説明

ハイブリッド現像用キャリア、ハイブリッド現像用現像剤および画像形成装置

【課題】画像メモリーの発生を長期にわたって十分に防止するハイブリッド現像用キャリア、ハイブリッド現像用現像剤および画像形成装置を提供すること。
【解決手段】芯材の表面に樹脂コート層を有してなるハイブリッド現像用キャリアであって、芯材の、SF1値が100〜120、SF2値が120〜130であり、キャリアの平均粒径D50が20〜80μm、動的電流値が0.1〜0.8μAであるハイブリッド現像用キャリア;SF1=(MXLNG)2/AREA × π/4 × 100[式中、MXLNGは画像上の芯材の絶対最大長を示す;AREAは芯材の投影面積を示す];SF2=(PERIME)2/AREA ×π/4 × 100[式中、PELIMEは画像上の芯材の投影像の周辺長を示す;AREAは芯材の投影面積を示す]。上記ハイブリッド現像用キャリアおよびトナーを含むハイブリッド現像用現像剤。上記ハイブリッド現像用現像剤を備えた画像形成装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子写真方式の画像形成装置、該画像形成装置に使用されるハイブリッド現像用現像剤、および該現像剤で使用されるハイブリッド現像用キャリアに関する。
【背景技術】
【0002】
電子写真方式の画像形成装置に採用されている現像方式として、現像剤の主成分としてトナーのみを用いる一成分現像方式と、現像剤の主成分としてトナーとキャリアを用いる二成分現像方式が知られている。
【0003】
一成分現像方式の現像装置は、トナーを担持して搬送するトナー担持体と該トナー担持体のトナー担持面に接触する摩擦荷電部材を備えている。トナー担持体に担持されているトナーは、摩擦荷電部材の接触位置を通過する際、摩擦荷電部材と摩擦接触して薄層化されると共に所定の極性に帯電される。このように、一成分現像装置は、トナーの帯電を摩擦荷電部材との摩擦接触によって行っているため、構成が簡単・小型・安価であるという利点がある。しかし、摩擦荷電部材の接触位置で強いストレスを受けることからトナーが劣化し易く、そのためにトナーの帯電性が比較的早期に損なわれる。また、トナー担持体と摩擦荷電部材との接触圧によって両者にトナーが付着してトナーを帯電する能力が低下し、結果的に、現像装置の寿命が比較的短くなる。
【0004】
二成分現像方式の現像装置は、トナーとキャリアを摩擦接触させることによって両者を所定の極性に荷電するため、トナーの受けるストレスは一成分現像装置に比べて少ない。キャリアは表面積がトナーに比べて大きいことから、トナーが付着して汚れることも少ない。しかし、現像領域においてキャリアが存在するため、潜像担持体にキャリアが移行し、画像上にキャリアに起因する画像劣化が生じ易い。
【0005】
そこで、これらの現像方式における利点を組み合わせて享受できるハイブリッド現像方式が提案されている(例えば特許文献1)。ハイブリッド現像方式は磁気ローラの外周面に保持されたトナーとキャリアを含む現像剤からトナーだけを選択的に現像ローラの外周面に供給し、この現像ローラの外周面に保持されたトナーを用いて感光体上の静電潜像(静電潜像画像部)を現像するものである。キャリアは通常、フェライト等の磁性体粒子、磁性体粒子の表面に単に樹脂被膜を設けたコート型キャリア、バインダー樹脂中に磁性粉末を分散させたバインダー型キャリアが使用される。
【0006】
ハイブリッド現像方式においては、磁気ローラと現像ローラとの間のトナー供給・回収領域において、キャリアはトナーを供給するとともに、現像ローラ上の残留トナーを回収しなければならない。しかしながら、キャリアによる残留トナーの回収が十分に行われない、という問題が生じていた。残留トナーの回収が不十分であると、現像ローラ上において現像されずにトナーが残っている領域と、現像されて新しいトナーが供給された領域との間でトナー量やトナー帯電量に差が生じるので、画像上に画像メモリーが発生した。画像メモリーとは、直前に印字された画像の影響を受けて、本来的に印字されるべき画像に濃度差が生じる現象である。例えば、現像ローラ上において、画像の印字によるトナー消費領域と、トナーが消費されない領域とが存在する場合、現像ローラの1周後にベタ画像やハーフトーン画像を印字すると、濃度差が生じた。
【0007】
そこで、現像ローラにトナーを供給するトナー供給用ローラと、現像ローラからトナーを回収するトナー回収用ローラとを別個に設け、トナー回収用ローラにより、現像ローラ上の残留トナーを回収する技術が提案されている(特許文献2)。これによって、現像に使用されなかったトナーも現像ローラから必ず剥離されるため、画像メモリーは抑制できる。しかし、装置の構造が複雑で大型になったり、製造コストが増大したりするなど、問題となった。
【特許文献1】特開2003−167441号公報
【特許文献2】特開2000−8178号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、装置の複雑化や大型化を招くことなく、画像メモリーの発生を長期にわたって十分に防止するハイブリッド現像用キャリア、ハイブリッド現像用現像剤および画像形成装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、芯材の表面に樹脂コート層を有してなるハイブリッド現像用キャリアであって、
芯材の、式(I)で表されるSF1値が100〜120、式(II)で表されるSF2値が120〜130であり、
キャリアの平均粒径D50が20〜80μm、動的電流値が0.1〜0.8μAであるハイブリッド現像用キャリアに関する;
SF1=(MXLNG)2/AREA × π/4 × 100 (I)
[式中、MXLNGは画像上の芯材の絶対最大長を示す;AREAは芯材の投影面積を示す]
SF2=(PERIME)2/AREA ×π/4 × 100 (II)
[式中、PELIMEは画像上の芯材の投影像の周辺長を示す;AREAは芯材の投影面積を示す]。
【0010】
本発明はまた、上記ハイブリッド現像用キャリアおよびトナーを含むハイブリッド現像用現像剤に関する。
【0011】
本発明はまた、上記ハイブリッド現像用現像剤を備えたことを特徴とする画像形成装置に関する。
【0012】
本発明の画像形成装置が有する現像装置は特に、
トナーとキャリアを含む現像剤を用いて、静電潜像担持体上の静電潜像を可視像化する現像装置であって、
トナーおよび上記ハイブリッド現像用キャリアを含む現像剤;
該現像剤を収容する現像槽の開口部に配置された第1の搬送部材;
第1の領域を介して該第1の搬送部材に対向し、第2の領域を介して静電潜像担持体に対向する第2の搬送部材;
第1の搬送部材と第2の搬送部材との間に第1の電界を形成して、第1の搬送部材が保持している現像剤中のトナーを第2の搬送部材に移動させる第1の電界形成手段;および
第2の搬送部材と静電潜像担持体との間に第2の電界を形成して、第2の搬送部材が保持しているトナーを静電潜像担持体の静電潜像に移動させて静電潜像を可視像化する第2の電界形成手段
を備えたことを特徴とするハイブリッド現像装置である。
【発明の効果】
【0013】
本発明のハイブリッド現像用キャリアは芯材の表面に樹脂コート層を有し、かつ芯材は表面に適度な凹凸を有する、球形度の比較的高いものであるので、当該キャリアは長期にわたって、現像ローラへのトナー供給後にトナー帯電極性とは逆極性の比較的大きな電荷を保持できる。そのため、現像ローラ上の残留トナーの回収を十分に行うことができ、画像メモリーの発生を長期にわたって防止できる。
【発明を実施するための最良の形態】
