説明

ネガ型レジスト材料及びこれを用いたパターン形成方法

【課題】従来のヒドロキシスチレン系、ノボラック系のネガ型レジスト材料を上回る高解像度を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示すネガ型レジスト材料、特に化学増幅ネガ型レジスト材料、及びこれを用いたパターン形成方法を提供する。
【解決手段】少なくとも、下記一般式(1)で示されるヒドロキシビニルナフタレンの繰り返し単位を有する高分子化合物を含むことを特徴とするネガ型レジスト材料。
【化47】

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ネガ型レジスト材料、特に化学増幅ネガ型レジスト材料、およびこれを用いたパターン形成方法に関する。
【背景技術】
【0002】
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。1994年の段階でSIAのロードマップ上180nmルールデバイスの量産は2001年とされていたが、実際は2年前倒しになり、1999年に量産開始された。180nmデバイスはArF(193nm)リソグラフィーが本命視されていたが、KrF(248nm)リソグラフィーが延命され、150nm世代、更には130nmまでもがKrFリソグラフィーでの量産が検討されている。
【0003】
KrFリソグラフィーの成熟と共に微細化の加速に拍車がかかっている。ArFは90nmの微細加工が期待され、F2(157nm)は65nmが期待されているが、更にその先はEBの縮小投影露光(PREVAIL、SCALPEL)や軟X線を光源とするEUVが候補に挙がる。
【0004】
従来、光の波長が変わるごとにレジスト用のポリマーが大きく変わってきた。これは必要な透過率を確保するためである。例えばg線からi線への移行においては感光剤のベースがベンゾフェノンから非ベンゾフェノン型に変化した。i線からKrFへの移行においては、長らく用いられてきたノボラック樹脂からヒドロキシスチレン系への変更を伴った。KrFからArFへの移行においては劇的で、2重結合を持つポリマーが全く光を通さないため、脂環系のポリマーへ変更される。更にF2においては更なる透過率向上のため、フッ素樹脂のようなフッ素原子を導入した脂環系ポリマーが検討されている。
【0005】
EBやX線などの非常に短波長な高エネルギー線においてはレジストに用いられている炭化水素のような軽元素は吸収がほとんどなく、ポリヒドロキシスチレンベースのレジスト材料が検討されている。
【0006】
EB用レジストは、実用的にはマスク描画用途に用いられてきた。近年、マスク製作技術が問題視されるようになってきた。g線の時代から、縮小投影露光装置が用いられており、その縮小倍率は1/5であったが、最近、チップサイズの拡大と、投影レンズの大口径化に伴って1/4倍率が用いられるようになってきた。微細加工の進行による線幅の縮小だけでなく、倍率変更による線幅縮小はマスク製作技術にとって大きな問題である。
【0007】
マスク製作用露光装置も線幅の精度を上げるため、レーザービームによる露光装置から電子ビーム(EB)による露光装置が用いられるようになってきた。更にEBの電子銃における加速電圧を上げることによってよりいっそうの微細化が可能になることから、10keVから30keV、最近は50keVが主流になりつつある。
【0008】
ここで、加速電圧の上昇と共に、レジストの低感度化が問題になってきた。加速電圧が向上すると、レジスト膜内での前方散乱の影響が小さくなるため、電子描画エネルギーのコントラストが向上して解像度や寸法制御性が向上するが、レジスト膜内を素抜けの状態で電子が通過するため、レジストの感度が低下する。マスク露光機は直描の一筆書きで露光するため、レジストの感度低下は生産性の低下につながり好ましいことではない。高感度化の要求から、化学増幅型レジストが検討されるようになってきた。
【0009】
こうして加速電圧の向上と、高コントラストな化学増幅型レジストの適用によって、1/4倍縮小でウエハー上125nmの寸法500nmが精度よく描かれるようになってきている。しかしながら、KrFはデバイス寸法130nmまで延命し、ArFの適用は90nmからといわれ、F2は65nmと予測されている。F2による光リソグラフィーの限界は50nmと予測されている。このときのマスク上寸法は200nmである。現時点において200nmの寸法制御は、レジストの解像力の向上だけでは困難である。光リソグラフィーの場合、レジストの薄膜化が解像力向上に大きく寄与している。これはCMPなどの導入により、デバイスの平坦化が進行したためである。マスク作製の場合、基板は平坦であり、加工すべき基板(例えばCr、MoSi、SiO2)の膜厚は遮光率や位相差制御のために決まってしまっている。薄膜化するためにはレジストのドライエッチング耐性を向上させるしかない。
【0010】
ここで、一般的にはレジストの炭素の密度とドライエッチング耐性について相関があるといわれている。吸収の影響を受けないEB描画においては、エッチング耐性に優れるノボラックポリマーをベースとしたレジストが開発されている。しかしながら、ノボラックポリマーは分子量と分散度制御が困難で、微細加工に適した材料ではないと考えられる。
【0011】
また、F2露光と並んで70nm、あるいはそれ以降の微細加工における露光方法として期待される波長5〜20nmの軟X線(EUV)露光において、炭素原子の吸収が少ないことが報告されている。炭素密度を上げることがドライエッチング耐性の向上だけでなく、軟X線波長領域における透過率向上にも効果的であることが判明したのである(非特許文献1参照)。
このように、炭素密度が高く、ドライエッチング耐性が高く、高解像性を有するレジスト材料が求められていた。
【0012】
【非特許文献1】N. Matsuzawa et. al. ; Jp. J. Appl. Phys. Vol.38 p7109−7113(1999)
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明はこのような問題点に鑑みてなされたもので、従来のヒドロキシスチレン系、ノボラック系のネガ型レジスト材料を上回る高解像度を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示すネガ型レジスト材料、特に化学増幅ネガ型レジスト材料、及びこれを用いたパターン形成方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明は、上記課題を解決するためになされたもので、少なくとも、下記一般式(1)で示されるヒドロキシビニルナフタレンの繰り返し単位を有する高分子化合物を含むことを特徴とするネガ型レジスト材料を提供する(請求項1)。
【化5】

