説明

ニッケル含有正極用集電体

【課題】ニッケル含有正極に用いられる樹脂集電体において、当該集電体が当該正極に用いられた場合の当該正極の容量の低下を抑制しうる手段を提供する。
【解決手段】本発明のニッケル含有正極用集電体は、少なくとも2つの導電性層を有する。そして、集電体を構成する導電性層の1つ(第1の導電性層)は、イミド基および/またはアミド基を主骨格中に含有する樹脂(第1の樹脂)を含む基材に導電性フィラーが添加されてなる構成を有する。また、集電体を構成する導電性層の他の1つ(第2の導電性層)は、イミド基およびアミド基を主骨格中に含有しない樹脂(第2の樹脂)を含む基材に導電性フィラーが添加されてなる構成を有する。さらに、本発明の集電体はニッケル成分を含有する正極活物質層を有する正極(ニッケル含有正極)に用いられる。そして、正極の形成時には、第2の導電性層がニッケル含有正極の正極活物質層の側に位置するように用いられる点にも特徴を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばリチウムイオン二次電池などのニッケル含有正極に用いられる集電体、並びに当該集電体を用いた電極(つまり、ニッケル含有正極)、および電池に関する。
【背景技術】
【0002】
近年、環境や燃費の観点から、ハイブリッド自動車(HEV)や電気自動車(EV)、さらには燃料電池自動車が製造・販売され、新たな開発が続けられている。これらのいわゆる電動車両においては、放電・充電ができる電源装置の活用が不可欠である。この電源装置としては、リチウムイオン電池やニッケル水素電池等の二次電池や、電気二重層キャパシタ等が利用される。特に、リチウムイオン二次電池はそのエネルギー密度の高さや繰り返し充放電に対する耐久性の高さから、電動車両に好適と考えられ、各種の開発が鋭意進められている。ただし、上記したような各種自動車のモータ駆動用電源に適用するためには、大出力を確保するために、複数の二次電池を直列に接続して用いる必要がある。
【0003】
しかしながら、接続部を介して電池を接続した場合、接続部の電気抵抗によって出力が低下してしまう。また、接続部を有する電池は空間的にも不利益を有する。即ち、接続部によって、電池の出力密度やエネルギー密度の低下がもたらされる。
【0004】
この問題を解決するものとして、双極型リチウムイオン二次電池等の双極型二次電池が開発されている。双極型二次電池は、集電体の一方の面に正極活物質層が形成され、他方の面に負極活物質層が形成された双極型電極が、電解質層やセパレータを介して複数積層された発電要素を有する。
【0005】
このような双極型二次電池に用いる集電体は、より大きな出力密度を確保するためには、より軽量であって、より導電性に優れた材料からなることが望ましい。そこで、近年、従来の金属箔に代わって導電性材料が添加された高分子材料から構成される集電体(樹脂集電体)が提案されている。例えば、特許文献1では、高分子材料に導電性材料として金属粒子またはカーボン粒子が混合された樹脂集電体が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−190649号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、本発明者らの研究により、特許文献1に記載の技術について以下のような問題点が見出された。すなわち、特許文献1における導電性を有する樹脂層を構成する基材としてイミド基やアミド基を主骨格中に含有するものを用いると、当該樹脂層に隣接する正極がニッケルを含む場合に、当該正極の容量が低下することが判明したのである。
【0008】
本発明は、ニッケル含有正極に用いられる樹脂集電体において、当該集電体が当該正極に用いられた場合の当該正極の容量の低下を抑制しうる手段を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記の課題に鑑み鋭意研究を積み重ねた。その過程で、上述した場合における正極の容量低下のメカニズムを明らかにした。すなわち、イミド基やアミド基を含む樹脂(例えば、ポリイミド)は吸湿性である。そして、これらの樹脂が吸湿することによって当該樹脂中に保持されることとなった水分は、電極の作製後にニッケル含有正極中のニッケル成分と反応して水酸化物を生成しうる。その結果、ニッケル成分を含む正極の容量が低下してしまうことを見出したのである。本発明者らは、これらの一連の知見に基づき、本発明を完成させるに至った。
【0010】
すなわち、本発明のニッケル含有正極用集電体は、少なくとも2つの導電性層を有する。そして、集電体を構成する導電性層の1つ(第1の導電性層)は、イミド基および/またはアミド基を主骨格中に含有する樹脂(第1の樹脂)を含む基材に導電性フィラーが添加されてなる構成を有する。また、集電体を構成する導電性層の他の1つ(第2の導電性層)は、イミド基およびアミド基を主骨格中に含有しない樹脂(第2の樹脂)を含む基材に導電性フィラーが添加されてなる構成を有する。さらに、本発明の集電体はニッケル成分を含有する正極活物質層を有する正極(ニッケル含有正極)に用いられる。そして、正極の形成時には、第2の導電性層がニッケル含有正極の正極活物質層の側に位置するように用いられる点にも特徴を有する。
【発明の効果】
【0011】
本発明の集電体がニッケル含有正極に用いられた場合には、第2の導電性層の存在によって、第1の導電性層の吸湿によってこれに保持された水分がニッケル含有正極中のニッケル成分と反応することが抑制される。その結果、上記ニッケル含有正極の容量の低下が抑制されうる。
【図面の簡単な説明】
【0012】
【図1】本発明の一実施形態に係る双極型リチウムイオン二次電池用集電体を用いた、リチウムイオン二次電池用双極型電極の全体構造を模式的に表した断面図である。
【図2】本発明の一実施形態に係る双極型リチウムイオン二次電池を模式的に表した断面概略図である。
【発明を実施するための形態】
【0013】
