説明

バックグラウンドめっきの抑制

【課題】半導体上のバックグラウンドめっきを抑制する方法を提供する。
【解決手段】方法は、高い光透過性を有する相変換レジストを誘電体上に選択的に堆積させてパターンを形成すること、そのレジストで覆われていない誘電体の部分をエッチング除去すること、並びにその誘電体のエッチングされた部分上に金属シード層を堆積させることを含む。次いで、光誘導めっきによって、その金属シード層上に金属層が堆積させられる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はバックグラウンドめっき(background plating)を抑制する方法に関する。より詳細には、本発明は、高い光透過性を有する相変換レジスト(phase change resist)を使用してバックグラウンドめっきを抑制する方法に関する。
【背景技術】
【0002】
めっきが望まれない加工対象物の領域上をめっきすることは、バックグラウンドめっきと称される場合がある。このバックグラウンドめっきは多くの場合、例えば、めっきされた高精密電気部品の製造におけるような、選択的なめっきが望まれる加工対象物の機能または美観に悪影響を及ぼす。このようなバックグラウンドめっきは加工対象物の電気的短絡および加工対象物が使用される電気装置の機能障害をもたらしうる。さらに、バックグラウンドめっきは結果的に、めっき物質の消耗ももたらす。このような消耗は、プロセスおよび最終製品のコストを増大させる。めっきされる具体的な金属が金、銀、白金またはパラジウムのような貴金属である場合には、増大するコストは非常に大きいものでありうる。バックグラウンドめっきの領域からの金属の回収が望まれかつ実際的であるこれらの場合においてさえ、金属の回収は、最終製品を製造するための全体的なプロセスの複雑さおよびコストを追加する。
【0003】
選択的にめっきする多くの従来法は複数の工程を必要とする。例えば、めっきが望まれない加工対象物の領域を覆うために固体マスクが使用される場合には、マスクが加工対象物に適用され、その加工対象物が次いで選択的にめっきされ、マスクが取り除かれる。しかし、マスクを製造し、加工対象物に適用しそして取り除くことに関連してコストと複雑さが存在する。さらに、加工対象物に適用されそして加工対象物から除かれるのに、固体マスクは常に容易あるいは可能なわけではない。マスクされることが望まれる加工対象物の領域に到達するのが難しいかまたは到達可能でない場所があることは事実である。このような加工対象物の例には、導体物質または半導体物質を被覆する誘電層における傷、クラックまたはピンホールがバックグラウンドめっきの部位にある光起電力素子がある。このような欠陥は小さく、そしてその部位へのマスク適用は実際的ではない。さらに、その欠陥は、その顕微鏡的サイズのために多くの場合肉眼で見えず、作業者は通常、金属がめっきされた後になるまでその欠陥に気づかない。よって、得られる物品は商業的な使用に適合しない。
【0004】
光起電力素子、例えば太陽電池は、多くの場合、単一の大きなPN接合を形成する半導体ウェハを含む。その接合に入射する太陽光のような電磁放射線は、その素子において電気キャリアを生じさせ、電流を発生させ、これが集められて外部回路に運ばれる。発生した電流は入射する放射線におおむね比例する。PN接合の2つの側とオーム接触している金属パターンは電流を集める。このような金属パターンは、発生した電流の抵抗損失を最小化するために低い抵抗の経路を提供するのを必要とする。入射する放射エネルギーを妨害する表面積を最小化する、すなわち、電流発生目的のためのエネルギー損失を最小化するように、金属パターンはその物理的広がり、特に素子の前面上での広がりは限定されなければならない。典型的には、前面金属パターンは非常に高い導電物質の狭いストリップを含む。導電物質の狭いストリップの間は、薄い誘電物質コーティングのドープされた半導体物質、例えば、ドープされたシリコンである。誘電層は200nm〜500nmの厚みを有しうる。この誘電層は太陽電池の反射防止層として機能しうる。このような誘電物質の例には、二酸化ケイ素および窒化ケイ素がある。
【0005】
光起電力素子の製造中に、素子の金属パターンを形成する前に、ドープされた半導体物質上に誘電層が形成される。誘電層の形成は化学蒸着または物理蒸着によってなされうる。誘電層が堆積されたら、従来の画像形成方法によってパターンが形成され、従来の方法を用いてそのパターンに金属が堆積させられ、それを導電性にする。パターンの金属化中に、誘電層における欠陥のせいで望まれないバックグラウンドめっきが起こることがあり、その結果、商業的な使用に不適切な物品を生じさせうる。上述のような欠陥は、典型的には金属化の後になるまで気づかれない。
【0006】
クラック、傷またはピンホールのような欠陥は半導体のドープされたエミッタ層を露出させ、バックグラウンドめっきのための部位として機能し、これにより望まれる選択的なめっきをだめにする。このような欠陥は、誘電層の脆弱さおよび薄さのために、製造プロセスおよび半導体の取り扱いの1以上の工程中に起こると考えられる。この欠陥は小さく、その多くは顕微鏡サイズなので、そのバックグラウンドめっき問題に取り組むために従来の固体マスクを適用するのは実際的ではない。このような固体マスクの多くは、バックグラウンドめっきがマスクと誘電体との間に形成される空間で起こりうるような誘電体と適合しない。さらに、このようなマスクは充分な光を通過させてドープされた半導体に到達させ、光誘導および光アシストプロセスにおける金属めっきのために充分な電流をもたらすのを可能にしない。固体マスクは、概して、光の通過に対して不透明である物質から製造される。
【0007】
米国特許第4,217,183号は、集積回路および回路板に使用されるウェハチップの金属化において、電気伝導表面、例えばカソード上のバックグラウンドめっきを最小化するマスクレス方法を開示する。カソードは金属、光導電体または、絶縁体と導電体との複合構造物であってよい。その特許は、カソードとアノードとをニッケルまたは銅電解質中に配置し、めっきが望まれるカソードの領域を選択するように電解質を通るようにアルゴンレーザーを用いるようなエネルギーのビームの焦点を合わせ、カソードとアノードとの間に電位を生じさせることを開示する。その特許は、バックグラウンドめっきを最小化するためのマスクレス方法を開示するが、このような方法は依然として半導体の誘電層における欠陥により生じるバックグラウンドめっきを解決するのに適することができない。概して、その欠陥は肉眼で観察できない。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許第4,217,183号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
よって、その欠陥を回避するのを試みつつ、エネルギーのビームを選択的に適用するのは実際的ではないであろう。さらに、エネルギーのビームを向かわせるためのパターンが、誘電物質を除いた加工対象物上に形成されたとしても、そのビームからの充分なエネルギーは、そのパターンの周辺上の誘電層における顕微鏡的な欠陥を覆う場合があり、結果として悪化したバックグラウンドめっきをもたらしうる。よって、産業界において、半導体上のバックグラウンドめっきを抑制する方法について必要性がある。
【課題を解決するための手段】
【0010】
方法は、a)nドープされた前面およびpドープされた背面を含むドープされた半導体と、ドープされた半導体のnドープされた前面を覆う誘電層とを提供し;b)30%以上の光透過性を有する相変換レジストを誘電層上に選択的に堆積させて、誘電層上にパターンを形成し;c)相変換レジストで覆われていない誘電層の部分をエッチング除去して、ドープされた半導体のnドープされた前面の部分を露出させ;d)ドープされた半導体のnドープされた前面の露出した部分上に金属シード層を堆積させ;およびe)光誘導めっきによって金属シード層上に金属層を堆積させる;ことを含む。
【発明の効果】
【0011】
誘電層上のバックグラウンドめっきは商業的に許容できない製品を生じさせる。残念なことに、バックグラウンドめっきをもたらす誘電層の欠陥は、典型的には、その顕微鏡的サイズのために肉眼で観察可能ではない。よって、作業者は典型的には、誘電層上のバックグラウンドめっきが容易に観察可能になる金属化の後になるまで、その欠陥には気づかない。多くの従来のマスキング方法は特に、光誘導めっきについては適切ではない、というのは、そのマスクは充分な量の光が通過し、ドープされた半導体に接触して電流を生じさせるように充分に透明ではないからである。さらに、多くの従来の非マスキング方法は充分に適していない場合がある。残念なことに、誘電層から望まれないめっきを除去する商業的に実際的な方法はなく、得られる生成物は商業的使用に不適切である。
【0012】
30%以上の光透過性を有する相変換レジストをドープされた半導体の誘電体上に堆積させる方法は、充分な量の光を相変換レジストを通過させ、ドープされた半導体に到達させることにより、バックグラウンドめっきで遭遇する問題に取り組む。その光は、相変換レジストによって覆われていない部分においてドープされた半導体上の金属めっきが可能であるように、ドープされた半導体に電流を誘導する。誘電体上の相変換レジストはめっきレジストとして機能し、誘電体上のバックグラウンドめっきを抑制し、これにより金属めっきはドープされた半導体の選択部分に限定される。相変換レジストは液体、半固体またはゲルとして従来の装置を用いて誘電体上に堆積されうる。相変換レジストは傷、クラックおよびピンホールを満たすことができ、これにより誘電体のこのような領域における望まれないバックグラウンドめっきを妨げうる。さらに、相変換レジストがエッチングレジストとして機能し、リソグラフィープロセスにおいて使用される多くの従来の酸および緩衝酸化物エッチング剤に適合可能である。さらに、金属めっきプロセスは等方性であり、かつめっきされる金属の厚みは典型的には誘電層の厚みよりも大きいので、相変換レジストは金属の側方成長を抑制するように機能し、めっきされる金属による光の望まれないシャドウイング(shadowing)を低減する。これは、金属成長のために、ドープされた半導体層に入射する光の損失を妨げる。
【発明を実施するための形態】
【0013】
本明細書を通じて使用される場合に、用語「堆積」および「めっき」は交換可能に使用される。用語「電流トラック」および「電流ライン」は交換可能に使用される。用語「光誘導めっき(light induced plating)」は「光アシストめっき(light assisted plating)」とも称される。用語「選択的堆積」は、基体上の特定の所望の領域に堆積が起こることを意味する。用語「半固体」は固体と液体の双方の特性を有するあらゆる物質を意味する。用語「ゲル」は液体中に分散された固体のコロイド状懸濁物を意味する。用語「透過性」は物質を通過する赤外光、可視光、紫外光、X−線およびガンマ線などの放射エネルギーの割合を意味する。用語「等方性」は全ての方向に同じであること;方向に関して不変であることを意味する。用語「ルクス=lx」は1ルーメン/mに等しい照明の単位であり、1ルクス=1.46ミリワットの放射電磁(EM)力(540テトラヘルツの周波数における)。文脈が明らかに他に示さない限りは、次の略語は次の意味を有する:℃=摂氏度;g=グラム;mL=ミリリットル;L=リットル;A=アンペア;m=メートル;mm=ミリメートル;dm=デシメートル;cm=センチメートル;μm=マイクロメートル;nm=ナノメートル;min=分;sec=秒;UV=紫外;mJ=ミリジュール=ジュールの1/1000;1erg=1ダイン・cm=10−7ジュール。
【0014】
光起電力の半導体および太陽電池は単結晶または多結晶または非晶質シリコンウェハから構成されうる。以下の記載はシリコンウェハに関するものであるが、他の好適な半導体ウェハ、例えば、ガリウム−ヒ素、ケイ素−ゲルマニウム、およびゲルマニウムなども使用されうる。シリコンウェハが使用される場合には、それらは典型的にはp−型ベースドーピングを有するが、n−型ベースドーピングを有してもよい。
【0015】
半導体ウェハは円形、正方形もしくは矩形の形状であることができ、またはあらゆる他の好適な形状であることができる。このようなウェハは様々な直径を有しうる。例えば、円形ウェハは150nm以上、200nm以上、300nm以上、400nm以上の直径を有しうる。
【0016】
背面全体が金属被覆されうるか、または背面の一部分が、例えば、グリッドを形成するように金属被覆されうる。このような背面金属化は様々な技術によってもたらされることができ、かつこのような背面金属化はウェハの前面の金属化の前になされうるか、またはウェハの前面の金属化と同時になされうる。典型的には、ウェハの背面は前面の前に金属化される。ある実施形態においては、金属被覆物は電気伝導ペースト、例えば、銀含有ペースト、アルミニウム含有ペーストまたは銀およびアルミニウム含有ペーストなどの形態で背面に適用されるが、ニッケル、パラジウム、銅、亜鉛またはスズのような金属を含む他のペーストも使用されうる。このような導電ペーストは典型的にはガラスマトリックスおよび有機バインダー中に埋め込まれた導電性粒子を含む。導電ペーストはスクリーン印刷のような様々な技術によってウェハに適用されうる。ペーストが適用された後、有機バインダーを除去するために焼成される。焼成は典型的には600℃〜800℃の温度で行われる。アルミニウムを含む導電ペーストが使用される場合には、アルミニウムはウェハの背面に部分的に拡散するか、または銀も含むペースト中に使用される場合には、銀との合金を形成しうる。このようなアルミニウム含有ペーストの使用は抵抗接触を向上させることができ、かつ「p+」ドープされた領域を提供しうる。アルミニウムまたはホウ素の先の適用と、その後の相互拡散によって、重度にドープされた「p+」型領域(「p++」型領域)も製造されうる。典型的には、重度にドープされた「p+」型領域が造られる。ある実施形態においては、背面金属被覆物の適用前にアルミニウム含有ペーストが背面に適用され、焼成されうる。焼成されたアルミニウム含有ペーストの残留物は、背面金属被覆物の適用前に場合によっては除去されうる。別の実施形態においては、シード層がウェハの背面上に堆積されることができ、無電解または電解めっきによって金属被覆物がシード層上に堆積されうる。ウェハの背面上のシード層上でのこのような金属堆積は、光誘導または光アシストめっき方法を用いてウェハの前面上の金属堆積と同時に行われうる。
【0017】
ウェハの前面は場合によっては、反射を低減する向上された光入射形状を表面に付与するために、結晶配向テクスチャーエッチングにかけられうる。半導体接合を生じさせるために、リンの拡散または鉄の注入がウェハの前面で起こり、nドープされた領域を生じさせ、かつPN接合をウェハにもたらす。nドープされた領域はエミッタ層とも称されうる。nドープされた領域は「n+」ドープされうるか、または重度に「n+」ドープされ(「n++」ドープされ)うる。典型的には、エミッタ層は重度に「n+」ドープされうる。
【0018】
誘電層はウェハの前面またはエミッタ層に追加される。このような誘電層は不動態化層および反射防止層の双方として機能しうる。好適な誘電層には、限定されないが、SiOのような酸化ケイ素層、Siのような窒化ケイ素層、酸化ケイ素層と窒化ケイ素層との組み合わせ、並びに酸化ケイ素層、窒化ケイ素層とTiOのような酸化チタン層との組み合わせが挙げられる。場合によっては、SiOはSi上のキャッピング層として使用されうる。上記式において、xは酸素原子の数を表す整数である。典型的にはxは2である。このような誘電層は、様々な蒸着方法、例えば、化学蒸着および物理蒸着によるなどの多くの技術によって堆積させられうる。
【0019】
30%以上の光透過性を有する相変換レジスト(phase change resist)は選択的に誘電層上に堆積されて、電流トラックおよびバスバー(bus bars)がウェハの前面上に形成されるべき輪郭を描くパターンを形成する。典型的には、光透過性は35%〜100%、または例えば40%〜95%、または例えば50%〜80%である。相変換レジストは、インクジェット、エアゾール噴射、スクリーン印刷またはリソグラフィーによって選択的に誘電体に適用されうる。従来のインクジェット、エアゾール、スクリーン印刷およびリソグラフィー方法が使用されうる。また、スタンピング(stamping)またはソフトリソグラフィーが使用されうる。
【0020】
相変換レジストを透過した光の波長は少なくとも300nmおよびそれより大きい範囲である。典型的には、波長の範囲は350nm〜1500nm、より典型的には400nm〜1200nmである。
【0021】
相変換レジストが硬化可能である場合には、そのレジストは電流トラックおよびバスバーのための誘電層の部分をエッチング除去する前に硬化させられる。硬化は従来の硬化装置を用いて、光または熱のような化学線によってなされうる。典型的には、硬化はUV光を用いてなされる。
【0022】
相変換レジストで被覆されていない誘電体の部分は、次いで、エッチングで除去されてウェハのnドープされたエミッタ層を露出させる。nドーピングはn+またはn++であることができる。典型的には、エミッタ層はn++ドープされる。フッ化水素酸、リン酸およびその混合物のような鉱酸が、誘電層をエッチング除去するために使用されうる。このような酸は誘電被覆物を除去するために使用される。さまざまな濃度が使用されうる。誘電層をエッチング除去するために、緩衝酸化物エッチング剤(buffered oxide etch)も使用されうる。相変換レジストは酸エッチングレジストまたは緩衝酸化物エッチングレジストとして機能し、かつ酸または緩衝酸化物エッチング剤との接触に耐えうる。
【0023】
次いで、溝パターンが前面上に画定される。溝パターンは反射防止(または誘電)層を通ってウェハの半導体本体まで到達する。溝は、ウェハの半導体本体の0.2μm〜20μmの深さまで到達しうる。より深いまたはより浅い溝の深さが使用されうる。このような溝の幅は20μm〜150μmであり得る。典型的にはそれぞれの溝の間の距離は1mm〜10mmである。
【0024】
ウェハの前面は金属化パターンを含む。例えば、ウェハの前面は集電ラインおよび電流バスバーで構成されうる。集電ラインは典型的にはバスバーを横切り、かつ典型的には電流バスバーに対して相対的に微細な構造(すなわち、寸法)を有する。
【0025】
相変換レジストは30%以上の光透過性をもたらす成分を含み、かつ鉱酸エッチング剤および緩衝酸化物エッチング剤に耐性のレジストを提供する。このような物質には、限定されないが、天然ワックス、化学修飾ワックスおよび合成ワックスのようなワックス、並びにポリアミド樹脂が挙げられる。天然ワックスには、限定されないが、カルナバワックス、モンタンワックス、植物ワックス、脂肪酸ワックスが挙げられる。合成ワックスには、限定されないが、パラフィンワックス、微結晶ポリエチレンワックス、ポリプロピレンワックス、ポリブチレンワックス、ポリエチレンアクリル系ワックス、ポリエステルワックスおよびフィッシャートロプシュ(Fischer−Tropsch)ワックスが挙げられる。化学修飾ワックスにはワックスの誘導体が挙げられる。典型的には、使用されるワックスは脂肪酸ワックスおよびパラフィンワックス並びにこれらの誘導体である。より典型的には、パラフィンワックスが使用される。相変換レジストに使用されうるポリアミド樹脂の例は、米国特許第5,645,632号;第5,783,657号;第5,998,570号;第6,268,466号;第6,399,713号;第6,492,458号;第6,552,160号;第5,981,680号;第4,816,549号;第6,870,011号;第6,864,349号;および第6,956,099号;並びに、米国特許出願公開第20040186263号に開示されており、これらは参照することによりその全体が本明細書に組み入れられる。市販のポリアミド樹脂の例は、Sylvaclear(登録商標)2612、Sylvagel(登録商標)5600、Sylvagel(登録商標)6100、Sylvaclear(登録商標)100、Sylvaclear(登録商標)100LM、Sylvaclear(登録商標)C75v、Uniclear(登録商標)100およびUniclear(登録商標)100vである。これら全ては米国、フロリダ州、ジャクソンビルのアリゾナケミカルカンパニーから入手可能である。
【0026】
ある種類のポリアミド樹脂はエステル末端ポリアミド(ETPA)である。ETPAには、式(1):
【化1】

の少なくとも1種の化合物が挙げられ、
式中、nは、エステル基がエステルおよびアミド基の合計の10%〜50%を構成するような繰り返し単位の数を指定し;Rはそれぞれの出現ごとに独立して、少なくとも4つの炭素原子を含むアルキルまたはアルケニルから選択され;Rはそれぞれの出現ごとに独立して、C4−42炭化水素基から選択されるが、ただしR基の少なくとも50%は30−42の炭素原子を有しており;Rはそれぞれの出現ごとに独立して、少なくとも2つの炭素原子を水素原子と共に含み、かつ場合によって1以上の酸素および窒素原子を含む有機基から選択され;並びにR3aはそれぞれの出現ごとに独立して、RとR3aとの双方が結合しているN原子が、R3a−N−Rによる部分で特定される複素環構造の部分であるようなRもしくは他のR3aへの直接結合、水素、およびC1−10アルキルから選択され、R3a基の少なくとも50%が水素である。ETPAポリアミドを製造する方法は米国特許第5,783,657号に開示されており、これはその全体が参照により本明細書に組み込まれる。
【0027】
別の種類のポリアミド樹脂は、第3級アミド末端ポリアミド(ATPA)である。ATPAには、式(2):
【化2】

の少なくとも1種の化合物が挙げられ、
式中、mは、末端アミド基(すなわち、Rが直接結合しているアミド基)がATPAのアミド基の合計の10%〜50%を構成するような繰り返し単位の数を指定し;Rはそれぞれの出現ごとに独立して、C1−22炭化水素基から選択され;Rはそれぞれの出現ごとに独立して、C2−24炭化水素基から選択され;Rはそれぞれの出現ごとに独立して、少なくとも2つの炭素原子を水素原子と共に含み、かつ場合によって1以上の酸素および窒素原子を含む有機基から選択され;並びにR6aはそれぞれの出現ごとに独立して、RとR6aとの双方が結合しているN原子が、R6a−N−Rによる部分で特定される複素環構造の部分であるようなRもしくは他のR6aへの直接結合、水素、およびC1−10アルキルから選択される。ATPAポリアミドを製造する方法は、米国特許第6,268,466号に開示されており、これはその全体が参照により本明細書に組み込まれる。
【0028】
さらなる種類のポリアミド樹脂は、ポリアルキレンオキシ末端ポリアミド(PAOPA)である。PAOPAは式:炭化水素−ポリエーテル−ポリアミド−ポリエーテル−炭化水素:の少なくとも1つのブロックコポリマーを含む。ポリアミドブロックには、式(3):
【化3】

のブロックが挙げられ、
式中、Rは、炭化水素ジラジカル(diradical)であり、例えば、ダイマー酸から2つのカルボン酸基が除かれる場合に得られるジラジカルをR基が含むダイマー酸由来のような炭化水素ジラジカルであり;Rは炭化水素およびポリエーテルジラジカルから選択され;ポリエーテルブロックは式(4):−(R−O)−:のブロックを含み、式中、Rは炭化水素であり;C1−22炭化水素基はコポリマーのそれぞれの末端に位置し、炭化水素基は場合によってはアルキル、アルアルキル、アリールおよびアルカリール基から選択されうる。PAOPAを製造する方法は、米国特許第6,399,713号に開示されており、これはその全体が参照により本明細書に組み込まれる。
【0029】
金属堆積のために適切な電流が発生するのに充分な光が相変換レジストを通過してドープされた半導体に到達するように、相変換レジストが充分に透過性であるような量のワックスおよびポリアミド樹脂が相変換レジスト中に含まれる。ワックスおよびポリアミド樹脂は、10重量%〜100重量%、または例えば20重量%〜80重量%、または例えば30重量%〜70重量%、または例えば40重量%〜60重量%の量であり得る。
【0030】
任意に、1種以上の添加剤がレジスト組成物に含まれうる。このような添加剤には、限定されないが、架橋剤、酸化防止剤、湿潤剤、可塑剤、無機充填剤、染料、顔料、蛍光増白剤、増粘剤および光開始剤が挙げられる。従来の架橋剤、光開始剤および他の添加剤が使用されうる。添加剤は、それらが相変換レジストの光透過性およびドープされた半導体ウェハでの電流発生を悪化させないような量で含まれる。
【0031】
相変換レジストが硬化可能な場合には、1種以上の架橋剤が含まれる。架橋剤には、1官能性モノマーおよびオリゴマー、2官能性モノマーおよびオリゴマー、並びに3官能性モノマーおよびオリゴマーが挙げられる。このような架橋剤は、20重量%〜80重量%、または例えば30重量%〜70重量%の量で相変換レジスト中に含まれる。
【0032】
架橋剤の代表的な例には、メタクリル酸アリル、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸ポリエチレングリコール、ジメタクリル酸1,3−ブチレングリコール、ジメタクリル酸1,6−ヘキサンジオール、ジメタクリル酸ネオペンチルグリコール、ジメタクリル酸ポリプロピレングリコール、2−ヒドロキシ1,3−ジメタクリルオキシプロパン、ジアクリル酸エチレングリコール、ジアクリル酸ジエチレングリコール、ジアクリル酸トリエチレングリコール、ジアクリル酸ポリエチレングリコール、ジアクリル酸1,3−ブチレングリコール、ジアクリル酸1,6−ヘキサンジオール、ジアクリル酸ネオペンチルグリコール、ジアクリル酸ポリプロピレングリコール、アクリル酸イソデシル、ジアクリル酸イソデシル、アクリル酸ステアリル、メタクリル酸ステアリル、ジアクリル酸トリプロピレングリコール、ジアクリル酸プロポキシ化ネオペンチルグリコール、トリアクリル酸トリメチロールプロパン、トリメタクリル酸トリメチロールプロパン、トリアクリル酸テトラメチロールメタン、テトラアクリル酸テトラメチロールメタン、ジアクリル酸ポリエステルおよびジメタクリル酸ポリエステルが挙げられる。
【0033】
相変換レジスト中に含まれうる光開始剤には、限定されないが、ベンゾインエーテル類、ベンゾフェノン類、チオキサントン類、ケタール類、およびアセトフェノン類が挙げられる。光開始剤は、1重量%〜15重量%、または例えば5重量%〜10重量%の量で含まれる。
【0034】
光開始剤の代表的な例には、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、ミヒラー(Michler’s)ケトン、クロロチオキサントン、2−イソプロピルチオキサントン、ドデシルチオキサントン、ベンジルジメチルケタール、アセタフェノンジエチルケタール、1−ヒドロキシ−シクロヘキシル−フェニル−ケトンおよび2−ヒドロキシル−2−メチルフェニルプロパノンが挙げられる。
【0035】
エッチングレジストとして機能することに加えて、相変換レジストはバックグラウンドめっきを妨げるためにめっきレジストとして機能する。相変換レジストは液体またはゲルのような半固体として誘電層上に堆積される。典型的には、相変換レジストは70℃〜120℃の温度で堆積される。相変換レジストが液体として堆積される場合には、それは誘電体上で、半固体、ゲルまたは固体のエッチングおよびめっきレジストを形成するのに充分に冷却される。相変換レジストは、誘電層におけるピンホール、クラックおよび傷を密封し、よって誘電体上のあらゆる望まれないバックグラウンドめっきを抑制する。さらに、そのレジスト上に金属は堆積せず、よってそれはバリアとして機能する。さらに、金属めっきは等方性であって、かつめっきされる金属の厚みは典型的には誘電層の厚みよりも大きいので、相変換レジストは金属の側方成長を抑制するように機能し、めっきされる金属による光の望まれないシャドウイングを低減させる。これは、金属成長に起因した、ドープされた半導体層での入射光の損失を抑制する。相変換レジストは、少なくとも10μm、または例えば10μm〜50μm、または例えば15μm〜30μmの厚みで誘電体上に堆積される。
【0036】
相変換レジストが誘電体に選択的に適用されて誘電体上にパターンを形成した後、相変換レジストによって覆われていない誘電体の部分がエッチングにより除去されて、ドープされた半導体ウェハのnドープされたエミッタ層を露出させるように溝を形成する。誘電層の溝は電流トラックおよびバスバーの部分に対応する。次いで、ドープされた半導体の露出したnドープされたエミッタ層上に、第1の金属層または金属シード層が堆積される。このような金属シード層は、第2の金属層のための、銀もしくは銅移行に対するバリアのための、および均一な第2の金属層のめっきを開始するための導電層のための固着点を提供する。金属シード層はニッケル、パラジウムまたは銀であり得る。ニッケルおよびパラジウムは従来の無電解方法、並びに従来の物理蒸着方法を用いることによって、溝に堆積されうる。銀は従来の物理蒸着によってまたは導電ペーストとして堆積されうる。従来の無電解組成物が使用されることができ、並びに従来の銀導電ペーストが使用されうる。このような金属シード層は0.01μm〜10μm、または例えば0.5μm〜5μmの厚みで堆積されうる。
【0037】
任意に、金属シード層は焼結されて、金属シリサイド、例えば、ニッケル、パラジウムもしくは銀シリサイドを形成しうる。焼成は、300℃〜800℃の温度でなされうる。焼結前に、ドープされた半導体ウェハから相変換レジストがはぎ取られうる。あるいは、レジストを備えたウェハは焼結オーブン内に置かれることができ、そこで焼結プロセス中にレジストが燃やされウェハから除かれる。焼結後、ウェハは室温まで冷却されて、相変換レジストは選択的にウェハに再適用される。
【0038】
光と外部電流との双方が使用される光誘導めっきによって第2の金属層が金属シード層上に堆積される。光は連続であってもパルスであってもよい。相変換レジストを備えたドープされた半導体は金属めっき組成物中に浸漬されて、ドープされた半導体に光が適用される。提供される電位はさまざまな電流密度を有しうる。典型的な電流密度は0.1A/dm〜10A/dm、より典型的には、0.1A/dm〜5A/dmである。具体的な電流要求は、ドープされた半導体ウェハの具体的なサイズに依存する。ウェハの前面が照明され、外部電位が50ミリアンペア以下まで低減される場合には、めっきは正常にその前面上で続くが、ウェハの背面にはめっきは起こらない。前面の照明は背面めっきの均一性を向上させ、シード層を通って電気接点から離れた位置までの抵抗降下に関連する困難の全てを克服する。めっきプロセスは、場合によっては、1以上の逆めっき工程、例えば、パルス周期逆めっきプロセスなどを含むことができる。第2の金属層の厚みは、5μm〜50μm、または例えば10μm〜30μm、または例えば15μm〜25μmの範囲である。
【0039】
第2の金属の金属めっきプロセスに使用されうる光には、限定されないが、可視光、赤外線、UV光、およびX線が挙げられる。光源には、限定されないが、白熱灯、赤外ランプ、蛍光ランプ、ハロゲンランプおよびレーザーが挙げられる。半導体に適用される光の量は500ルクス〜20,000ルクス、または例えば、1000ルクス〜15,000ルクス、または例えば5000ルクス〜10,000ルクスである。
【0040】
金属層はあらゆる好適な導電金属であり得る。典型的には、金属は銀または銅である。使用されうる金属組成物には、無電解、浸漬または電解組成物が挙げられる。無電解金属めっき組成物は還元剤を含んでもよく、または含まなくてもよい。市販の無電解銀組成物の例としては、Silveron(商標)Ag100およびSilver Glo(商標)3kが挙げられる。市販の無電解銅組成物の例としては、Cuposit(商標)328L、Circuposit(商標)880、3361−1、253、3350、4500、3350−1および4750が挙げられる。商業的に有用な銀電気めっき浴の例は、ENLIGHT(商標)600銀メッキとして入手可能である。これらすべては米国、マサチューセッツ州、マルボロのロームアンドハースエレクトロニックマテリアルズLLCから入手可能である。
【0041】
相変換レジストを備えたパターン形成されたドープされた半導体ウェハはめっきセル中に収容されためっき組成物中に浸漬される。半導体ウェハを光エネルギーで照明するために光源が配置される。相変換レジストは30%以上の光透過性を有するので、金属めっきが起こるのに充分な光が相変換レジストを通過する。パターン形成されたドープされた半導体ウェハがシリコン太陽電池である場合には、光源は例えば、シリコン太陽電池が光起電力的に感受性である太陽光スペクトルのエネルギーと類似したエネルギーを提供する石英−ハロゲンランプであり得る。様々な他の光源が使用されることができ、例えば、限定されないが、250ワットランプのような白熱灯、水銀灯、蛍光管ランプ、および発光ダイオード(LED)が挙げられうる。光エネルギーは連続またはパルスであり得る。パルス照明は、例えば、光を機械式チョッパーで遮断することにより達成されうる。
【0042】