【0014】
〔ハイブリッド現像用キャリア〕
本発明のハイブリッド現像用キャリア(以下、単に「キャリア」という)は、芯材の表面に樹脂コート層を有するものである。
【0015】
芯材は、表面に適度な凹凸を有する、球形度の比較的高いものであり、詳しくは式(I)で表されるSF1値が100〜120、好ましくは107〜113、式(II)で表されるSF2値が120〜130、好ましくは122〜128である。これにより、キャリアのコート層の膜厚が均一化され、部分的なリーク箇所がなくなることで、キャリアの高抵抗化を達成できる。そのため、現像ローラへのトナー供給時においてトナーが有していた電荷に対して逆極性の電荷を有効に蓄積できるので、現像ローラ上の残留トナーを当該逆極性電荷でより効率的に回収できる。またキャリアにかかるストレスが均等になり、耐久プリント時のコート層の減耗が一様に進行し、しかもコート層の接着性が向上するため、部分的な芯材の露出が起こる事なく、長期にわたって安定した高抵抗を維持できる。それらの結果、耐久プリント時においても現像ローラ上の残留トナーの回収を十分に行うことができるので、画像メモリーの発生を長期にわたって防止できる。
【0016】
SF1=(MXLNG)2/AREA × π/4 × 100 (I)
[式中、MXLNGは画像上の芯材の絶対最大長を示す;AREAは芯材の投影面積を示す]
SF2=(PERIME)2/AREA ×π/4 × 100 (II)
[式中、PELIMEは画像上の芯材の投影像の周辺長を示す;AREAは芯材の投影面積を示す]。
【0017】
「MXLNG」、「AREA」および「PERIME」は芯材粒子の写真画像より測定することができる。詳しくは、SEMを用いて、2000倍に拡大した写真画像を得、これより最大長が平均径±5μm内の芯材粒子を100個無作為にサンプリングする。その画像情報をインターフェイスを介してニコレ社製画像解析装置(LUZEX AP)に導入し、解析を行い、「MXLNG」、「AREA」および「PERIME」を得ることができる。
【0018】
SF1は芯材粒子の丸さの度合いを示し、その値が100であるときが真円であり、数値が大きくなるほど、丸くなくなり、不定形になる。
SF2は芯材粒子の表面における凸凹の度合いを示し、その値が100であるときが表面が平滑であり、数値が大きくなるほど、表面の凹凸が大きくなる(表面積が大きくなる)。
【0019】
SF1が大きすぎると、コート層の膜厚が不均一になるため、耐久プリント時において芯材の露出が起こって、画像メモリーの防止効果が得られない。
SF2が大きすぎたり、小さすぎたりすると、コート層の接着性が低下するため、耐久プリント時において芯材の露出が起こって、画像メモリーの防止効果が得られない。
【0020】
芯材は、上記したSF1およびSF2を有する限り特に制限されず、電子写真用現像剤に含まれるキャリアの分野で従来より使用される磁性体であってよい。好ましい芯材材料の具体例として、例えば、マンガンフェライト、マグネシウムフェライト、マンガンマグネシウムフェライト等の多様な軟磁性体、特にソフトフェライトが挙げられる。
【0021】
以下、主としてマンガンフェライトを例にとり、その製造方法について説明するが、記載の方法は他の磁性体芯材の製造時においても適用できることは明らかである。
まず、原料粉を調合する。詳しくは、ソフトフェライトを構成する各成分の原料調合にあたり、Mn源としてMnやMnCO、Fe源としてFeを準備する。そして、ソフトフェライト中のMn及びFeの組成比が、意図するソフトフェライトの組成比に相当するように、各原料を秤量する。さらに、所望により添加されるCa源としては所定量のCaCO、C源としてはカーボンブラック(以下、CBと記載する)を秤量する。これらの原料を十分に混合して調合するに際し、混合方法は、乳鉢等の使用による通常の混合で良い。配合されたCaCOは、後述する焼成工程で分解および酸化してCa酸化物になり、また、CBはCOになると考えられる。C源としては炭素を含有する有機化合物であれば特に制限されず、CBの他に、例えば、ポリビニルアルコール(PVA)、グラファイト、ポリアクリルアミド、アセチレン等が好適に使用できる。
【0022】
例えば、別法としてフェライトとしてマグネシウムフェライトを選択する場合は、Mg源としてMgOやMg(OH)、MgCO、Fe源としてFeを用いれば良い。また例えば、別法としてマンガンマグネシウムフェライトを選択する場合は、Mn源としてMnやMnO、Mg源としてMgOやMg(OH)、MgCO、Fe源としてFeを用いれば良い。その後の工程は、マンガンフェライトの場合と同様に製造することができる。また、Ca源としてはCaCOの他にCaO等が好適に使用できる。そして、いずれの原料を用いた場合でも、以下に説明するマンガンフェライトの製造工程と同様の製造工程で、各フェライトを製造することができる。
【0023】
次いで、粉砕・造粒を行う。詳しくは、調合した原料を水と混合し、更に必要に応じてポリカルボン酸等の分散剤を混合し、原料の配合比で60〜90質量%程度のスラリーとし、これをボールミル等で湿式粉砕する。湿式粉砕により、微細に粉砕された原料のスラリーが得られる。この原料のスラリーを噴霧乾燥機等で噴霧乾燥するか、或いはペレタイザーで造粒し、径が10〜500μmの球状ペレットにして乾燥する。
【0024】
次いで、前記球状ペレットを焼成する。その際、電気炉にて窒素ガス雰囲気中、1000〜1500℃、特に1000〜1300℃の温度で焼成処理を行う。当該焼成において、原料中のC化合物はCOとなる。C化合物の添加割合が、C元素換算で0.5質量%以上あれば焼結性が向上する。
最後に篩い分けを行う。焼成されたソフトフェライトを解砕機で解砕して解砕粉とし、当該解砕粉を分級または篩分けして所定の粒度を有するものを採取し、キャリア芯材とする。芯材の平均粒径は通常、10〜100μm、好ましくは20〜80μmである。
【0025】
芯材の製造方法において、C化合物の添加割合、焼結温度を調整することによって、SF1およびSF2を制御できる。
例えば、C化合物の添加割合が大きいほど、上記したように焼結性は向上するが、芯材の球状性は低下する。芯材の球状性と焼結性とのバランスの観点から、C化合物の添加割合はC元素換算で0.5〜1.0質量%、特に0.6〜0.8質量%とする。焼結性を向上させながらも、焼結性が進みすぎて粒子の球状性を維持することが困難になるのを回避できるためである。当該添加割合が多すぎると、SF1が大きくなり過ぎる。
また例えば、焼成温度を調整することによって、SF2を制御できる。具体的には焼成温度を高くすると、SF2は大きくなり、焼成温度を低くすると、SF2は小さくなる。よって焼成温度は上記範囲内とする。焼成温度が高すぎると、SF2は大きくなり過ぎ、低すぎると、SF2は小さくなりすぎる。
【0026】
樹脂コート層を構成する樹脂は、電子写真用現像剤に含まれるコート型キャリアの分野で従来よりコート層に使用される樹脂であってよい。例えば、ポリエチレン、ポリプロピレン、塩素化ポリエチレン、クロルスルホン化ポリエチレン等のポリオレフィン系樹脂;ポリスチレン、ポリメチルメタクリレート等のポリアクリレート、ポリアクリロニトリル、ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルカルバゾール、ポリビニルエーテル、ポリビリケトン等のポリビニル及びポリビニリデン系樹脂;塩化ビニル−酢酸ビニル共重合体やスチレン−アクリル酸共重合体等の共重合体;オルガノシロキサン結合からなるシリコーン樹脂またはその変成樹脂(例えば、アルキッド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン等による変成樹脂);ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等のフッ素樹脂;ポリアミド;ポルエステル;ポリウレタン;ポリカーボネート;尿素−ホルムアルデヒド樹脂等のアミノ樹脂;エポキシ樹脂等が挙げられる。
