説明

ナノファイバー

【課題】従来には無かった単糸繊度ばらつきの小さなナノファイバー集合体を提供する。
【解決手段】数平均による単糸繊度が1×10-7〜2×10-4dtexであり、繊度比率の60%以上が単糸繊度1×10-7〜2×10-4dtexの範囲であり、ポリフェニレンスルフィドからなり、長繊維および/または紡績糸形状であり、繊度比率で50%以上のナノファイバーが単糸直径差で30nmの幅に入り、強度が1cN/dtex以上であるナノファイバー集合体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、従来には無かった単糸繊度ばらつきの小さなナノファイバー集合体に関するものである。
【背景技術】
【0002】
ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)に代表されるポリエステルやナイロン6(N6)やナイロン66(N66)に代表されるポリアミドといった重縮合系ポリマーは適度な力学特性と耐熱性を有するため、従来から衣料用途や産業資材用途の繊維に好適に用いられてきた。一方、ポリエチレン(PE)やポリプロピレン(PP)に代表される付加重合系ポリマーは適度な力学特性や耐薬品性、軽さを有するため、主として産業資材用途の繊維に好適に用いられてきた。
【0003】
特にポリエステル繊維やポリアミド繊維は衣料用途に用いられてきたこともあり、ポリマー改質だけでなく、繊維の断面形状や極細糸による性能向上の検討も活発に行われてきた。このような検討の一つとして、海島複合紡糸を利用したポリエステルの超極細糸が生み出され、スエード調の人工皮革という大型新製品に結実していった。また、この超極細糸を一般衣料に適用し、通常の繊維では絶対に得られないピーチタッチの優れた風合いの衣料にも展開されている。さらに、衣料用途のみならず、ワイピングクロスといった生活資材や産業資材用途にも展開され、超極細繊維は現在の合成繊維の世界で確固たる地位を築いている。特に最近では、特開2001−1252号公報や特開2002−224945号公報に記載のようにコンピューターのハードディスク用の表面研磨布や、特開2002−102332号公報や特開2002−172163号公報に記載のように細胞吸着材のようなメディカル材料にまで応用が拡がっている。
【0004】
このため、さらにレベルの高い人工皮革や高質感衣料を得るために、より細い繊維が望まれていた。また、IT産業の隆盛を支えるためハードディスクの大容量化が推進されているが、このためにはさらにハードディスクの記録密度を上げることが必須であり、そのためには、現在平均表面粗さが1nm以上であるハードディスク表面をさらに平滑化することが必要である(目標は平均表面粗さ0.5nm以下)。このため、ハードディスク表面を磨くための研磨布に用いる繊維をさらに極細化したナノファイバーが望まれていた。
【0005】
しかしながら、現在の海島複合紡糸技術では単糸繊度は0.04dtex(直径2μm相当)が限界であり、ナノファイバーに対するニーズに充分応えられるレベルではなかった。また、ポリマーブレンド繊維により超極細糸を得る方法が、特開平3−113082号公報や特開平6−272114号公報に記載されているが、ここで得られる単糸繊度も最も細くとも0.001dtex(直径0.4μm相当)であり、やはりナノファイバーに対するニーズに充分応えられるレベルではなかった。しかも、ここで得られる超極細糸の単糸繊度はポリマーブレンド繊維中での島ポリマーの分散状態で決定されるが、該公報で用いられているポリマーブレンド系では島ポリマーの分散が不十分であるため、得られる超極細糸の単糸繊度ばらつきが大きいものであった。また、静止混練器を利用したポリマーブレンド繊維により超極細糸を得る方法(特許文献1)もあるが、該公報実施例2には、静止混練器の分割数から計算した理論単糸繊度は1×10-4dtex(直径100nm程度)とナノファイバーが得られることになるが、これから得られる超極細糸の単糸繊度を実測すると1×10-4dtex〜1×10-2dtex(直径1μm程度)となり、単糸直径が揃ったナノファイバーを得ることができなかったことが記載されている。これは、ポリマーブレンド繊維中で島ポリマーが合一し、島ポリマーをナノサイズで均一に分散できなかったためと考えられる。このように、これら従来技術で得られる超極細糸の単糸繊度ばらつきが大きく、製品の性能が太い単糸群で決定され超極細糸のメリットが十分発揮されないばかりか、品質安定性等にも問題があった。さらに、前述のハードディスク用の表面研磨布に用いた場合、繊度ばらつきが大きいことに起因し、砥粒を研磨布に均一坦持することができず、結果的にハードディスク表面の平滑性がかえって低下する問題もあった。
