機を用いる場合は、2軸押出混練機を用いることが好ましく、静止混練器を用いる場合は、その分割数は100万以上とすることが好ましい。また、ブレンド斑や経時的なブレンド比率の変動を避けるため、それぞれのポリマーを独立に計量し、独立にポリマーを混練装置に供給することが好ましい。このとき、ポリマーはペレットとして別々に供給しても良く、あるいは、溶融状態で別々に供給しても良い。また、2種以上のポリマーを押出混練機の根本に供給しても良いし、あるいは、一成分を押出混練機の途中から供給するサイドフィードとしても良い。
【0030】
混練装置として二軸押出混練機を使用する場合には、高度の混練とポリマー滞留時間の抑制を両立させることが好ましい。スクリューは、送り部と混練部から構成されているが、混練部長さをスクリュー有効長さの20%以上とすることで高混練とすることができ好ましい。また、混練部長さがスクリュー有効長さの40%以下とすることで、過度の剪断応力を避け、しかも滞留時間を短くすることができ、ポリマーの熱劣化やポリアミド成分等のゲル化を抑制することができる。また、混練部はなるべく二軸押出機の吐出側に位置させることで、混練後の滞留時間を短くし、島ポリマーの再凝集を抑制することができる。加えて、混練を強化する場合は、押出混練機中でポリマーを逆方向に送るバックフロー機能のあるスクリューを設けることもできる。
【0031】
さらに、ベント式として混練時の分解ガスを吸引したり、ポリマー中の水分を減じることによってポリマーの加水分解を抑制し、ポリアミド中のアミン末端基やポリエステル中のカルボン酸末端基量も抑制することができる。
【0032】
また、ポリマーアロイペレットの着色の指標であるb*値を10以下とすることで繊維化した際の色調を整えることができ、好ましい。なお、易溶解性分として好適な熱水可溶性ポリマーはその分子構造から一般に耐熱性が悪く着色しやすいが、上記のような滞留時間を短くする操作により、着色を抑制することが可能となるのである。
【0033】
また、島を数十nmサイズで超微分散させるには、ポリマーの組み合わせも重要である。
【0034】
島ドメイン(ナノファイバー断面)を円形に近づけるためには、島ポリマーであるポリアミドと海ポリマーは非相溶であることが好ましい。しかしながら、単なる非相溶ポリマーの組み合わせでは島ポリマーが充分超微分散化し難い。このため、組み合わせるポリマーの相溶性を最適化することが好ましいが、このための指標の一つが溶解度パラメータ(SP値)である。SP値とは(蒸発エネルギー/モル容積)1/2で定義される物質の凝集力を反映するパラメータであり、SP値が近い物同士では相溶性が良いポリマーアロイが得られる可能性がある。SP値は種々のポリマーで知られているが、例えば「プラスチック・データブック」旭化成アミダス株式会社/プラスチック編集部共編、189ページ等に記載されている。2つのポリマーのSP値の差が1〜9(MJ/m31/2であると、非相溶化による島ドメインの円形化と超微分散化が両立させやすく好ましい。例えばN6とPETはSP値の差が6(MJ/m31/2程度であり好ましい例であるが、N6とPEはSP値の差が11(MJ/m31/2程度であり好ましくない例として挙げられる。
【0035】
また、ポリマー同士の融点差が20℃以下であると、特に押出混練機を用いた混練の際、押出混練機中での融解状況に差を生じにくいため高効率混練しやすく、好ましい。
【0036】
また、熱分解や熱劣化し易いポリマーを1成分に用いる際は、混練や紡糸温度を低く抑える必要があるが、これにも有利となるのである。ここで、非晶性ポリマーの場合は融点が存在しないためガラス転移温度あるいはビカット軟化温度あるいは熱変形温度でこれに代える。
【0037】
さらに、溶融粘度も重要であり、島を形成するポリマーの方を低く設定すると剪断力による島ポリマーの変形が起こりやすいため、島ポリマーの微分散化が進みやすくナノファイバー化の観点からは好ましい。ただし、島ポリマーを過度に低粘度にすると海化しやすくなり、繊維全体に対するブレンド比を高くできないため、島ポリマー粘度は海ポリマー粘度の1/10以上とすることが好ましい。また、海ポリマーの溶融粘度は紡糸性に大きな影響を与える場合があり、海ポリマーとして100Pa・s以下の低粘度ポリマーを用いると島ポリマーを分散させ易く好ましい。また、これにより紡糸性を著しく向上できるのである。この時、溶融粘度は紡糸の際の口金面温度で剪断速度1216sec-1での値である。
【0038】
ポリマーアロイ中では、島ポリマーと海ポリマーが非相溶であるため、島ポリマー同士は凝集した方が熱力学的に安定である。しかし、島ポリマーを無理に超微分散化するために、このポリマーアロイでは通常の分散径の大きいポリマーブレンドに比べ、非常に不安定なポリマー界面が多くなっている。このため、このポリマーアロイを単純に紡糸すると、不安定なポリマー界面が多いため、口金からポリマーを吐出した直後に大きくポリマー流が膨らむ「バラス現象」が発生したり、ポリマーアロイ表面の不安定化による曳糸性不良が発生し、糸の太細斑が過大となるばかりか、紡糸そのものが不能となる場合がある(超微分散ポリマーアロイの負の効果)。このような問題を回避するため、口金から吐出する際の、口金孔壁とポリマーとの間の剪断応力を低くすることが好ましい。ここで、口金孔壁とポリマーとの間の剪断応力はハーゲンポワズユの式(剪断応力(dyne/cm2)=R×P/2L)から計算する。ここでR:口金吐出孔の半径(cm)、P:口金吐出孔での圧力損失(dyne/cm2)、L:口金吐出孔長(cm)である。またP=(8LηQ/πR4)であり、η:ポリマー粘度(poise)、Q:吐出量(cm3/sec)、π:円周率である。また、CGS単位系の1dyne/cm2はSI単位系では0.1Paとなる。
【0039】
通常のポリエステルの単成分における溶融紡糸では口金孔壁とポリマーとの間の剪断応力は1MPa以上で計量性と曳糸性を確保できる。しかし、本発明のポリマーアロイは、通常のポリエステルと異なり、口金孔壁とポリマーとの間の剪断応力が大きいと、ポリマーアロイの粘弾性バランスが崩れ易いため、通常のポリエステル溶融紡糸の場合よりも剪断応力を低くする必要がある。剪断応力を0.2MPa以下にすると、口金孔壁側の流れと口金吐出孔中心部のポリマー流速が均一化し、剪断歪みが少なくなることによってバラス現象が緩和され、良好な曳糸性が得られることから好ましい。一般に剪断応力をより小さくするには、口金吐出孔径を大きく、口金吐出孔長を短くすることであるが、過度にこれを行うと口金吐出孔でのポリマーの計量性が低下し、孔間での繊度斑や発生する傾向になることから、口金吐出孔より上部に口金吐出孔より孔径を小さくしたポリマー計量部を設けた口金を用いることが好ましい。剪断応力は0.01MPa以上にすると、ポリマーアロイ繊維を安定に溶融紡糸でき、糸の太細斑の指標であるウースター斑(U%)を15%以下とできることから好ましい。
【0040】
また、溶融紡糸での曳糸性や紡糸安定性を十分確保する観点から、口金面温度は海ポリマーの融点から25℃以上とすることが好ましい。
【0041】
上記したように、本発明で用いる超微分散化したポリマーアロイを紡糸する際は、紡糸口金設計が重要であるが、糸の冷却条件も重要である。上記したようにポリマーアロイは非常に不安定な溶融流体であるため、口金から吐出した後に速やかに冷却固化させることが好ましい。このため、口金から冷却開始までの距離は1〜15cmとすることが好ましい。ここで、冷却開始とは糸の積極的な冷却が開始される位置のことを意味するが、実際の溶融紡糸装置ではチムニー上端部でこれに代える。
【0042】
紡糸速度は特に限定されないが、紡糸過程でのドラフトを高くする観点から高速紡糸ほど好ましい。紡糸ドラフトとしては100以上とすることが、得られるナノファイバー直径を小さくする観点から好ましい。
【0043】
また、紡糸されたポリマーアロイ繊維には延伸・熱処理を施すことが好ましいが、延伸の際の予熱温度は島ポリマーのガラス転移温度(Tg)以上の温度することで、糸斑を小さくすることができ、好ましい。
【0044】