(式中、R1は水素原子又はメチル基を表す。mは1又は2である。aは、0<a≦1の範囲である。)
【0015】
この場合、前記高分子化合物が、更に下記一般式(1)−1で示される繰り返し単位を含むことが好ましい(請求項2)。
【化6】

(式中、R2は水素原子又はメチル基を表す。pは1又は2である。bは、0<b<1の範囲である。)
【0016】
また、前記高分子化合物が、更に下記一般式(1)−2で示される繰り返し単位を含むことが好ましい(請求項3)。
【化7】

(式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは単結合、ベンゼン環、−O−、−C(=O)−O−又は−C(=O)−O−R18−C(=O)−O−である。R18は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基でフッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。R16は単結合又は、炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基で、フッ素原子で置換されていてもよく、ヒドロキシル基を有していてもよい。R17は水素原子、フッ素原子、メチル基、トリフルオロメチル基又はジフルオロメチル基で、R16と結合して環を形成しても良く、該環の中にエーテル基、フッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。nは1又は2である。cは、0<c<1の範囲である。)
【0017】
また、前記高分子化合物が、更に下記一般式(1)−3で示される繰り返し単位を含むことが好ましい(請求項4)。
【化8】

(式中、Xはメチレン基、酸素原子、硫黄原子のいずれかであり、d、dは、0≦d<1、0≦d<1、0<d+d<1の範囲である。)
【0018】
このような本発明に係るネガ型レジスト材料は、高エネルギー線での露光において、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、エッチング残渣が少なく、またエッチング耐性に優れたものとなる。従って、これらの特性を有することから、実用性がきわめて高く、超LSI製造用あるいはフォトマスクパターン作製における微細パターン形成材料として好適である。
また、上記ヒドロキシビニルナフタレンは、ヒドロキシ基の水素原子をアセチル基、アルキル基等で置換することができ、これによって高分子化合物のアルカリ溶解速度を調整することができる。従って、状況に応じて適切なアルカリ溶解速度を有するネガ型レジスト材料とすることができる。
【0019】
また、前記高分子化合物の質量平均分子量が1,000〜500,000の範囲であることが好ましい(請求項5)。
【0020】
このように、前記高分子化合物の質量平均分子量が1,000〜500,000の範囲であれば、レジスト材料が十分な耐熱性およびアルカリ溶解性を有し、パターン形成後にアンダーカット現象が生じる恐れが少ない。
【0021】
また、前記ネガ型レジスト材料が、酸発生剤を含有する化学増幅型レジスト材料であることが好ましい(請求項6)。
【0022】
このように、前記ネガ型レジスト材料が、酸発生剤を含有する化学増幅型レジスト材料であれば、極めて高精度なパターンを得ることができる。
【0023】
また、前記ネガ型レジスト材料が、有機溶剤、塩基性化合物、溶解制御剤、界面活性剤、架橋剤のいずれか1つ以上を含有するものであることが好ましい(請求項7)。
【0024】
このように、さらに有機溶剤を配合することによって、例えば、レジスト材料の基板等への塗布性を向上させることができるし、塩基性化合物を配合することによって、レジスト膜中での酸の拡散速度を抑制し、解像度を一層向上させることができるし、溶解制御剤を配合することによって、露光部と未露光部との溶解速度の差を一層大きくすることができ、解像度を一層向上させることができるし、界面活性剤を添加することによってレジスト材料の塗布性を一層向上あるいは制御することができるし、架橋剤を添加することによって解像度を一層向上させることができる。
【0025】
このような本発明のネガ型レジスト材料は、少なくとも、該ネガ型レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを行うことによって、半導体基板やマスク基板等にパターンを形成する方法として用いることができる(請求項8)。
【0026】
もちろん、露光後加熱処理を加えた後に現像してもよいし、エッチング工程、レジスト除去工程、洗浄工程等その他の各種の工程が行われてもよいことは言うまでもない。
【発明の効果】
【0027】
以上説明したように、本発明のネガ型レジスト材料は、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好で、その上特に酸拡散速度を抑制し、優れたエッチング耐性を示す。従って、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なネガ型レジスト材料、特には化学増幅ネガ型レジスト材料を得ることができる。このようなネガ型レジスト材料は、半導体回路形成におけるリソグラフィーだけでなく、マスク回路パターンの形成、あるいはマイクロマシーン、薄膜磁気ヘッド回路形成等にも好適に用いることができる。
【発明を実施するための最良の形態】
【0028】
以下、本発明の実施の形態について説明するが、本発明はこれらに限定されるものではない。
【0029】
本発明者らは、近年要望される高感度及び高解像度、露光余裕度等を有し、エッチング形状が良好で、優れたエッチング耐性を示すネガ型レジスト材料を得るべく鋭意検討を重ねた。
【0030】
本発明者らは、まず、エッチング耐性を向上させるために、レジストの炭素の密度を上げることを考えた。ベンゼン環の炭素密度92%に対して、ナフタレン環は94%であり、ナフタレン環を含む材料はドライエッチング耐性の向上が期待される。もともとナフタレン環は光吸収が高いため従来それほど注目されていなかったが、吸収の影響がない極短波長露光において有望な材料であると考えられた。
【0031】
そこで、本発明者らはヒドロキシビニルナフタレンを重合させることを検討した。ヒドロキシビニルナフタレンの重合体をネガ型レジスト材料として用いれば、エッチング耐性が向上するだけでなく、溶解コントラストが高くかつ酸拡散を抑えることによって疎密寸法差を小さくすることができ、その効果はヒドロキシスチレン以上であった。これは、ヒドロキシビニルナフタレンは縮合炭化水素であり、その重合物のヒドロキシ基により結合部分が剛直になることによって分子内の熱運動が抑制され、酸拡散を抑えるためと考えられる。
【0032】
以上のことから、本発明者らは、ヒドロキシビニルナフタレンの重合により得られるポリマーをネガ型レジスト材料、特に化学増幅ネガ型レジスト材料のベース樹脂として用いることにより、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なネガ型レジスト材料、特には化学増幅ネガ型レジスト材料が得られることを知見したものである。
【0033】
すなわち、本発明に係るネガ型レジスト材料は、少なくとも、下記一般式(1)で示されるヒドロキシビニルナフタレンの繰り返し単位を有する高分子化合物を含むことを特徴とする。
【化9】