【0006】
ところで、繊維を極細化する技術として近年脚光を浴びているものにエレクトロスピニングという技術がある。これは、ポリマーを電解質溶液に溶解し、口金から押し出すのであるが、その際、ポリマー溶液に数千〜3万ボルトという高電圧を印加し、ポリマー溶液の高速ジェットおよびそれに引き続くジェットの折れ曲がり、膨張により極細化する技術である。この技術を用いると、単糸繊度は10-5dtexオーダー(単糸直径で数十nm相当)と従来のポリマーブレンド技術によるものに比べ、繊度で1/100以下、直径で1/10以下にすることができる場合もある。対象となるポリマーはコラーゲン等の生体ポリマーや水溶性ポリマーが多いのであるが、熱可塑性ポリマーを有機溶媒に溶解してエレクトロスピニングする例もある。しかしながら、Polymer, vol.40, 4585(1999). に記載されているように、超極細糸部分である“string”はポリマー溜まり部分である“bead”(直径0.5μm程度)により連結されている場合が多く、超極細糸集合体として見た時に、大きな単糸繊度ばらつきがあった。このため、“bead”の生成を抑制して繊維径を均一にしようという試みもなされているが、そのばらつきは未だに大きいものであった(非特許文献1)。また、エレクトロスピニングで得られる繊維・繊維製品の形状は不織布に限定されるとともに、繊維化の過程で溶媒が蒸発するため得られた繊維集合体は配向結晶化していない場合が多く、強度も通常の繊維製品に比べてごく弱い物しか得られておらず、応用展開に大きな制約があった。さらに、エレクトロスピニングは製法としても大きな問題を抱えており、得られる繊維製品の大きさはせいぜい100cm2程度であること、また生産性が最大でも数g/時間と通常の溶融紡糸に比べ非常に低いという問題があった。さらに、高電圧を必要とすること、有害な有機溶媒や超極細糸が空気中に浮遊することから感電、爆発、中毒といった危険が常につきまとうという問題もあった。
【0007】
ところで、ナノファイバーを得る特殊な方法として、メソポーラスシリカに重合触媒を坦持しておき、そこでPEの重合を行うことで直径が30〜50nm(5×10-6〜2×10-5dtex相当)のPEナノファイバーを得る方法がある(非特許文献2)。しかし、この方法ではナノファイバーの綿状塊しか得られておらず、そこから繊維を引き出すことは不可能である。また、扱えるポリマーもPEのような付加重合系ポリマーのみであり、ポリエステルやポリアミドといった重縮合系ポリマーは重合過程で脱水が必要であるため、原理上扱うことは困難である。このため、この方法で得られるナノファイバーには応用展開に大きな制約があった。
【0008】
以上説明したように、繊維・繊維製品形状やポリマーに制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーが求められていた。
【特許文献1】USP4,686,074(19thカラム)
【非特許文献1】Polymer, vol.43, 4403(2002).
【非特許文献2】Science, vol.285, 2113(1999).
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、繊維・繊維製品形状やポリマーに制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーを提供するものである。
【課題を解決するための手段】
【0010】
上記目的は、数平均による単糸繊度が1×10-7〜2×10-4dtexであり、繊度比率の60%以上が単糸繊度1×10-7〜2×10-4dtexの範囲であり、ポリフェニレンスルフィドからなるナノファイバー集合体により達成される。
【発明の効果】
【0011】
本発明の単糸繊度ばらつきの小さなナノファイバー集合体により、これまでにない風合いの布帛などを得ることができる。
【発明を実施するための最良の形態】
【0012】
本発明でいうPPSとは、フェニル基にイオウ原子(以下Sと略す)が結合したユニットを繰り返し単位としたポリマーのことを言い、特開昭50−84698号公報や特開昭61−7332号公報などの公知の方法を用いて得ることができる。また、PPSには粒子、難燃剤、帯電防止剤等の添加物を含有させていても良い。またPPSの性質を損なわない範囲で他の成分が共重合されていても良い。
【0013】