以下、図面を参照しながら、本発明の好ましい実施形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本明細書では、導電性を有する樹脂層を単に「導電性層」と、双極型リチウムイオン二次電池用集電体を単に「集電体」と、リチウムイオン二次電池用双極型電極を単に「双極型電極」と、それぞれ称する場合がある。
【0014】
<集電体、双極型電極>
図1は、本発明の一実施形態に係る双極型リチウムイオン二次電池用集電体を用いた、リチウムイオン二次電池用双極型電極の全体構造を模式的に表した断面図である。図1に示す本実施形態の双極型電極1は、集電体3の一方の面に負極活物質層5が形成され、他方の面に正極活物質層7が形成された積層構造を有する。そして、集電体3は、負極活物質層5側に位置する第1の導電性層3aと、正極活物質層7側に位置する第2の導電性層3bとが積層されてなる2層構造を有する。
【0015】
ここで、第1の導電性層3aは、例えば、ポリイミド(PI)からなる基材に、導電性フィラーとしてのケッチェンブラックが10質量%程度添加されてなる構成を有する。また、第2の導電性層3bは、例えば、ポリエチレンからなる基材に、同様の導電性フィラーが添加されてなる構成を有する。また、負極活物質層5は、例えば、負極活物質として黒鉛(図示せず)を含む。さらに、正極活物質層7は、例えば、正極活物質としてLiNiO(図示せず)を含む。以下、本実施形態の集電体および双極型電極の主な構成要素について説明する。
【0016】
[集電体]
集電体3は、正極活物質層が形成される一方の面から、負極活物質層が形成される他方の面へと電子の移動を媒介する機能を有する。
【0017】
本実施形態において、集電体3は、2つの導電性層(3a,3b)を有する。ここで、双極型電極1の負極活物質層5側に位置する導電性層(第1の導電性層)3aは、イミド基および/またはアミド基を主骨格中に含有する第1の樹脂を含む基材に導電性フィラーが添加されてなる構成を有する。場合によっては、その他の添加剤を含んでもよい。かような構成によって、電子移動媒体としての機能を有することは勿論のこと、集電体の軽量化に寄与しうる。
【0018】
第1の導電性層3aを構成する基材は、イミド基および/またはアミド基を主骨格中に含有する樹脂(第1の樹脂)を必須に含む。かような第1の樹脂としては、例えば、ポリイミド(イミド基を含有)、ポリエーテルイミド(イミド基を含有)、ポリアミド(アミド基を含有)、およびポリアミドイミド(イミド基およびアミド基を含有)などが挙げられる。なかでも、第1の樹脂としては、ポリイミド(PI)が好ましく用いられる。これらの第1の樹脂は、1種のみが単独で用いられてもよいし、2種以上が組み合わされて混合物として用いられてもよい。
【0019】
なお、第1の導電性層3aを構成する基材は、上述した第1の樹脂に加えて、従来公知の非導電性高分子材料または導電性高分子材料を含んでもよい。非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)、ポリブチレン(PB)等のポリオレフィン;ポリカーボネート(PC);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルニトリル(PEN)、ポリフェニレンエーテル(PPE)、ポリメチルペンテン(PMP)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶性高分子(LCP)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、およびポリスチレン(PS)などが挙げられる。また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。これらの非導電性高分子材料または導電性高分子材料は、1種のみが単独で用いられてもよいし、2種以上が組み合わされて混合物として用いられてもよい。
【0020】
基材を構成する高分子材料(樹脂)のうち、本実施形態の作用効果をより一層発揮させるという観点から、当該基材に占めるイミド基および/またはアミド基を主骨格中に含有する樹脂(第1の樹脂)の配合量が規定されうる。具体的には、基材を構成する樹脂100質量%に占める第1の樹脂(より好ましくはポリイミド(PI))の配合量は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上であり、最も好ましくは100質量%である。
【0021】
第1の導電性層3aを構成する際に基材に添加される導電性フィラーとしては、特に制限はないが、例えば、導電性カーボン、スズ(Sn)、およびチタン酸リチウム(LiTi12)などが挙げられる。導電性カーボンとしては、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群から選択される少なくとも1種を含むことが好ましい。これらの導電性カーボンは、電位窓が非常に広く、正極電位および負極電位の双方に対して幅広い範囲で安定であり、さらに、優れた導電性を有する。なかでも、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラック、カーボンナノバルーン、およびフラーレンからなる群から選択される少なくとも1種を含むことがより好ましく、ケッチェンブラックが最も好ましい。これらの導電性カーボンは中空構造を有するため、質量あたりの表面積が大きく、集電体をより一層軽量化することができる。一方、Ni、Al、Ag、Au、Cu、Ti、Pt、Fe、Cr、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物が導電性フィラーとして用いられてもよい。これらの金属は、集電体表面に形成される正極または負極の電位に対して耐性を有する。例えば、Alは正極電位に対して、Cuは負極電位に対して、Ptは両極の電位に対して耐性を有する。これらのうち、Al、Cu、Pt、Fe、およびCrからなる群から選択される少なくとも1種の金属を含む合金であることが好ましい。合金としては、具体的には、ステンレス鋼(SUS)、インコネル(登録商標)、ハステロイ(登録商標)、およびその他Fe−Cr系合金等が挙げられる。これらの合金を用いることにより、より高い耐電位性が得られうる。なお、これらの導電性フィラーは、1種を単独で、あるいは2種以上を組み合わせて使用することができる。また、Niと水分との反応を抑制するという観点からは、導電性フィラーは、Niを含有しないものであることが好ましい。