本製造方法は、以上のようなポリマーの組み合わせ、紡糸・延伸条件の最適化を行うことで、島ポリマーが数十nmに超微分散化し、しかも糸斑の小さなポリマーアロイ繊維を得ることを可能にするものである。このようにして糸長手方向に糸斑の小さなポリマーアロイ繊維を前駆体とすることで、ある断面だけでなく長手方向のどの断面をとっても単糸繊度ばらつきの小さなナノファイバー集合体とすることができるのである。前駆体であるポリマーアロイ繊維のウースター斑は15%以下とすることが好ましく、より好ましくは5%以下である。
【0045】
このようにして得られたポリマーアロイ繊維から海ポリマーである易溶解ポリマーを溶剤で溶出することで、ナノファイバー集合体を得るのであるが、その際、溶剤としては水溶液系のものを用いることが環境負荷を低減する観点から好ましい。具体的にはアルカリ水溶液や熱水を用いることが好ましい。このため、易溶解ポリマーとしては、ポリエステルやポリカーボネート(PC)等のアルカリ加水分解されるポリマーやポリアルキレングリコールやポリビニルアルコールおよびそれらの誘導体等の熱水可溶性ポリマーが好ましい。
【0046】
このような製造方法により繊維長が数十μmから場合によってはcmオーダー以上のナノファイバーがところどころ接着したり絡み合った紡績糸形状のナノファイバー集合体が得られるのである。
【0047】
また、上記製造方法において、特に口金直上に静止混練器を位置させた場合にはナノファイバーが理論上無限に伸びた長繊維形状のナノファイバー集合体が得られる場合もある。
【0048】
本発明では、従来のナノファイバーとは全く異なり、前駆体であるポリマーアロイ繊維を延伸・熱処理することによりナノファイバーも延伸・熱処理することが初めて可能となったため、引っ張り強度や収縮率を自由にコントロールできるようになった。ここで、本発明のナノファイバー集合体の強度は1cN/dtex以上であれば繊維製品の力学物性を向上できるため好ましい。ナノファイバー集合体の強度は、より好ましくは2cN/dtex以上である。また、本発明のナノファイバー集合体の収縮率は用途に応じて調整可能であるが、衣料用途に用いる場合は140℃乾熱収縮は10%以下であることが好ましい。さらに、前駆体であるポリマーアロイ繊維を捲縮加工することも可能である。
【0049】
ところで、ナノファイバー集合体を長繊維形状や紡績糸形状からさらに、一本一本のナノファイバーに分散させるためには、例えば以下のような湿式抄紙法による不織布により達成することができる。すなわち、本発明のポリマーアロイ繊維を繊維長10mm以下にカットした後、易溶解性ポリマーを溶出し、その後得られたナノファイバーを一旦乾燥させることなく抄紙する不織布の製造方法である。これによると、ナノファイバー集合体の直径が1μm以下まで充分分散させることができるのである。さらに、ナノファイバーを構成するポリマーと親和性の高い分散液を用いると、ナノファイバー集合体の直径を300nm以下まで分散させることも可能である。
【0050】
本発明のナノファイバー集合体やナノファイバーを少なくとも一部に有する繊維製品、またそれらの機能加工品は、糸、綿(わた)、パッケージ、織物、編物、フェルト、不織布、熱成形体、人工皮革などの中間製品とすることができる。また衣料(シャツやブルゾン、パンツ、コート等)、衣料資材、インテリア製品(カーテン、カーペット、マット、壁紙、家具など)、車輌内装製品(マット、カーシート、天井材など)、生活資材(ワイピングクロス、化粧用品、健康用品、玩具など)などの生活用途や、環境・産業資材用途(建材、研磨布、フィルター、有害物質除去製品など)やIT部品用途(センサー部品、電池部品、ロボット部品など)や、メディカル用途(血液フィルター、体外循環カラム、スキャフォールド(scaffold)、絆創膏(wound dressing, bandage)、人工血管、薬剤徐放体など)に好適である。
【0051】
上記した用途の大部分は、エレクトロスピニングによるナノファイバー不織布では強度や形態安定性が不足したり、大きさ(広さ)そのものが足りないなどで展開不能の分野であるが、本発明のナノファイバー集合体により初めて可能となったのである。例えば、衣料やインテリア製品、車輌内装製品、研磨布、フィルター、種々のIT部品等は製品強度が要求されるため、本発明のナノファイバーのように優れた糸強度により達成されるものである。
【0052】
また、従来のマイクロファイバーでは吸着性や液体吸収性が不足したり、絶対的な大きさの問題により研磨性や拭き取り性が不足するなど、性能的に満足できない用途でもある。
【0053】
このように、本発明のナノファイバー集合体、またそれから派生する様々な製品により従来のマイクロファイバーやエレクトロスピニング不織布の問題を解決できるのである。
【実施例】
【0054】
以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
【0055】
A.ポリマーの溶融粘度
東洋精機キャピログラフ1Bによりポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
【0056】
B.融点
Perkin Elmaer DSC−7を用いて2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。この時の昇温速度は16℃/分、サンプル量は10mgとした。
【0057】
C.口金吐出孔での剪断応力
口金孔壁とポリマーとの間の剪断応力はハーゲンポワズユの式(剪断応力(dyne/cm2)=R×P/2L)から計算する。ここでR:口金吐出孔の半径(cm)、P:口金吐出孔での圧力損失(dyne/cm2)、L:口金吐出孔長(cm)である。またP=(8LηQ/πR4)であり、η:ポリマー粘度(poise)、Q:吐出量(cm3/sec)、π:円周率である。また、CGS単位系の1dyne/cm2はSI単位系では0.1Paとなる。ここで、ポリマー粘度は口金吐出孔の温度、剪断速度での値を用いる必要があるが、吐出孔径の大きな口金を用いた場合は剪断速度が100sec-1以下とかなり低くなるため、キャピログラフ測定の実測値としてポリマー粘度を決定することが難しい場合がある。この時は、より高剪断速度での実測値やより低温での実測値から外挿して粘度を見積もった。
【0058】
D.ポリマーアロイ繊維のウースター斑(U%)
ツェルベガーウスター株式会社製USTER TESTER 4を用いて給糸速度200m/分でノーマルモードで測定を行った。
【0059】
E.TEMによる繊維横断面観察
繊維の横断面方向に超薄切片を切り出し、透過型電子顕微鏡(TEM)で繊維横断面を観察した。また、ナイロンはリンタングステン酸で金属染色した。
TEM装置 : 日立社製H−7100FA型
F.ナノファイバーの数平均による単糸繊度、直径
単糸繊度の平均値は以下のようにして求める。すなわち、TEMによる繊維横断面写真を画像処理ソフト(WINROOF)を用いて単糸直径および繊度を計算し、それの単純な平均値を求めた。これを「数平均による単糸繊度」とした。この時、平均に用いるナノファイバー数は同一横断面内で無作為抽出した300本以上の単糸直径を測定したが、これをナノファイバー集合体長として互いに10m以上離れた5カ所で行い、合計1500本以上の単糸直径を用いて計算した。
【0060】
G.ナノファイバーの単糸繊度ばらつき
ナノファイバーの単糸繊度ばらつきは、以下のようにして評価する。すなわち、上記数平均による単糸繊度を求める際に使用したデータを用い、ナノファイバーそれぞれの単糸繊度をdtiとしその総和を総繊度(dt1+dt2+…+dtn)とする。また、同じ単糸繊度を持つナノファイバーの頻度(個数)を数え、その積を総繊度で割ったものをその単糸繊度の繊度比率とする。
【0061】
H.ナノファイバーの直径ばらつき幅
ナノファイバーの直径ばらつき幅は以下のようにして評価する。すなわち、ナノファイバーの単糸直径の中心値付近で単糸直径差が30nmの幅に入る単糸の繊度比率で評価する。これは、中心繊度付近へのばらつきの集中度を意味しており、この繊度比率が高いほどばらつきが小さいことを意味している。これも上記数平均による単糸繊度を求める際に使用したデータを用いた。