【0027】
樹脂コート層には、キャリアが後述の動的電流値を達成する限り、他の添加剤が含有されてもよいが、通常は上記樹脂のみからなっている。
【0028】
樹脂コート層の形成方法としては、湿式コート法、乾式コート法が挙げられる。
湿式コート法の具体例としては、例えば、流動層式スプレーコート法、浸漬式コート法、重合法等が挙げられる。流動層式スプレーコート法では、コート用樹脂を溶剤に溶解した塗布液を、流動層を用いて芯材粒子の表面にスプレー塗布し、次いで乾燥してコート層を形成する。浸漬式コート法では、コート用樹脂を溶剤に溶解した塗布液中に芯材粒子を浸漬して塗布処理し、次いで乾燥してコート層を形成する。重合法では、反応性化合物を溶剤に溶解した塗布液中に芯材粒子を浸漬して塗布処理し、次いで熱等を加えて重合反応を行いコート層を形成する。
【0029】
乾式コート法では、芯材粒子の表面にコート用樹脂粒子を被着させ、その後機械的衝撃力を加えて、芯材粒子表面に被着した樹脂粒子を溶融あるいは軟化させて固着し、コート層を形成する。例えば、芯材、樹脂、荷電制御粒子及び低抵抗微粒子を、非加熱下もしくは加熱下で機械的衝撃力を付与できる高速攪拌混合機で高速攪拌して、当該混合物に衝撃力を繰り返して付与し、芯材粒子の表面に樹脂を溶融あるいは軟化させて固着したキャリアを製造する。加熱する場合には、60〜125℃が好ましい。加熱温度が過大になると、キャリア粒子同士の凝集が発生しやすくなるためである。
【0030】
樹脂コート層のコート量を調整することによって、キャリアの動的電流値を制御できる。例えば、コート量を多くすると、動的電流値は小さくなり、コート量を少なくすると、動的電流値は大きくなる。コート量はキャリアの動的電流値が後述の範囲内であれば特に制限されず、通常は芯材100重量部に対して1.1〜4.5重量部、特に2.0〜4.0重量部が好ましい。コート量が多過ぎると、動的電流値は小さくなり過ぎ、コート量が少な過ぎると、動的電流値は大きくなり過ぎる。
【0031】
キャリアの体積平均粒径(D50)は20〜80μmであり、30〜60μmが好ましい。平均粒径が小さすぎると、磁気ブラシの穂立ち接触面積は大きくなるが、穂の搾過強度は弱くなり、回収性が落ちるためメモリー防止効果が得られないので、画像メモリーの防止効果が得られない。平均粒径が大きすぎると、逆に穂の接触面積が小さくなり、画像メモリー防止効果が得られない。
キャリアの体積平均粒径は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
【0032】
キャリアの動的電流値は0.1〜0.8μAであり、0.15〜0.5μAが好ましい。動的電流値が小さすぎると、トナー帯電量が高くなる傾向にあり、帯電量の高いトナーは現像ローラに強く付着するため回収性が悪くなる。動的電流値が大きすぎると、トナーとの摩擦によって生じる逆電荷を有効に蓄積できず、現像ローラ上に残留するトナーを有効に回収できないので、画像メモリーの防止効果が得られない。
【0033】
本明細書中、キャリアの動的電流値(CDC値)は、図7に概略的に示す構成を有する装置を使用して以下の方法で測定された値を用いている。
アルミスリーブ(212)にキャリア(210)をセットし、スリーブ(212)を回転させながら直流電源(214)により電圧を印加する。スリーブ(212)からキャリア(210)およびアルミ管(213)を通じて電流計(215)に流れる電流を測定する。測定条件は以下の通りである。
・スリーブ回転数:50rpm
・印加電圧 :500V
・サンプル量 :5g
・スリーブ(212)
長手方向長さ:55mm、直径:31mm、マグネット磁力:1000ガウス、マグネット磁極数:8本
・アルミ管(213)
長手方向長さ:55mm、直径:30mm
【0034】
キャリアとトナーとの混合比は所望のトナー帯電量が得られるよう調整されれば良く、トナー混合比はトナーとキャリアとの合計量に対して3〜20重量%、好ましくは6〜10重量%が好ましい。
【0035】
〔ハイブリッド現像用現像剤〕
本発明のハイブリッド現像用現像剤は上記したキャリアおよびトナーを含むものである。
【0036】
キャリアとトナーとの混合比は所望のトナー帯電量が得られるよう調整されれば良く、トナー混合比はトナーとキャリアとの合計量に対して3〜20重量%、好ましくは6〜10重量%が好ましい。
【0037】
本発明においてトナーは、電子写真用現像剤の分野で従来よりトナーとして使用されているものが使用可能であるが、上記したキャリアは、特定の平均円形度を有し、かつ粒径分布のシャープなトナーとの組み合わせにおいて、より一層優れた画像メモリーの防止効果を奏する。
【0038】
トナーの平均円形度は0.92〜0.98が好ましく、より好ましくは0.94〜0.96である。
【0039】
トナーの体積平均粒径は通常、1〜10μm、好ましくは2.5〜8.5μmである。
トナーは、画像定着性の観点から、ガラス転移温度が20〜45℃であることが好ましい。
【0040】
円形度は次式;
円形度=(粒子像と同じ投影面積をもつ円の周囲長)/(粒子投影像の周囲長)
により定義される粒子の形状に関する特性値である。そのような円形度の平均値(平均円形度)は「FPIA−2100」(シスメックス社製)によって測定された値を用いている。
平均円形度は詳しくは、以下のような手順で測定する。トナーを界面活性剤入り水溶液にてなじませ、超音波分散を1分行い分散した後、「FPIA−2100」を用い、測定条件HPF(高倍率撮像)モードにて、HPF検出数3000〜10000個の適正濃度で測定を行う。この範囲であれば、再現性のある同一測定値が得られる。
【0041】
体積平均粒径、小径粒子および大径粒子の含有割合はコールターマルチサイザーIII(ベックマン・コールター製)によって測定された値を用いる。
詳しくは、以下の方法で測定する。コールターマルチサイザーIII(ベックマン・コールター製)に、データ処理用ソフト「Software V3.51」を搭載したコンピューターシステム(ベックマン・コールター製)を接続した装置を用いて測定、算出する。測定手順としては、トナー0.02gを、界面活性剤溶液20ml(トナーの分散を目的として、例えば界面活性剤成分を含む中性洗剤を純水で10倍希釈した界面活性剤溶液)で馴染ませた後、超音波分散を1分間行い、トナー分散液を作成する。このトナー分散液を、サンプルスタンド内のISOTON II(ベックマン・コールター製)の入ったビーカーに、測定器表示濃度が5%〜10%になるまでピペットにて注入する。この濃度範囲にすることにより、再現性のある測定値が得られる。測定機において測定粒子カウント数を25000個、アパチャ−径を50μmに設定し、測定範囲である1〜30μmの範囲を256分割して頻度値を算出する。体積積算分率が大きい方から50%の粒子径を体積平均粒径とする。
【0042】
トナーのガラス転移温度は、DSC−7示差走査カロリメーター(パーキンエルマー製)、TAC7/DX熱分析装置コントローラー(パーキンエルマー製)を用いて行うことができる。