【0022】
導電性フィラーの形状は、特に制限はなく、粒状、繊維状、板状、塊状、布状、およびメッシュ状などの公知の形状を適宜選択することができる。例えば、樹脂に対して広範囲に亘って導電性を付与したい場合は、粒状の導電性フィラーを使用することが好ましい。一方、樹脂において特定方向への導電性をより向上させたい場合は、繊維状等の形状に一定の方向性を有するような導電性フィラーを使用することが好ましい。
【0023】
導電性フィラーの大きさは、特に制限はなく、導電性層の大きさや厚さまたは導電性フィラーの形状によって、様々な大きさのフィラーを使用することができる。一例として、導電性フィラーが粒状の場合の平均粒子径は、導電性層の成形を容易にする観点から、0.1〜10μm程度であることが好ましい。なお、本明細書中において、「粒子径」とは、導電性フィラーの輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。後述する活物質などの粒子径や平均粒子径も同様に定義することができる。
【0024】
導電性層3aに含まれる導電性フィラーの含有量も特に制限はない。ただし、導電性フィラーの含有量は、基材の全質量に対して、好ましくは5〜35質量%であり、より好ましくは5〜25質量%であり、さらに好ましくは5〜15質量%である。かような量の導電性フィラーを基材に添加することにより、導電性層3aの質量増加を抑制しつつ、基材に十分な導電性を付与することができる。
【0025】
導電性層3a中の導電性フィラーの分散の形態は特に制限はなく、基材である樹脂中に均一に分散されている形態であってもよいし、部分的に局在して分散されていても勿論よい。
【0026】
双極型電極1の正極活物質層7側に位置する導電性層(第2の導電性層)3bは、イミド基およびアミド基を主骨格中に含有しない樹脂(第2の樹脂)を含む基材に導電性フィラーが添加されてなる構成を有する。かような構成によって、電子移動媒体としての機能を有することは勿論のこと、集電体の軽量化に寄与しうる。
【0027】
第2の導電性層3bを構成する基材は、イミド基および/またはアミド基を主骨格中に含有しない樹脂(第2の樹脂)を必須に含む。かような第2の樹脂としては、上述した第1の導電性層3aを構成する基材に第1の樹脂に加えて含まれうるものとして例示した非導電性高分子材料および導電性高分子材料が挙げられる。これらの第2の樹脂は、1種のみが単独で用いられてもよいし、2種以上が組み合わされて混合物として用いられてもよい。なかでも、本実施形態の作用効果をより一層発現させるという観点からは、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)、ポリブチレン(PB)等のポリオレフィンが好ましく、ポリエチレンがより好ましい。
【0028】
ここで、第2の導電性層3bにおける基材を構成する高分子材料(樹脂)のうち、本実施形態の作用効果をより一層発揮させるという観点から、当該基材に占めるイミド基およびアミド基を主骨格中に含有しない樹脂(第2の樹脂)の配合量が規定されうる。具体的には、基材を構成する樹脂100質量%に占める第2の樹脂の配合量は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上であり、最も好ましくは100質量%である。なお、本実施形態の作用効果をより一層発揮させるという観点からは、第2の導電性層3bにおける上記第1の樹脂の配合量も規定されうる。すなわち、基材を構成する樹脂100質量%に占める第1の樹脂の配合量は、好ましくは50質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは10質量%以下であり、特に好ましくは5質量%以下であり、最も好ましくは0質量%である(すなわち、第1の樹脂を含まない)。
【0029】
第2の導電性層3bは、上述した樹脂からなる基材に導電性フィラーが添加されてなる構成を有する。この際に用いられる導電性フィラーの具体的な形態については、第1の導電性層の構成材料として上述した形態が同様に用いられうるため、ここでは詳細な説明を省略する。
【0030】
上述したように、第2の導電性層3bは、イミド基およびアミド基を主骨格中に含有しない樹脂(第2の樹脂)を含む。イミド基およびアミド基が樹脂の主骨格中に存在すると、当該樹脂は吸水性を示すようになる。この点、第2の導電性層3bに基材として含まれる第2の樹脂は、イミド基およびアミド基を主骨格中に含有しない。このため、第2の導電性層3bに含有される水分量は低い値に制御されうる。第2の導電性層3bに含有される水分量の具体的な値について特に制限はないが、好ましくは0〜2000質量ppmであり、より好ましくは0〜1000質量ppmであり、さらに好ましくは0〜500質量ppmであり、いっそう好ましくは0〜300質量ppmであり、特に好ましくは0〜100質量ppmであり、最も好ましくは0〜50質量ppmである。なお、この水分量の値としては、後述する実施例に記載の手法(カールフィッシャー法)により測定される、乾燥前の水分量の値を採用するものとする。
【0031】
集電体は、上述した第1の導電性層3a(相対的に負極側に位置する)および第2の導電性層3b(相対的に正極側に位置する)の定義を満たす層をそれぞれ少なくとも1層ずつ含む限り、本発明の技術的範囲に包含されるものである。ただし、集電体の形態は、図示した形態のみには限定されず、様々な形態を取りうる。例えば、集電体の形態は、上述した層のほかに必要に応じてその他の層を含む積層体であってもよい。例えば、その他の層としては、金属層または接着層などが挙げられる。また、他の実施形態として、第2の導電性層3bよりも正極側に、イミド基およびアミド基を主骨格中に含有する樹脂を含む導電性層(図示せず)がさらに形成されていてもよい。かような形態であっても、第2の導電性層3bが存在することによって、第2の導電性層3bが存在しない場合よりもニッケル成分と水分との反応の抑制、正極容量の低下の防止といった作用効果が発揮される。ただし、かような作用効果をより一層顕著に発揮させるという観点からは、第2の導電性層3bよりも正極側にはイミド基およびアミド基を主骨格中に含有する樹脂を含む導電性層が存在しないことが好ましい。換言すれば、第2の導電性層3bは、電池に用いられる際に、ニッケル成分を含有する正極活物質層と接するように用いられることが好ましい。