本発明で言うナノファイバーとは、単糸直径が1〜250nmの繊維を言うものであり、それが集合したものをナノファイバー集合体と言う。そして、本発明では、このナノファイバー集合体中の単糸繊度の平均値およびばらつきが重要である。これは、ナノファイバー集合体の横断面を透過型電子顕微鏡(TEM)で観察し、同一横断面内で無作為抽出した300本以上の単糸直径を測定するが、これを少なくとも5カ所以上で行い、合計1500本以上の単糸直径を測定することで求めることができる。これらの測定位置は、ナノファイバー集合体から得られる繊維製品の均一性を保証する観点から、ナノファイバー集合体長として互いに10m以上離して行うことが好ましい。
【0014】
ここで、単糸繊度の平均値は以下のようにして求める。すなわち、測定した単糸直径から繊度を計算し、それの単純な平均値を求める。これを「数平均による単糸繊度」と本発明では呼ぶ。本発明では、数平均による単糸繊度は1×10-7〜2×10-4dtex(単糸直径で1〜150nm相当)であることが重要である。これは、従来の海島複合紡糸による超極細糸に比べ1/100〜1/100000という細さであり、従来の超極細糸とは全く異なる質感を持った衣料用布帛や従来よりもはるかにハードディスクの平滑性を向上し得る研磨布を得ることができるのである。数平均による単糸繊度は好ましくは1×10-7〜1×10-4dtex(単糸直径で1〜100nm相当)、より好ましくは0.8×10-5〜6×10-5dtex(単糸直径で30〜80nm相当)である。
【0015】
また、ナノファイバーの単糸繊度ばらつきは、以下のようにして評価する。すなわち、ナノファイバーそれぞれの単糸繊度をdtiとしその総和を総繊度(dt1+dt2+…+dtn)とする。また、同じ単糸繊度を持つナノファイバーの頻度(個数)を数え、その積を総繊度で割ったものをその単糸繊度の繊度比率とする。これは全体(ナノファイバー集合体)に対する各単糸繊度成分の重量分率(体積分率)に相当し、これが大きい単糸繊度成分がナノファイバー集合体の性質に対する寄与が大きいことになる。本発明では、繊度比率の60%以上が1×10-7〜2×10-4dtex(単糸直径で1〜150nm相当)の範囲にあることが重要である。すなわち、2×10-4dtex(単糸直径で150nm相当)より大きいナノファイバーの存在がゼロに近いことを意味するものである。これにより、ナノファイバーの機能を充分発揮することができ、また製品の品質安定性も良好とすることができ、さらに、前述のハードディスク用の表面研磨布に用いた場合、繊度ばらつきが小さいため、ナノファイバーでも砥粒を均一坦持することが可能となり、結果的にハードディスク表面の平滑性を飛躍的に向上することができるのである。好ましくは、繊度比率の60%以上が1×10-7〜1×10-4dtex(単糸直径で1〜100nm相当)、より好ましくは1×10-7〜6×10-5dtex(単糸直径で1〜80nm相当)の範囲である。さらに好ましくは、繊度比率の75%以上が1×10-7〜6×10-5dtex(単糸直径で1〜80nm相当)の範囲である。
【0016】
また、繊度ばらつきのもう一つの指標が単糸直径差が30nmの幅に入る単糸の繊度比率であるが、これは、中心繊度付近へのばらつきの集中度を意味しており、この繊度比率が高いほどばらつきが小さいことを意味している。本発明では、単糸直径差が30nmの幅に入る単糸の繊度比率が50%以上であることが好ましい。より好ましくは70%以上である。
【0017】
また、本発明ではナノファイバー集合体は長繊維および/または紡績糸形状となっていることが好ましい。ここで、長繊維および/または紡績糸形状とは以下の状態を言うものである。すなわち、ナノファイバー同士が1次元で配向した集合体が有限の長さで連続している状態を言うものである。これに対して、エレクトロスピニングで得られる不織布ではナノファイバーは全く配向していない2次元集合体である点で、全く異なる形態である。本発明は、1次元に配向したナノファイバー集合体であるり、この点が非常に新規なものである。本発明の長繊維および/または紡績糸形状のナノファイバー集合体の長さは通常の長繊維や紡績糸同様に数m以上であると好ましい。これにより、織物、編物はもとより短繊維や不織布、熱圧縮成形体等様々な繊維製品とすることができるのである。
【0018】
また、本発明のナノファイバー集合体は単糸直径が従来の超極細糸の1/10〜1/100であるため、比表面積が飛躍的に大きくなるという特徴がある。このため、通常の超極細糸程度では見られなかった吸着特性の大幅な向上などのナノファイバー特有の性質を示す。
【0019】
さらに、本発明のナノファイバー集合体では、ナノファイバー同士に多数の数nm〜数100nm程度の隙間が生まれるため、超多孔性材料のような特異的な性質を示す場合もある。
【0020】