測定手順としては、トナー4.5mg〜5.0mgを小数点以下2桁まで精秤しアルミニウム製パン(KIT NO. 0219-0041)に封入し、DSC−7サンプルホルダーにセットする。リファレンスは空のアルミニウム製パンを使用した。測定条件としては、測定温度0℃〜200℃、昇温速度10℃/分、降温速度10℃/分で、Heat−cool−Heatの温度制御で行い、その2nd.Heatにおけるデータをもとに解析を行った。ガラス転移温度は、第1の吸熱ピークの立ち上がり前のベースラインの延長線と、第1のピークの立ち上がり部分からピーク頂点までの間で最大傾斜を示す接線を引き、その交点をガラス転移点として示す。
【0043】
トナーはキャリアとの摩擦接触によって負または正に帯電されるものであり、バインダー樹脂中に少なくとも着色剤および所望により負または正の荷電制御剤や離型剤等の添加剤が含有されてなるものである。
【0044】
トナーに含有されるバインダー樹脂は、特に限定的ではなく、例えば、スチレン系樹脂(スチレンまたはスチレン置換体を含む単重合体または共重合体、例えばスチレン・アクリル樹脂)、ポリエステル樹脂、エポキシ系樹脂、塩化ビニル樹脂、フェノール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、シリコーン樹脂、窒素含有アクリル樹脂またはそれらの樹脂を任意に混ぜ合わせたものが挙げられる。バインダー樹脂は、軟化温度が約80〜160℃の範囲、ガラス転移点が約50〜75℃の範囲であることが好ましい。
【0045】
着色剤は、トナーの分野で従来から着色剤として使用されている公知の材料が使用される。着色剤の具体例として、例えば、カーボンブラック、アニリンブラック、活性炭、マグネタイト、ベンジンイエロー、パーマネントイエロー、ナフトールイエロー、フタロシアニンブルー、ファーストスカイブルー、ウルトラマリンブルー、ローズベンガル、レーキーレッド等が挙げられる。着色剤の添加量は、一般に、バインダー樹脂100重量部に対して、2〜20重量部であることが好ましい。
【0046】
離型剤は、トナーの分野で従来から離型剤として使用されている公知のものが使用される。離型剤の具体例として、例えば、ポリエチレン、ポリプロピレン、カルナバワックス、サゾールワックス、又はそれらを適宜組み合わせた混合物が用いられる。離型剤は、バインダー樹脂100重量部に対して、0.1〜10重量部の割合で用いることが好ましい。
【0047】
荷電制御剤は、トナーの分野で従来から荷電制御剤として使用されている公知の材料が使用される。具体的には、正極性に帯電するトナーには、例えばニグロシン系染料、4級アンモニウム塩系化合物、トリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂が正荷電制御剤として使用できる。負極性に帯電するトナーには、Cr、Co、Al、Fe等の金属含有アゾ系染料、サリチル酸金属化合物、アルキルサリチル酸金属化合物、カーリックスアレーン化合物が負荷電制御剤として使用できる。荷電制御剤は、バインダー樹脂100重量部に対して、0.1〜10重量部の割合で用いることが好ましい。
【0048】
トナーの製造方法は、特に製造されず、例えば、いわゆる粉砕法、および懸濁重合法、乳化重合会合法、溶解懸濁法等の湿式法が挙げられる。粒径分布がシャープなトナーが得られる点で、トナーは乳化重合会合法で製造されたものが好ましい。
【0049】
乳化重合会合法によるトナー粒子の製造方法について説明する。乳化重合会合法によるトナー粒子の製造方法は、水系媒体中でトナー粒子を形成させる方法で、例えば特開2002−351142号公報等に開示されている。また、特開平5−265252号公報、特開平6−329947号公報、特開平9−15904号公報に開示される樹脂粒子を水系媒体中で凝集/融着させてトナー粒子分散液を製造する方法を挙げることができる。具体的には、水中で樹脂粒子を乳化剤を用いて分散させた後、臨界凝集濃度以上の凝集剤を加えて塩析・凝集させると同時に、形成された重合体自体のガラス転移温度以上で加熱融着させて融着粒子を形成しつつ徐々に粒子径を成長させ、目的の粒子径となったところで水を多量に加えて粒子径成長を停止し、さらに加熱、撹拌しながら粒子表面を平滑にして形状を制御し、トナー粒子分散液を調製するものである。凝集剤と同時にアルコールなど水に対して無限溶解する溶媒を加えてもよい。水系媒体としては、例えば、水、メタノール、エタノール、イソプロパノール、ブタノール、2−メチル−2−ブタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、またはこれらを混合したものを挙げることができるが特に限定されるものではない。トナー粒子の製造にはこれらの中から適したものを選ぶことができる。水系媒体にはさらに他の有機溶媒を添加してもよい。有機溶媒としては、トルエン、キシレン、またはこれらを混合したものを挙げることができるが特に限定されるものではない。
【0050】
トナーは通常、トナー粒子に流動化剤等の外添剤が外添されてなっている。
流動化剤には、例えば、シリカ、酸化チタン、酸化アルミニウム等の無機微粒子や、アクリル樹脂、スチレン樹脂、シリコーン樹脂、フッ素樹脂等の樹脂微粒子が使用できる。特にシランカップリング剤、チタンカップリング剤、およびシリコーンオイル等で疎水化した流動化剤を用いるのが好ましい。流動化剤は、トナー粒子100重量部に対して、0.1〜5重量部の割合で添加させることが好ましい。これら添加剤の平均一次粒径は10〜100nm、特に10〜90nmであることが好ましい。
【0051】
トナーにはさらに帯電性の改善を目的として荷電粒子が添加されてもよい。
荷電粒子は、トナーの帯電極性に応じて適宜選択され、キャリアとの摩擦接触により、トナーの帯電極性と逆極性に帯電される粒子が使用される。荷電粒子の平均一次粒径は、例えば、100〜850nmである。
【0052】
例えば、キャリアとの摩擦接触により負極性に帯電されるトナーを用いる場合、荷電粒子は、キャリアとの摩擦接触により正極性に帯電される粒子が使用される。そのような粒子は、例えば、チタン酸ストロンチウム、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、アルミナ等の無機粒子やアクリル樹脂、ベンゾグァナミン樹脂、ナイロン樹脂、ポリイミド樹脂、ポリアミド樹脂等の、熱可塑性樹脂あるいは熱硬化性樹脂で構成された粒子を使用できる。荷電粒子を構成する樹脂に、トナーとの接触により正極性に帯電する正荷電制御剤を含有させた粒子を使用してもよい。正荷電制御剤には、例えば、ニグロシン染料、四級アンモニウム塩等が使用できる。荷電粒子は含窒素モノマーの共重合体で構成してもよい。
【0053】
また例えば、キャリアとの摩擦接触により正極性に帯電されるトナーの場合、荷電粒子は、キャリアとの摩擦接触により、負極性に帯電される粒子が使用される。このような粒子は、例えば、シリカ、酸化チタン等の無機粒子、また、フッ素樹脂、ポリオレフィン樹脂、シリコーン樹脂、ポリエステル樹脂等の、熱可塑性樹脂あるいは熱硬化性樹脂で構成された粒子が使用できる。トナーとの接触により負極性に帯電する負荷電制御剤を、荷電粒子を構成する樹脂に含有させた粒子を使用してもよい。負荷電制御剤には、例えば、サリチル酸系、ナフトール系のクロム錯体、アルミニウム錯体、鉄錯体、亜鉛錯体等を使用できる。荷電粒子は、含フッ素アクリル系モノマーや含フッ素メタクリル系モノマーの共重合体粒子であってもよい。
【0054】
荷電粒子の含有量は、本発明の目的が達成される限り特に制限されず、例えば、トナー粒子100重量部に対して0.1〜3重量が好適である。
【0055】
〔画像形成装置〕
