説明

バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム

【課題】バイオマス原料からセルロース主体の成分を分離することができるバイオマスの水熱分解装置及び方法並びにバイオマス原料を用いた有機原料の製造システムを提供する。
【解決手段】バイオマス原料11を常圧下から加圧下に供給するバイオマス供給装置31と、供給されたバイオマス原料11を、いずれかの端部側から装置本体42Aの内部を圧密状態で徐々に移動させると共に、前記バイオマス原料11の供給とは異なる端部側から加圧熱水15を装置本体42A内部に供給し、バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置本体41−1Aと、装置本体42Aの加圧熱水15の供給部側からバイオマス固形分17を加圧下から常圧下に抜出すバイオマス抜出装置51とを具備する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バイオマス原料を効率よく水熱分解することができるバイオマスの水熱分解装置及び方法、並びにそれを用いた例えばアルコール類、石油代替品類、又はアミノ酸類等の有機原料を効率よく製造することができるバイオマス原料を用いた有機原料の製造システムに関する。
【背景技術】
【0002】
従来より、希硫酸、濃硫酸による木材等のバイオマスの糖化処理後、固液分離し、液相を中和処理し、エタノール発酵等の原料として利用するエタノール等の製造技術が実用化されている(特許文献1、特許文献2)。
また、糖を出発原料として、化学工業原料生産(例えば乳酸発酵等)も考えられる。
ここで、バイオマスとは、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)。
【0003】
ここで、現在アルコール原料として用いられているサトウキビ、トウモロコシ等は本来食用に供されるものであるが、これらの食用資源を長期的、安定的に工業用利用資源とすることは、有効食料品のライフサイクルの観点から、好ましくない。
【0004】
このため、将来的に有用な資源と考えられる草本系バイオマスや木質系バイオマスのようなセルロース系資源を有効活用するのは、重要な課題である。
【0005】
また、セルロース系資源では、セルロースは38〜50%、ヘミセルロース成分が23〜32%と様々で、発酵原料にならないリグニン成分も15〜22%とそれぞれ異なっている。多くの課題を抱えたままの工業化研究のため、原料は固定的に想定されており、原料の汎用性を考慮した生産システムの技術の開示は未だないのが現状である。
【0006】
さらに、元来、澱粉原料に較べて発酵原料に不利な方法で、ごみ問題、地球温暖化防止対応などを目標に考えるのであるから、原料を固定的に考えた生産システムでは意味が薄れる。広く一般の廃棄物に適用できなければならない。酵素糖化法そのものも、効率が悪すぎて、将来課題とされているのが現状である。酸処理による糖化率も、過剰反応による糖の過分解などで、およそ75%(糖化可能成分基準)前後とかなり小さい値となっている。従って、セルロース系資源に対して、エタノール生産収率はおよそ25%に止まっている(非特許文献1、特許文献3)。
【0007】
【特許文献1】特表平9−507386号公報
【特許文献2】特表平11−506934号公報
【特許文献3】特開2005−168335号公報
【非特許文献1】日経バイオビジネス、p.52、2002年9月
【非特許文献2】バイオマス―生物資源の高度利用 日本農芸化学会編 朝倉書店発行 1985年9月
【発明の開示】
【発明が解決しようとする課題】
【0008】
前記特許文献1及び2にかかる提案においては、反応に必要な硫酸を常に反応系外から供給する必要があり、製造規模の増大と共に、耐酸性の設備及び多量の硫酸の購入コストが増大すると共に、用いた硫酸の廃棄コスト(例えば石膏法による処理のコスト)及び硫酸回収コストが増大するという、問題がある。
【0009】
前記特許文献3にかかる提案においては、各種セルロース系資源を熱水処理して、酵素法により糖化を行うものであるが、熱水処理する際に、セルロースを糖化する際のリグニン成分等のセルラーゼ阻害物質(非特許文献2)が除去されずにセルロースと混在することとなるので、セルロースの糖化効率が低下する、という問題がある。
【0010】
また、セルロース以外のヘミセルロース成分を含むものであるので、糖化に際しては、セルロース及びヘミセルロース成分に各々適した酵素を用いる必要がある、という問題がある。
【0011】
また得られる糖液もセルロースからは6炭糖液、ヘミセルロース成分からは5炭糖液となり、例えばアルコール発酵においても各々適した酵母が必要になり、6炭糖液と5炭糖液とが混在した状態におけるアルコール発酵効率においてもその向上が求められている。
【0012】