本発明のナノファイバー集合体は優れた吸着・吸収特性を示すため、様々な機能性薬剤を坦持することができる。ここで言う機能性薬剤とは、繊維の機能を向上し得る物質のことを言い、例えば吸湿剤、保湿剤、難燃剤、撥水剤、保冷剤、保温剤もしくは平滑剤なども対象として用いることができる。あるいは、その性状も、微粒子状のものだけに限られず、ポリフェノールやアミノ酸、タンパク質、カプサイシン、ビタミン類等の健康・美容促進のための薬剤や、水虫等の皮膚疾患の薬剤なども対象として用いることができる。さらには、消毒剤、抗炎症剤、鎮痛剤等の医薬品なども用いることができる。あるいは、さらにポリアミンや光触媒ナノ粒子というような有害物質の吸着・分解するための薬剤を用いることもできるものである。
【0021】
さらに機能性薬剤の担持方法にも特に制限はなく、浴中処理やコーティング等により後加工でナノファイバーに担持させても良いし、ナノファイバーの前駆体であるポリマーアロイ繊維に含有させておいても良い。また、機能性薬剤はそのものを直接ナノファイバー集合体に担持させても良いし、機能性薬剤の前駆体物質をナノファイバーに担持させた後、その前駆体物質を所望の機能性薬剤に変換することもできる。後者の方法のより具体的な例としては、ナノファイバー集合体に有機モノマーを含浸させ、その後それを重合する方法や、易溶解性物質を浴中処理によりナノファイバー集合体に含浸させた後、酸化還元反応や配位子置換、カウンターイオン交換反応などにより難溶解性にする方法などがある。また、紡糸過程で機能性薬剤の前駆体を担持させる場合には、紡糸過程では耐熱性の高い分子構造にしておき、後加工により機能性が発現する分子構造に戻すという方法も採用可能である。
【0022】
また、本発明のナノファイバー集合体は様々な機能性分子を取り込むだけでなく、徐放性にも優れている。このため、機能性分子や薬の優れた徐放性基材としたり、ドラッグデリバリーシステム等にも応用可能であることを意味しているのである。
【0023】
なお、本発明のナノファイバー集合体を衣料用途に用いると、絹のようなきしみ感やレーヨンのようなドライ感のある優れた風合いの繊維製品を得ることができる。さらに、バフィング等により、ナノファイバー集合体からナノファイバーを開繊させることにより、従来では考えられなかった超ピーチ感や人肌のようなしっとりとしたタッチの優れた風合いの繊維製品を得ることもできる。
【0024】
本発明のナノファイバー集合体の製造方法は特に限定されるものではないが、例えば以下のような方法を採用することができる。
【0025】
すなわち、2種類以上の溶剤に対する溶解性の異なるポリマーをアロイ化したポリマーアロイ溶融体となし、これを紡糸した後、冷却固化して繊維化する。そして必要に応じて延伸・熱処理を施しポリマーアロイ繊維を得る。そして、易溶解性ポリマーを溶剤で除去することにより本発明のナノファイバー集合体を得ることができる。
【0026】
ここで、ナノファイバー集合体の前駆体であるポリマーアロイ繊維中で易溶解性ポリマーが海(マトリックス)、難溶解性ポリマーが島(ドメイン)となし、その島サイズを制御することが重要である。ここで、島サイズは、ポリマーアロイ繊維の横断面を透過型電子顕微鏡(TEM)観察し、直径換算で評価したものである。前駆体中での島サイズによりナノファイバーの直径がほぼ決定されるため、島サイズの分布は本発明のナノファイバーの直径分布に準じて設計される。このため、アロイ化するポリマーの混練が非常に重要であり、本発明では混練押出機や静止混練器等によって高混練することが好ましい。なお、単純なチップブレンド(例えば特開平6−272114号公報)では混練が不足するため、本発明のような数十nmサイズで島を分散させることは困難である。
【0027】
具体的に混練を行う際の目安としては、組み合わせるポリマーにもよるが、混練押出機を用いる場合は、2軸押出混練機を用いることが好ましく、静止混練器を用いる場合は、その分割数は100万以上とすることが好ましい。また、ブレンド斑や経時的なブレンド比率の変動を避けるため、それぞれのポリマーを独立に計量し、独立にポリマーを混練装置に供給することが好ましい。このとき、ポリマーはペレットとして別々に供給しても良く、あるいは、溶融状態で別々に供給しても良い。また、2種以上のポリマーを押出混練機の根本に供給しても良いし、あるいは、一成分を押出混練機の途中から供給するサイドフィードとしても良い。
【0028】
混練装置として二軸押出混練機を使用する場合には、高度の混練とポリマー滞留時間の抑制を両立させることが好ましい。スクリューは、送り部と混練部から構成されているが、混練部長さをスクリュー有効長さの20%以上とすることで高混練とすることができ好ましい。また、混練部長さがスクリュー有効長さの40%以下とすることで、過度の剪断応力を避け、しかも滞留時間を短くすることができ、ポリマーの熱劣化やポリアミド成分等のゲル化を抑制することができる。また、混練部はなるべく二軸押出機の吐出側に位置させることで、混練後の滞留時間を短くし、島ポリマーの再凝集を抑制することができる。加えて、混練を強化する場合は、押出混練機中でポリマーを逆方向に送るバックフロー機能のあるスクリューを設けることもできる。