【0032】
なお、本実施形態の集電体3の製造時に、樹脂を含む複数の導電性層を積層する場合には、これら複数の導電性層を熱融着によって接着することができる。また、隣接する層の境界面での接触抵抗を低減させたり、接着面の剥離を防いだりするという観点から、2つの層は接着層を介して接着されてもよい。かような接着層に使用される材料としては、酸化亜鉛、酸化インジウム、酸化チタンなどを含む金属酸化物系の導電性ペースト;カーボンブラック、カーボンナノチューブ、グラファイトなどを含むカーボン系の導電性ペーストが好ましく使用される。
【0033】
集電体の厚さは、軽量化により電池の出力密度を高める上では、薄い方が好ましい。双極型二次電池においては、双極型電極の正極活物質層と負極活物質層との間に存在する集電体は積層方向に水平な方向の電気抵抗が高くてもよいため、集電体の厚さを薄くすることが可能である。具体的には、集電体3の厚さは、10〜200μmであることが好ましく、20〜100μmであることがより好ましく、30〜80μmであることがさらに好ましい。かような厚さを有することによって、軽量で、かつ、十分な機械的強度を確保することができる。また、第1の導電性層3aおよび第2の導電性層3bのそれぞれの厚さについても特に制限はない。例えば、第1の導電性層の厚さは、好ましくは10〜100μmであり、より好ましくは10〜50μmであり、さらに好ましくは10〜25μmである。また、第2の導電性層の厚さは、好ましくは10〜200μmであり、より好ましくは10〜100μmであり、さらに好ましくは25〜50μmである。さらに、第1の導電性層3aと第2の導電性層3bとの厚さの比についても特に制限はなく、第1の導電性層の厚さ:第2の導電性層の厚さとして、好ましくは1:1〜1:20であり、より好ましくは1:1〜1:10であり、さらに好ましくは1:2〜1:2.5である。かような範囲内の値が選択されると、リチウムイオンや電解質に対する遮断性が十分に発揮され、電池容量の向上にも寄与しうる。
【0034】
以下、本実施形態の集電体3がニッケル含有正極を構成するのに用いられた場合に奏する作用効果について、説明する。
【0035】
本実施形態の集電体3がニッケル含有正極を構成するのに用いられる場合には、第2の導電性層3bがニッケル含有正極を構成する正極活物質層7の側に位置するように用いられる。ここで、第2の導電性層3bは、イミド基およびアミド基を主骨格中に含有しない樹脂(第2の樹脂)を基材中に必須に含有している。かような構成を有する第2の導電性層3bの存在により、集電体3を構成する別の導電性層である第1の導電性層3aに含まれている水分がニッケル含有正極を構成する正極活物質層7中に含まれるニッケル成分と反応することが抑制される。その結果、従来の構成では十分に防止できなかったニッケル含有正極の容量の低下が効果的に防止されうるのである。ここで、第2の導電性層3bが第1の導電性層3aに含まれる水分とニッケル含有正極中のニッケル成分との反応を抑制できるメカニズムは以下のように推定される。すなわち、電池の作動時において、第2の導電性層3bの表面には皮膜が生成するが、この皮膜が上記反応をブロックしているものと考えられる。なお、この皮膜は高電圧に曝されると分解反応を起こす可能性があるものの、電池の内部において再生成することができることから、上記ブロック効果は持続的なものである。ちなみに、本発明者らは金属によって第2の導電性層3bを構成することも試みたが、第2の導電性層3bを金属で構成すると、金属成分が高電圧に曝されて腐食(孔食)を起こしてしまうことも判明した。かような点からも、特定の樹脂(第2の樹脂)を基材として用いて第2の導電性層3bを構成するという本実施形態の技術的思想は、ただ単に正極と第1の導電性層3aとの間に別途保護層を設ければよいというものとは異なる優れた思想である。
【0036】
[負極活物質層]
負極活物質層5は負極活物質を含む。負極活物質は、放電時にイオンを放出し、充電時にイオンを吸蔵できる組成を有する。負極活物質は、リチウムを可逆的に吸蔵および放出できるものであれば特に制限されないが、負極活物質の例としては、SiやSnなどの金属、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物、Li−Pb系合金、Li−Al系合金、Li、または天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料などが好ましく挙げられる。また、負極活物質は、リチウムと合金化する元素を含むことが好ましい。リチウムと合金化する元素を用いることにより、従来の炭素系材料に比べて高いエネルギー密度を有する高容量および優れた出力特性の電池を得ることが可能となる。上記負極活物質は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
【0037】
上記のリチウムと合金化する元素としては、以下に制限されることはないが、具体的には、Si、Ge、Sn、Pb、Al、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等が挙げられる。これらの中でも、容量およびエネルギー密度に優れた電池を構成できる観点から、炭素材料、ならびに/またはSi、Ge、Sn、Pb、Al、In、およびZnからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、炭素材料、Si、またはSnの元素を含むことが特に好ましい。これらは1種単独で使用しても良いし、2種以上を併用してもよい。
【0038】