このように、従来の技術では、副反応生成物が酵素糖化阻害を引起し糖収率が減少する現象が起きていたので、酵素糖化阻害物質を除去し、セルロース主体による酵素糖化性を高める水熱分解装置の出現が切望されている。
【0013】
本発明は、前記課題に鑑み、バイオマス原料からセルロース主体の成分を分離することができるバイオマスの水熱分解装置及び方法、並びにそれを用いた効率的な糖液の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができるバイオマス原料を用いた有機原料の製造システムを提供することを目的とする。
【課題を解決するための手段】
【0014】
上述した課題を解決するための本発明の第1の発明は、バイオマス原料を常圧下から加圧下に供給するバイオマス供給装置と、供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置と、装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出装置とを具備することを特徴とするバイオマスの水熱分解装置にある。
【0015】
第2の発明は、第1の発明において、前記装置本体内部でバイオマス原料を撹拌する固定撹拌手段又は回転撹拌手段を有することを特徴とするバイオマスの水熱分解装置にある。
【0016】
第3の発明は、第1又は2の発明において、前記バイオマス供給装置が、バイオマスを押圧する押圧手段であることを特徴とするバイオマスの水熱分解装置にある。
【0017】
第4の発明は、第1乃至3のいずれか一つの発明において、前記装置本体内に供給するバイオマス粉砕物から余剰水を排出する余剰水排出ラインを有することを特徴とするバイオマスの水熱分解装置にある。
【0018】
第5の発明は、第1乃至4のいずれか一つの発明において、前記装置本体に供給する加圧熱水の供給部を複数有すると共に、装置本体から排出する熱水排出液の排出部を複数有することを特徴とするバイオマスの水熱分解装置にある。
【0019】
第6の発明は、第1乃至5のいずれか一つの発明において、前記装置本体から排出する熱水排出液を濾過するフィルター部を有することを特徴とするバイオマスの水熱分解装置にある。
【0020】
第7の発明は、第1乃至6のいずれか一つの発明において、前記装置本体内におけるバイオマス固形分の密度監視手段を有することを特徴とするバイオマスの水熱分解装置にある。
【0021】
第8の発明は、第2の発明において、前記回転撹拌手段に熱水排出液の抜出し孔の閉塞を防止するスクレーパーを設けたことを特徴とするバイオマスの水熱分解装置にある。
【0022】
第9の発明は、第1乃至8のいずれか一つの発明において、前記水熱分解装置の反応温度が180〜240℃であると共に、加圧熱水の状態であることを特徴とするバイオマスの水熱分解装置にある。
【0023】
第10の発明は、第1乃至9のいずれか一つの発明において、供給するバイオマス原料と加圧熱水との重量比は、1:1〜1:10であることを特徴とするバイオマスの水熱分解装置にある。
【0024】
第11の発明は、バイオマス原料を常圧下から加圧下に供給するバイオマス供給工程と、供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解工程と、前記装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出工程とを具備することを特徴とするバイオマスの水熱分解方法にある。
【0025】
第12の発明は、バイオマス原料を前処理する前処理装置と、第1乃至10のいずれか一つの水熱分解装置と、前記水熱分解装置から排出されるバイオマス固形分中のセルロースを酵素処理して6炭糖を含む糖液に酵素分解する第1の酵素分解装置と、前記第1の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
【0026】
第13の発明は、第12の発明において、熱水排出液中のヘミセルロース成分を酵素処理して5炭糖を含む糖液に酵素分解する第2の酵素分解装置と、前記第2の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
【発明の効果】
【0027】
本発明によれば、バイオマス原料と加圧熱水とを圧密状態で対向接触させる水熱分解装置を用いることにより、目的成分であるセルロース(酵素糖化により6炭糖液となる)を生成する反応以外の副反応物(リグニン成分、ヘミセルロース成分)を加圧熱水中に移行させることにより、セルロース主体のバイオマス固形分を得ることができる。その結果、6炭糖液を効率よく糖化させて、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。
【0028】
また、対向接触させることにより、熱水に可溶化され易い成分から順次反応系外へ排出されると共に、バイオマスの投入部から熱水投入部まで温度勾配が生じる為、ヘミセルロース成分の過分解が抑制され、結果的に5炭糖成分を効率よく回収することができる。