【0029】
さらに、ベント式として混練時の分解ガスを吸引したり、ポリマー中の水分を減じることによってポリマーの加水分解を抑制し、ポリマーの末端基量の増加を抑制することができる。
【0030】
また、ポリマーアロイペレットの着色の指標であるb*値を10以下とすることで繊維化した際の色調を整えることができ、好ましい。なお、易溶解性分として好適な熱水可溶性ポリマーはその分子構造から一般に耐熱性が悪く着色しやすいが、上記のような滞留時間を短くする操作により、着色を抑制することが可能となるのである。
【0031】
また、島を数十nmサイズで超微分散させるには、ポリマーの組み合わせも重要である。
【0032】
島ドメイン(ナノファイバー断面)を円形に近づけるためには、島ポリマーと海ポリマーは非相溶であることが好ましい。しかしながら、単なる非相溶ポリマーの組み合わせでは島ポリマーが充分超微分散化し難い。このため、組み合わせるポリマーの相溶性を最適化することが好ましいが、このための指標の一つが溶解度パラメータ(SP値)である。SP値とは(蒸発エネルギー/モル容積)1/2で定義される物質の凝集力を反映するパラメータであり、SP値が近い物同士では相溶性が良いポリマーアロイが得られる可能性がある。SP値は種々のポリマーで知られているが、例えば「プラスチック・データブック」旭化成アミダス株式会社/プラスチック編集部共編、189ページ等に記載されている。2つのポリマーのSP値の差が1〜9(MJ/m31/2であると、非相溶化による島ドメインの円形化と超微分散化が両立させやすく好ましい。例えばN6とPETはSP値の差が6(MJ/m31/2程度であり好ましい例であるが、N6とPEはSP値の差が11(MJ/m31/2程度であり好ましくない例として挙げられる。
【0033】
また、ポリマー同士の融点差が20℃以下であると、特に押出混練機を用いた混練の際、押出混練機中での融解状況に差を生じにくいため高効率混練しやすく、好ましい。
【0034】
また、熱分解や熱劣化し易いポリマーを1成分に用いる際は、混練や紡糸温度を低く抑える必要があるが、これにも有利となるのである。ここで、非晶性ポリマーの場合は融点が存在しないためガラス転移温度あるいはビカット軟化温度あるいは熱変形温度でこれに代える。
【0035】
さらに、溶融粘度も重要であり、島を形成するポリマーの方を低く設定すると剪断力による島ポリマーの変形が起こりやすいため、島ポリマーの微分散化が進みやすくナノファイバー化の観点からは好ましい。ただし、島ポリマーを過度に低粘度にすると海化しやすくなり、繊維全体に対するブレンド比を高くできないため、島ポリマー粘度は海ポリマー粘度の1/10以上とすることが好ましい。また、海ポリマーの溶融粘度は紡糸性に大きな影響を与える場合があり、海ポリマーとして100Pa・s以下の低粘度ポリマーを用いると島ポリマーを分散させ易く好ましい。また、これにより紡糸性を著しく向上できるのである。この時、溶融粘度は紡糸の際の口金面温度で剪断速度1216sec-1での値である。
【0036】
ポリマーアロイ中では、島ポリマーと海ポリマーが非相溶であるため、島ポリマー同士は凝集した方が熱力学的に安定である。しかし、島ポリマーを無理に超微分散化するために、このポリマーアロイでは通常の分散径の大きいポリマーブレンドに比べ、非常に不安定なポリマー界面が多くなっている。このため、このポリマーアロイを単純に紡糸すると、不安定なポリマー界面が多いため、口金からポリマーを吐出した直後に大きくポリマー流が膨らむ「バラス現象」が発生したり、ポリマーアロイ表面の不安定化による曳糸性不良が発生し、糸の太細斑が過大となるばかりか、紡糸そのものが不能となる場合がある(超微分散ポリマーアロイの負の効果)。このような問題を回避するため、口金から吐出する際の、口金孔壁とポリマーとの間の剪断応力を低くすることが好ましい。ここで、口金孔壁とポリマーとの間の剪断応力はハーゲンポワズユの式(剪断応力(dyne/cm2)=R×P/2L)から計算する。ここでR:口金吐出孔の半径(cm)、P:口金吐出孔での圧力損失(dyne/cm2)、L:口金吐出孔長(cm)である。またP=(8LηQ/πR4)であり、η:ポリマー粘度(poise)、Q:吐出量(cm3/sec)、π:円周率である。また、CGS単位系の1dyne/cm2はSI単位系では0.1Paとなる。
【0037】