負極活物質の平均粒子径は、特に制限されないが、負極活物質の高容量化、反応性、サイクル耐久性の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。このような範囲であれば、二次電池は、高出力条件下での充放電時における電池の内部抵抗の増大が抑制され、充分な電流を取り出しうる。なお、負極活物質が2次粒子である場合には該2次粒子を構成する1次粒子の平均粒子径が10nm〜1μmの範囲であるのが望ましいといえるが、本発明では、必ずしも上記範囲に制限されるものではない。ただし、製造方法にもよるが、負極活物質が凝集、塊状などにより2次粒子化したものでなくても良いことはいうまでもない。かかる負極活物質の粒径および1次粒子の粒径は、レーザー回折法を用いて得られたメディアン径使用できる。なお、負極活物質の形状は、その種類や製造方法等によって取り得る形状が異なり、例えば、球状(粉末状)、板状、針状、柱状、角状などが挙げられるがこれらに限定されるものではなく、いずれの形状であれ問題なく使用できる。好ましくは、充放電特性などの電池特性を向上し得る最適の形状を適宜選択するのが望ましい。
【0039】
[正極活物質層]
正極活物質層7は正極活物質を含む。正極活物質は、放電時にイオンを吸蔵し、充電時にイオンを放出する組成を有する。本実施形態の正極活物質層7は、ニッケル成分を含有する。
【0040】
正極活物質層7がニッケル成分を含有する形態としては、例えば、正極活物質層7が正極活物質としてニッケル含有正極活物質を含む形態が例示される。ニッケル含有正極活物質としては、例えば、LiNiOなどのLi・Ni系複合酸化物が代表的である。その他にも、LiCoOなどのLi・Co系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物といったリチウム−遷移金属複合酸化物を構成する遷移金属の一部をニッケルにより置換したものや、NiOOHなどもニッケル含有正極活物質として用いられうる。ニッケル含有正極活物質は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。なお、これらのリチウム−遷移金属複合酸化物は、反応性、サイクル特性に優れ、低コストである。そのためこれらの材料を電極に用いることにより、出力特性に優れた電池を形成することが可能である。当該形態では、ニッケル含有正極活物質に加えて、ニッケル非含有正極活物質が併用されてもよい。ニッケル非含有正極活物質としては、上述したLi・Ni系複合酸化物以外のリチウム−遷移金属複合酸化物や、LiFePOなどのリン酸化合物・硫酸化合物;V、MnO、TiS、MoS、MoOなどの遷移金属酸化物や硫化物;PbO、AgOなどが挙げられる。ニッケル非含有正極活物質もまた、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。なお、本実施形態の作用効果の影響が顕在化しやすいという観点からは、正極活物質層7に含まれる正極活物質の全量に占めるニッケル含有正極活物質の含有量の割合は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上であり、最も好ましくは100質量%である。
【0041】
正極活物質の平均粒子径は、特に制限されないが、正極活物質の高容量化、反応性、サイクル耐久性の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。このような範囲であれば、二次電池は、高出力条件下での充放電時における電池の内部抵抗の増大が抑制され、充分な電流を取り出しうる。なお、正極活物質が2次粒子である場合には該2次粒子を構成する1次粒子の平均粒子径が10nm〜1μmの範囲であるのが望ましいといえるが、本発明では、必ずしも上記範囲に制限されるものではない。ただし、製造方法にもよるが、正極活物質が凝集、塊状などにより2次粒子化したものでなくても良いことはいうまでもない。かかる正極活物質の粒径および1次粒子の粒径は、レーザー回折法を用いて得られたメディアン径使用できる。なお、正極活物質の形状は、その種類や製造方法等によって取り得る形状が異なり、例えば、球状(粉末状)、板状、針状、柱状、角状などが挙げられるがこれらに限定されるものではなく、いずれの形状であれ問題なく使用できる。好ましくは、充放電特性などの電池特性を向上しうる最適の形状を適宜選択するのが望ましい。
【0042】
正極活物質層7がニッケル成分を含有する他の形態としては、正極活物質層7が正極活物質以外の添加剤成分としてニッケル成分を含有する形態が例示される。かようなニッケル成分の形態としては、例えば、上述した正極活物質の表面を改質するための改質剤として用いられうるニッケル化合物が挙げられる。また、後述する導電助剤として金属ニッケル粒子やニッケル含有合金粒子などのニッケル成分が用いられる形態も挙げられる。
【0043】
活物質層(5,7)には、必要であれば、活物質以外の物質が含まれてもよい。活物質以外の物質としては、例えば、導電助剤、バインダ、イオン伝導性ポリマー等が含まれうる。また、イオン伝導性ポリマーが含まれる場合には、前記ポリマーを重合させるための重合開始剤が含まれてもよい。
【0044】
導電助剤とは、活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック、カーボンブラック、ケッチェンブラック、グラファイト等のカーボン粉末や、気相成長炭素繊維(VGCF;登録商標)等の種々の炭素繊維、膨張黒鉛、金属粉末などが挙げられる。
【0045】
バインダとしては、ポリフッ化ビニリデン(PVdF)、PTFE、SBR、合成ゴム系バインダ等が挙げられる。また、バインダとゲル電解質として用いるマトリックスポリマーとが同じ場合には、バインダを使用する必要はない。
【0046】
活物質層に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。活物質層の厚さについても特に制限はなく、リチウムイオン二次電池についての従来公知の知見が適宜参照されうる。一例を挙げると、活物質層の厚さは、好ましくは10〜100μm程度であり、より好ましくは20〜50μmである。活物質層が10μm程度以上であれば、電池容量が充分に確保されうる。一方、活物質層が100μm程度以下であれば、電極深部(集電体側)にLiが拡散しにくくなることに伴う内部抵抗の増大という問題の発生が抑制されうる。