【0062】
I.SEM観察
繊維に白金−パラジウム合金を蒸着し、走査型電子顕微鏡で繊維側面を観察した。
SEM装置 : 日立社製S−4000型
J.力学特性
ナノファイバー集合体10mの重量をn=5回測定し、これの平均値からナノファイバー集合体の繊度(dtex)を求めた。そして、室温(25℃)で、初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
【0063】
K.吸湿性(ΔMR)
サンプルを秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算を行う。
MR65=[(W65−W0)/W0]×100% ・・・・・ (1)
MR90=[(W90−W0)/W0]×100% ・・・・・ (2)
ΔMR=MR90−MR65 ・・・・・・・・・・・・ (3)
L.可逆的水膨潤性および糸長手方向の膨潤率
繊維を60℃で4時間乾燥した後、原長(L0)を測定する。そしてこの繊維を25℃の水に10分間浸漬した後、水から取り出し素早く処理後長(L1)を測定する。さらにこの繊維を60℃で4時間乾燥後、乾燥後長(L2)を測定する。そして、乾燥/水浸漬の3回繰り返し、3回目の糸長手方向の膨潤率が1回目の糸長手方向の膨潤率に対して50%以上であれば可逆的水膨潤性を有しているとした。糸長手方向の膨潤率は以下のようにして計算した。なお、繊維の長さは、繊維の2カ所に色つきの糸を結びその間の距離を測定した。この距離は約100mmとなるようにした。
糸長手方向の膨潤率(%)=((L1−L0)/L0)×100(%)
M.ポリマーの色調(b*値)
MINOLTA SPECTROPHOTOMETER CM-3700dでb*を測定した。このとき、光源としてはD65(色温度6504K)を用い、10°視野で測定を行った。
【0064】
実施例1
溶融粘度53Pa・s(262℃、剪断速度121.6sec-1)、融点220℃のN6(20重量%)と溶融粘度310Pa・s(262℃、剪断速度121.6sec-1)、融点225℃のイソフタル酸を8mol%、ビスフェノールAを4mol%共重合した融点225℃の共重合PET(80重量%)を2軸押し出し混練機で260℃で混練してb*値=4のポリマーアロイチップを得た。なお、この共重合PETの262℃、1216sec-1での溶融粘度は180Pa・sであった。このときの混練条件は以下のとおりであった。
スクリュー型式 同方向完全噛合型 2条ネジ
スクリュー 直径37mm、有効長さ1670mm、L/D=45.1
混練部長さはスクリュー有効長さの28%
混練部はスクリュー有効長さの1/3より吐出側に位置させた。
途中3個所のバックフロー部有り
ポリマー供給 N6と共重合PETを別々に計量し、別々に混練機に供給した。
温度 260℃
ベント 2個所
このポリマーアロイを275℃の溶融部2で溶融し、紡糸温度280℃のスピンブロック3に導いた。そして、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、口金面温度262℃とした口金5から溶融紡糸した(図10)。この時、口金としては図11に示すように吐出孔上部に直径0.3mmの計量部12を備えた、吐出孔径14が0.7mm、吐出孔長13が1.75mmのものを用いた。そして、この時の単孔あたりの吐出量は2.9g/分とした。この時の口金孔壁とポリマーの間の剪断応力は0.13MPa(ポリマーアロイの粘度は105Pa・s、262℃、剪断速度1248sec-1)と充分低いものであった。さらに、口金下面から冷却開始点(チムニー6の上端部)までの距離は9cmであった。吐出された糸条は20℃の冷却風で1mにわたって冷却固化され、口金5から1.8m下方に設置した給油ガイド8で給油された後、非加熱の第1引き取りローラー9および第2引き取りローラー10を介して900m/分で巻き取られた。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これを第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃として延伸熱処理した(図12)。この時、第1ホットローラー17と第2ホットローラー18間の延伸倍率を3.2倍とした。得られたポリマーアロイ繊維は120dtex、12フィラメント、強度4.0cN/dtex、伸度35%、U%=1.7%の優れた特性を示した。また、得られたポリマーアロイ繊維の横断面をTEMで観察したところ、共重合PETが海(薄い部分)、N6(濃い部分)が島の海島構造を示し(図2)、島N6の数平均による直径は53nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
【0065】
ここで得られたポリマーアロイ繊維を用いて丸編みを作製し、これを3%の水酸化ナトリウム水溶液(90℃、浴比1:100)で2時間浸漬することでポリマーアロイ繊維中の共重合PETの99%以上を加水分解除去した。この結果得られた、N6単独糸からなる丸編みは、海ポリマーである共重合PETが除去されたにもかかわらず、マクロに見るとあたかも長繊維や紡績糸のように連続しており、丸編み形状を保っていた。そして、この丸編みは通常のN6繊維からなる丸編みとは全く異なり、ナイロン特有の「ヌメリ感」が無く、逆に絹のような「きしみ感」やレーヨンのような「ドライ感」を有する物であった。
【0066】
このN6単独糸からなる丸編みから糸を引きだし、まず光学顕微鏡で繊維側面観察を行ったところ、アルカリ処理前の繊維に比べ繊維径が約2/3程度になっており、海ポリマーを除去することによって繊維半径方向に収縮が起こっていることが分かった(図4)。次に、これの繊維側面をSEMにより観察したところ、この糸は1本の糸ではなく無数のナノファイバーがところどころ接合しながら繋がったナノファイバー集合体であることが分かった。また、このN6ナノファイバー集合体のナノファイバー同士の間隔は数nm〜数100nm程度であり、極めて微小な空隙が存在していた。さらにこれの繊維横断面をTEMによって観察した結果を図1に示すが、このN6ナノファイバーは単糸直径が数十nm程度であることがわかった。そして、ナノファイバーの数平均による単糸直径は56nm(3×10-5dtex)と従来にない細さであった。また、単糸繊度が1×10-7〜9×10-5dtex(単糸直径で1〜100nm)の繊度比率は99%であり、特に単糸直径で55〜84nmの間に入る単糸繊度比率は71%であり、単糸繊度ばらつきはごく小さいものであった。TEM写真から解析したナノファイバーの単糸直径および単糸繊度のヒストグラムを図5、6に示すが、この時、単糸直径で10nm刻みで本数(頻度)および繊度比率を数えた。単糸直径で10nm刻みとは、例えば単糸直径55〜64nmのものは単糸直径60nm、また糸直径75〜84nmのものは単糸直径80nmとして数えたことを意味している。
【0067】
また、このN6単独からなる丸編みの吸湿率(ΔMR)を測定したところ、6%と綿を凌駕する優れた吸湿性を示した。さらに、このN6ナノファイバー集合体からなる糸の水に対する糸長手方向の膨潤性を調べたところ、可逆的に吸水膨潤/乾燥収縮を繰り返した(図9)。糸長手方向の吸水膨潤率は7%と、通常のN6繊維の3%に比べはるかに高い値であった。また、このN6ナノファイバー集合体からなる糸の力学特性を測定したところ、強度2.0cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。
【0068】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0069】
実施例2