通常のポリエステルの単成分における溶融紡糸では口金孔壁とポリマーとの間の剪断応力は1MPa以上で計量性と曳糸性を確保できる。しかし、本発明のポリマーアロイは、通常のポリエステルと異なり、口金孔壁とポリマーとの間の剪断応力が大きいと、ポリマーアロイの粘弾性バランスが崩れ易いため、通常のポリエステル溶融紡糸の場合よりも剪断応力を低くする必要がある。剪断応力を0.2MPa以下にすると、口金孔壁側の流れと口金吐出孔中心部のポリマー流速が均一化し、剪断歪みが少なくなることによってバラス現象が緩和され、良好な曳糸性が得られることから好ましい。一般に剪断応力をより小さくするには、口金吐出孔径を大きく、口金吐出孔長を短くすることであるが、過度にこれを行うと口金吐出孔でのポリマーの計量性が低下し、孔間での繊度斑や発生する傾向になることから、口金吐出孔より上部に口金吐出孔より孔径を小さくしたポリマー計量部を設けた口金を用いることが好ましい。剪断応力は0.01MPa以上にすると、ポリマーアロイ繊維を安定に溶融紡糸でき、糸の太細斑の指標であるウースター斑(U%)を15%以下とできることから好ましい。
【0038】
また、溶融紡糸での曳糸性や紡糸安定性を十分確保する観点から、口金面温度は海ポリマーの融点から25℃以上とすることが好ましい。
【0039】
上記したように、本発明で用いる超微分散化したポリマーアロイを紡糸する際は、紡糸口金設計が重要であるが、糸の冷却条件も重要である。上記したようにポリマーアロイは非常に不安定な溶融流体であるため、口金から吐出した後に速やかに冷却固化させることが好ましい。このため、口金から冷却開始までの距離は1〜15cmとすることが好ましい。ここで、冷却開始とは糸の積極的な冷却が開始される位置のことを意味するが、実際の溶融紡糸装置ではチムニー上端部でこれに代える。
【0040】
紡糸速度は特に限定されないが、紡糸過程でのドラフトを高くする観点から高速紡糸ほど好ましい。紡糸ドラフトとしては100以上とすることが、得られるナノファイバー直径を小さくする観点から好ましい。
【0041】
また、紡糸されたポリマーアロイ繊維には延伸・熱処理を施すことが好ましいが、延伸の際の予熱温度は島ポリマーのガラス転移温度(Tg)以上の温度することで、糸斑を小さくすることができ、好ましい。
【0042】
本製造方法は、以上のようなポリマーの組み合わせ、紡糸・延伸条件の最適化を行うことで、島ポリマーが数十nmに超微分散化し、しかも糸斑の小さなポリマーアロイ繊維を得ることを可能にするものである。このようにして糸長手方向に糸斑の小さなポリマーアロイ繊維を前駆体とすることで、ある断面だけでなく長手方向のどの断面をとっても単糸繊度ばらつきの小さなナノファイバー集合体とすることができるのである。前駆体であるポリマーアロイ繊維のウースター斑は15%以下とすることが好ましく、より好ましくは5%以下である。
【0043】
このようにして得られたポリマーアロイ繊維から海ポリマーである易溶解ポリマーを溶剤で溶出することで、ナノファイバー集合体を得るのであるが、その際、溶剤としては水溶液系のものを用いることが環境負荷を低減する観点から好ましい。具体的にはアルカリ水溶液や熱水を用いることが好ましい。このため、易溶解ポリマーとしては、ポリエステルやポリカーボネート(PC)等のアルカリ加水分解されるポリマーやポリアルキレングリコールやポリビニルアルコールおよびそれらの誘導体等の熱水可溶性ポリマーが好ましい。
【0044】
このような製造方法により繊維長が数十μmから場合によってはcmオーダー以上のナノファイバーがところどころ接着したり絡み合った紡績糸形状のナノファイバー集合体が得られるのである。
【0045】
また、上記製造方法において、特に口金直上に静止混練器を位置させた場合にはナノファイバーが理論上無限に伸びた長繊維形状のナノファイバー集合体が得られる場合もある。
【0046】
本発明では、従来のナノファイバーとは全く異なり、前駆体であるポリマーアロイ繊維を延伸・熱処理することによりナノファイバーも延伸・熱処理することが初めて可能となったため、引っ張り強度や収縮率を自由にコントロールできるようになった。ここで、本発明のナノファイバー集合体の強度は1cN/dtex以上であれば繊維製品の力学物性を向上できるため好ましい。ナノファイバー集合体の強度は、より好ましくは2cN/dtex以上である。また、本発明のナノファイバー集合体の収縮率は用途に応じて調整可能であるが、衣料用途に用いる場合は140℃乾熱収縮は10%以下であることが好ましい。さらに、前駆体であるポリマーアロイ繊維を捲縮加工することも可能である。
【0047】