【0047】
集電体表面上への正極活物質層(または負極活物質層)の形成方法は、特に制限されず、公知の方法が同様にして使用できる。例えば、上記したように、正極活物質(または負極活物質)、ならびに必要であれば、イオン伝導性を高めるための電解質塩、電子伝導性を高めるための導電助剤、およびバインダを、適当な溶剤に分散、溶解などして、正極活物質スラリー(または負極活物質スラリー)を調製する。これを集電体上に塗布、乾燥して溶剤を除去した後、プレスすることによって、正極活物質層(または負極活物質層)が集電体上に形成される。この際、溶剤としては、特に制限されないが、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水などが用いられうる。バインダとしてポリフッ化ビニリデン(PVdF)を採用する場合には、NMPを溶媒として用いるとよい。
【0048】
上記方法において、正極活物質スラリー(または負極活物質スラリー)を集電体上に塗布・乾燥した後、プレスする。この際、プレス条件を調節することにより、正極活物質層(または負極活物質層)の空隙率が制御されうる。
【0049】
プレス処理の具体的な手段やプレス条件は特に制限されず、プレス処理後の正極活物質層(または負極活物質層)の空隙率が所望の値となるように、適宜調節されうる。プレス処理の具体的な形態としては、例えば、ホットプレス機やカレンダーロールプレス機などが挙げられる。また、プレス条件(温度、圧力など)も特に制限されず、従来公知の知見が適宜参照されうる。
【0050】
本実施形態の双極型電極1によれば、第2の導電性層3bの存在によって、第1の導電性層3aの吸湿によってこれに保持された水分がニッケル含有正極中のニッケル成分と反応することが抑制される。その結果、ニッケル含有正極の容量の低下が抑制されうる。
【0051】
<双極型二次電池>
図2は、本発明の一実施形態である双極型二次電池の全体構造を模式的に表した断面図である。図2に示す本実施形態の双極型二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材であるラミネートフィルム29の内部に封止された構造を有する。
【0052】
図2に示すように、本実施形態の双極型二次電池10の発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23および電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
【0053】
隣接する正極活物質層13、電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、電解質層17からの電解液の漏れによる液絡を防止する目的で、単電池層19の外周部にはシール部(絶縁層)31が配置されている。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。
【0054】
さらに、図2に示す双極型二次電池10では、正極側の最外層集電体11aに隣接するように正極集電板25が配置され、これが延長されて電池外装材であるラミネートフィルム29から導出している。一方、負極側の最外層集電体11bに隣接するように負極集電板27が配置され、同様にこれが延長されてラミネートフィルム29から導出している。
【0055】
図2に示す双極型二次電池10においては、通常、各単電池層19の周囲にシール部31が設けられる。このシール部31は、電池内で隣り合う集電体11どうしが接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止する目的で設けられる。かようなシール部31の設置により、長期間の信頼性および安全性が確保され、高品質の双極型二次電池10が提供されうる。
【0056】
なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型二次電池10では、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型二次電池10でも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素21を電池外装材であるラミネートフィルム29に減圧封入し、正極集電板25および負極集電板27をラミネートフィルム29の外部に取り出した構造とするのがよい。以下、本形態の双極型二次電池の主な構成要素について説明する。
【0057】
[電解質層]
電解質層を構成する電解質に特に制限はなく、液体電解質、ならびに高分子ゲル電解質および高分子固体電解質等のポリマー電解質を適宜用いることができる。
【0058】
液体電解質は、溶媒に支持塩であるリチウム塩が溶解したものである。溶媒としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、エチルメチルカーボネート(EMC)、プロピオン酸メチル(MP)、酢酸メチル(MA)、ギ酸メチル(MF)、4−メチルジオキソラン(4MeDOL)、ジオキソラン(DOL)、2−メチルテトラヒドロフラン(2MeTHF)、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびγ−ブチロラクトン(GBL)などが挙げられる。これらの溶媒は、1種を単独で使用してもよいし、2種以上を組み合わせた混合物として使用してもよい。
【0059】
また、支持塩(リチウム塩)としては、特に制限はないが、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiSbF、LiAlCl、Li10Cl10、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN等の無機酸陰イオン塩、LiCFSO、Li(CFSON、LiBOB(リチウムビスオキサイドボレート)、LiBETI(リチウムビス(パーフルオロエチレンスルホニルイミド);Li(CSONとも記載)等の有機酸陰イオン塩などが挙げられる。これらの電解質塩は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