N6を溶融粘度212Pa・s(262℃、剪断速度121.6sec-1)、融点220℃のN6(20重量%)として、実施例1と同様に2軸押出混練機を用いポリマーアロイチップを得た。そして、単孔あたりの吐出量は1.0g/分、口金孔壁とポリマーの間の剪断応力は0.071MPa(ポリマーアロイの粘度は170Pa・s、262℃、剪断速度416sec-1)として実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これを延伸倍率を3.0倍として、やはり実施例1と同様に延伸し、128dtex、36フィラメント、強度4.1cN/dtex、伸度37%、U%=1.2%の優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は40nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
【0070】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は43nm(2×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0071】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度2.2cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。
【0072】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0073】
実施例3
N6を溶融粘度500Pa・s(262℃、剪断速度121.6sec-1)、融点220℃のN6(20重量%)として実施例2と同様に溶融紡糸を行った。この時の口金孔壁とポリマーの間の剪断応力は0.083MPa(ポリマーアロイの粘度は200Pa・s、262℃、416sec-1)として実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これをやはり実施例2と同様に延伸・熱処理して128dtex、36フィラメント、強度4.5cN/dtex、伸度37%の、U%=1.9%の優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は60nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
【0074】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は65nm(4×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0075】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度2.4cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。
【0076】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0077】
実施例4
N6をブレンド比をポリマーアロイ全体に対し50重量%として、実施例3と同様に溶融紡糸を行った。この時の口金孔壁とポリマーの間の剪断応力は0.12MPaとして実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これをやはり実施例2と同様に延伸・熱処理して128dtex、36フィラメント、強度4.3cN/dtex、伸度37%、U%=2.5%の優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は80nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
【0078】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は84nm(6×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0079】
また、このN6ナノファイバー集合体からなる糸は、強度2.6cN/dtex、伸度50%であった。
【0080】
比較例1
溶融粘度50Pa・s(280℃、121.6sec-1)、融点220℃のN6と溶融粘度210Pa・s(280℃、121.6sec-1)、融点255℃のPETをN6ブレンド比を20重量%となるようにチップブレンドした後、290℃で溶融し、紡糸温度を296℃、口金面温度280℃、口金孔数36、吐出孔径0.30mm、吐出孔長0.50mmのずん胴口金として実施例1と同様に溶融紡糸を行い、紡糸速度1000m/分で未延伸糸を巻き取った。ただし、単純なチップブレンドであり、ポリマー同士の融点差も大きいためN6とPETのブレンド斑が大きく、口金下で大きなバラスが発生しただけでなく、曳糸性にも乏しく、安定して糸を巻き取ることはできなかったが、少量の未延伸糸を得て、第1ホットローラー17の温度を85℃、延伸倍率3倍として実施例1と同様に延伸を行い、100dtex、36フィラメントの延伸糸を得た。
【0081】
この糸を用いて実施例1と同様に丸編みとなし、やはりアルカリ処理によりPET成分を99%以上除去した。得られた丸編みからN6単独糸を引き出し、TEMにより繊維横断面観察を行ったところ、単糸直径が400nm〜4μm(単糸繊度1×10-3〜1×10-1dtex)の超極細糸が生成していることを確認した。しかし、これの数平均による単糸繊度は9×10-3dtex(単糸直径1.0μm)と大きいものであった。さらにN6超極細糸の単糸繊度ばらつきも大きいものであった。
【0082】
比較例2
溶融粘度395Pa・s(262℃、121.6sec-1)、融点220℃のN6と溶融粘度56Pa・s(262℃、121.6sec-1)、融点105℃のPEとをN6ブレンド比を65重量%となるようにチップブレンドした後、図13の装置を用い、1軸押出混練機21の温度を260℃として溶融した後、口金孔数12、吐出孔径0.30mm、吐出孔長0.50mmのずん胴口金として実施例1と同様に溶融紡糸を行った。ただし、N6とPEのブレンド斑が大きく、口金下で大きなバラスが発生しただけでなく、曳糸性にも乏しく、安定して糸を巻き取ることはできなかったが、少量の未延伸糸を得て、実施例1と同様に延伸・熱処理を行い、82dtex、12フィラメントの延伸糸を得た。この時の延伸倍率は2.0倍とした。
【0083】
この糸を用いて実施例1と同様に丸編みとなし、85℃のトルエンにより1時間以上PEを溶出処理しPEの99%以上を除去した。得られた丸編みからN6単独糸を引き出し、TEMにより繊維横断面観察を行ったところ、単糸直径が500nm〜3μm(単糸繊度2×10-3〜8×10-2dtex)の超極細糸が生成していることを確認した。これの数平均による単糸繊度は9×10-3dtex(単糸直径1.0μm)と大きいものであった。さらにN6超極細糸の単糸繊度ばらつきも大きいものであった。
【0084】
比較例3
溶融粘度150Pa・s(262℃、121.6sec-1)、融点220℃のN6と溶融粘度145Pa・s(262℃、121.6sec-1)、融点105℃のPEとをN6ブレンド比を20重量%となるようそれぞれのポリマーを計量しながら2軸押し出し混練機に導く図15の装置を用い、比較例2と同様に溶融紡糸を行った。ただし、N6とPEのブレンド斑が大きく、口金下で大きなバラスが発生しただけでなく、曳糸性にも乏しく、
安定して糸を巻き取ることはできなかったが、少量の未延伸糸を得て、実施例1と同様に延伸・熱処理を行い、82dtex、12フィラメントの延伸糸を得た。この時の延伸倍率は2.0倍とした。
【0085】
この糸を用いて実施例1と同様に丸編みとなし、85℃のトルエンにより1時間以上PEを溶出処理しPEの99%以上を除去した。得られた丸編みからN6単独糸を引き出し、TEMにより繊維横断面観察を行ったところ、単糸直径が100nm〜1μm(単糸繊度9×10-5〜9×10-3dtex)の超極細糸が生成していることを確認した。しかし、これの数平均による単糸繊度は1×10-3dtex(単糸直径384nm)と大きいものであった。さらに、これは超極細糸の単糸繊度ばらつきも大きいものであった(図7、8)。
【0086】