本発明の現像剤はハイブリッド現像装置および当該現像装置を備えた画像形成装置に使用される。ハイブリッド現像方式とは、二成分現像剤を第1の搬送部材(搬送ローラ)の外周面に保持して、第2の搬送部材(現像ローラ)との対向領域まで搬送し、トナーを選択的に第2の搬送部材の外周面に供給して、第2の搬送部材の外周面にトナー薄層を形成し、該トナー薄層を用いて静電潜像担持体上の静電潜像を現像するものである。
【0056】
以下、添付図面を参照して本発明の好適な実施形態を説明する。なお、以下の説明では、特定の方向を意味する用語(例えば、「上」、「下」、「左」、「右」、およびそれらを含む他の用語、「時計回り方向」、「反時計回り方向」)を使用するが、それらの使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明は限定的に解釈されるべきものでない。また、以下に説明する画像形成装置及び現像装置では、同一又は類似の構成部分には同一の符号を用いている。
【0057】
図1は、本発明に係る電子写真式画像形成装置の画像形成に関連する部分の一例を示す。画像形成装置は、複写機、プリンタ、ファクシミリ、およびそれらの機能を複合的に備えた複合機のいずれであってもよい。画像形成装置11は、静電潜像坦持体である感光体12を有する。実施形態において、感光体12は円筒体で構成されているが、本発明はそのような形態に限定されるものでなく、代わりに無端ベルト式の感光体も使用可能である。感光体12は、図示しないモータに駆動連結されており、モータの駆動に基づいて矢印14方向に回転するようにしてある。感光体12の周囲には、感光体12の回転方向に沿って、帯電ステーション16、露光ステーション18、現像ステーション20、転写ステーション22、およびクリーニングステーション24が配置されている。
【0058】
帯電ステーション16は、感光体12の外周面である感光体層を所定の電位に帯電する帯電装置26を備えている。実施形態では、帯電装置26は円筒形状のローラとして表されているが、これに代えて他の形態の帯電装置(例えば、回転型又は固定型のブラシ式帯電装置、ワイヤ放電式帯電装置)も使用できる。露光ステーション18は、感光体12の近傍又は感光体12から離れた場所に配置された露光装置28から出射された画像光30が、帯電された感光体12の外周面に向けて進行するための通路32を有する。露光ステーション18を通過した感光体12の外周面には、画像光が投射されて電位の減衰した部分とほぼ帯電電位を維持する部分からなる、静電潜像が形成される。実施形態では、電位の減衰した部分が静電潜像画像部、ほぼ帯電電位を維持する部分が静電潜像非画像部である。現像ステーション20は、粉体現像剤を用いて静電潜像を可視像化する現像装置34を有する。現像装置34の詳細は後に説明する。転写ステーション22は、感光体12の外周面に形成された可視像を紙やフィルムなどのシート38に転写する転写装置36を有する。実施形態では、転写装置36は円筒形状のローラとして表されているが、他の形態の転写装置(例えば、ワイヤ放電式転写装置)も使用できる。クリーニングステーション24は、転写ステーション22でシート38に転写されることなく感光体12の外周面に残留する未転写トナーを感光体12の外周面から回収するクリーニング装置40を有する。実施形態では、クリーニング装置40は板状のブレードとして示されているが、代わりに他の形態のクリーニング装置(例えば、回転型又は固定型のブラシ式クリーニング装置)も使用できる。
【0059】
このような構成を備えた画像形成装置11の画像形成時、感光体12はモータ(図示せず)の駆動に基づいて時計周り方向に回転する。このとき、帯電ステーション16を通過する感光体外周部分は、帯電装置26で所定の電位に帯電される。帯電された感光体外周部分は、露光ステーション18で画像光30が露光されて静電潜像が形成される。静電潜像は、感光体12の回転と共に現像ステーション20に搬送され、そこで現像装置34によって現像剤像として可視像化される。可視像化された現像剤像は、感光体12の回転と共に転写ステーション22に搬送され、そこで転写装置36によりシート38に転写される。現像剤像が転写されたシート38は図示しない定着ステーションに搬送され、そこでシート38に現像剤像が固定される。転写ステーション22を通過した感光体外周部分はクリーニングステーション24に搬送され、そこでシート38に転写されることなく感光体12の外周面に残存する現像剤が回収される。
【0060】
〔現像装置〕
現像装置34は、本発明の現像剤10と以下に説明する種々の部材を収容する現像槽(ハウジング)42を備えている。図面を簡略化することで発明の理解を容易にするため、現像槽42の一部は削除してある。現像槽42は感光体12に向けて開放された一連の開口部(44、52)を備えており、この開口部44の近傍に形成された空間46にトナー搬送部材(第2の搬送部材)である現像ローラ48が設けてある。現像ローラ48は、円筒状の部材(第2の回転円筒体)であり、感光体12と平行に且つ感光体12の外周面と所定の現像ギャップ50を介して、回転可能に配置されている。
【0061】
現像ローラ48の背後には、開口部としての別の空間52が形成されている。空間52には、現像剤搬送部材(第1の搬送部材)である搬送ローラ54が、現像ローラ48と平行に且つ現像ローラ48の外周面と所定の供給回収ギャップ56を介して配置されている。搬送ローラ54は、回転不能に固定された磁石体58と、磁石体58の周囲を回転可能に支持された円筒スリーブ60(第1の回転円筒体)を有する。スリーブ60の上方には、現像槽42に固定され、スリーブ60の中心軸と平行に伸びる規制板62が、所定の規制ギャップ64を介して対向配置されている。
【0062】
磁石体58は、搬送ローラ54の内面に対向し、搬送ローラ54の中心軸方向に伸びる、複数の磁極を有する。実施形態では、複数の磁極は、規制板62の近傍にある搬送ローラ54の上部内周面部分に対向する磁極S1、供給回収ギャップ56の近傍にある搬送ローラ54の左側内周面部分に対向する磁極N1、搬送ローラ54の下部内周面部分に対向する磁極S2、搬送ローラ54の右側内周面部分に対向する、2つの隣接する同極性の磁極N2,N3を含む。
【0063】
搬送ローラ54の背後には、現像剤撹拌室66が形成されている。撹拌室66は、搬送ローラ54の近傍に形成された前室68と搬送ローラ54から離れた後室70を有する。前室68には図面の表面から裏面に向かって現像剤を攪拌しながら搬送する前攪拌搬送部材である前スクリュー72が回転可能に配置され、後室70には図面の裏面から表面に向かって現像剤を攪拌しながら搬送する後攪拌部材搬送部材である後スクリュー74が回転可能に配置されている。図示するように、前室68と後室70は、両者の間に設けた隔壁76で分離してもよい。この場合、前室68と後室70の両端近傍にある隔壁部分は除かれて連絡通路が形成されており、前室68の下流側端部に到達した現像剤が連絡通路を介して後室70へ送り込まれ、また後室70の下流側端部に到達した現像剤が連絡通路を介して前室68に送り込まれるようにしてある。
【0064】
このように構成された現像装置34の動作を説明する。画像形成時、図示しないモータの駆動に基づいて、現像ローラ48とスリーブ60はそれぞれ矢印78,80方向に回転する。前スクリュー72は矢印82方向に回転し、後スクリュー74は矢印84方向に回転する。これにより、現像剤撹拌室66に収容されている現像剤10は、前室68と後室70を循環搬送されながら、攪拌される。その結果、現像剤に含まれるトナーとキャリアが摩擦接触し、互いに逆の極性に帯電される。
【0065】