【0060】
一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない高分子固体電解質に分類される。ゲル電解質は、Li伝導性を有するマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。Li伝導性を有するマトリックスポリマーとしては、例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー(PEO)、ポリプロピレンオキシドを主鎖または側鎖に持つポリマー(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメタクリル酸エステル、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVdF−HFP)、ポリアクリロニトリル(PAN)、ポリ(メチルアクリレート)(PMA)、ポリ(メチルメタクリレート)(PMMA)などが挙げられる。また、上記のポリマー等の混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。これらのうち、PEO、PPOおよびそれらの共重合体、PVdF、PVdF−HFPを用いることが望ましい。かようなマトリックスポリマーには、リチウム塩等の電解質塩がよく溶解しうる。
【0061】
なお、電解質層が液体電解質やゲル電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレンといったポリオレフィンやポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素、ガラス繊維などからなる微多孔膜が挙げられる。
【0062】
高分子固体電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が高分子固体電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。
【0063】
高分子ゲル電解質や高分子固体電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発揮しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合などの重合処理を施せばよい。なお、上記電解質は、電極の活物質層中に含まれていてもよい。
【0064】
[シール部]
シール部(絶縁層)は、集電体同士の接触や単電池層の端部における短絡を防止する機能を有する。シール部を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性等を有するものであればよい。例えば、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム等が用いられうる。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁層の構成材料として好ましく用いられる。
【0065】
[電池外装材]
電池外装材としては、従来公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、ポリプロピレン、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。本形態では、高出力化や冷却性能に優れ、EV、HEV用等の大型機器用電池に好適に利用することができるラミネートフィルムが望ましい。
【0066】
本実施形態の双極型二次電池10によれば、第2の導電性層3bの存在によって、第1の導電性層3aの吸湿によってこれに保持された水分がニッケル含有正極中のニッケル成分と反応することが抑制される。その結果、ニッケル含有正極の容量の低下が抑制されうる。このようにニッケル含有正極の容量の低下が抑制されることで、双極型二次電池10全体の容量の低下もまた、抑制されうる。
【実施例】
【0067】
本発明の作用効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
【0068】
[実施例1]
<集電体の作製>
第1の導電性層として、ポリイミド(PI)100質量%に対してケッチェンブラック10質量%が混合されてなる導電性樹脂フィルム(膜厚:25μm)を準備した。
【0069】
一方、ポリエチレン100質量%を溶融させたところにケッチェンブラック10質量%を混合し、押出法によって導電性樹脂フィルム(膜厚:50μm)を作製し、第2の導電性層とした。
【0070】
上記で準備・作製した第1の導電性層と第2の導電性層とを重ね合わせ、160℃にて10分間熱融着することにより、2層構造を有する双極型リチウムイオン二次電池用集電体を作製した。
【0071】
<双極型電極の作製>
アセチレンブラック(AB)(導電助剤)、ポリフッ化ビニリデン(PVdF)(バインダ)、平均粒子径5μmのリチウムニッケル酸化物系活物質(LiNiO)およびN−メチル−2−ピロリドン(NMP)を用いて、正極活物質層用スラリーを作製した。各成分の配合比は、リチウムニッケル酸化物系活物質:AB:PVdF=86:6:8(質量比)とした。
【0072】
一方、アセチレンブラック(AB)、ポリフッ化ビニリデン(PVdF)、黒鉛およびNMPを用いて、負極活物質層用スラリーを作製した。各成分の配合比は、黒鉛:AB:PVdF=85:5:10(質量比)とした。
【0073】
上記で作製した集電体の第2の導電性層の表面に、上記で調製した正極活物質層用スラリーを塗布し、乾燥させることによって、厚さ30μmの正極活物質層を形成した。同様に、正極活物質層を形成した集電体の裏面上に、上記で調製した負極活物質層用スラリーを塗布し、乾燥させることによって、厚さ20μmの負極活物質層を形成した。これにより、リチウムイオン二次電池用双極型電極を得た。