(式中、R1は水素原子又はメチル基を表す。mは1又は2である。aは、0<a≦1の範囲である。)
【0034】
本発明のネガ型レジスト材料は、特に、レジスト膜の溶解コントラストが高く、高感度で高解像性を有し、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好で、特に密パターンと疎パターンとの寸法差が小さく、より優れたエッチング耐性を示すものとなる。従って、これらの優れた特性を有することから実用性が極めて高く、超LSI用レジスト材料マスクパターン形成材料として非常に有効である。
また、上記高分子化合物において、ヒドロキシビニルナフタレンのヒドロキシ基の水素原子をアセチル基、アルキル基等で置換することができ、これによって高分子化合物のアルカリ溶解速度を調整することができる。従って、状況に応じて適切なアルカリ溶解速度を有するネガ型レジスト材料とすることができる。
【0035】
本発明の高分子化合物は、上記ヒドロキシビニルナフタレンの繰り返し単位を必須とするが、これ以外の繰り返し単位を共重合してもよい。このようにヒドロキシビニルナフタレンの繰り返し単位以外に共重合出来る繰り返し単位としては、ヒドロキシスチレン、インデン、ヒドロキシインデン、スチレン、ビニルナフタレン、ビニルアントラセン、ビニルピレン、インドール、アセナフチレン、ノルボルナジエン、ノルボルネン、トリシクロデセン、テトラシクロドデセン、メチレンインダン、クロモン、クマロン、ラクトンを有する(メタ)アクリレート類、(メタ)アクリル酸、3−ヒドロキシアダマンタン(メタ)アクリル酸エステル、無水マレイン酸、無水イタコン酸、マレイミド類、ビニルエーテル類、αヒドロキシメチルアクリレート類、スチレンカルボン酸、αトリフルオロメチルアルコールを有する繰り返し単位などが挙げられる。
【0036】
このうち、ヒドロキシスチレンを有する繰り返し単位は、たとえば下記一般式(1)−1で示すことが出来る。
【化10】

(式中、R2は水素原子又はメチル基を表す。pは1又は2である。bは、0<b<1の範囲である。)
このようなヒドロキシスチレンの繰り返し単位を共重合することで、アルカリ溶解速度がより速くなり、かつ架橋速度がより速くなるので、より高コントラストなレジスト材料を得ることができる。
【0037】
上記共重合できる繰り返し単位のうち、αトリフルオロメチルアルコール(αトリフルオロメチルヒドロキシ基)を有する繰り返し単位は、たとえば下記一般式(1)−2で示すことが出来る。
【化11】

(式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは単結合、ベンゼン環、−O−、−C(=O)−O−又は−C(=O)−O−R18−C(=O)−O−である。R18は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基でフッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。R16は単結合又は、炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基で、フッ素原子で置換されていてもよく、ヒドロキシル基を有していてもよい。R17は水素原子、フッ素原子、メチル基、トリフルオロメチル基又はジフルオロメチル基で、R16と結合して環を形成しても良く、該環の中にエーテル基、フッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。nは1又は2である。cは、0<c<1の範囲である。)
上記一般式(1)−2で示されるαトリフルオロメチルヒドロキシ基を有する繰り返し単位は、アルカリ現像中の膨潤を防止し、パターン間のマイクロブリッジ発生を防止できる特徴がある。
【0038】
上記共重合できる繰り返し単位のうち、インデン、アセナフチレンを有する繰り返し単位は、たとえば下記一般式(1)−3で示すことが出来る。
【化12】