帯電された現像剤10は、前スクリュー72によって前室68を搬送される過程で搬送ローラ54に供給される。前スクリュー72から搬送ローラ54に供給された現像剤10は、磁極N3の近傍で、磁極N3の磁力によって、スリーブ60の外周面に保持される。スリーブ60に保持された現像剤10は、磁石体58によって形成された磁力線に沿って磁気ブラシを構成しており、スリーブ60の回転に基づいて反時計周り方向に搬送される。規制板62の対向領域(規制領域86)で磁極S1に保持されている現像剤10は、規制板62により、規制ギャップ64を通過する量が所定量に規制される。規制ギャップ64を通過した現像剤10は、磁極N1が対向する、現像ローラ48と搬送ローラ54が対向する領域(供給回収領域)88に搬送される。供給回収領域88のうち、主にスリーブ60の回転方向に関して上流側の領域(供給領域)90では、現像ローラ48とスリーブ60との間に形成された電界の存在により、キャリアに付着しているトナーが現像ローラ48に電気的に供給される。また、供給回収領域88のうち、主にスリーブ60の回転方向に関して下流側の領域(回収領域)92では、現像に寄与することなく供給回収領域88に送り戻された現像ローラ48上のトナーが、磁極N1の磁力線に沿って形成されている磁気ブラシに掻き取られてスリーブ60に回収される。キャリアは磁石体58の磁力によってスリーブ60の外周面に保持されており、スリーブ60から現像ローラ48に移動することはない。荷電粒子はキャリアとともに挙動してキャリアのトナー帯電能の低下を抑制する。
【0066】
供給回収領域88を通過した現像剤10は、磁石体58の磁力に保持され、スリーブ60の回転と共に磁極S2の対向部を通過して磁極N2とN3の対向領域(放出領域94)に到達すると、磁極N2とN3によって形成される反発磁界によってスリーブ60の外周面から前室68に放出され、前室68を搬送されている現像剤10に混合される。
【0067】
供給領域90で現像ローラ48に保持されたトナーは、現像ローラ48の回転と共に反時計周り方向に搬送され、感光体12と現像ローラ48が対向する領域(現像領域)96で、感光体12の外周面に形成されている静電潜像画像部に付着する。実施形態の画像形成装置では、感光体12の外周面は帯電装置26で負極性の所定の電位Vが付与され、露光装置28で画像光30が投射された静電潜像画像部が所定の電位Vまで減衰し、露光装置28で画像光30が投射されていない静電潜像非画像部はほぼ帯電電位Vを維持している。したがって、現像領域96では、感光体12と現像ローラ48との間に形成されている電界の作用を受けて、負極性に帯電したトナーが静電潜像画像部に付着し、この静電潜像を現像剤像として可視像化する。
【0068】
このようにして現像剤10からトナーが消費されると、消費された量に見合う量のトナーが現像剤10に補給されることが好ましい。そのために、現像装置34は、現像槽42に収容されているトナーとキャリアの混合比を測定する手段を備えている。また、後室70の上方にはトナー補給部98が設けてある。トナー補給部98は、トナーを収容するための容器100を有する。容器100の底部には開口部102が形成されており、この開口部102に補給ローラ104が配置されている。補給ローラ104は図示しないモータに駆動連結されており、トナーとキャリアの混合比を測定する手段の出力に基づいてモータが駆動し、トナーが後室70に落下補給するようにしてある。荷電粒子はキャリアとともに挙動するので、荷電粒子の消費が抑制される。そのため、補給トナーは、最初に充填された現像剤におけるトナー粒子に対する荷電粒子の含有割合よりも、荷電粒子の割合を低減して設定できる。
【0069】
〔電界形成手段〕
供給領域90でスリーブ60から現像ローラ48にトナーを効率的に移動させるために、現像ローラ48とスリーブ60は電界形成装置110と電気的に接続されている。電源の具体例が図2A〜図6に示してある。
【0070】
図2Aに示す実施形態1の電界形成装置110は、現像ローラ48に接続された第1の電源112(第2の電界形成手段に相当する)とスリーブ60に接続された第2の電源114(第1の電界形成手段に相当する)を有する。第1の電源112は、現像ローラ48とグランド116との間に接続された直流電源118を有し、トナーの帯電極性と同一極性の第1の直流電圧VDC1(例えば、−200ボルト)を現像ローラ48に印加している。第2の電源114は、スリーブ60とグランド116との間に接続された直流電源120を有し、トナーの帯電極性と同一極性で且つ第1の直流電圧よりも高圧の第2の直流電圧VDC2(例えば、−400ボルト)をスリーブ60に印加する。この結果、供給領域90では、現像ローラ48とスリーブ60との間に形成された直流電界の作用を受けて、負極性に帯電しているトナーがスリーブ60から現像ローラ48に電気的に吸引される。このとき、正極性に帯電しているキャリアは、スリーブ60から現像ローラ48に吸引されることはない。また、現像領域96では、現像ローラ48に保持されている負極性トナーが、図2Bに示すように、現像ローラ48(VDC1:−200ボルト)と静電潜像画像部(V:−80ボルト)との電位差に基づき、静電潜像画像部に付着する。このとき、負極性トナーは、現像ローラ48(VDC1:−200ボルト)と静電潜像非画像部(V:−600ボルト)との電位差により、静電潜像非画像部に付着することはない。
【0071】
実施形態2に係る図3Aの電界形成装置122において、第1の電源124(第2の電界形成手段に相当する)は、実施形態1の電源と同様に、現像ローラ48とグランド126との間に接続された直流電源128を有し、トナーの帯電極性と同一極性の第1の直流電圧VDC1(例えば、−200ボルト)を現像ローラ48に印加している。第2の電源130(第1の電界形成手段に相当する)は、スリーブ60とグランド126との間に直流電源132と交流電源134を有する。直流電源132は、トナーの帯電極性と同一極性で且つ第1の直流電圧よりも高圧の第2の直流電圧VDC2(例えば、−400ボルト)をスリーブ60に印加している。図3Bに示すように、交流電源134は、スリーブ60とグランド126との間にピーク・ツー・ピーク電圧VP−Pが例えば300ボルトの交流電圧VACを印加する。その結果、供給領域90では、現像ローラ48とスリーブ60との間に形成された脈流電界の作用を受けて、負極性に帯電しているトナーがスリーブ60から現像ローラ48に電気的に吸引される。このとき、正極性に帯電しているキャリアは、スリーブ60の内部の固定磁石の磁力によってスリーブ60に保持され、現像ローラ48に供給されることはない。また、現像領域96では、現像ローラ48に保持されている負極性トナーは、現像ローラ48(VDC1:−200ボルト)と静電潜像画像部(V:−80ボルト)との電位差に基づき、静電潜像画像部に付着する。
【0072】
図4Aに示す電界形成装置136において、第1の電源138は、現像ローラ48とグランド140との間に直流電源142と交流電源144を有する。直流電源142は、トナーの帯電極性と同一極性の第1の直流電圧VDC1(例えば、−200ボルト)をスリーブ60および現像ローラ48に印加する。交流電源144は、スリーブ60および現像ローラ48とグランド146との間に振幅(ピーク・ツー・ピーク電圧)VP−Pが例えば1,600ボルトの交流電圧VACを印加する。第2の電源146(第1の電界形成手段に相当する)は、現像ローラ48と交流電源144との間の端子148とスリーブ60との間に接続された直流電源150を有する。直流電源150は、所定の直流電圧VDC2を出力することができ、陽極が端子148、陰極がスリーブ60に接続されており、これにより、スリーブ60が現像ローラ48に対して負極性にバイアスされている(図4B参照)。したがって、供給領域90では、現像ローラ48とスリーブ60との間に形成された脈流電界の作用を受けて、負極性に帯電しているトナーがスリーブ60から現像ローラ48に電気的に吸引される。また、現像領域96では、現像ローラ48上の負極性トナーが、現像ローラ48(VDC1:−200ボルト)と静電潜像画像部(V:−80ボルト)との電位差に基づき、静電潜像画像部に付着する。