ところで、ナノファイバー集合体を長繊維形状や紡績糸形状からさらに、一本一本のナノファイバーに分散させるためには、例えば以下のような湿式抄紙法による不織布により達成することができる。すなわち、本発明のポリマーアロイ繊維を繊維長10mm以下にカットした後、易溶解性ポリマーを溶出し、その後得られたナノファイバーを一旦乾燥させることなく抄紙する不織布の製造方法である。これによると、ナノファイバー集合体の直径が1μm以下まで充分分散させることができるのである。さらに、ナノファイバーを構成するポリマーと親和性の高い分散液を用いると、ナノファイバー集合体の直径を300nm以下まで分散させることも可能である。
【0048】
本発明のナノファイバー集合体やナノファイバーを少なくとも一部に有する繊維製品、またそれらの機能加工品は、糸、綿(わた)、パッケージ、織物、編物、フェルト、不織布、熱成形体、人工皮革などの中間製品とすることができる。また衣料(シャツやブルゾン、パンツ、コート等)、衣料資材、インテリア製品(カーテン、カーペット、マット、壁紙、家具など)、車輌内装製品(マット、カーシート、天井材など)、生活資材(ワイピングクロス、化粧用品、健康用品、玩具など)などの生活用途や、環境・産業資材用途(建材、研磨布、フィルター、有害物質除去製品など)やIT部品用途(センサー部品、電池部品、ロボット部品など)や、メディカル用途(血液フィルター、体外循環カラム、スキャフォールド(scaffold)、絆創膏(wound dressing, bandage)、人工血管、薬剤徐放体など)に好適である。
【0049】
上記した用途の大部分は、エレクトロスピニングによるナノファイバー不織布では強度や形態安定性が不足したり、大きさ(広さ)そのものが足りないなどで展開不能の分野であるが、本発明のナノファイバー集合体により初めて可能となったのである。例えば、衣料やインテリア製品、車輌内装製品、研磨布、フィルター、種々のIT部品等は製品強度が要求されるため、本発明のナノファイバーのように優れた糸強度により達成されるものである。
【0050】
また、従来のマイクロファイバーでは吸着性や液体吸収性が不足したり、絶対的な大きさの問題により研磨性や拭き取り性が不足するなど、性能的に満足できない用途でもある。
【0051】
このように、本発明のナノファイバー集合体、またそれから派生する様々な製品により従来のマイクロファイバーやエレクトロスピニング不織布の問題を解決できるのである。
【実施例】
【0052】
以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
【0053】
A.ポリマーの溶融粘度
東洋精機キャピログラフ1Bによりポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
【0054】
B.融点
Perkin Elmaer DSC−7を用いて2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。この時の昇温速度は16℃/分、サンプル量は10mgとした。
【0055】
C.TEMによる繊維横断面観察
繊維の横断面方向に超薄切片を切り出し、透過型電子顕微鏡(TEM)で繊維横断面を観察した。また、ナイロンはリンタングステン酸で金属染色した。
【0056】
TEM装置 : 日立社製H−7100FA型
D.ナノファイバーの数平均による単糸繊度、直径
単糸繊度の平均値は以下のようにして求める。すなわち、TEMによる繊維横断面写真を画像処理ソフト(WINROOF)を用いて単糸直径および繊度を計算し、それの単純な平均値を求めた。これを「数平均による単糸繊度」とした。この時、平均に用いるナノファイバー数は同一横断面内で無作為抽出した300本以上の単糸直径を測定したが、これをナノファイバー集合体長として互いに10m以上離れた5カ所で行い、合計1500本以上の単糸直径を用いて計算した。
【0057】
E.ナノファイバーの単糸繊度ばらつき
ナノファイバーの単糸繊度ばらつきは、以下のようにして評価する。すなわち、上記数平均による単糸繊度を求める際に使用したデータを用い、ナノファイバーそれぞれの単糸繊度をdtiとしその総和を総繊度(dt1+dt2+…+dtn)とする。また、同じ単糸繊度を持つナノファイバーの頻度(個数)を数え、その積を総繊度で割ったものをその単糸繊度の繊度比率とする。
【0058】
F.ナノファイバーの直径ばらつき幅
ナノファイバーの直径ばらつき幅は以下のようにして評価する。すなわち、ナノファイバーの単糸直径の中心値付近で単糸直径差が30nmの幅に入る単糸の繊度比率で評価する。これは、中心繊度付近へのばらつきの集中度を意味しており、この繊度比率が高いほどばらつきが小さいことを意味している。これも上記数平均による単糸繊度を求める際に使用したデータを用いた。
【0059】
G.力学特性