【表1】

【0087】
【表2】

【0088】
実施例5
実施例1で用いたN6と共重合PETを図14の装置を用いて別々に270℃で溶融した後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、紡糸パック4内に装着した静止混練器22(東レエンジニアリング社製“ハイミキサー”)を用いて2種のポリマーを104万分割して充分混合した後、実施例1同様に溶融紡糸を行った。この時のポリマーのブレンド比はN6が20重量%、共重合PETが80重量%であった。この未延伸糸にやはり実施例1と同様に延伸・熱処理を施した。得られたポリマーアロイ繊維は120dtex、12フィラメント、強度3.9cN/dtex、伸度38%、U%=1.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は52nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
【0089】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は54nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0090】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。
【0091】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0092】
実施例6
実施例1で用いたN6と共重合PETを図15の装置を用いて270℃の2軸押出混練機で溶融混練した後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、実施例1同様に溶融紡糸を行った。この時のポリマーのブレンド比はN6が20重量%、共重合PETが80重量%であった。この未延伸糸にやはり実施例1同様に延伸・熱処理を施した。得られたポリマーアロイ繊維は120dtex、12フィラメント、強度3.9cN/dtex、伸度38%、U%=1.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は54nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
【0093】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は56nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0094】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。
【0095】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0096】
【表3】

【0097】
【表4】

【0098】
実施例7
共重合PETを熱水可溶性ポリマーである第一工業製薬株式会社製“パオゲンPP−15”(溶融粘度350Pa・s、262℃、121.6sec-1、融点55℃)、紡糸速度を5000m/分として実施例5と同様に混練、溶融紡糸を行った。得られたポリマーアロイ繊維は70dtex、12フィラメント、強度3.8cN/dtex、伸度50%、U%=1.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は53nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。なお、この“パオゲンPP−15”の262℃、1216sec-1での溶融粘度は180Pa・sであった。
【0099】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は56nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0100】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN66ナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度60%であった。
【0101】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0102】
実施例8
N6の代わりに溶融粘度100Pa・s(280℃、121.6sec-1)、融点250℃のN66を用い、図14の装置を用いてN66を270℃、実施例7で用いた熱水可溶性ポリマーを80℃で溶融した後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、実施例5同様に溶融紡糸を行った。この時のポリマーのブレンド比はN66が20重量%、熱水可溶性ポリマーが80重量%、単孔あたりの吐出量は2.9g/分とした。この時の紡糸速度は5000m/分とした。そして、70dtex、12フィラメント、強度4.5cN/dtex、伸度45%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、N66が島の海島構造を示し、島N66の数平均による直径は58nmであり、N66が超微分散化したポリマーアロイ繊維が得られた。
【0103】
ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は62nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0104】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN66ナノファイバー集合体からなる糸は、強度2.5cN/dtex、伸度60%であった。
【0105】
さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0106】
【表5】

【0107】
【表6】

【0108】
実施例9
実施例1〜6で作製したポリマーアロイ繊維を用いて平織りを製織した。そして、界面活性剤(三洋化成“グランアップ”)および炭酸ナトリウムをそれぞれ濃度2g/リットルとした100℃の熱水中(浴比は1:100)で精練を施した。精練時間は40分とした。そして、140℃で中間セットを施した。その後、10%の水酸化ナトリウム水溶液(90℃、浴比1:100)でアルカリ処理を90分間施し、海成分である共重合PETの99%以上を除去した。さらに、これに140℃で最終セットを施した。得られた布帛に常法により染色を施したが、染色斑の無い美しい物であった。ここで得られたナノファイバー集合体からなる織物は、絹のような「きしみ感」やレーヨンのような「ドライ感」を有する風合いに優れた物であった。また、ΔMR=6%と吸湿性にも優れるため快適衣料に好適なものであった。さらに、この織物をバフィング処理を施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
【0109】
比較例4
比較例1〜3で作製したN6ブレンド繊維を用いて実施例9と同様に平織りを作製したが、紡糸が不安定であったため糸の長手方向の太細斑や毛羽が多いことに起因し、毛羽の多い表面品位の悪い織物しかできなかった。これらに精練を施し、続いて中間セットを施した。そして、比較例1の糸を用いたものは実施例9と同様にアルカリ処理を施した後、最終セットを施し、やはり常法に従い染色を施した。一方、比較例2および3の糸を用いたものには、85℃のトルエンに60分間浸漬し、PEを99%以上溶解除去した。その後、これらに最終セットを施し、やはり常法に従い染色を施した。これらの布帛は、染色斑や毛羽の多い品位の悪い物であった。また、風合いとしては従来の極細糸の範疇でありきしみ感やドライ感はなく、吸湿性も通常N6繊維並(ΔMR=2%)であった。
【0110】
実施例10