【発明を実施するための最良の形態】
【0029】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
【実施例1】
【0030】
本発明による実施例に係るバイオマスの水熱分解装置について、図面を参照して説明する。
図1は、実施例に係るバイオマスの水熱分解装置を示す概念図である。
図1に示すように、本実施例に係るバイオマスの水熱分解装置41−1Aは、バイオマス原料(本実施例では、例えば麦わら等)11を常圧下から加圧下に供給するバイオマス供給装置31と、供給されたバイオマス原料11を、左右のいずれかの端部側(本実施例では左側)から水平型装置本体(以下「装置本体」という)42Aの内部を圧密状態で徐々に移動させると共に、前記バイオマス原料11の供給とは異なる端部側(本実施例では右側)から加圧熱水15を装置本体42A内部に供給し、バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離してなる装置本体42Aと、該装置本体42Aの加圧熱水15の供給部側からバイオマス固形分17を加圧下から常圧下に抜出すバイオマス抜出装置51とを具備するものである。
前記常圧下から加圧下に供給するバイオマス供給装置31としては、例えばピストンポンプ又はスラリーポンプ等のポンプ手段を挙げることができる。
【0031】
本実施例では、前記装置本体42A内部にバイオマス原料11をいわゆるプラグフローの圧密状態で撹拌する固定撹拌手段61−1を設けており、内部に送込まれるバイオマス原料11を軸方向に移動する際に、撹拌作用により撹拌するようにしている。
【0032】
この固定撹拌手段61−1を設けることにより、装置本体42A内で固体表面、固体中の加圧熱水の混合が進み反応が促進される。
【0033】
ここで、本発明では、水熱分解装置41−1Aの装置本体42A内の加圧熱水15とバイオマス原料11との流動は、バイオマス原料11と加圧熱水15とを対向接触させる、いわゆるカウンターフローで撹拌・流動するようにすることが好ましい。
【0034】
水熱分解装置41−1Aは、プラグフロー型分解であるので、構造が簡易であり、固体であるバイオマス原料11は、管中心軸と垂直に攪拌されながら、管中心軸と平行に移動することとなる。一方加圧熱水15(熱水、分解物が溶解した液)は、固体に対しカウンターフローにて固体粒子間に滲みながら移動する。
【0035】
また、プラグフローでは、加圧熱水15の均一な流れを実現することができる。なぜならば、固体のバイオマス原料11が加圧熱水15により分解すると、分解物が熱水側に溶解する。分解部近傍は高粘度となり、未分解部近傍へ優先的に熱水が移動し、未分解部が続いて分解することとなり、均一な熱水の流れになり、均一な分解が実現することとなる。
【0036】
また、水熱分解装置41−1Aにおける装置本体42A内面の管壁の抵抗により、装置本体42A内において、バイオマス原料11の入口側に比べ、バイオマス原料11の出口側の固体密度が減少し、加えて分解によりバイオマス固体分17が減少するため、加圧熱水15の占める割合が増加し、液滞留時間が増加することにより、液中の分解成分が過分解するので、少なくとも固定式の撹拌手段を設けるようにしている。
【0037】
そして、この固定撹拌手段61−1には、溝を刻むようにしたり、ピッチを変えるようにしたりしてもよい。さらに、固定撹拌手段61−1のスクリューを直列に多段にし、個別に攪拌するようにしてもよい。
また、水熱分解装置41−1Aの装置本体42Aの形状をテーパー状にして、すなわち装置本体42Aの原料11の入口側に対して出口側の断面積を小さくして装置本体42A内における原料11の固体密度を向上させるようにしてもよい。
【0038】
また、装置本体42A内における固形分の閉塞防止のほぐし機能を設けるようにしてもよい。
また、例えば回転撹拌手段のトルク管理、装置本体42A内の静電容量管理、装置本体42A内の超音波管理、装置本体42A内の重量管理等により、装置本体42A内の固液の重量比を状況に応じて適宜調整するようにすればよい。
【0039】
ここで、前記水熱分解装置41−1Aに供給するバイオマスとしては、特に限定されるものではなく、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)が、本発明では特に木質系の例えば広葉樹、草本系等のセルロース系資源や農業系廃棄物、食品廃棄物等を用いるのが好ましい。
【0040】
また、前記バイオマス原料11としては、粒径は特に限定されるものではないが、5mm以下に粉砕することが好ましい。
本実施例では、バイオマスの供給前において、前処理装置として、例えば粉砕装置を用いて前処理するようにしてもよい。また、洗浄装置により洗浄するようにしてもよい。
なお、バイオマス原料11として、例えば籾殻等の場合には、粉砕処理することなく、そのまま水熱分解装置41−1Aに供給することができるものとなる。
【0041】