【0073】
図5に示す電界形成装置152は、図2Aに示す実施形態1の電界形成装置110において、第1の電源112と第2の電源114にそれぞれ交流電源154,156を追加したものである。交流電源154,156の出力電圧はVAC1,VAC2である。電圧VAC1,VAC2は同一であってもよいし、違ってもよい。図6に示す電界形成装置158は、図2Aに示す実施形態の電源において、第1の電源112に交流電源160を追加したものである。交流電源160の出力電圧はVACである。これらの形態の電界形成装置152,158も、電界形成装置110,122,136と同様に、現像ローラ48とスリーブ60との間に形成された脈流電界の作用を受けて、供給領域90では負極性に帯電しているトナーをスリーブ60から現像ローラ48に供給し、現像領域96では負極性に帯電しているトナーを現像ローラ48から静電潜像画像部(V:−80ボルト)との電位差に基づき、静電潜像画像部に供給する。
【実施例】
【0074】
以下、本発明を実施例によりさらに詳しく説明するが、本発明は実施例に限定して解釈されるべきでないことは明らかである。「部」は「重量部」を意味するものとする。
(実施例1)
<キャリアの製造>
芯材を以下の方法に従って製造した。
(原料の粉砕工程)
配合割合がFe23=60モル%、MgO=40モル%となるものに、MgCl2を0.01質量%を混合し、粉砕・混合機で原料の粉砕を行った。
(スラリー化工程及び造粒工程)
上記で粉砕した粉砕物に接着剤(ポリビニルアルコール(C化合物))と水を加えて、60質量%のスラリーとした後、湿式ボールミルでさらに粉砕してスラリー化し分散液を作製した。このスラリー化した分散液を、スプレードライヤーを用い、スプレー・乾燥して、個数平均粒径約38μmの造粒粒子を作製した。C化合物の添加割合はC元素換算で0.7質量%であった。
【0075】
(焼成工程)
上記の造粒粒子を、乾燥炉にて、大気雰囲気のもと、1230℃で焼成して、フェライト粒子を作製した。
(解砕・分級工程)
焼成したフェライト粒子を解粒し、ふるいで大粒径と小粒径のものを除き、体積平均粒径が約35μmのフェライト粒子を得た。
(磁選工程)
このフェライト粒子を磁選機を通して、非磁性或いは弱磁性の粒子を除去しフェライト粒子(芯材)を作製した。芯材のSF1、SF2を表1に示す。
【0076】
芯材にコート層を以下の方法に従って形成した。
CHMA(シクロヘキシルメタクリレート)/MMA(メチルメタクリレート)/ST(スチレン)=45/45/10(モノマー重量比)を用いて公知の乳化重合法で重合を行い、その後水洗、乾燥を行い、平均粒径100nmのスチレンアクリル樹脂微粒子(Tg;102℃、Tm;220℃)を得た。
芯材100部にスチレンアクリル樹脂粒子を、コート量(乾燥後)が2.4部となるように、乾式コート法でコートし、キャリアを得た。キャリアの動的電流値、D50を表1に示す。
【0077】
<トナーの製造>
(第1段重合;ミニエマルジョン重合)
スチレン 175g
n−ブチルアクリレート 60g
メタクリル酸 15g
n−オクチル−3−メルカプトプロピオネート 7g
からなる単量体混合液を攪拌装置を取り付けた反応容器に入れ、そこにペンタエリスリトールテトラベヘン酸エステル100gを添加し、70℃に加温し溶解して単量体溶液を調製した。
【0078】
一方、ポリオキシエチレン(2)ドデシルエーテル硫酸ナトリウム2gをイオン交換水1350gに溶解させた界面活性剤溶液を70℃に加温し、前記単量体溶液に添加混合した後、循環径路を有する機械式分散機「クリアミックス」(エム・テクニック社製)により、70℃で30分間分散を行い、乳化分散液を調製した。
【0079】
次いで、この分散液に、過硫酸カリウム7.5gをイオン交換水150gに溶解させた開始剤溶液を添加し、この系を78℃にて1.5時間にわたり加熱攪拌することにより重合を行い、樹脂粒子の分散液を得た。これを「樹脂粒子1の分散液」とする。
【0080】
(第2段重合;外層の形成)
上記のようにして得られた「樹脂粒子1の分散液」に過硫酸カリウム12gをイオン交換水220gに溶解させた開始剤溶液を添加し、80℃の温度条件下に
スチレン 320g
n−ブチルアクリレート 100g
メタクリル酸 35g
n−オクチル−3−メルカプトプロピオネート 7.5g
からなる単量体混合液を1時間かけて滴下した。滴下終了後、2時間にわたり加熱攪拌することにより重合を行った。その後、28℃まで冷却し「樹脂粒子2の分散液」を得た。
【0081】
(着色剤粒子分散液)
ドデシル硫酸ナトリウム90gをイオン交換水1600gに攪拌溶解し溶液を調製した。この溶液を攪拌しながら、カーボンブラック「リーガル330R」(キャボット社製)400.0gを徐々に添加し、次いで、機械式分散機「クリアミックス」(エム・テクニック社製)を用いて分散処理して着色剤粒子分散液を調製した。この分散液中の着色剤粒子の粒子径を電気泳動光散乱光度計「ELS−800」(大塚電子社製)を用いて測定したところ、110nmであった。
【0082】
((凝集・融着)会合工程)
樹脂粒子2の分散液 2000g
イオン交換水 670g
着色剤粒子分散液 400g
上記液を、温度センサ、冷却管、窒素導入装置、攪拌装置を取り付けた5Lの反応容器に入れ、攪拌し、液温を30℃に調整した後、この溶液に5Nの水酸化ナトリウム水溶液を加えてpHを10に調整した。
【0083】
次いで、塩化マグネシウム・6水和物60gをイオン交換水60gに溶解した水溶液を、攪拌下、30℃にて10分間かけて添加した。3分間放置した後に昇温を開始し、この系を60分間かけて90℃まで昇温し、粒子径を成長させ、会合反応を行った。その状態で、「コルターマルチサイザーIII」(ベックマン・コールター社製)にて会合粒子の粒径を測定し、体積基準におけるメディアン粒径が6μmになった時点で、塩化ナトリウム8.5gをイオン交換水35gに溶解した水溶液を添加し、粒子成長を停止させた後、融着のため、3時間にわたり加熱攪拌を継続した。
【0084】
その後、30℃まで冷却し、塩酸を添加してpHを2.0に調整し、攪拌を停止した。成長した会合粒子を濾過し、35℃のイオン交換水で繰り返し洗浄し、その後、40℃の温風で乾燥することによりトナー粒子を得た。
【0085】
上記トナー粒子100重量部に対し、第1の疎水性シリカ0.2重量部、第2の疎水性シリカ0.5重量部、疎水性酸化チタン0.5重量部、および個数平均粒径350nmのチタン酸ストロンチウム2重量部を、ヘンシェルミキサ(三井金属鉱山社製)を用いて40m/sの速度で3分間表面処理を行って外添処理し、負帯電性トナーを得た。トナーの平均粒径、平均円形度を表1に示す。
【0086】
ここで用いた第1の疎水性シリカは、個数平均一次粒径16nmのシリカ(#130:日本アエロジル社製)を疎水化剤であるヘキサメチルジシラザン(HMDS)により表面処理を施したものである。
第2の疎水性シリカは、個数平均一次粒径20nmのシリカ(#90:日本アエロジル社製)をHMDSにより表面処理したものである。