【0074】
<双極型二次電池の作製>
上記で得られた双極型電極を160×130mmの大きさに切り取った。次に、外縁から10mmの外周部に形成された正極活物質層および負極活物質層を剥がし取り、集電体表面を露出させた。これにより、各活物質層のサイズが140×110mmであり、外縁から10mmの外周部の集電体が露出した双極型電極を得た。
【0075】
上述した手法により作製した双極型電極4枚と、ポリプロピレン製微多孔膜からなるセパレータ3枚とを交互に積層して、単電池層を3層有する積層体を得た。この際、隣接する双極型電極の一方の正極活物質層と他方の負極活物質層とが向き合うように各部材を配置した。また、隣接する双極型電極の間の集電体の露出部に対応する部位には、隣接する集電体どうしを絶縁するためのシール部を配置した。
【0076】
電解液として、体積比2:3で混合されたエチレンカーボネート(EC)およびジエチレンカーボネート(DEC)の混合溶液にリチウム塩であるLiPFが1.0Mの濃度に溶解した溶液を準備した。そして、上記で得た積層体をこの電解液に含浸し、当該電解液をセパレータの内部に保持させることで、電解質層を形成した。
【0077】
その後、電流取り出し用のアルミニウムタブを挟み、電池外装材であるアルミラミネートフィルムを用いて真空密封することで、双極型リチウムイオン二次電池を完成させた。
【0078】
[比較例1]
ポリイミド(PI)100質量%に対してケッチェンブラック10質量%が混合されてなる導電性樹脂フィルム(膜厚:50μm)から導電性層を作製したこと以外は、上述した実施例1と同様の手法により、双極型リチウムイオン二次電池を作製した。なお、本比較例において用いた集電体は単層であるため、正極側・負極側の区別はない。
【0079】
[比較例2]
第2の導電性層を作製する際に、これを構成する基材としてポリエチレンに代えてポリアミドを用いたこと以外は、上述した実施例1と同様の手法により、双極型リチウムイオン二次電池を作製した。
【0080】
<水分量の測定>
上述した実施例1、並びに比較例1および2で作製した集電体のそれぞれについて、正極側に位置する層の水分量を測定した。水分量の測定には微量水分測定装置CA−100(三菱化学株式会社製)を用い、測定温度は200℃とした。なお、乾燥による水分の抜け易さを確認する目的で、乾燥処理の前後において、水分量の測定を行なった。結果を下記の表1に示す。
【0081】
【表1】

【0082】
表1に示す結果から、イミド基およびアミド基を含有しない樹脂であるポリエチレンは、乾燥処理の有無にかかわらず、吸湿性がそもそも低いことがわかる。これに対し、イミド基やアミド基を含有する樹脂であるポリイミドやポリアミドは、吸湿性がそもそも高く、しかも、保持された水分は乾燥処理を施しても十分には除去されないことがわかる。
【0083】
<サイクル充放電試験>
上述した実施例1、並びに比較例1および2で作製した双極型電池のそれぞれについて、25℃の雰囲気下、定電流方式(CC、電流:1C)で12.6Vまで充電した。次いで、10分間休止させた後、定電流(CC、電流:1C)で7.5Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、20サイクルの充放電試験を行ない、放電容量維持率を調べた。結果を下記の表2に示す。なお、表2において「放電容量維持率」は、1サイクル目の放電容量に対する、1、5、10、20、50サイクル目の放電容量の割合を表す(百分率表示)。
【0084】
【表2】

【0085】
表2に示すように、比較例2では50サイクル後の容量維持率が約70%に、比較例3では50サイクル後の容量維持率は約32%にそれぞれ低下している。その一方で、実施例1では容量維持率が88.9%と高い値に維持された。このことから、実施例1で作製した集電体の第2の導電性層の存在によって、第1の導電性層中に含まれる水分とニッケル正極活物質との反応をブロックしたことが示される。比較例1および2において電池性能の低下が確認されたのは、ニッケル含有正極活物質が、正極活物質層と隣接している導電性層を構成する樹脂中に保持された水分と反応して分解したことによるものと考えられる。
【符号の説明】
【0086】
1、23 双極型電極、
3、11 集電体、
3a 第1の導電性層、
3b 第2の導電性層、
5、15 負極活物質層、
7、13 正極活物質層、
10 双極型二次電池、
11a 正極側の最外層集電体、
11b 負極側の最外層集電体、
17 電解質層、
19 単電池層、
21 発電要素、
25 正極集電板、
27 負極集電板、
29 ラミネートフィルム、
31 シール部。

【特許請求の範囲】
【請求項1】
イミド基および/またはアミド基を主骨格中に含有する第1の樹脂を含む基材に導電性フィラーが添加されてなる第1の導電性層と、
イミド基およびアミド基を主骨格中に含有しない第2の樹脂を含む基材に導電性フィラーが添加されてなる第2の導電性層と、
を有し、前記第2の導電性層がニッケル成分を含有する正極活物質層の側に位置するように用いられる、ニッケル含有正極用集電体。
【請求項2】
前記第2の樹脂がポリオレフィンである、請求項1に記載の集電体。
【請求項3】
請求項1または2に記載の集電体と、
前記集電体の前記第2の導電性層の側の表面に形成された、ニッケル成分を含有する正極活物質層と、
を有する、電極。
【請求項4】
請求項3に記載の電極を含む発電要素を有する、リチウムイオン二次電池。
【請求項5】
双極型である、請求項4に記載のリチウムイオン二次電池。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−38426(P2012−38426A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−174521(P2010−174521)
【出願日】平成22年8月3日(2010.8.3)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】