(式中、Xはメチレン基、酸素原子、硫黄原子のいずれかであり、d、dは、0≦d<1、0≦d<1、0<d+d<1の範囲である。)
上記一般式(1)−3で示されるインデン、アセナフチレンを有する繰り返し単位は、エッチング耐性を向上させ、アルカリ溶解速度低下による架橋効率の向上効果を有する特徴がある。
【0039】
上記共重合できる繰り返し単位のうち、αトリフルオロメチルアルコールを有する繰り返し単位は、たとえば下記一般式(2)で示すことが出来る。
【化13】

(式中、R、R10は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは単結合、ベンゼン環、−O−、−C(=O)−O−又は−C(=O)−O−R18−C(=O)−O−である。R18は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基でフッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。R16は単結合又は、炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基で、フッ素原子で置換されていてもよく、ヒドロキシル基を有していてもよい。R17は水素原子、フッ素原子、メチル基、トリフルオロメチル基又はジフルオロメチル基で、R16と結合して環を形成しても良く、該環の中にエーテル基、フッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。nは1又は2である。c、eは、0≦c<1、0≦e<1、0<c+e<1の範囲である。つまり、上記一般式(2)を含む場合には、c、eのいずれか一方が含まれていればよい。)
【0040】
一般式(1)−2および(2)に示されるαトリフルオロメチルアルコールを有する繰り返し単位を得るためのモノマーとしては、具体的には下記に例示することが出来る。下記においてR、R10は上記と同様である。
【0041】
【化14】

【0042】
【化15】

【0043】
【化16】

【0044】
更に下記一般式(3)で示されるスルホニウム塩を持つ繰り返し単位を共重合することも出来る。
【0045】
【化17】

【0046】
(式中、R50は水素原子又はメチル基、R51はフェニレン基、−O−R54−、又は−C(=O)−Y−R54−である。Yは酸素原子又はNH、R54は炭素数1〜6の直鎖状、分岐状又は環状のアルキレン基、フェニレン基又はアルケニレン基であり、カルボニル基、エステル基、エーテル基又はヒドロキシ基を含んでいてもよい。R52、R53は同一又は異種の炭素数1〜12の直鎖状、分岐状又は環状のアルキル基であり、カルボニル基、エステル基又はエーテル基を含んでいてもよく、又は炭素数6〜12のアリール基、炭素数7〜20のアラルキル基又はチオフェニル基を表す。X-は非求核性対向イオンを表す。)
【0047】
本発明に係る高分子化合物を合成するには、1つの方法としては、下記式(1a)で示されるモノマーと、必要により共重合のモノマーを、有機溶剤中、ラジカル重合開始剤を加え加熱重合を行い、共重合体の高分子化合物を得ることができる。
【0048】
【化18】

(式中、R、mは前述の通り、R11は水素原子、酸不安定基、アセチル基等の加水分解性基である。)
【0049】
重合時に使用する有機溶剤としてはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。
【0050】
ヒドロキシビニルナフタレンの代わりにアセトキシビニルナフタレンを用い、重合後アルカリ加水分解によってアセトキシ基を脱保護してヒドロキシポリビニルナフタレンにする方法もある。
【0051】
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
また、上記重合後の高分子化合物(ヒドロキシポリビニルナフタレン、あるいはヒドロキシビニルナフタレン共重合体)のアルカリ溶解速度を調整する目的で、ヒドロキシビニルナフタレンのヒドロキシ基の水素原子をアセチル基、アルキル基等で置換することもできる。置換割合は、ヒドロキシ基の1%を超え40%以下が好ましく用いられる。置換方法としては、アセチルクロリドやハロゲン化アルキル化合物を、塩基の存在下、高分子化合物と反応させることにより、部分的にヒドロキシビニルナフタレンのヒドロキシ基(フェノール性水酸基)の水素原子がアセチル基やアルキル基で保護された高分子化合物を得る。
【0052】
本発明の高分子化合物は、質量平均分子量が1,000〜500,000の範囲であることが好ましく、より好ましくは2,000〜30,000である。質量平均分子量が1,000以上であればレジスト材料が十分な耐熱性を有し、500,000以下であれば十分なアルカリ溶解性を有し、パターン形成後にアンダーカット現象が生じる恐れが少ない。
【0053】
更に、本発明の高分子化合物においては、その分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。このような分子量分布であれば、低分子量や高分子量のポリマーが存在することが原因で、露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする恐れが少ない。パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、上記分子量分布であることが好ましい。
【0054】
また、組成比率や分子量分布や分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
本発明の高分子化合物は、ネガ型レジスト材料のベース樹脂として用いられる。このような高分子化合物をベース樹脂とし、これに有機溶剤、酸発生剤、架橋剤、溶解制御剤、塩基性化合物、界面活性剤等を目的に応じ適宜組み合わせて配合してネガ型レジスト材料を構成することによって、露光部では触媒反応により前記高分子化合物の現像液に対する溶解速度が低下する。
【0055】
従って、極めて高感度のネガ型レジスト材料とすることができ、レジスト膜の溶解コントラスト及び解像性が高く、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好でありながら、より優れたエッチング耐性を示し、特に酸拡散を抑制できることから粗密寸法差が小さく、これらのことから実用性が高く、超LSI用レジスト材料として非常に有効なものとすることができる。
特に、酸発生剤を含有させ、酸触媒反応を利用した化学増幅ネガ型レジスト材料とすると、より高感度のものとすることができると共に、諸特性が一層優れたものとなり極めて有用なものとなる。
【0056】
上述したように、本発明のネガ型レジスト材料にさらに溶解制御剤を配合することができる。これにより、露光部と未露光部との溶解速度の差を一層大きくすることができ解像度を一層向上させることができる。
この様な溶解制御剤としては、カルボキシル基およびフェノール性水酸基を有する化合物を挙げることができる。例えば下記[I群]及び[II群]から選ばれる1種又は2種以上の化合物を使用することができる。
【0057】
[I群]
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
【0058】
【化19】

(上記式中、R408は水素原子又はメチル基を示す。R402、R403はそれぞれ水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R404は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R409h−COOR’基(R’は水素原子又は−R409−COOH)を示す。R405は−(CH2i−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す、R406は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R407は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基、それぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R409は炭素数1〜10の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R410は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R411は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。jは0〜3、s1〜s4、t1〜t4はそれぞれs1+t1=8、s2+t2=5、s3+t3=4、s4+t4=6を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。κは式(A6)の化合物を質量平均分子量1,000〜5,000とする数である。λは式(A7)の化合物を質量平均分子量1,000〜10,000とする数である。u、hは0または1である。)
【0059】
[II群]
下記一般式(A11)〜(A15)で示される化合物。
【化20】

(上記式中、R402、R403、R411は上記と同様の意味を示す。R412は水素原子又は水酸基を示す。s5、t5は、s5≧0、t5≧0で、s5+t5=5を満足する数である。h’は0又は1である。)
更にはカリックスアレーン類、フェノール基含有フラーレン類を挙げることができる。
【0060】
上述したように、本発明のネガ型レジスト材料にさらに有機溶剤を配合することができる。有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ−ブチルラクトン等のラクトン類が挙げられるが、これらに限定されるものではない。
【0061】
これらの有機溶剤は、1種を単独で又は2種以上を混合して使用することができる。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
【0062】
有機溶剤の使用量は、ベース樹脂100部(質量部、以下同様)に対して200〜1,000部、特に400〜800部が好適である。
【0063】
上述したように、本発明のネガ型レジスト材料にさらに酸発生剤を配合することができる。このような酸発生剤としては、
(i)下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
(ii)下記一般式(P2)のジアゾメタン誘導体、
(iii)下記一般式(P3)のグリオキシム誘導体、
(iv)下記一般式(P4)のビススルホン誘導体、
(v)下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
(vi)β−ケトスルホン酸誘導体、
(vii)ジスルホン誘導体、
(viii)ニトロベンジルスルホネート誘導体、
(ix)スルホン酸エステル誘導体
等が挙げられる。
【0064】
【化21】

(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。)
【0065】
上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸、更には下記一般式(K−1)に示されるα位がフルオロ置換されたスルホネート、下記一般式(K−2)に示される、α、β位がフルオロ置換されたスルホネートが挙げられる。
【0066】
【化22】

一般式(K−1)中、R102は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基、アシル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基、アリーロキシ基である。 一般式(K−2)中のR103は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基である。
【0067】
【化23】

(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
【0068】
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。
【0069】
【化24】

(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
【0070】
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
【0071】
【化25】

(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状、分岐状のアルキレン基を示す。)
【0072】
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
【0073】
【化26】