ナノファイバー集合体10mの重量をn=5回測定し、これの平均値からナノファイバー集合体の繊度(dtex)を求めた。そして、室温(25℃)で、初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
【0060】
実施例1
溶融粘度200Pa・s(300℃、121.6sec-1)、融点280℃のPPSと溶融粘度200Pa・s(300℃、121.6sec-1)のN6を用い、図1の装置を用いて混練、溶融紡糸し、図2の装置を用いて延伸・熱処理した。この時のポリマーのブレンド比はPPSが20重量%、N6が80重量%とした。また、PPSを320℃、N6を270℃でそれぞれ溶融させた後、紡糸温度320℃のスピンブロックに溶融ポリマーを導き、紡糸パック4内に装着した静止混練器22(東レエンジニアリング社製“ハイミキサー”)を用いてこの2種のポリマーを104万分割して充分混合した。そして、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、口金面温度300℃とした口金5から溶融紡糸した。この時、口金としては図3に示すように吐出孔上部に直径0.3mmの計量部12を備えた、吐出孔径14が0.7mm、吐出孔長13が1.75mmのものを用いた。そして、この時の単孔あたりの吐出量は1.0g/分とした。さらに、口金下面から冷却開始点(チムニー6の上端部)までの距離は9cmであった。吐出された糸条は20℃の冷却風で1mにわたって冷却固化され、口金5から1.8m下方に設置した給油ガイド8で給油された後、非加熱の第1引き取りローラー9および第2引き取りローラー10を介して1500m/分で巻き取られた。延伸・熱処理は、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃とし、第1ホットローラー17と第2ホットローラー18間の延伸倍率を1.5倍とした。そして、160dtex、36フィラメント、強度5.2cN/dtex、伸度50%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、N6が海、PPSが島の海島構造を示し、島PPSの数平均による直径は65nmであり、PPSが超微分散化したポリマーアロイ繊維が得られた。
【0061】
ここで得られたポリマーアロイ繊維を用いて丸編み作製後、ギ酸によりN6を溶出することにより、PPSナノファイバー集合体からなる丸編みを得た。このナノファイバーの数平均による単糸直径は68nm(5×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。
【0062】
【表1】

【図面の簡単な説明】
【0063】
【図1】紡糸装置を示す図である。
【図2】延伸装置を示す図である。
【図3】口金を示す図である。
【符号の説明】
【0064】
1:ホッパー
2:1軸押出混練機
3:スピンブロック
4:紡糸パック
5:口金
6:チムニー
7:糸条
8:集束給油ガイド
9:第1引き取りローラー
10:第2引き取りローラー
11:巻き取り糸
12:計量部
13:吐出孔長
14:吐出孔径
15:未延伸糸
16:フィードローラー
17:第1ホットローラー
18:第2ホットローラー
19:第3ローラー(室温)
20:延伸糸
21:静止混練器

【特許請求の範囲】
【請求項1】
数平均による単糸繊度が1×10-7〜2×10-4dtexであり、繊度比率の60%以上が単糸繊度1×10-7〜2×10-4dtexの範囲であり、ポリフェニレンスルフィドからなるナノファイバー集合体。
【請求項2】
長繊維および/または紡績糸形状である請求項1記載のナノファイバー集合体。
【請求項3】
繊度比率で50%以上のナノファイバーが単糸直径差で30nmの幅に入る請求項1〜2のうちいずれか1項記載のナノファイバー集合体。
【請求項4】
強度が1cN/dtex以上である請求項1〜3のうちいずれか1項記載のナノファイバー集合体。
【請求項5】
請求項1〜4のいずれか1項記載のナノファイバー集合体を少なくとも一部に有する繊維製品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−138062(P2006−138062A)
【公開日】平成18年6月1日(2006.6.1)
【国際特許分類】
【出願番号】特願2005−360610(P2005−360610)
【出願日】平成17年12月14日(2005.12.14)
【分割の表示】特願2003−360464(P2003−360464)の分割
【原出願日】平成15年10月21日(2003.10.21)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】