また、水熱分解装置41−1Aにおける、反応温度は180〜240℃の範囲とするのが好ましい。さらに好ましくは200〜230℃とするのがよい。
これは、180℃未満の低温では、水熱分解速度が小さく、長い分解時間が必要となり、装置の大型化につながり、好ましくないからである。一方240℃を超える温度では、分解速度が過大となり、セルロース成分が固体から液体側へ移行を増大すると共に、ヘミセルロース系糖類の過分解が促進され、好ましくないからである。
また、ヘミセルロース成分は約140℃付近から、セルロースは約230℃付近から、リグニン成分は140℃付近から溶解するが、セルロースを固形分側に残し、且つヘミセルロース成分及びリグニン成分が十分な分解速度を持つ180℃〜240℃の範囲とするのがよい。
【0042】
また、反応圧力は装置本体内部が加圧熱水の状態となる、各温度の水の飽和蒸気圧に更に0.1〜0.5MPaの高い圧力とするのが好ましい。
また、反応時間は20分以下、3分〜10分とするのが好ましい。これはあまり長く反応を行うと過分解物の割合が増大し、好ましくないからである。
【0043】
よって、水熱分解装置41−1Aは、バイオマス原料11と加圧熱水15とを対向接触する際に、均一な加圧熱水流れとすることが好ましい。
【0044】
また、加圧熱水15をカウンターフローで流し、直接熱交換するので、図9に示すような温度分布になり、分解して液に抽出された分解物(リグニン成分等)が過分解しにくいものとなる。
【0045】
また、装置本体42A内に供給するバイオマス原料11に対する加圧熱水15の重量が少ないほど水熱分解のための加温のスチーム量を減らすことができるので好ましい。
ここで、供給するバイオマス原料11と加圧熱水15との重量比は、装置構成により適宜異なるが、例えば1:1〜1:10、より好ましくは1:1〜1:5とするのが好ましい。
特に、本実施例では、バイオマス原料11と加圧熱水15との固体分と液体分とから構成され、プラグフローとしているので、圧密状態で装置本体42A内部を移動するので、固液比を1:1〜1:5とすることが可能となる。
このように、装置本体42A内に供給するバイオマス原料11と加圧熱水15との重量比を1:1〜1:10とすることにより、水熱分解装置での必要熱量の削減を図ることができる。
【0046】
さらに、装置本体42A内における固液重量比の管理をすることにより、水熱分解条件の安定化、バイオマス抜出装置51からのバイオマス固形分17の排出の安定化を図ることができる。
【0047】
また、水熱分解装置41−1A内でのバイオマス原料11と加圧熱水15とを対向接触することにより、固液分離を図ることになるので、固体側であるセルロース中への過分解生成物の持ち込みが削減される。これは、リグニン成分等は低温では析出するため、低温では分離困難である。すなわち、水熱分解を行った後に、反応系外に出して、分離しようとすると、高温加圧条件から常温常圧に移行する際のフラッシュ時の熱ロスが削減されると共に、分解物抽出液の分離性の向上を図ることができる。これは、水熱分解生成物は多糖類であり、低温では析出するため、低温における分離困難となるからである。
【0048】
本実施例によれば、水熱分解装置41−1A内に供給するバイオマス原料11の重量を加圧熱水15の重量に対して大きくすることができ、装置を小型化することができるため、経済性の向上に寄与することとなる。
【0049】
また、水熱分解装置41−1A内におけるバイオマス原料11の昇温は、装置本体42A内で加圧熱水15と接触させることによる直接熱交換で実施可能である。なお、必要に応じて、外部から水蒸気等を用いて加温するようにしてもよい。または、熱水に代えて飽和水蒸気を装置本体42内に直接供給するようにしてもよい。
【0050】
ここで、本実施例では、バイオマス供給装置31としては、ピストンポンプ31aを有するバイオマス原料11の供給機構を採用しており、固形のバイオマス原料11を常圧下から加圧下へ供給するものである。
すなわち、ピストンポンプ31aを用いてピストンで押圧するので、装置本体42A内部に確実にバイオマス原料11を供給することとなる。
【0051】
すなわち、ピストンポンプ31aを採用することにより、装置本体42A内で固形分を移動させる回転式の移動手段等を設けることなく、ピストンポンプ31aの動力により、固液カウンターフローでの固形分であるバイオマス原料11の移動が可能となる。
さらに、ピストンポンプ31aを採用することにより、装置本体42A内の密度(固液の重量比)調整が可能となる。すなわち、装置本体42A内の加圧熱水の滞留時間を調整できる。
【0052】
また、バイオマス抜出装置51は、スクリューフィーダー52aと油圧シリンダー52bとからなる押出機構とすることで、水熱分解装置41−1Aで反応した固形分が圧縮され、バイオマスプラグ53を形成し、このバイオマスプラグ53自身で水熱分解装置41−1A内の圧力を遮断するマテリアルシールを行うようにしている。スクリューフィーダー52aにより徐々に押されて、油圧シリンダー52bの先端部分から徐々にバイオマスが加圧下から常圧下への排出を可能とするものである。この際、バイオマスプラグ53から残留された水分が脱水される。