(式中、R101a、R101bは上記と同様である。)
【0074】
【化27】

(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
【0075】
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
【0076】
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
【0077】
オニウム塩としては、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩を挙げることができる。
【0078】
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。
【0079】
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。
【0080】
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。
【0081】
β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体を挙げることができる。
【0082】
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。
【0083】
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
【0084】
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
【0085】
また、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体を挙げることができる。
【0086】
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
更に、WO2004/074242 A2で示されるオキシムタイプの酸発生剤を添加することもできる。
【0087】
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。
【0088】
酸発生剤の添加量は、ベース樹脂100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部以上であれば露光時の酸発生量が十分で、感度及び解像力が低下する恐れが少ない。50部以下であれば、レジストの透過率が低下して解像力が低下する恐れが少ない。
【0089】
上述したように、本発明のネガ型レジスト材料にさらに架橋剤を配合することができる。本発明で使用可能な架橋剤の具体例を列挙すると、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物等を挙げることができる。これらは添加剤として用いてもよいが、ポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
【0090】
前記架橋剤の具体例のうち、更にエポキシ化合物を例示すると、トリス(2,3−エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが例示される。メラミン化合物を具体的に例示すると、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物又はその混合物が挙げられる。グアナミン化合物としては、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物又はその混合物が挙げられる。グリコールウリル化合物としては、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1〜4個がメトキシメチル化した化合物、又はその混合物、テトラメチロールグリコールウリルのメチロール基の1〜4個がアシロキシメチル化した化合物又はその混合物が挙げられる。ウレア化合物としてはテトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
【0091】
イソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられ、アジド化合物としては、1,1’−ビフェニル−4,4’−ビスアジド、4,4’−メチリデンビスアジド、4,4’−オキシビスアジドが挙げられる。
【0092】
アルケニルエーテル基を含む化合物としては、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
【0093】
架橋剤の配合量は、ベース樹脂100部に対して0〜50部、好ましくは5〜50部、より好ましくは10〜30部であり、単独又は2種以上を混合して使用できる。5部以上であれば十分な解像性の向上が得られ、50部以下であれば、パターン間がつながり解像度が低下する恐れが少ない。
【0094】
上述したように、本発明のネガ型レジスト材料にさらに塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
【0095】
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
【0096】
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
【0097】
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
【0098】
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
【0099】
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
【0100】
更に、下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を配合することもできる。
N(X)n(Y)3-n (B)−1
(式中、nは1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一又は異種の、水素原子もしくは直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。)
【0101】
【化28】

【0102】
ここで、R300、R302、R305は炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R301、R304は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。R303は単結合、炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。
【0103】
上記一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
【0104】
更に、下記一般式(B)−2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。
【0105】
【化29】

(式中、Xは前述の通り、R307は炭素数2〜20の直鎖状又は分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基又はスルフィドを1個あるいは複数個含んでいてもよい。)
【0106】
上記式(B)−2としては具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチルを挙げることができる。
【0107】
更に、下記一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる。
【0108】
【化30】

(式中、X、R307、nは前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状又は分岐状のアルキレン基である。)
【0109】
シアノ基を含む塩基は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)が例示される。
【0110】
なお、本発明の塩基化合物の配合量はベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部以上であれば十分な配合効果が得られ、2部以下であれば感度が低下する恐れが少ない。
【0111】
上述したように、本発明のネガ型レジスト材料にさらに界面活性剤を配合することができる。界面活性剤を添加することによってレジスト材料の塗布性を一層向上あるいは制御することができる。
【0112】
界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプトダクツ)、メガファックF171、F172、F173(大日本インキ化学工業)、フロラードFC430、FC431FC−4430(住友スリーエム)、アサヒガードAG710、サーフロンS−381、S−382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP−341、X−70−092、X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業)が挙げられ、中でもFC430、FC−4430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
【0113】
本発明のネガ型レジスト材料、特には化学増幅ネガ型レジスト材料中の界面活性剤の添加量としては、レジスト材料中のベース樹脂100部に対して2部以下、好ましくは1部以下である。
【0114】
本発明のネガ型レジスト材料、例えば有機溶剤と、一般式(1)で示される高分子化合物と、酸発生剤、塩基性化合物を含む化学増幅ネガ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を適用することができる。
【0115】
すなわち本発明のネガ型レジスト材料は、少なくとも、該ネガ型レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを行うことによって、半導体基板やマスク基板等にパターンを形成することができる。
【0116】
例えば、本発明のネガ型レジスト材料を、集積回路製造用の基板(Si,SiO2,SiN,SiON,TiN,WSi,BPSG,SOG,有機反射防止膜等)あるいはマスク回路製造用の基板(Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.1〜2.0μmとなるように塗布する。これをホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線等の高エネルギー線から選ばれる光源で目的とするパターンを所定のマスクを通じてもしくは直接露光を行う。露光量は1〜200mJ/cm2程度、好ましくは10〜100mJ/cm2、又は0.1〜100μC、好ましくは0.5〜50μC程度となるように露光することが好ましい。次に、ホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間ポストエクスポージャベーク(PEB)する。
【0117】
更に、0.1〜5質量%、好ましくは2〜3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、3秒〜3分間、好ましくは5秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより、光を照射した部分は現像液に不溶化し、露光されなかった部分は溶解し、基板上に目的のネガ型のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも電子線、軟X線、X線、γ線、シンクロトロン放射線による微細パターニングに最適である。
【実施例】
【0118】
以下、合成例及び比較合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例等に制限されるものではない。なお、以下でGPCはゲルパーミエーションクロマトグラフィーを指す。
【0119】
[合成例1]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン212g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0120】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン=1.0
質量平均分子量(Mw)=9,300
分子量分布(Mw/Mn)=1.78
この高分子化合物をポリマー1(polymer1)とする。
【0121】
【化31】

【0122】
[合成例2]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン106g、4−アセトキシスチレン81g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0123】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:4−ヒドロキシスチレン=0.5:0.5
質量平均分子量(Mw)=10,500
分子量分布(Mw/Mn)=1.79
この高分子化合物をポリマー2(polymer2)とする。
【0124】
【化32】