実施例4で作製したポリマーアロイ繊維を用いて高密度平織りを製織した。そして、実施例9に準じナノファイバー集合体からなる平織りを得た。さらにこれのナノファイバーの単繊維繊度ばらつきを解析した結果、ナノファイバーの数平均による単繊維直径は86nm(6×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は78%であり、特に単繊維直径で75〜104nmの間に入る単繊維繊度比率は64%であり、単繊維繊度ばらつきはごく小さいものであった。そして、これにバフィングを施した。これは、従来の極細糸を用いたワイピングクロスよりも拭き取り性が良く、ワイピングクロスとして好適なものであった。
【0111】
実施例11
実施例1で作製したポリマーアロイ繊維を合糸し4万dtexのトウとした後、機械捲縮を施し捲縮数15山/25mmの捲縮糸とした。これを繊維長51mmにカットし、カードで解繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを3000本/cm2施し、750g/m2の繊維絡合不織布とした。この不織布にポリビニルアルコールを付与した後、3%の水酸化ナトリウム水溶液(60℃、浴比1:100)でアルカリ処理を2時間施し、共重合PETの99%以上を除去した。なお、このナノファイバー構造体からナノファイバー集合体を抜き取り解析した結果、ナノファイバーの数平均による単繊維直径は60nm(3×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は90%であり、特に単繊維直径で55〜84nmの間に単繊維繊度比率は70%であり、単繊維繊度ばらつきはごく小さいものであった。さらに、ポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗し、N6ナノファイバー集合体とPUからなる厚さ約1mmのナノファイバー構造体を得た。この1面をサンドペーパーでバフィング処理して厚さを0.8mmとした後、他面をエメリーバフ機で処理してナノファイバー集合体立毛面を形成し、さらに染色した後、仕上げを行いスエード調人工皮革を得た。得られた製品は外観が極めて良好で染色斑もなく、力学特性にも問題はなかった。また、従来の超極細糸を用いた人工皮革に比べ、さらに柔らかできめの細かいタッチであった。また、吸湿性にも優れるため、従来の人工皮革では持ち得なかった人肌のようなみずみずしさも併せ持つ優れた風合いであった。
【0112】
比較例5
比較例2で作製したN6/PEブレンド繊維に機械捲縮を施した後、繊維長51mmにカットし、カードで解繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを用い、500g/m2の繊維絡合不織布とした。さらにポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗した。さらに、この不織布にパークレン処理を行い、N6超極細糸とPUからなる厚さ約1mmのナノファイバー構造体を得た。この1面をサンドペーパーでバフィング処理して厚さを0.8mmとした後、他面をエメリーバフ機で処理してナノファイバー集合体立毛面を形成し、さらに染色した後、仕上げを行いスエード調人工皮革を得た。これの風合いは、単なるスエードの模造品であり従来の超極細繊維を用いた人工皮革を超えるものではなかった。
【0113】
実施例12
実施例1で作製したポリマアロイ繊維を用いて実施例11と同様の操作により、PU含有率が40重量%のN6ナノファイバー集合体とPUからなるナノファイバー構造体からなる研磨布基材を得た。なお、このナノファイバー構造体からナノファイバー集合体を抜き取り解析した結果、ナノファイバーの数平均による単繊維直径は60nm(3×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は90%であり、特に単繊維直径で55〜84nmの間に単繊維繊度比率は70%であり、単繊維繊度ばらつきはごく小さいものであった。これを2分割するように切断した後、表面をJIS#240、#350、#500番のサンドペーパーでバフイングした。さらに、これを隙間が1.0mmの表面温度150℃の上下2本のフッ素加工した加熱ローラーでニップし、0.7kg/cm2の圧力でプレスした後、表面温度15℃の冷却ローラーで急冷し表面を平滑化した研磨布を得た。そして、この研磨布を以下の方法で評価した結果を表7に示すが、従来超極細糸を用いたものに比べ被研磨物の平滑性が高くまた欠点であるスクラッチ数も少なく、優れた研磨特性を示した。
<研磨評価:ハードディスクのテキスチャリング>
被研磨物:市販アルミニウム板にNi−Pメッキ後ポリッシュ加工した基板
(平均表面粗さ=0.28nm)
研磨条件:以下の条件で、該基板をテキスチャー装置に取り付け、研磨を行った。
砥粒 :平均粒径0.1μmダイヤモンドの遊離砥粒スラリー
滴下速度 :4.5ml/分
回転数 :1000rpm
テープ速度:6cm/分
研磨条件 :振幅1mm−横方向振動300回/分
評価枚数 :該基板30枚/水準
<被研磨物の平均表面粗さRa>
温度20℃、相対湿度50%のクリーン室に設置された防音装置付きのVeeco社製原糸間力顕微鏡(AFM)を用いて基板30枚/水準の表面粗さを測定し、その平均表面粗さRaを求める。測定範囲は各基板のディスク中心を基準とし半径の中央点2カ所を対称に選定し、各点5μm×5μmの広さで測定を行う。
<スクラッチ数>
ZYGO社製干渉型顕微鏡で表面観察し、各サンプルの表面スクラッチ数(X)を測定する。スクラッチは0.1μm×100μm以上の大きさのものをカウントする。これを基板30枚/水準測定し、傷の数による点数yからスクラッチ数βを定義する。
X≦4の時 y=X
X≧5の時 y=5
β=Σyi (i=1〜30)
ここでΣyiはサンプル30枚分のスクラッチ総数である。
【0114】
比較例6
比較例2で作製したN6/PEブレンド繊維に機械捲縮を施した後、繊維長51mmにカットし、カードで開繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを用い、500g/m2の繊維絡合不織布とした。さらにポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗した。さらに、この不織布にパークレン処理を行い、N6超極細糸とPUからなるナノファイバー構造体からなる研磨基材を得た。これを用い、実施例12と同様の操作により研磨布を得た。そして、この研磨布の評価を行ったが、Ra=1.6nm、β=32とナノファイバー集合体を用いたものに比べ被研磨物の平滑性が低くまた欠点であるスクラッチ数も多くなり、劣った研磨特性を示した。
【0115】
【表7】

【0116】
実施例13
実施例1で作製したポリマーアロイ繊維を用い実施例11と同様に、350g/m2の繊維絡合不織布とした後、10%の水酸化ナトリウム水溶液(90℃、浴比1:100)でアルカリ処理を2時間施し、共重合PETの99%以上を除去し、N6ナノファイバー不織布を得た。なお、この不織布からナノファイバー集合体を抜き取りさらにこれのナノファイバーの単繊維繊度ばらつきを解析した結果、ナノファイバーの数平均による単繊維直径は60nm(3×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は90%であり、特に単繊維直径で55〜84nmの間に入る単繊維繊度比率は70%であり、単繊維繊度ばらつきはごく小さいものであった。これを直径4.7cmの円形に切断したもの5枚を重ねて円形のフィルターカラムに白血球(5700個/μリットル)を含む牛血を2mリットル/分の流速で通液したところ、圧力損失が100mmHgに達するまでの時間は100分間であり、その時の顆粒球除去率は99%以上、リンパ球除去率は60%と炎症性の白血球である顆粒球を選択できるものであった。これは、ナノファイバー同士の隙間による効果であると考えられる。
【0117】
実施例14