【0053】
この脱水液54は、加圧熱水可溶分(リグニン成分及びヘミセルロース成分)を含むものであるので、熱水排出液16と共に別途処理される。
【0054】
この結果、バイオマス固形分17に本来であれば同伴する加圧熱水可溶分を含む加圧熱水を脱水することが可能となり、後述するヘミセルロース成分を用いた5炭糖収率が向上すると共に、6炭糖酵素阻害成分(例えばリグニン成分等)の同伴の低減に寄与することとなる。
【0055】
また、バイオマス抜出装置51内では、加圧状態から常圧状態に変化するので、排出されるバイオマス固形分17は、爆砕されることとなり、繊維が破壊され、後の工程である酵素糖化における糖化効率が向上することとなる。
【0056】
また、バイオマス抜出装置51においては、低分子化した揮発性の酵素糖化阻害成分又はエタノール発酵阻害成分のいずれか一方又は両方を除去することができる。
【0057】
また、本実施例では、加圧熱水の取り出しは、バイオマス供給部入口近傍としているが、理想的な温度分布となるように、中間に加圧熱水の液抜出を設け、その抜出液の加熱又は冷却のいずれか一方又は両方を行い、再度装置本体42A内に注入するようにしてもよい。
【0058】
また、加圧熱水の排出部近傍において、液中の例えばフルフラール等の阻害物質の濃度を監視し、その測定値により加圧熱水15の供給量を制御するようにしたり、バイオマス抜出装置51近傍において、糖濃度を測定し、その測定値により加圧熱水15の供給量を制御するようにしたりするようにしてもよい。
【0059】
さらに、本実施例では、加圧熱水15の供給箇所を一カ所としているが、本発明はこれに限定されるものではなく、複数箇所として温度制御を行うようにしてもよい。
【0060】
また、本発明においては、バイオマス原料と加圧熱水とを対向接触させることにより、熱水に可溶化され易い成分から順次排出されると共に、バイオマス原料の投入部から熱水投入部まで濃度勾配及び温度勾配が生じる為、ヘミセルロース成分の過分解が抑制され、結果的に5炭糖成分が効率よく回収することができる。
さらに、対向接触させることで、熱回収ができシステム効率から好ましいものとなる。
【0061】
図2に本実施例の変形例を示す。図2に示すように、水熱分解装置41−1Bは、図1のような水平型のものを垂直型にしたものである。
図2に示すように、バイオマス供給装置31を装置本体42Aの下端側に設け、バイオマス原料11を下端側から供給するようにし、一方加圧熱水15を上端側から供給して、両者を対向接触させて、加圧熱水15に可溶化され易い成分から熱水排出液16により順次排出されるようにすると共に、バイオマス固形分17を上端側に設置したバイオマス抜出装置51から抜き出すようにしている。
【0062】
本実施例では垂直型としているが、本発明はこれに限定されるものではなく、傾斜型の装置本体としてもよい。
ここで、傾斜型又は垂直型とするのは、水熱分解反応において発生したガスや原料中に持ち込まれたガス等が上方から速やかに抜けることができ好ましいからである。また、加圧熱水15で抽出するので、抽出効率の点から上方から下方に向かって抽出物の濃度が高まることとなり、好ましいものとなる。
【0063】
図3に本実施例の変形例を示す。図3に示すように、水熱分解装置41−1Cは、バイオマス抜出装置51で分離され脱水液54を再度装置本体42A内に供給している。これにより、装置内部に供給する加圧熱水量の削減を図ることができる。また、理想的なカウンターフローの実現が可能となる。
【0064】
図4に本実施例の他の変形例を示す。図4に示すように、水熱分解装置41−1Dは、装置本体42Aのバイオマス原料11が供給される部分でバイオマスに含まれる余剰水33を除去するように、余剰水除去ライン32を設けるようにしている。この余剰水はバイオマス原料11を湿潤状態にするのに用いてもよい。
すなわち、余剰水液出口部32aと熱水排出液16−1の液出口部16aを離し、余剰水液出口部32aの圧力(P1)>液出口部16aの圧力(P2)となるようにすることで、液抜出し量を制御することができる。また、逆流の防止を図り、熱ロスの削減、過分解の抑制を図ることができる。
【0065】
また、熱水排出液の液出口を複数箇所(本実施例では二カ所16a、16b)とし、熱水排出液の液出口性状及び又はバイオマス固形分の性状を測定し、測定値により、熱水排出液の液出口を適宜替えることで、分解時間を制御することができる。
【0066】
また、加圧熱水の熱水入口を複数箇所(本実施例では二カ所15a、15b)とし、熱水排出液の液出口性状及び固出口性状のいずれか一方又は両方を測定し、測定値により、熱水排出液の液出口を替えることで、分解時間を制御することができる。
【0067】