【0125】
[合成例3]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン84.8g、4−アセトキシスチレン81g、インデン14.0g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0126】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:4−ヒドロキシスチレン:インデン=0.4:0.5:0.1
質量平均分子量(Mw)=8,600
分子量分布(Mw/Mn)=1.82
この高分子化合物をポリマー3(polymer3)とする。
【0127】
【化33】

【0128】
[合成例4]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン84.8g、4−アセトキシスチレン81g、アセナフチレン27.3g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0129】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:4−ヒドロキシスチレン:アセナフチレン=0.4:0.5:0.1
質量平均分子量(Mw)=6,100
分子量分布(Mw/Mn)=1.76
この高分子化合物をポリマー4(polymer4)とする。
【0130】
【化34】

【0131】
[合成例5]
2Lのフラスコに4−アセトキシスチレン64.8g、6−アセトキシ−2−ビニルナフタレン89.1g、4−アクリル酸オキシフェニルジフェニルスルホニウム ビス(パーフルオロブチルスルホニル)イミド24.2g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0132】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:6−ヒドロキシ−2−ビニルナフタレン:4−アクリル酸オキシフェニルジフェニルスルホニウム ビス(パーフルオロブチルスルホニル)イミド=0.40:0.55:0.05
質量平均分子量(Mw)=8,800
分子量分布(Mw/Mn)=1.76
この高分子化合物をポリマー5(polymer5)とする。
【0133】
【化35】

【0134】
[合成例6]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン190.8g、αヒドロキシメチルアクリル酸10.2g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0135】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:αヒドロキシメチルアクリル酸=0.9:0.1
質量平均分子量(Mw)=9,100
分子量分布(Mw/Mn)=1.74
この高分子化合物をポリマー6(polymer6)とする。
【0136】
【化36】

【0137】
[合成例7]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン190.8g、4−(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロピル)スチレン27.0g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0138】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:4−(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロピル)スチレン=0.9:0.1
質量平均分子量(Mw)=9,600
分子量分布(Mw/Mn)=1.79
この高分子化合物をポリマー7(polymer7)とする。
【0139】
【化37】

【0140】
[合成例8]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン190.8g、メタクリル酸4,4−ジフルオロ−5−ヒドロキシ−3−メチル−5−トリフルオロメチルフラン−3−イル29.0g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0141】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:メタクリル酸4,4−ジフルオロ−5−ヒドロキシ−3−メチル−5−トリフルオロメチルフラン−3−イル=0.9:0.1
質量平均分子量(Mw)=8,900
分子量分布(Mw/Mn)=1.79
この高分子化合物をポリマー8(polymer8)とする。
【0142】
【化38】

【0143】
[合成例9]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン106.0g、4−(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロピル)スチレン27.0g、アセトキシスチレン64.0、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0144】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:4−(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロピル)スチレン:4−ヒドロキシスチレン=0.5:0.1:0.4
質量平均分子量(Mw)=9,300
分子量分布(Mw/Mn)=1.86
この高分子化合物をポリマー9(polymer9)とする。
【0145】
【化39】

【0146】
[合成例10]
2Lのフラスコに6−アセトキシ−2−ビニルナフタレン190.8g、3,5−ジ(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロピル)スチレン43.6g、溶媒としてトルエンを250g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を8.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール5L溶液中に沈殿させ、得られた白色固体をメタノール500mL、テトラヒドロフラン800mLに再度溶解し、トリエチルアミン50g、水50gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン500mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
【0147】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
6−ヒドロキシ−2−ビニルナフタレン:3,5−ジ(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロピル)スチレン=0.9:0.1
質量平均分子量(Mw)=6,800
分子量分布(Mw/Mn)=1.49
この高分子化合物をポリマー10(polymer10)とする。
【0148】
【化40】

【0149】
[比較合成例1]
上記合成例と同様の方法で下記の2成分ポリマーを合成した。
【0150】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
ヒドロキシスチレン:スチレン=0.7:0.3
質量平均分子量(Mw)=4,500
分子量分布(Mw/Mn)=1.55
この高分子化合物を比較ポリマー1(comparative polymer1)とする。
【0151】
【化41】

【0152】
[比較合成例2]
上記合成例と同様の方法で下記の2成分ポリマーを合成した。
【0153】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
ヒドロキシスチレン:1−ビニルナフタレン=0.8:0.2
質量平均分子量(Mw)=5,900
分子量分布(Mw/Mn)=1.51
この高分子化合物を比較ポリマー2(comparative polymer2)とする。
【0154】
【化42】

【0155】
(実施例、比較例)
[ネガ型レジスト材料の調製]
上記合成した高分子化合物(ポリマー1〜10、比較ポリマー1、2)、下記式で示される酸発生剤(PAG1、PAG2)、塩基性化合物(Amine1、Amine2、Amine3)、溶解制御剤(DRR1)、架橋剤(Crosslinker1)を表1に示す組成で有機溶剤中に溶解してレジスト材料を調合し、更に各組成物を0.2μmサイズのフィルターで濾過することにより、レジスト液をそれぞれ調製した。
【0156】
表1中の各組成は次の通りである。
ポリマー1〜10: 合成例1〜10より
比較ポリマー1、2: 比較合成例1、2より
酸発生剤: PAG1、PAG2(下記構造式参照)
【化43】