実施例12で作製したナノファイバー不織布0.5gをオートクレーブで減菌し、15mリットルのエンドトキシンを含む牛血清で吸着能力の評価(37℃、2時間)をしたところエンドトキシン濃度LPSが10.0ng/mリットルから1.5ng/mリットルまで減少しており、優れた吸着能力を示した。これはナイロンナノファイバーは活性表面が通常のナイロン繊維に比べはるかに多いため、アミノ末端が通常よりもはるかに多く存在しているためと考えられる。
【0118】
実施例15
実施例1〜4で作製したN6ナノファイバー集合体からなる丸編みは自重160%以上の含水率、また自重の80%以上の保水率を示し、吸水、保水性に優れたものであった。ここで、含水率、保水率はサンプルを60分間水槽に充分浸漬した後、これを引き上げ表面付着水を除去した物の重量(Ag)を測定し、その後これを遠心脱水機(3000rpmで7分間)で脱水した物の重量(Bg)を測定し、さらにこれを105℃で2時間乾燥させた物の重量(Cg)を測定し、以下の式で計算した。
含水率(%)=(A−C)/C×100(%)
保水率(%)=(B−C)/C×100(%)
さらに、このN6ナノファイバー集合体からなる丸編みは、特に水を15%以上含んだ状態では特異的な粘着性が発現した。
【0119】
実施例16
実施例13で作製したN6ナノファイバー集合体からなる不織布を用いて貼布材基布を作製した。これに薬剤を塗布したところ、薬剤の吸尽性は良好であり、しかも優れた粘着性を示し、優れた貼布材とすることができた。
【0120】
実施例17
実施例1で作製したN6ナノファイバー集合体からなる丸編で袋を作製し、これに中袋で包んだ保冷剤を入れた。この熱冷まし用具は袋に用いた丸編に結露した水が吸収され、優れた粘着性を示すため、熱冷まし用具が患部からずれにくく、取り扱い性に優れる物であった。
【0121】
実施例18
実施例1で作製したN6ナノファイバー集合体からなる丸編のケミカル汚染物質の除去能力を以下のようにして評価した。0.005m3 (5リットル)のテドラーバッグ中央に、サンプル片1gを置き、これに大気を流入させ、さらにケミカル汚染物質を所望の濃度となるように注入した。この汚染空気を経時的にサンプリングし、ガスクロマトグラフィーにてテドラーバッグ中のケミカル汚染物質濃度をモニタリングした。
【0122】
ケミカル汚染物質としてアンモニア、ホルムアルデヒド、トルエン、硫化水素の除去を評価したところ、優れた除去能力を示した(図16〜19)。
【0123】
比較例7
市販のN6丸編を用いて実施例18と同様にケミカル汚染物質の除去能力を評価したが、ほとんど除去能力は無かった。
【0124】
実施例19
実施例3で作製した丸編みにシルコートPP(特殊変性シリコーン/松本油脂(株)製商品名)の10wt%水溶液に浸漬し、水溶液のピックアップ率が150%となるよう処理液を丸編み地に付与した。処理液を付与後、110℃で3分間、リラックス状態でオーブン中で乾燥した。乾燥後、揉布処理を行ったところ、バフィングとはまた異なる繊細なタッチと人肌のようなしっとりとしたみずみずしい風合いを示した。さらに接触冷感もあるものであった。また、この丸編み地を家庭用洗濯機で洗濯ネットに入れて洗濯・脱水したが、形くずれは発生せず良好な寸法安定性を示した。
【0125】
このシリコーン処理された目付150g/m2のN6ナノファイバーからなる丸編み地を用いてTシャツを作製したが、人肌のようなタッチのため非常に快適で、しかもヒーリング効果もあるものであった。また、これを家庭用洗濯機で洗濯ネットに入れて洗濯・脱水したが、形くずれは発生せず良好な寸法安定性を示した。
【0126】
実施例20
実施例1で用いたN6と重量平均分子量12万、溶融粘度30Pa・s(240℃、2432sec-1)、融点170℃のポリL乳酸(光学純度99.5%以上)を用い、N6の含有率を20重量%とし、混練温度を220℃として実施例1と同様に溶融混練し、b*値=3のポリマーアロイチップを得た。なお、ポリ乳酸の重量平均分子量は以下のようにして求めた。試料のクロロホルム溶液にTHF(テトロヒドロフラン)を混合し測定溶液とした。これをWaters社製ゲルパーミテーションクロマトグラフィー(GPC)Waters2690を用いて25℃で測定し、ポリスチレン換算で重量平均分子量を求めた。なお、実施例1で用いたN6の240℃、2432sec-1)での溶融粘度は57Pa・sであった。また、このポリL乳酸の215℃、1216sec-1での溶融粘度は86Pa・sであった。
【0127】
これを溶融温度230℃、紡糸温度230℃(口金面温度215℃)、紡糸速度3500m/分で実施例1と同様に溶融紡糸を行った。この時、口金として口金孔径0.3mm、孔長0.55mmの通常の紡糸口金を使用したが、バラス現象はほとんど観察されず、実施例1に比べても大幅に紡糸性が向上し、1tonの紡糸で糸切れは0回であった。この時の単孔吐出量は0.94g/分とした。これにより、92dtex、36フィラメントの高配向未延伸糸を得たが、これの強度は2.4cN/dtex、伸度90%、沸騰水収縮率43%、U%=0.7%と高配向未延伸糸として極めて優れたものであった。特に、バラスが大幅に減少したのに伴い、糸斑が大幅に改善された。
【0128】
この高配向未延伸糸を延伸温度90℃、延伸倍率1.39倍、熱セット温度130℃として実施例1と同様に延伸熱処理した。得られた延伸糸は67dtex、36フィラメントであり、強度3.6cN/dtex、伸度40%、沸騰水収縮率9%、U%=0.7%の優れた特性を示した。
【0129】
得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PLAが海(薄い部分)、N6が島(濃い部分)の海島構造を示し、島N6の数平均による直径は55nmであり、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。
【0130】
ここで得られたポリマーアロイ繊維を実施例1と同様に丸編み後アルカリ処理することで、ポリマーアロイ繊維中のPLAの99%以上を加水分解除去した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は60nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0131】
また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度2cN/dtex、伸度45%であった。さらに140℃乾熱収縮率は3%であった。さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい風合いを示した。
【0132】
【表8】

【0133】
【表9】

【0134】
実施例21
実施例20で作製したナノファイバー集合体からなる丸編み5gを110℃で1時間乾燥させ、下記組成の処理液に2時間浸漬し、ジフェニルジメトキシシランをナノファイバー集合体に十分含浸させた。処理布帛を純水で十分洗浄後、140℃で3分間キュアすることにより、ナノファイバー集合体の内部でジフェニルジメトキシシランを重合させた。これに家庭洗濯を10回を施し、110℃で1時間乾燥させ重量を測定したところ、未処理に比べ38%の重量増加であった。このように、ナノファイバー集合体にジフェニルシリコーンを坦持させハイブリッド材料を得ることができ、ジフェニルシリコーンの洗濯耐久性も良好であった。
<処理液の組成>
ジフェニルジメトキシシラン 100ml
純水 100ml
エタノール 300ml
10%塩酸 50滴
実施例22
N6の含有率を35%として実施例20と同様に溶融紡糸を行い、400dtex、144フィラメントのN6/PLAポリマーアロイ高配向未延伸糸を得た。この高配向未延伸糸を実施例20と同様に延伸熱処理した。得られた延伸糸は288dtex、96フィラメントであり、強度3.6cN/dtex、伸度40%、沸騰水収縮率9%、U%=0.7%の優れた特性を示した。
【0135】