疎水性酸化チタンは、個数平均一次粒径30nmのアナターゼ型酸化チタンを水系湿式中で疎水化剤であるイソブチルトリメトキシシランにより表面処理をしたものである。
【0087】
<評価>
上記負帯電性トナーと実施例/比較例で得られたキャリアを重量混合比(トナー/キャリア)8/92で混合して得られた現像剤を、図1に示す形態のハイブリッド現像装置を組み込んだ画像形成装置(bizhub C350改造機;コニカミノルタビジネステクノロジーズ社製)に搭載した。この画像形成装置を用いて、所定の画像を印字し、評価した。トナーは、現像剤のトナー濃度検出結果に基づいて補給するよう制御している。
【0088】
現像条件は以下の通りである。電界形成装置は、図6に示す形態を採用し、搬送ローラに直流電圧VDC2:−500ボルトを印加し、現像ローラには、直流電圧VDC1:−300ボルトと交流電圧を印加した。交流電圧は、周波数:2kHz、振幅VP−P:1,500ボルト、マイナスデューティ比(トナー回収デューティ比):40%、プラスデューティ比(トナー供給デューティ比):60%の矩形波であった。現像ギャップ50は0.3mmに設定し、供給回収ギャップ56は0.6mmに設定し、搬送ローラの現像剤搬送量は50mg/cmとなるように規制部を設定した。感光体の帯電電位(非画像部)は−550ボルト、感光体に形成された静電潜像像(画像部)の電位は−60ボルトであった。
【0089】
(画像メモリー)
図8に示すようなベタ領域401とハーフ領域402の存在する画像パターン400を9万枚出力・印字し、印字画像における画像メモリーの発生度合いに基づいて評価した。詳しくは、下記の判断基準で評価した。ネガ像とは、ハーフ領域の中に現れる比較的低い濃度の画像部である。ポジ画像とは、適正濃度で現れるハーフ画像部である。濃度差(△TD)は透過濃度計により求めた。
◎:濃度差が0.04未満のネガ/ポジ像の発生が一部有るも、ネガ部の発生は目視では、ほとんど認識できなかった;
○:濃度差が0.07未満のネガ/ポジ像の発生が一部有るも、画像全体としては実用上には問題なかった;
△:濃度差が0.10未満のネガ/ポジ像の発生があるが、実用上問題なかった;
×:濃度差が0.10以上のネガ/ポジ像の発生があり、実用上問題あり。
【0090】
(キャリアによる帯電性)
印字率5%の画像を9万枚印字した後、現像装置からキャリアを取り出した。新規の上記負帯電性トナーと当該キャリアを重量混合比(トナー/キャリア)8/92で所定時間混合し、ブローオフ法により、トナーの帯電量を測定した。トナー帯電量の絶対値(Qa)に基づいて評価した。
◎:30≦Qa≦40;
○:20≦Qa<30または40<Qa≦50;
△:10≦Qa<20または50<Qa≦60(実用上問題なし);
×:Qa<10または60<Qa(実用上問題あり)。
【0091】
(実施例2〜15、比較例1〜7)
キャリア製造条件を表1に示すように適宜変更すること以外は、実施例1と同様の方法により、表1に示す物性を有するキャリアを製造した。
トナー製造時の会合工程において、体積基準におけるメディアン粒径(D50)が所定の値になった時点で粒子成長を停止させたこと、融着のための撹拌時間を調整して平均円形度を制御したこと以外は、実施例1と同様の方法により、表1に示す物性を有するトナーを製造した。
【0092】
そのようなキャリアおよびトナーを用いたこと以外は、実施例1と同様の方法により、評価を行った。
【0093】
【表1】

【0094】
表中、アクリルは以下の方法により製造したアクリル樹脂粒子を意味する。
CHMA(シクロヘキシルメタクリレート)/MMA(メチルメタクリレート)=50/50(モノマー重量比)を用いて公知の乳化重合法で重合を行い、その後水洗、乾燥を行い、平均粒径100nmのアクリル樹脂微粒子(Tg:115℃、Tm:230℃)を得た。
シリコーンを用いる場合、以下の方法に従ってキャリアを製造した。
シリコーン樹脂液(東レ シリコーンSR2406、固形分20%)200部およびトルエン1500部のコーティング液を調製した。回転円板型流動層粒子コーティング装置に平均粒径50μmのフェライト・キャリアを5kg入れ流動させながら上記処方のコーティング液を80℃の加熱下に散布し、塗布を行った塗布物をコーティング装置よりとり出し恒温槽に入れ、200℃で2時間加熱しシリコーン膜の硬化を行わせた。
【図面の簡単な説明】
【0095】
【図1】本発明に係る画像形成装置の一例の概略構成と本発明に係る現像装置の断面を示す図。
【図2A】電界形成装置の一実施形態を示す図。
【図2B】図2Aに示す電界形成装置からスリーブと現像スリーブに供給されている電圧の関係を示す図。
【図3A】電界形成装置の他の実施形態を示す図。
【図3B】図3Aに示す電界形成装置からスリーブと現像スリーブに供給されている電圧の関係を示す図。
【図4A】電界形成装置の他の実施形態を示す図。
【図4B】図4Aに示す電界形成装置からスリーブと現像スリーブに供給されている電圧の関係を示す図。
【図5】電界形成装置の他の実施形態を示す図。
【図6】電界形成装置の他の実施形態を示す図。
【図7】キャリアの動的電流値の測定方法を説明するための概略図。
【図8】実施例で評価するための画像の概略図。
【符号の説明】
【0096】
10:現像剤、11:画像形成装置、12:感光体、16:帯電ステーション、18:露光ステーション、20:現像ステーション、22:転写ステーション、24:クリーニングステーション、26:帯電装置、28:露光装置、30:画像光、32:通路、34:現像装置、36:転写装置、38:シート、40:クリーニング装置、42:現像槽(ハウジング)、44:開口部、46:第2の空間、48:現像ローラ、50:現像ギャップ、52:開口部(第2の空間)、54:搬送ローラ、56:供給回収ギャップ、58:磁石体、60:スリーブ、62:規制板、64:規制ギャップ、66:現像剤攪拌室、68:前室、70:後室、72:前スクリュー、74:後スクリュー、76:隔壁、86:規制領域、88:供給回収領域、90:供給領域、92:回収領域、94:放出領域、96:現像領域、98:トナー補給部、100:容器、102:開口部、104:補給ローラ、110:電界形成装置。

【特許請求の範囲】
【請求項1】
芯材の表面に樹脂コート層を有してなるハイブリッド現像用キャリアであって、
芯材の、式(I)で表されるSF1値が100〜120、式(II)で表されるSF2値が120〜130であり、
キャリアの平均粒径D50が20〜80μm、動的電流値が0.1〜0.8μAであるハイブリッド現像用キャリア;
SF1=(MXLNG)2/AREA × π/4 × 100 (I)
[式中、MXLNGは画像上の芯材の絶対最大長を示す;AREAは芯材の投影面積を示す]
SF2=(PERIME)2/AREA ×π/4 × 100 (II)
[式中、PELIMEは画像上の芯材の投影像の周辺長を示す;AREAは芯材の投影面積を示す]。
【請求項2】
樹脂コート層がアクリル系樹脂を含む請求項1に記載のハイブリッド現像用キャリア。
【請求項3】
請求項1または2に記載のキャリアおよびトナーを含むハイブリッド現像用現像剤。
【請求項4】
トナーが樹脂微粒子と着色剤を凝集・融着させてなり、
トナーの平均円形度が0.92〜0.98であり、
トナーの体積平均粒径が3〜8μmである請求項3に記載のハイブリッド現像用現像剤。
【請求項5】
請求項3〜4のいずれかに記載のハイブリッド現像用現像剤を備えた画像形成装置。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate