説明

バイオマス貯蔵ユニット及び前処理ユニット

【課題】バイオマスをより効率よく燃焼させやすくすることができるバイオマス貯蔵ユニット及び前処理ユニットを提供することにある。
【解決手段】バイオマスを粉砕する粉砕手段に供給するバイオマスを貯蔵するバイオマス貯蔵ユニットであって、バイオマスを貯蔵するタンク本体と、タンク本体のバイオマスが貯蔵されている領域を含む領域を直接加熱する加熱源を備え、加熱源によりタンク本体に貯蔵されているバイオマスを非炭化温度の範囲で加熱する加熱手段と、を有することで上記課題を解決する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バイオマスを粉砕する粉砕装置に供給するバイオマスを貯蔵するバイオマス貯蔵ユニット及び前処理ユニットに関する。
【背景技術】
【0002】
近年、地球温暖化の観点からCO2排出の削減が推進されている。特に、発電用ボイラ等の燃焼設備においては、燃料として石炭や重油等の化石燃料が用いられることが多いが、この化石燃料は、CO2排出の問題から地球温暖化の原因となり、地球環境保全の見地からその使用が規制されつつある。また化石燃料の枯渇化の観点からもこれに代替するエネルギ資源の開発、実用化が求められている。そこで、化石燃料の代替として、バイオマスを用いた燃料の利用促進が図られている。バイオマスとは、光合成に起因する有機物であって、木質類、草木類、農作物類、厨芥類等のバイオマスがある。このバイオマスを燃料化処理することにより、バイオマスをエネルギ源または工業原料として有効に利用することができる。
【0003】
再生可能エネルギであるバイオマスの高効率利用の観点から、バイオマスを燃料として用いることが行われている。燃料として用いる方法の一つに、バイオマス固形物を粉砕して微粉化し、微粉炭焚きボイラに供給して燃料として用いるものがある。また、特許文献1及び特許文献2に記載されているように、バイオマスを炭化させた後、燃料として用いるものもある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−23239号公報
【特許文献2】特開2008−209080号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、バイオマスは、石炭等の固形の化石燃料に比べ、繊維質でやわらかい。このため、バイオマス固形物を粉砕して微粉化するためには、石炭等を粉砕して微粉化するよりもより多くの時間、出力が必要となる。つまり、バイオマスは、石炭に比べ粉砕容量が低下する。これに対して、特許文献1及び特許文献2のように、バイオマスを炭化することで、脆化させ、粉砕しやすくすることができる。しかしながら、バイオマスは、炭化処理時に、タール等の不純物が排出される可能性がある。不純物が排出されるとそれらを除去する工程や、メンテナンスが必要となる。
【0006】
本発明は、上記に鑑みてなされたものであって、バイオマスをより効率よく粉砕することができ、かつ、燃焼させやすくすることができるバイオマス貯蔵ユニット及び前処理ユニットを提供することにある。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明のバイオマス貯蔵ユニットは、バイオマスを粉砕する粉砕手段に供給するバイオマスを貯蔵するバイオマス貯蔵ユニットであって、バイオマスを貯蔵するタンク本体と、前記タンク本体のバイオマスが貯蔵されている領域を含む領域を直接加熱する加熱源を備え、前記加熱源により前記タンク本体に貯蔵されているバイオマスを非炭化温度の範囲で加熱する加熱手段と、を有することを特徴とする。これにより、バイオマスを効率よく粉砕することができ、かつ、装置に対して悪影響が発生する恐れを低減することができる。
【0008】
ここで、前記加熱手段は、加熱源として、加熱された流体を前記タンク本体の内部に供給することが好ましい。これにより、タンク本体の内部からバイオマスを加熱することができ、バイオマスを効率よく加熱することができる。
【0009】
また、前記加熱手段は、前記加熱源として、前記バイオマス及び化石燃料の少なくとも一方を燃焼させて温度が上昇された空気または排ガスを用いることが好ましい。これにより、バイオマスを効率よく加熱することができ、エネルギ効率をより高くすることができる。
【0010】
また、前記加熱手段は、前記加熱された流体を前記タンク本体の鉛直方向下側の端部近傍から供給し、前記タンク本体の鉛直方向上側の端部近傍から排出することが好ましい。これにより、バイオマスを効率よく加熱することができる。
【0011】
また、前記加熱手段は、前記加熱された流体を貯蔵されているバイオマスの最小流動化速度以上終末速度以下の速度で、前記タンク本体に供給することが好ましい。これにより、貯蔵されているバイオマスを動かしながら加熱することができる。
【0012】
また、前記加熱手段は、前記加熱された流体を前記タンク本体の鉛直方向上側の端部近傍から供給し、前記タンク本体の鉛直方向下側の端部近傍から排出することも好ましい。これにより、発生した熱を効率よく利用することができる。
【0013】
また、前記加熱手段は、前記加熱された流体として、不活性ガスを用いることが好ましい。これにより、バイオマスが搬送時に燃焼する恐れを低減することができる。
【0014】
また、前記加熱手段は、前記バイオマスを150℃以上250℃以下に加熱することが好ましい。これにより、バイオマスからタールが一定濃度以上発生することを抑制しつつ、もろく(粉砕しやすく)することができる。
【0015】
また、前記タンク本体のバイオマスを排出する領域の雰囲気あるいはバイオマス自身の温度を検出する温度検出部と、前記温度検出部の検出結果に基づいて、前記加熱手段を制御し、前記タンク本体に貯蔵されているバイオマスを非炭化温度の範囲で加熱する制御部と、をさらに有することが好ましい。これにより、タンク本体から排出されるバイオマスをより確実に非タール温度にすることができる。
【0016】
上述した課題を解決し、目的を達成するために、本発明の前処理ユニットは、バイオマスを粉砕する粉砕手段にバイオマスを供給する前処理ユニットであって、上記のいずれかに記載のバイオマス貯蔵ユニットと、前記バイオマス貯蔵ユニットにバイオマスを供給する貯蔵前供給手段と、前記バイオマス貯蔵ユニットに貯蔵されたバイオマスを粉砕手段に供給する貯蔵後供給手段と、を有することを特徴とする。これにより、バイオマスを効率よく粉砕することができ、かつ、装置に対して悪影響が発生する恐れを低減することができる。
【発明の効果】
【0017】
本発明にかかるバイオマス貯蔵ユニット及び前処理ユニットは、バイオマスをより効率よく粉砕しやすくでき、燃焼させやすくすることができるという効果を奏する。
【図面の簡単な説明】
【0018】
【図1】図1は、発電システムの一実施形態の概略構成を示す模式図である。
【図2】図2は、バイオマス貯蔵ユニットの概略構成を示す模式図である。
【図3】図3は、バイオマスの温度と、各成分の割合との関係を示すグラフである。
【図4】図4は、粉砕動力比と所定粒径までの粉砕時間との関係を示すグラフである。
【図5】図5は、バイオマス貯蔵ユニットの他の実施形態の概略構成を示す模式図である。
【図6】図6は、発電システムの他の実施形態の概略構成を示す模式図である。
【発明を実施するための形態】
【0019】
以下に添付図面を参照して、本発明に係るバイオマス貯蔵ユニット及びバイオマス供給装置を用いる発電システムの好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
【0020】
図1は、発電システムの一実施形態の概略構成を示す模式図であり、図2は、バイオマス貯蔵ユニットの概略構成を示す模式図である。
【0021】
図1に示す発電システム10は、バイオマスを粉砕した微粉体と石炭や油等の化石燃料とを燃料として併用して燃焼させ、この燃焼により発生した熱を回収し、回収した熱で発電を行うことが可能な発電システムである。
【0022】
図1に示す発電システム10は、バイオマスを供給するバイオマス供給装置11と、このバイオマス供給装置11から供給されたバイオマスと化石燃料とを燃焼することで発生した熱を回収するボイラ30と、ボイラ30で発生させた熱を用いて発電を行う発電装置60とを有している。
【0023】
ここで、バイオマスとは、再生可能な生物由来の有機性資源であって、化石資源を除いたものと定義する。例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ、及びこれらを原料としたリサイクル燃料(ペレットやチップ)等であり、ここに提示したものに限定されることはない。
【0024】
バイオマス供給装置11は、バイオマスを非炭化温度の範囲で加熱した後、粉砕し、粉砕したバイオマスをボイラ30に供給する装置であり、前処理ユニット19と、空気供給配管21と、粉砕装置(ミル)26と、粉体分離装置27と、供給配管28と、を有する。
【0025】
前処理ユニット19は、バイオマスに前処理を行った後、粉砕装置26に供給するユニットであり、貯蔵サイロ20と、払い出しコンベア22と、搬送コンベア23と、バイオマス貯蔵ユニット24と、フィーダ25とを有する。貯蔵サイロ20は、所定量のバイオマスを貯蔵可能な装置である。貯蔵サイロ20は、貯蔵させているバイオマス140を所定の量ずつ払い出しコンベア22に供給する。払い出しコンベア22と搬送コンベア23は、ともにバイオマス140を搬送する搬送機構である。なお、本実施形態では、コンベアとしたが、バイオマス140の搬送機構としては、種々の機構を用いることができる。払い出しコンベア22は、貯蔵サイロ20から供給されたバイオマス140を搬送コンベア23に搬送する。搬送コンベア23は、払い出しコンベア22から供給されたバイオマス140をバイオマス貯蔵ユニット24に供給する。
【0026】
バイオマス貯蔵ユニット24は、搬送コンベア23から供給されたバイオマス140を一時的に貯蔵し、さらに、バイオマス140に前処理を行う。その後、バイオマス貯蔵ユニット24は、前処理を行ったバイオマス140をフィーダ25に供給する。なお、バイオマス貯蔵ユニット24の構成については、後述する。また、フィーダ25は、バイオマス貯蔵ユニット24から供給されたバイオマス140を搬送し、粉砕装置26に供給する。
【0027】
バイオマス供給装置11の構成の説明を続ける。空気供給配管21は、バイオマス供給装置11の各部に空気を供給する配管である。空気供給配管21は、ボイラ30の空気を供給させる各部と接続され、空気148が供給される。また、空気供給配管21は、粉砕装置26、供給配管28と接続され、それぞれに空気148を供給する。また、空気供給配管21は、粉砕装置26と接続される配管にバルブ70が設けられ、供給配管28と接続される配管にバルブ72が設けられている。このバルブ70、72の開閉及び開度を調整することで、各部に供給する空気148の量を調整することができる。
【0028】
粉砕装置26は、バイオマスを粉砕する粉砕装置であり、フィーダ25から供給されたバイオマス140を微粉体に粉砕する。また、粉砕装置26には、空気供給配管21が接続されており、空気供給配管21から供給される空気148の力で粉砕したバイオマス140を搬送させる。つまり、粉砕装置26で粉砕されたバイオマス140は、空気搬送により、配管を移動し、粉体分離装置27まで搬送される。粉体分離装置27は、バグフィルタや、サイクロンを有し、通過するバイオマス140を分離し、分級する。粉体分離装置27は、通過する粉砕されたバイオマス140のうち、大きさが一定以上のバイオマス140を粗粉142として供給配管28に供給する。また、粉体分離装置27は、通過するバイオマス140のうち、大きさが一定より小さいバイオマス140を微粉144として配管により後述する電気集塵器55に供給し、電機集塵器55に捕集させる。なお、粉体分離装置27に供給されるバイオマス140は、略全てが粗粉142となる。例えば、粉体分離装置27は、サイクロンによりバイオマス140に対して吹き上げる風を送り、風を吹き付けても落下する大きさが一定以上のバイオマス140を粗粉142として供給配管28に供給し、風によって吹き上げられた大きさが一定より小さいバイオマス140を微粉144として電気集塵器55に空気を供給する配管(電機集塵器55の直前)に供給する。供給配管28は、粉体分離装置27から供給された粗粉142及び空気148をボイラ30のバイオマス用の燃焼バーナ34に供給する。なお、空気供給配管21から供給配管28に供給される空気148は、一次空気となる。
【0029】
次に、ボイラ30は、コンベンショナルボイラであって、バイオマスと化石燃料とを燃焼可能なボイラ本体31を有している。このボイラ本体31は、中空形状をなして鉛直方向に設置され、このボイラ本体31を構成する火炉壁の下部に燃焼装置32が設けられている。この燃焼装置32は、火炉壁に装着された複数の化石燃料用の燃焼バーナ33と、複数のバイオマス用の燃焼バーナ34とを有している。本実施例にて、化石燃料用の燃焼バーナ33は、周方向に沿って4個若しくは8個配設されたものが上下方向に3〜6段段配置されている。一方、バイオマス用の燃焼バーナ34は、複数の化石燃料用の燃焼バーナ33の下方であって、周方向に沿って4個若しくは8個配設されたものが上下方向に1段配置されている。なお、化石燃料用の燃焼バーナ33とバイオマス用の燃焼バーナ34の配置関係は上下逆であってもよい。また、各燃焼バーナ33,34にて、周方向の数は4個に限るものではなく、段数も4段や1段に限るものではない。さらに、各燃焼バーナ33,34が対向するように配置してもよい。
【0030】
そして、化石燃料用の燃焼バーナ33は、微粉炭供給部35が供給配管36を介して連結されるとともに、燃料油(または、燃料ガス)供給部37が供給配管38を介して連結されており、この場合、化石燃料として、微粉炭または燃料油を供給可能となっている。一方、バイオマス用の燃焼バーナ34は、バイオマス供給装置11からの供給配管28が連結されている。
【0031】
また、燃焼装置32は、各燃焼バーナ33,34に燃焼用空気を供給可能な空気供給配管39を有しており、この空気供給配管39は、基端部に送風機40が装着され、先端部がボイラ本体31の外周側に設けられた風箱41に連結されている。そのため、この風箱41に供給された空気を各燃焼バーナ33,34に供給することができる。
【0032】
ボイラ本体31は、上部に煙道42が連結されており、この煙道42に、対流伝熱部として排ガスの熱を回収するための、過熱器43,44、再熱器45,46、節炭器47,48,49が設けられており、ボイラ本体31での燃焼で発生した排ガスと水との間で熱交換が行われる。
【0033】
煙道42は、その下流側に熱交換を行った排ガスが排出される排ガス配管50が連結されている。この排ガス配管50は、空気供給配管39との間にエアヒータ51が設けられ、空気供給配管39を流れる空気と、排ガス配管50を流れる排ガスとの間で熱交換を行い、燃焼バーナ33,34に供給する燃焼用空気を200〜300℃の範囲に昇温することが望ましい。
【0034】
また、空気供給配管39は、エアヒータ51より下流側の位置から分岐して、空気供給配管21が設けられている。この空気供給配管21は、塵や埃等の粒子状物質を除去可能な除塵装置52と、高温空気を昇圧可能なブロア53が装着されており、エアヒータ51で200〜300℃に加熱した空気をバイオマス供給装置11の供給配管28に供給することができる。
【0035】
なお、排ガス配管50は、エアヒータ51より上流側に位置して、選択還元型触媒54が設けられ、エアヒータ51より下流側に位置して、電気集塵機55、誘引送風機56、脱硫装置57が設けられ、下流端部に煙突58が設けられている。
【0036】
また、排ガス配管50の電気集塵機55の上流には、配管73が接続されている。配管73は、供給配管28、及び、粉砕装置26と粉体分離装置27との間の配管に接続されている。配管73は、電気集塵機55の上流との接続部と、供給配管28との接続部との間にバルブ74が配置され、電気集塵機55の上流との接続部と、粉砕装置26と粉体分離装置27との間の配管との接続部との間にバルブ76が配置されている。排ガス配管50を流れる排ガスは、一部が配管73に供給され、搬送ガス150として配管73から、供給配管28、及び、粉砕装置26と粉体分離装置27との間の配管に供給される。また、バルブ74は、配管73から供給配管28への搬送ガス150の供給量を調整する。また、バルブ76は、配管73から粉砕装置26と粉体分離装置27との間の配管への搬送ガス150の供給量を調整する。
【0037】
また、発電装置60は、熱エネルギを電気に変換する変換機構である。配管ユニット62は、ボイラ30の過熱器43,44、再熱器45,46と、発電装置60とを接続する配管であり、過熱器43,44、再熱器45,46で過熱された蒸気を発電装置60に送り、発電装置60で熱交換した蒸気を過熱器43,44、再熱器45,46に送る。発電装置60は、過熱器43,44、再熱器45,46で過熱された蒸気から取り出した熱エネルギを電気に変換する。例えば、発電装置60は、タービンを有し、過熱蒸気のエネルギを利用してタービンを回転させ、電力を取り出す。
【0038】
以上より、発電システム10は、ボイラ30にて、送風機40を駆動して空気を吸引すると、この空気は、空気供給配管39を通してエアヒータ51で加熱された後に風箱41を介して各燃焼バーナ33,34に供給される。また、化石燃料としての微粉炭または燃料油は、供給配管36,38を通して化石燃料用の燃焼バーナ33に供給されるとともに、バイオマス供給装置11からのバイオマス140は、供給配管28を通してバイオマス用の燃焼バーナ34に供給される。
【0039】
すると、化石燃料用の燃焼バーナ33は、燃焼用空気と化石燃料をボイラ本体31に噴射すると同時に着火し、また、バイオマス用の燃焼バーナ34は、燃焼用空気とバイオマスの140微粉体をボイラ本体31に噴射すると同時に着火する。このボイラ本体31では、燃焼用空気、化石燃料、バイオマス140が燃焼して火炎が生じる。ボイラ本体31内の下部で火炎が生じると、燃焼ガスがこのボイラ本体31内を上昇し、煙道42に排出される。
【0040】
このとき、図示しない給水ポンプから供給された水は、節炭器47,48,49によって予熱された後、図示しない蒸気ドラムに供給され火炉壁の各水管(図示せず)に供給される間に加熱されて飽和蒸気となり、図示しない蒸気ドラムに送り込まれる。さらに、図示しない蒸気ドラムの飽和蒸気は過熱器43,44に導入され、燃焼ガスによって過熱される。過熱器43,44で生成された過熱蒸気は、配管ユニット62を通過して発電装置60に供給される。また、発電装置60での膨張過程の中途で取り出した蒸気は、配管ユニット62を通過して再熱器45,46に導入され、再度過熱されて配管ユニット62を通過して発電装置60に戻される。なお、ボイラ本体31をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
【0041】
その後、煙道42の節炭器47,48,49を通過した排ガスは、排ガス配管50にて、選択還元型触媒54でNOx等の有害物質が除去され、電気集塵機55で粒子状物質が除去され、脱硫装置57により硫黄分が除去された後、煙突58から大気中に排出される。
【0042】
次に、図1及び図2を用いて、バイオマス貯蔵ユニット24について説明する。ここで、図2は、バイオマス貯蔵ユニットの概略構成を示す模式図である。バイオマス貯蔵ユニット24は、タンク本体102と、加熱手段104と、温度計測部114と、制御部130と、を有する。
【0043】
タンク本体102は、バイオマスを貯蔵する貯蔵機構である。また、タンク本体102は、上端側にバイオマスの投入部が設けられ、下端側にバイオマスの排出部が設けられている。タンク本体102は、搬送コンベア23から搬送されたバイオマス140を貯蔵し、貯蔵したバイオマス140を下端から排出する。
【0044】
加熱手段104は、配管106と、配管108と、バルブ110と、を有する。配管106は、一方の端部が、排ガスが流れる配管73と接続しており、他方の端部がタンク本体102の鉛直方向上側の端部と接続している。次に、配管108は、一方の端部が、供給配管28と接続し、他方の端部がタンク本体102の鉛直方向下側の端部と接続している。バルブ110は、配管106に設けられている。バルブ110は、開閉及び開度が調整されることで、配管106を流れる搬送ガス150の量を調整することができる。
【0045】
加熱手段104は、以上のような構成であり、配管106により、タンク本体102のバイオマスを保持、搬送している領域に排ガスを直接供給する。また、タンク本体102に供給された排ガスは、配管108から排出される。これにより、加熱手段104は、タンク本体102にあるバイオマスを直接加熱により加熱することができる。
【0046】
温度計測部114は、タンク本体102のバイオマス140の排出口の近傍の雰囲気、あるいはバイオマス自身の温度を計測する手段である。温度計測部114は、計測したバイオマス140の温度を制御部130に送る。
【0047】
制御部130は、温度計測部114での計測結果に基づいて、加熱手段104の動作(バルブ110の開閉動作)を制御する。また、制御部130は、その他、各種機構の動作を制御する。
【0048】
バイオマス貯蔵ユニット24は、以上のような構成であり、加熱手段104により、タンク本体102に貯蔵しているバイオマス140を直接加熱する。また、バイオマス貯蔵ユニット24は、制御部130が、温度計測部114での温度の計測結果に基づいて、加熱手段104との動作を制御し、バイオマス140の温度を制御することで、排出されるバイオマス140の温度を一定範囲、具体的には、非炭化温度の範囲となる状態で、排出する。
【0049】
ここで、非炭化温度の範囲とは、バイオマス140が炭化してない状態で、もろくなり、かつ、排出されるタールを一定濃度以下となる温度である。ここで、図3は、バイオマスの温度と、各成分の割合との関係を示すグラフであり、図4は、粉砕動力比と所定粒径までの粉砕時間との関係を示すグラフである。図3は、縦軸を重量割合[%]とし、バイオマスを各温度に加熱した場合(加熱前、150℃、200℃、250℃、300℃)の各成分の重量割合の関係を示している。また、図4は、縦軸をミル(粉砕装置)における所定粒径までの推定粉砕動力比をとし、横軸をボールミル(粉砕装置)での所定粒径までの粉砕時間[s]とした。なお、図4には、木質ペレットAを、生の状態(加熱前)、150℃、200℃、250℃、300℃の加熱した状態にした場合の、推定粉砕動力比と、ボールミル(粉砕装置)での所定粒径までの粉砕時間との関係を計測した結果を示す。また、図4には、比較のため、加熱していない木質チップA、木質チップB、木質ペレットBのそれぞれについても推定粉砕動力比と、ボールミル(粉砕装置)での所定粒径までの粉砕時間との関係を計測した結果も示す。
【0050】
バイオマスは、図3に示すように、加熱される温度により、成分の割合が変化し、一定の温度を超えるとタールが析出される。また、バイオマスは、高い温度に加熱するほど、もろくなる。具体的には、木質ペレットを加熱するとボールミル(粉砕装置)での所定粒径までの粉砕時間が加熱していない木質ペレットの粉砕時間よりも短くなる。さらに、木質ペレットを加熱する温度を高くすると粉砕時間がさらに短くなる。例えば、図4に示すように、木質ペレットAは、150℃に加熱するとボールミル(粉砕装置)での所定粒径までの粉砕時間が加熱していない木質ペレットBの粉砕時間よりも短くなる。さらに、木質ペレットAを200℃、250℃と加熱する温度を高くすると粉砕時間がさらに短くなる。ここで、ミル(粉砕装置)における所定粒径までの推定粉砕動力比は、粉砕時間に比例するため、粉砕時間が短くなることで、粉砕に必要な動力も少なくなる。以上より、バイオマスは、温度を高くするほど粉砕しやすくなる。なお、非炭化温度の範囲、つまり、タールによる影響を抑制しつつ、バイオマスが粉砕しやすくなる最適な温度は、バイオマスの種類によって異なる温度範囲、温度となる。ここで、バイオマスの温度範囲は、150℃以上250℃以下の温度とすることで、排出されるタールをより確実に低減すること、例えば、バイオマス全量の20%以下の発生量)とすることができ、バイオマスをタールによる影響を抑制しつつ、粉砕しやすくすることができる。なお、バイオマスの温度範囲の150℃以上250℃以下は、タールの発生をより確実に減らすことができ、かつ、粉砕時間を十分に短くすることができる温度となる。
【0051】
以上の関係に基づいて、バイオマス貯蔵ユニット24は、バイオマス140がもろくなり、かつ、排出されるタールが一定濃度以下となる温度である、非炭化温度の範囲でバイオマス140を加熱する。なお、図3及び図4に示す例では、バイオマス貯蔵ユニット24は、バイオマス140を150℃から250℃の間の温度に加熱する。これにより、バイオマス貯蔵ユニット24は、タール等の揮発性ガスが排出される影響を抑制しつつ、さらには、タールの発生を抑制しつつ、バイオマスを粉砕しやすくすることができる。バイオマス貯蔵ユニット24は、バイオマスを粉砕しやすい状態にして、排出口からフィーダ25に排出(供給)する。フィーダ25に排出されたバイオマスは、粉砕装置26に搬送され、粉砕装置26で粉砕される。この際に、粉砕装置26には、バイオマス貯蔵ユニット24で非炭化温度に加熱されたバイオマス140が供給されるため、少ない動力、かつ短時間で所定の粒径に粉砕することができる。また、バイオマス貯蔵ユニット24は、バイオマス140を非炭化温度の範囲に加熱するため、加熱により発生するタールを一定濃度以下とすることができ(つまり、タールが一定濃度より多く排出されることを抑制することができ)、タールの発生により、バイオマスの搬送効率が低下したり、タールがタンク本体102に付着したりすることを抑制することができる。以上より、バイオマス貯蔵ユニット24、前処理ユニット19及びバイオマス供給装置11は、効率よくバイオマスを粉砕することができる。また、バイオマス貯蔵ユニット24の周囲または内部に加熱する機構を設けるのみであるため装置構成を簡単にすることができる。さらに、タール等の揮発性ガスの発生を抑制することができるため、発生したタールを適切にボイラで燃焼させることができ、装置へのタールの付着を抑制することができ、装置のメンテナンス等も簡単にすることができる。ここで、バイオマスの温度は、150℃以上250℃以下とすることで、タールの発生をより確実に抑制することができ、上記効果をより確実に得ることができるが、非炭化温度とすることで、タール等の揮発性ガスが排出される影響を抑制しつつ、粉砕性を向上できる。
【0052】
また、バイオマス貯蔵ユニット24で、バイオマス140を非炭化温度の範囲に加熱することで、バイオマス140を乾燥させることができる。これにより、バイオマス貯蔵ユニット24は、粉砕装置26への投入時には、バイオマスを乾燥した状態にすることができ、粉砕装置での乾燥を省略することができる。これにより、粉砕装置26に供給する空気として種々の空気を用いることができ、常温の空気も用いることができる。また、粉砕装置の使用温度を低くできることで、より燃えやすい状態である粉砕装置のバイオマスを燃焼してしまう恐れを低減することができる。
【0053】
また、配管106、配管108の配置構成は、特に限定されず種々の配置とすることができるが、タンク本体102に貯蔵されているバイオマス140の移動に影響を与えない配置とすることが好ましい。
【0054】
バイオマスの加熱手段は、バイオマスを非炭化温度の範囲に加熱することができればよく、加熱手段自体は、非炭化温度よりも高い温度になってもよい。
【0055】
また、バイオマス貯蔵ユニット24は、バイオマス等を燃焼することで加熱され、発電ユニットに熱を供給した後の排ガスを加熱手段の加熱源として用いることで、発電システム10の全体としての効率をより高くすることができ、発生した熱を有効活用することができる。
【0056】
また、バイオマス貯蔵ユニット24は、加熱するための加熱源として排ガスを用い、かつ、排ガスによりバイオマスを直接加熱することで、タンク本体104内を不活性雰囲気にすることができ、タンク本体102でバイオマス140が燃焼されることを抑制することができる。
【0057】
また、制御部130は、温度計測部114の計測結果に基づいて、タンク本体104の排出口の近傍のバイオマスが非炭化温度となるように、バルブ110の動作を制御する。なお、制御部130は、目標とする非炭化温度と、その非炭化温度のときに温度計測部114で計測される温度との関係を予め実験等で算出しておき、算出した結果と温度計測部114で計測される温度とに基づいて、各部の動作を制御することが好ましい。これにより、バイオマスを適切に非炭化温度とすることができる。なお、温度計測部114により温度計測位置は、本実施形態のようにタンク本体104の排出口の近傍とすることが好ましいが、本発明はこれに限定されない。また、温度計測部114を設けずに、設定した条件に基づいて加熱動作を制御し、バイオマスを非炭化温度にするようにしてもよい。
【0058】
ここで、バイオマス貯蔵ユニット24では、バイオマスの加熱手段を、タンク本体102の上端の近傍に配管106を設け、タンク本体102の上端から下端に向けてタンク本体102内部に排ガスを供給し、バイオマスを直接加熱する構成としたが本発明はこれに限定されない。また、バイオマスの加熱手段としては、バイオマスを直接加熱する種々の加熱手段を用いることができる。以下、図5を用いてバイオマス貯蔵ユニット及び前処理ユニットの他の実施形態について説明する。
【0059】
まず、図5を用いて、他の実施形態のバイオマス貯蔵ユニット160について説明する。ここで、図5は、バイオマス貯蔵ユニットの他の実施形態の一部を示す模式図である。ここで、図5に示すバイオマス貯蔵ユニット160は、加熱手段162の構成を除いて他の構成は、バイオマス貯蔵ユニット24と同様の構成である。そこで、バイオマス貯蔵ユニット24と同様の構成については、同一の符号を付してその説明を省略し、以下、バイオマス貯蔵ユニット160に特有の点を説明する。図5に示すバイオマス貯蔵ユニット160は、タンク本体102と、加熱手段162とを、有する。
【0060】
加熱手段162は、配管164と、配管166と、を有する。配管164は、一方の端部が、排ガスが流れる配管73と接続しており、他方の端部がタンク本体102の鉛直方向下側の端部と接続している。次に、配管166は、一方の端部が、供給配管28と接続し、他方の端部がタンク本体102の鉛直方向上側の端部と接続している。また、配管164には、バルブが設けられており、バルブの開閉及び開度を調整することで、上記実施形態と同様に、配管164を流れる搬送ガス150の量を調整することができる。
【0061】
加熱手段162は、以上のような構成であり、配管164により、タンク本体102のバイオマスを保持、搬送している領域の鉛直方向下側から当該領域に排ガスを直接供給する。また、タンク本体102に供給された排ガスは、配管166から排出される。このように、加熱手段162は、タンク本体102の鉛直方向下側の端部近傍から、タンク本体102の内部に搬送ガス150(加熱された空気)を供給することでも、タンク本体102にあるバイオマスを直接加熱により加熱することができる。
【0062】
さらに、加熱手段162のように、搬送ガス150(加熱された空気)を鉛直方向下側からタンク本体102に投入することで、タンク本体102に貯蔵されているバイオマスの全域に排ガスを供給することができ、全体を加熱することができる。さらに、最も温度が高い排ガスが、タンク本体102の排出口の近傍に供給することができ、鉛直方向の上側からタンク本体102に投入され、鉛直方向下端から排出されるバイオマスを徐々に加熱することができる。
【0063】
ここで、加熱手段162は、搬送ガス150(加熱された流体)を、貯蔵されているバイオマスの最小流動化速度以上終末速度以下の速度で、タンク本体102に供給することが好ましい。排ガスの流速を上記範囲とすることで、タンク本体102からフィーダ25へのバイオマスの排出に対して悪影響が発生することを抑制することができる。さらに、排ガスの流速を上記範囲とすることで、タンク本体102に供給された搬送ガス150が、タンク本体102に貯蔵されているバイオマスを動かしながら、タンク本体102の全域に行き渡らせることができる。
【0064】
また、上記実施形態では、加熱手段として、排ガス(より具体的には、バイオマス及び化石燃料を燃焼させることで加熱した排ガス)を用いる場合を例として説明したがこれに限定されない。例えば、加熱手段として、バイオマス及び化石燃料の少なくとも一方を燃焼させることで加熱した排ガスを用いてもよい。また、加熱手段として供給する空気は、排ガスに限定されず、加熱した空気を供給できればよい。例えば、別途空気を加熱する加熱機構(ヒータや、熱交換器)を設け、加熱機構で加熱した空気をタンク本体102に供給してもよい。また、加熱手段として、ボイラとは別途燃焼機を設け、当該燃焼機でバイオマスまたは化石燃料で燃焼させ、空気を加熱し、加熱した空気を供給する機構としてもよい。また、タンク本体102でバイオマスを加熱することで発生するガスは、ボイラ本体31に供給することが好ましい。これにより、バイオマスを加熱した際に発生した燃焼成分をボイラ本体31で好適に燃焼させることができる。
【0065】
また、加熱手段162からタンク本体102に供給する空気は、不活性な空気(不活性ガス)とすることが好ましい。これにより、タンク本体102の内部でバイオマスが燃焼してしまう恐れを低減することができる。なお、不活性ガスとは、通常の空気よりも燃焼が発生しにくいガスである。不活性ガスは、例えば、酸素濃度を10%以下のガスであり、低酸素濃度の排ガスも含む。
る。
【0066】
次に、図6を用いて、他の実施形態の前処理ユニット及びバイオマス貯蔵ユニットについて説明する。ここで、図6は、発電システムの他の実施形態の概略構成を示す模式図である。図6に示す発電システム240は、バイオマス・石炭混焼の発電システムである。つまり、図6は、石炭の供給装置の概略構成も示す発電システムである。なお、図6では、発電装置の図示を省略している。
【0067】
図6に示すように、発電システム240は、バイオマスを貯蔵し、排出前に非炭化温度に加熱する前処理ユニット19と、前処理ユニット19で非炭化温度に加熱したバイオマスを粉砕する粉砕装置26と、粉砕装置26で粉砕したバイオマスを燃焼バーナ33に供給する配管249と、石炭250を受け入れるホッパ251a、251bを備えた石炭粉砕装置252a、252bと、石炭粉砕装置52a、52bにて得られた石炭粉体を燃焼バーナ34に供給する配管253と、を備える。また、発電システム240は、さらに、ボイラ本体31、対流伝熱部として排ガスの熱を回収するための、過熱器43,44、再熱器45,46等、図1のボイラ30と同様の構成の各部を備えている。
【0068】
また、ボイラ本体31には、炉本体の炉出口に設けた煙道の途中には空気加熱器(AH)262が配置され、空気加熱器262を通った燃焼排ガスは、灰捕集装置等の排ガス処理設備(図示せず)を経て大気放出される。空気加熱器262によって外気63を加熱して生成した高温空気264は石炭粉砕装置252a、252bに供給され、石炭の乾燥に用いられる。また燃焼排ガスの一部265は、誘引ファン266により粉砕装置26に供給され、バイオマスの分級に用いられる。
【0069】
このように本発明に係るバイオマス貯蔵タンクを備えた発電システムとすることで、バイオマス粉砕が良好となる、つまり、効率よく粉砕することができる。これにより、その粉砕物を燃焼装置に直接導入して燃焼させる場合においても、燃焼性能を低下させることなく安定燃焼が可能である。また、押込みガスの全体量は従来と変化することがないので、一次空気の変動がなく、燃焼設備にて必要とされる空気量の範囲内で、バイオマス粉砕装置を安定して運転することが可能である。
【産業上の利用可能性】
【0070】
本発明に係るバイオマス貯蔵ユニット及び前処理ユニットは、バイオマスを燃料して用いる燃焼システムも適用することができる。
【符号の説明】
【0071】
10 発電システム
11 バイオマス供給装置
19 前処理ユニット
20 貯蔵サイロ
21 空気供給配管(空気供給系)
22 払い出しコンベア
23 搬送コンベア
24 バイオマス貯蔵ユニット(ホッパ)
25 フィーダ
26 粉砕装置(ミル)
27 粉体分離装置
28 供給配管
30 ボイラ
31 ボイラ本体
32 燃焼装置
33 化石燃料用の燃焼バーナ
34 バイオマス用の燃焼バーナ
39 空気供給配管
42 煙道
51 エアヒータ
52 除塵装置
53 ブロア
60 発電装置
62 空気配管ユニット
102 タンク本体
104 加熱手段
106、108 配管
110 バルブ
114 温度計測部
130 制御部

【特許請求の範囲】
【請求項1】
バイオマスを粉砕する粉砕手段に供給するバイオマスを貯蔵するバイオマス貯蔵ユニットであって、
バイオマスを貯蔵するタンク本体と、
前記タンク本体のバイオマスが貯蔵されている領域を含む領域を直接加熱する加熱源を備え、前記加熱源により前記タンク本体に貯蔵されているバイオマスを非炭化温度の範囲で加熱する加熱手段と、を有することを特徴とするバイオマス貯蔵ユニット。
【請求項2】
前記加熱手段は、加熱源として、加熱された流体を前記タンク本体の内部に供給することを特徴とする請求項1に記載のバイオマス貯蔵ユニット。
【請求項3】
前記加熱手段は、前記加熱源として、前記バイオマス及び化石燃料の少なくとも一方を燃焼させて温度が上昇された空気または排ガスを用いることを特徴とする請求項2に記載のバイオマス貯蔵ユニット。
【請求項4】
前記加熱手段は、前記加熱された流体を前記タンク本体の鉛直方向下側の端部近傍から供給し、前記タンク本体の鉛直方向上側の端部近傍から排出することを特徴とする請求項2または3に記載のバイオマス貯蔵ユニット。
【請求項5】
前記加熱手段は、前記加熱された流体を貯蔵されているバイオマスの最小流動化速度以上終末速度以下の速度で、前記タンク本体に供給する請求項4に記載のバイオマス貯蔵ユニット。
【請求項6】
前記加熱手段は、前記加熱された流体を前記タンク本体の鉛直方向上側の端部近傍から供給し、前記タンク本体の鉛直方向下側の端部近傍から排出することを特徴とする請求項2または3に記載のバイオマス貯蔵ユニット。
【請求項7】
前記加熱手段は、前記加熱された流体として、不活性ガスを用いることを特徴とする請求項2から6のいずれか1項に記載のバイオマス貯蔵ユニット。
【請求項8】
前記加熱手段は、前記バイオマスを150℃以上250℃以下に加熱することを特徴とする請求項1から7のいずれか1項に記載のバイオマス貯蔵ユニット。
【請求項9】
前記タンク本体のバイオマスを排出する領域の雰囲気あるいはバイオマス自身の温度を検出する温度検出部と、
前記温度検出部の検出結果に基づいて、前記加熱手段を制御し、前記タンク本体に貯蔵されているバイオマスを非炭化温度の範囲で加熱する制御部と、をさらに有することを特徴とする請求項1から8のいずれか1項に記載のバイオマス貯蔵ユニット。
【請求項10】
バイオマスを粉砕する粉砕手段にバイオマスを供給する前処理ユニットであって、
請求項1から9のいずれか1項に記載のバイオマス貯蔵ユニットと、
前記バイオマス貯蔵ユニットにバイオマスを供給する貯蔵前供給手段と、
前記バイオマス貯蔵ユニットに貯蔵されたバイオマスを粉砕手段に供給する貯蔵後供給手段と、を有することを特徴とする前処理ユニット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−78019(P2012−78019A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2010−223901(P2010−223901)
【出願日】平成22年10月1日(2010.10.1)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】