得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PLAが海(薄い部分)、N6が島(濃い部分)の海島構造を示し、島N6の数平均による直径は62nmであり、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。これを15%のオーバーフィードをかけながら別途用意した165dtex、96フィラメントのN6仮撚り加工糸とエア混繊した。そしてこの混繊糸に300ターン/mの甘撚りを施し、S撚り/Z撚り双糸で経糸および緯糸に用いて、2/2のツイル織物を作製した。得られたツイル織物に実施例20と同様にアルカリ処理を施し、N6ナノファイバーからなる目付150g/m2のカーテン用生地を得た。このカーテン生地中でN6ナノファイバーは通常N6仮撚り加工糸を覆うように位置しており、ナノファイバーが主として織物表面に露出していた。さらに、このナノファイバーの単繊維繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は67nm(4×10-5dtex)と従来にない細さであり、また、単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は82%であり、特に単繊維直径で55〜84nmの間に入る単繊維繊度比率は60%であり、単繊維繊度ばらつきはごく小さいものであった。また、このN6ナノファイバーは、強度2.0cN/dtex、伸度40%であった。
【0136】
また、このカーテン生地に実施例19同様にシリコーン処理を施したところ、繊細なタッチと人肌のようなしっとりとしたみずみずしい風合いを示した。さらに接触冷感もあるものであった。また、これの吸湿率(ΔMR)は4%と十分な吸湿性を示し、酢酸の消臭試験を行ったところ10分間で濃度が100ppmから1ppmまで低下し、優れた消臭性を示した。そして、この生地を用いてカーテンを作製し6畳間に吊したところ、爽やかな室内環境とすることができ、さらに結露も抑制できるものであった。このカーテンを家庭用洗濯機で洗濯ネットに入れて洗濯・脱水したが形くずれは発生せず、良好な寸法安定性を示した。
【0137】
実施例23
実施例3で用いたN6と共重合PETをN6と共重合PETのブレンド比を80重量%/20重量%として、実施例1と同様に溶融混練を行いマスターペレットを作製した。このマスターペレットと溶融混練に用いたN6バージンペレットを独立のホッパー1に仕込み、計量部24で独立に計量してブレンド槽29(容量7kg)に供給した(図20)。このとき、マスターペレットとN6バージンペレットのブレンド比は重量で1:1とし、ブレンド槽壁面へのペレット付着を防止するため静電防止剤(三洋化成工業(株)社製 エマルミン40)を20ppmを含有させた。そして、このブレンド槽でペレット同士が攪拌された後、二軸押出混練機23に供給され、溶融混練されN6の含有率が40重量%のポリマーアロイとされた。このとき、混練部長さをスクリュー有効長さの33%、混練温度は270℃とした。その後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、実施例3同様に溶融紡糸を行った。この未延伸糸にやはり実施例3同様に延伸・熱処理を施した。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度3.0cN/dtex、伸度30%、U%=3.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は110nmであり、やや島N6の直径が大きく、ばらつきも大きいものであった。
【0138】
ここで得られたポリマーアロイ繊維を用いて実施例3同様に、アルカリ処理によりナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は120nm(1.3×10-4dtex)と実施例3に比べると単糸繊度が太く、単糸繊度ばらつきも大きく、1×10-7dtex〜1×10-4dtexの範囲の単糸繊度比率は60%未満、1×10-7dtex〜2×10-4dtexの範囲の単糸繊度比率は95%であった。
【0139】
また、このナノファーバー集合体からなる丸編みの吸湿率(ΔMR)は5%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度1.2cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。
【図面の簡単な説明】
【0140】
【図1】実施例1のナイロンナノファイバーの集合体繊維横断面を示すTEM写真である。
【図2】実施例1のポリマーアロイ繊維の横断面を示すTEM写真である。
【図3】実施例1のナノファイバー集合体の繊維側面の状態を示すSEM写真である。
【図4】実施例1のナノファイバー集合体の繊維側面の状態を示す光学顕微鏡写真である。
【図5】実施例1のナノファイバーの単糸繊度ばらつきをあらわす図である。
【図6】実施例1のナノファイバーの単糸繊度ばらつきをあらわす図である。
【図7】比較例3の超極細糸の単糸繊度ばらつきをあらわす図である。
【図8】比較例3の超極細糸の単糸繊度ばらつきをあらわす図である。
【図9】実施例1の可逆的水膨潤性を示す図である。
【図10】紡糸機を示す図である。
【図11】口金を示す図である。
【図12】延伸機を示す図である。
【図13】紡糸機を示す図である。
【図14】紡糸機を示す図である。
【図15】紡糸機を示す図である。
【図16】アンモニア消臭性を示す図である。
【図17】ホルムアルデヒド消臭性を示す図である。
【図18】トルエン消臭性を示す図である。
【図19】硫化水素消臭性を示す図である。
【図20】紡糸機を示す図である。
【符号の説明】
【0141】
1:ホッパー
2:溶融部
3:スピンブロック
4:紡糸パック
5:口金
6:チムニー
7:糸条
8:集束給油ガイド
9:第1引き取りローラー
10:第2引き取りローラー
11:巻き取り糸
12:計量部
13:吐出孔長
14:吐出孔径
15:未延伸糸
16:フィードローラー
17:第1ホットローラー
18:第2ホットローラー
19:第3ローラー(室温)
20:延伸糸
21:1軸押出混練機
22:静止混練器
23:2軸押出混練機
24:チップ計量装置
25:イジェクター
29:ブレンド槽

【特許請求の範囲】
【請求項1】
数平均による単糸繊度が1×10-7〜2×10-4dtexであり、繊度比率の60%以上が単糸繊度1×10-7〜2×10-4dtexの範囲である、ポリアミドからなるナノファイバー集合体。
【請求項2】
長繊維および/または紡績糸形状である請求項1記載のナノファイバー集合体。
【請求項3】
繊度比率で50%以上のナノファイバーが単糸直径差で30nmの幅に入る請求項1または2記載のナノファイバー集合体。
【請求項4】
強度が1cN/dtex以上である請求項1〜3のうちいずれか1項記載のナノファイバー集合体。
【請求項5】
吸湿率が4%以上である請求項1〜4のうちいずれか1項記載のナノファイバー集合体。
【請求項6】
糸長手方向の吸水膨潤率が5%以上である請求項1〜5のうちいずれか1項記載のナノファイバー集合体。
【請求項7】
請求項1〜6のいずれか1項記載のナノファイバー集合体を少なくとも一部に有する繊維製品。
【請求項8】
繊維製品が織編物あるいはフェルトあるいは不織布あるいは人工皮革である請求項7記載の繊維製品。
【請求項9】
繊維製品が衣料、インテリア製品、生活資材製品、環境・産業資材製品、メディカル製品である請求項7または8記載の繊維製品。

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−138061(P2006−138061A)
【公開日】平成18年6月1日(2006.6.1)
【国際特許分類】
【出願番号】特願2005−360608(P2005−360608)
【出願日】平成17年12月14日(2005.12.14)
【分割の表示】特願2003−360464(P2003−360464)の分割
【原出願日】平成15年10月21日(2003.10.21)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】