また、水熱分解装置41−1D内において、所要の固液の重量比となるように、バイオマス原料11の供給量と熱水排出液の液出口の量を管理するようにしてもよい。
【0068】
図5に本実施例の他の変形例を示す。図5に示すように、装置本体42―2内に回転式の撹拌手段61−2を設け、積極的にバイオマス原料11と加圧熱水15とを対向接触させる際に撹拌混合させるようにしてもよい。
【0069】
また、この際、この回転式の撹拌手段61−2には、溝を刻むようにしたり、ピッチを変えるようにしたりしてもよい。さらに、回転式の撹拌手段61−2のスクリューを直列に多段にし、個別に攪拌するようにしてもよい。
【0070】
また、図5に示すように、装置本体42−2の熱水排出液16を排出する際に、フィルター部71を設けている。
【0071】
例えばワラ等バイオマスでは数cmのバイオマス圧密層でマテリアルシールが可能であるが、それ以下の厚みでは通液するため、自己フィルターとなり、液出口での固液分離が可能となる。所定の厚みに保つスクレーパー機構(図示せず)を設けるようにしてもよい。また、自己フィルターに加えて砂濾過フィルターを用いるようにしてもよい。
【0072】
また、液出口圧で制御したスクレーパー機構としてもよい。
【0073】
図6に本実施例の他の変形例を示す。図6に示すように、装置本体42−3内における固形分の密度監視手段として、水熱分解装置41−3の装置本体42−3に設置したロードセル61a、61bにより重量を検知し、パドルの回転数、回転方向を変化させて密度制御を行い反応効率の向上を図るようにしている。
【0074】
ここで、バイオマス原料11を装置本体42−3内への投入に際して、押圧手段であるピストンポンプを用いた投入方法について、図7及び図8を参照して説明する。なお。押圧手段としては、ピストンポンプ以外に、例えばスラリーポンプ、スクリューフィーダー等を適宜用いることができる。
【0075】
図7に示すように、予め湿潤状態としたバイオマス原料11をシリンダー内で圧密し、設定圧密力以下では開状態の空気・余剰水分排出バルブV1より空気、余剰水を排出し、設定圧密力となった状態で該空気・余剰水分排出バルブV1を閉とし、水熱分解装置の装置本体42A内へゲードバルブ34を介してバイオマス原料11を充填するようにしてもよい。
【0076】
また、乾燥状態(水分ほどんど含まない)の原料の場合には、シリンダー内で圧密し、設定圧密力以下では開状態の空気・余剰水分排出バルブV1より空気を排出し、設定圧密力となった状態で水注入バルブV2より水を注入し、余剰水分は空気・余剰水分排出バルブV1より排出し、両バルブを閉とし、水熱分解装置の装置本体42A内へゲードバルブ34を介してバイオマス原料11を充填するようにしてもよい。
【0077】
実施例1のバイオマスの水熱分解装置においては、図1〜図8において個々に構成部材について説明しているが、これらの構成を適宜組み合わせるようにしてもよい。
【実施例2】
【0078】
本発明による実施例に係るバイオマス原料を用いた有機原料であるアルコールの製造システムについて、図面を参照して説明する。図10は、実施例に係るバイオマス原料を用いた有機原料の製造システムを示す概念図である。
図10に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10−1は、バイオマス原料11を例えば粉砕処理する前処理装置12と、前処理したバイオマス粉砕物13を加圧熱水15と対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス固体中からリグニン成分及びヘミセルロース成分を分離してなる図1に示す水熱分解装置41−1Aと、前記水熱分解装置41−1Aから排出されるバイオマス固形分17中のセルロースを酵素処理して6炭糖を含む糖液に酵素(セルラーゼ)18−1で酵素分解する第1の酵素分解装置19−1と、第1の酵素分解装置19−1で得られた第1の糖液(6炭糖)20−1を用いて、発酵処理によりアルコール類(本実施の形態ではエタノール)を製造する第1のアルコール発酵装置21−1と、第1のアルコール発酵液22−1を精製して目的生成物のエタノール23と残渣24−1とに分離処理する第1の精製装置25−1とを具備するものである。
【0079】
本発明によれば、図1に示すような水熱分解装置41−1Aにおいて、カウンターフローを採用することにより、液体側の加圧熱水15中にリグニン成分及びヘミセルロース成分を移行させ、固体側のバイオマス固形分17にはセルロースがとどまることとなり、酵素糖化の第1の酵素分解装置19−1により第1の糖液(6炭糖)20−1を得ることとなる。
そして、6炭糖に応じた発酵(最終製品に応じた発酵:本実施例では第1のアルコール発酵装置21−1を用いてエタノール23を発酵により求める)プロセスを構築することができる。
【0080】
本実施例では、発酵処理により求めるものとして、アルコール類のエタノールを例示したが、本発明はこれに限定されるものではなく、アルコール類以外の、化成品原料となる石油代替品類又は食品・飼料原料となるアミノ酸類を発酵装置により得ることができる。