塩基性化合物: Amine1、Amine2、Amine3(下記構造式参照)
【化44】

溶解制御剤: DRR1(下記構造式参照)
【化45】

架橋剤: Crosslinker1(下記構造式参照)
【化46】

有機溶剤: PGMEA(プロピレングリコールメチルエーテルアセテート)
【0157】
[電子ビーム描画評価]
上記調製したネガ型レジスト材料(実施例1〜13、比較例1、2)を直径6インチ(200mm)のSi基板上に、クリーントラックMark5(東京エレクトロン社製)を用いてスピンコートし、ホットプレート上で110℃で90秒間プリベークして100nmのレジスト膜を作製した。これに、日立製作所HL−800Dを用いてHV電圧50keVで真空チャンバー内描画を行った。
【0158】
描画後直ちにクリーントラックMark5(東京エレクトロン社製)を用いてホットプレート上で110℃で90秒間ポストエクスポージャベーク(PEB)を行い、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、ネガ型のパターンを得た。
【0159】
得られたレジストパターンを次のように評価した。
0.12μmのラインアンドスペースを1:1で解像する露光量をレジストの感度とし、120nmLSのエッジラフネスをSEMで測定した。
レジスト組成とEB露光における感度、解像度の結果を表1に示す。
【0160】
【表1】

表1の結果から、実施例1〜13のレジスト材料は、比較例1、2のヒドロキシスチレン系のレジスト材料に比べて高感度、高解像力で露光後のエッジラフネスが良好であることがわかる。
【0161】
[耐ドライエッチング性評価]
耐ドライエッチング性の試験では、上記合成した高分子化合物(ポリマー1〜10、比較ポリマー1、2)各2gをPGMEA10gに溶解させて0.2μmサイズのフィルターで濾過したポリマー溶液をSi基板にスピンコートで製膜し、300nmの厚さの膜にし、以下の条件で評価した。
【0162】
CHF3/CF4系ガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のポリマー膜の膜厚差を求めた。
この評価では、膜厚差の少ないもの、即ちエッチング速度の小さいものがエッチング耐性に優れることになる。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギャップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
この結果を表2に示す。
【0163】
【表2】

【0164】
表2の結果より、本発明に係る高分子化合物(ポリマー1〜10)が、比較ポリマー1、2に比べて高いドライエッチング耐性を有することが確認された。
【0165】
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。


【特許請求の範囲】
【請求項1】
少なくとも、下記一般式(1)で示されるヒドロキシビニルナフタレンの繰り返し単位を有する高分子化合物を含むことを特徴とするネガ型レジスト材料。
【化1】

(式中、R1は水素原子又はメチル基を表す。mは1又は2である。aは、0<a≦1の範囲である。)
【請求項2】
前記高分子化合物が、更に下記一般式(1)−1で示される繰り返し単位を含むことを特徴とする請求項1に記載のネガ型レジスト材料。
【化2】

(式中、R2は水素原子又はメチル基を表す。pは1又は2である。bは、0<b<1の範囲である。)
【請求項3】
前記高分子化合物が、更に下記一般式(1)−2で示される繰り返し単位を含むことを特徴とする請求項1又は請求項2に記載のネガ型レジスト材料。
【化3】

(式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは単結合、ベンゼン環、−O−、−C(=O)−O−又は−C(=O)−O−R18−C(=O)−O−である。R18は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基でフッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。R16は単結合又は、炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基で、フッ素原子で置換されていてもよく、ヒドロキシル基を有していてもよい。R17は水素原子、フッ素原子、メチル基、トリフルオロメチル基又はジフルオロメチル基で、R16と結合して環を形成しても良く、該環の中にエーテル基、フッ素で置換されたアルキレン基、トリフルオロメチル基を有していても良い。nは1又は2である。cは、0<c<1の範囲である。)
【請求項4】
前記高分子化合物が、更に下記一般式(1)−3で示される繰り返し単位を含むことを特徴とする請求項1乃至請求項3のいずれか1項に記載のネガ型レジスト材料。
【化4】

(式中、Xはメチレン基、酸素原子、硫黄原子のいずれかであり、d、dは、0≦d<1、0≦d<1、0<d+d<1の範囲である。)
【請求項5】
前記高分子化合物の質量平均分子量が1,000〜500,000の範囲であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のネガ型レジスト材料。
【請求項6】
前記ネガ型レジスト材料が、酸発生剤を含有する化学増幅型レジスト材料であることを特徴とする請求項1乃至請求項5のいずれか1項に記載のネガ型レジスト材料。
【請求項7】
前記ネガ型レジスト材料が、有機溶剤、塩基性化合物、溶解制御剤、界面活性剤、架橋剤のいずれか1つ以上を含有するものであることを特徴とする請求項1乃至請求項6のいずれか1項に記載のネガ型レジスト材料。
【請求項8】
少なくとも、請求項1乃至請求項7のいずれか1項に記載のネガ型レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。

【公開番号】特開2008−52254(P2008−52254A)
【公開日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2007−151592(P2007−151592)
【出願日】平成19年6月7日(2007.6.7)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】