【0081】
ここで、糖液を基点とした化成品としては、例えばLPG、自動用燃料、航空機用ジェット燃料、灯油、ディーゼル油、各種重油、燃料ガス、ナフサ、ナフサ分解物であるエチレングリコール、エタノールアミン、アルコールエトキシレート、塩ビポリマー、アルキルアルミニウム、PVA、酢酸ビニルエマルジョン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、MMA樹脂、ナイロン、ポリエステル等を挙げることができる。よって、枯渇燃料である原油由来の化成品の代替品及びその代替品製造原料としてバイオマス由来の糖液を効率的に利用することができる。
【実施例3】
【0082】
本発明による実施例に係るバイオマス原料を用いた有機原料であるアルコール製造システムについて、図面を参照して説明する。
図11は、本実施例に係るバイオマス原料を用いた有機原料のアルコール製造システムを示す概念図である。
図11に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10−2は、図1に示すアルコール製造システム10−1において、水熱分解装置41−1Aから排出される熱水排出液16中に移行されたヘミセルロース成分を酵素処理して5炭糖を含む糖液20−2に酵素分解する第2の酵素分解装置19−2を設けてなるものである。
なお、酵素分解装置、アルコール発酵装置、精製装置は、それぞれ別途2機(第1の酵素分解装置19−1、第2の酵素分解装置19−2、第1のアルコール発酵装置21−1、第2のアルコール発酵装置21−2、第1の精製装置25−1、第2の精製装置25−2)設置している。そして、第1の糖液(6炭糖)20−1、第2の糖液(5炭糖)20−2に応じた酵素分解工程、アルコール発酵工程及び精製工程を行うようにして、エタノール23を得るようにしている。
【0083】
そして、本実施例では、第2の酵素分解装置19−2で得られた第2の糖液(5炭糖)20−2を用いて、発酵処理によりエタノール23を製造することができる。
【0084】
なお、熱水排出液は必ずしも別系統において処理するものではなく、例えば酵素分解装置を以降の工程を共通化したり、アルコール発酵装置以降の工程を共通化したり、あるいは精製装置以降を共通化する等適宜変更を行うことができる。
【0085】
本発明によれば、水熱分解装置41−1Aにおいて、カウンターフローを採用することにより、固体側のバイオマス固形分17では、セルロースがとどまることとなり、酵素糖化の第1の酵素分解装置19−1により第1の糖液(6炭糖)20−1を得ると共に、液体側の加圧熱水15では、その加圧熱水に可溶したヘミセルロース成分を熱水排出液16として分離し、別途酵素糖化の第2の酵素分解装置19−2により第2の糖液(5炭糖)20−2を得るので、両者を効率よく分離して各々糖化することが可能となる。そして、6炭糖、5炭糖に応じた発酵(最終製品に応じた発酵:例:エタノール発酵)プロセスを構築することができる。
【0086】
このように、水熱分解装置41−1Aにおけるカウンターフローを採用することによって6炭糖を得る酵素糖化反応において阻害物質となる副反応成分や加圧熱水に可溶なリグニン成分を加圧熱水15側に移行させるため、セルロース主体のバイオマス固形分17となり、その後の糖化反応における6炭糖の糖化反応収率が向上する。
【0087】
一方、分離された熱水排出液16に含まれるヘミセルロース成分は、その後第2の酵素分解装置19−2において糖化され、5炭糖を含む糖液を得ることができる。
そして、6炭糖、5炭糖の各々に適した酵母等を用いることでエタノールを効率的に個別に発酵により求めることができるものとなる。
【0088】
このように、従来の技術では、副反応生成物が、酵素糖化阻害を引起し糖収率が減少する現象が起きていたが、本発明によれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を加圧熱水に移行させて両者を分離し、各々に適した効率的な糖液(6炭糖液、5炭糖液)の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができるバイオマスの水熱分解装置及び方法、並びにバイオマス原料を用いた有機原料の製造システムを提供することが可能となる。
【産業上の利用可能性】
【0089】
以上のように、本発明によれば、水熱分解装置により、バイオマス原料からセルロース主体の成分を分離し、効率的な糖液の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。
【図面の簡単な説明】
【0090】
【図1】実施例1に係る水熱分解装置の概略図である。
【図2】実施例1に係る他の水熱分解装置の概略図である。
【図3】実施例1に係る他の水熱分解装置の概略図である。
【図4】実施例1に係る他の水熱分解装置の概略図である。
【図5】実施例1に係る他の水熱分解装置の概略図である。
【図6】実施例1に係る他の水熱分解装置の概略図である。
【図7】実施例1に係るバイオマス供給装置の模式図である。
【図8】実施例1に係る他のバイオマス供給装置の模式図である。
【図9】反応装置の温度分布図である。
【図10】実施例2に係るアルコール製造システムの概略図である。
【図11】実施例3に係るアルコール製造システムの概略図である。
【符号の説明】
【0091】
10−1、10−2 アルコール製造システム
11 バイオマス原料
12 前処理装置
13 バイオマス粉砕物
41−1A〜C、41−2、41−3 水熱分解装置
15 加圧熱水
16 熱水排出液
17 バイオマス固形分
18 酵素
19 酵素分解装置
19−1 第1の酵素分解装置
19−2 第2の酵素分解装置
20−1 第1の糖液(6炭糖)
20−2 第2の糖液(5炭糖)
23 エタノール

【特許請求の範囲】
【請求項1】
バイオマス原料を常圧下から加圧下に供給するバイオマス供給装置と、
供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置と、
装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出装置とを具備することを特徴とするバイオマスの水熱分解装置。
【請求項2】
請求項1において、
前記装置本体内部でバイオマス原料を撹拌する固定撹拌手段又は回転撹拌手段を有することを特徴とするバイオマスの水熱分解装置。
【請求項3】
請求項1又は2において、
前記バイオマス供給装置が、バイオマスを押圧する押圧手段であることを特徴とするバイオマスの水熱分解装置。
【請求項4】
請求項1乃至3のいずれか一つにおいて、
前記装置本体内に供給するバイオマス粉砕物から余剰水を排出する余剰水排出ラインを有することを特徴とするバイオマスの水熱分解装置。
【請求項5】
請求項1乃至4のいずれか一つにおいて、
前記装置本体に供給する加圧熱水の供給部を複数有すると共に、装置本体から排出する熱水排出液の排出部を複数有することを特徴とするバイオマスの水熱分解装置。
【請求項6】
請求項1乃至5のいずれか一つにおいて、
前記装置本体から排出する熱水排出液を濾過するフィルター部を有することを特徴とするバイオマスの水熱分解装置。
【請求項7】
請求項1乃至6のいずれか一つにおいて、
前記装置本体内におけるバイオマス固形分の密度監視手段を有することを特徴とするバイオマスの水熱分解装置。
【請求項8】
請求項2において、
前記回転撹拌手段に熱水排出液の抜出し孔の閉塞を防止するスクレーパーを設けたことを特徴とするバイオマスの水熱分解装置。
【請求項9】
請求項1乃至8のいずれか一つにおいて、
前記水熱分解装置の反応温度が180〜240℃であると共に、加圧熱水の状態であることを特徴とするバイオマスの水熱分解装置。
【請求項10】
請求項1乃至9のいずれか一つにおいて、
供給するバイオマス原料と加圧熱水との重量比は、1:1〜1:10であることを特徴とするバイオマスの水熱分解装置。
【請求項11】
バイオマス原料を常圧下から加圧下に供給するバイオマス供給工程と、
供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解工程と、
前記装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出工程とを具備することを特徴とするバイオマスの水熱分解方法。
【請求項12】
バイオマス原料を前処理する前処理装置と、
請求項1乃至10のいずれか一つの水熱分解装置と、
前記水熱分解装置から排出されるバイオマス固形分中のセルロースを酵素処理して6炭糖を含む糖液に酵素分解する第1の酵素分解装置と、
前記第1の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。
【請求項13】
請求項12において、
熱水排出液中のヘミセルロース成分を酵素処理して5炭糖を含む糖液に酵素分解する第2の酵素分解装置と、
前記第2の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2009−183154(P2009−183154A)
【公開日】平成21年8月20日(2009.8.20)
【国際特許分類】
【出願番号】特願2008−23188(P2008−23188)
【出願日】平成20年2月1日(2008.2.1)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成19年度独立行政法人新エネルギー・産業技術総合開発機構「バイオマスエネルギー高効率転換技術開発 バイオマスエネルギー転換要素技術開発 水熱分解法と酵素分解法を組合せた農業残渣等のセルロース系バイオマスの低コスト糖化技術の開発」に係る委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】