めっきセルはめっき組成物に対して化学的に不活性であり、かつ光エネルギーに対して透明な物質のものである。あるいは、ドープされた半導体ウェハがめっきセル中で水平に配置されることができ、かつめっき組成物の上または下から照明されうる場合には、めっきセルは透明である必要はない。
【0043】
ドープされた半導体ウェハの前面を光エネルギーで照明することにより、相変換レジスト組成物で被覆された部分以外の前面上でめっきが起こる。衝突する光エネルギーが太陽電池において電流を生じさせる。ドープされた半導体ウェハの前面でのめっきの速度は、発生する電流が入射強度に比例するので、ウェハにおける放射線入射強度に応じて変化する。前面におけるめっきの速度は光強度を調節することにより、または金属化された背面に背面電位をかけることにより制御可能である。
【0044】
任意に、銅を隔離する場合には、銀またはスズのストライク層が第2金属層の上に堆積させられうる。従来の方法およびめっき浴がストライク層を堆積させるために使用されうる。ストライク層は銅を酸化から保護する。ストライク層の厚みは従来のものである。それは0.01μm〜0.5μmの範囲であり得る。
【0045】
めっき浴中の金属イオンは、あらゆる好適な溶液可溶性金属化合物、典型的には金属塩を用いることによって提供されうる。このような金属化合物には、限定されないが、金属ハロゲン化物;金属硝酸塩;金属カルボン酸塩、例えば酢酸塩、金属ギ酸塩、および金属グルコン酸塩;金属−アミノ酸錯体、例えば、金属−システイン錯体;金属アルキルスルホン酸塩、例えば、金属メタンスルホン酸塩、および金属エタンスルホン酸塩;金属アルキロールスルホン酸塩、金属トルイルスルホン酸塩、および金属フェノールスルホン酸塩;および金属シアン化物が挙げられうる。代表的な金属化合物には、限定されないが、銀、銅およびスズ化合物が挙げられる。銀化合物には、限定されないが、硝酸銀、銀−システイン錯体、メタンスルホン酸銀、エタンスルホン酸銀、プロパンスルホン酸銀、フェノールスルホン酸銀および酢酸銀が挙げられる。金属が銀の場合には、塩の限定された溶解度のために、金属塩は典型的にはハロゲン化銀ではない。銅化合物には、限定されないが、ピロリン酸銅、グルコン酸銅、硫酸銅および塩化銅が挙げられる。スズ化合物には、限定されないが、ハロゲン化スズ、およびアルキルスルホン酸スズが挙げられる。金属化合物の混合物が本めっき浴に使用されうる。このような混合物は同じ金属を有するが異なる化合物である複数種の金属化合物、例えば、硫酸銅と塩化銅との混合物、もしくは硝酸銀と銀−システイン錯体との混合物であることができ、または異なる金属を有する複数種の金属化合物、例えば、銀−システイン錯体とグルコン酸銅との混合物であり得る。異なる金属を有する異なる金属化合物が混合物で使用される場合には、本金属めっき浴は異なる金属の合金を堆積させる。
【0046】
金属化合物は、めっき組成物中で0.1〜150g/L、より典型的には0.5〜100g/L、およびさらにより典型的には1〜70g/Lの金属イオン濃度をもたらすのに充分な量で含まれる。金属イオンが銀イオンの場合には、浴中での銀イオンの濃度は典型的には2〜40g/Lの量である。このような金属化合物は一般に様々なソース、例えば、ウィスコンシン州、ミルウォーキーのアルドリッチケミカルカンパニーなどから市販されている。
【0047】
金属めっき組成物が電気めっき組成物である場合には、電解質が含まれる。酸および塩基をはじめとする様々な電解質が金属めっき組成物中に使用されうる。代表的な電解質としては、限定されないが、アルカンスルホン酸、例えば、メタンスルホン酸、エタンスルホン酸およびプロパンスルホン酸;アルキロールスルホン酸;アリールスルホン酸、例えば、トルエンスルホン酸、フェニルスルホン酸およびフェノールスルホン酸;アミノ含有スルホン酸、例えば、アミドスルホン酸;スルファミン酸;鉱酸;カルボン酸、例えば、ギ酸およびハロ酢酸;ハロゲン化水素酸;およびピロリン酸塩が挙げられる。酸および塩基の塩も電解質として使用されうる。さらに、電解質は酸の混合物、塩基の混合物、または1種以上の酸と1種以上の塩基との混合物を含みうる。このような電解質は概して様々なソース、例えばアルドリッチケミカルカンパニーなどから市販されている。
【0048】
理論に拘束されるのを意図しないが、金属組成物が銀を含む場合には、めっき組成物中のニトロ含有化合物が浴を安定化し錯化するように機能することが考えられる。広範囲の水可溶性ニトロ含有化合物が使用されうる。このようなニトロ含有化合物には、限定されないが、ニトロ含有カルボン酸およびその塩、並びにニトロ含有スルホン酸およびその塩が挙げられる。このようなニトロ含有化合物は1以上のニトロ基を含みうる。水可溶性ニトロ含有化合物は、典型的には、少なくとも1つの複素環式基を有する。さらなる実施形態においては、ニトロ含有化合物は芳香族複素環式化合物である。代表的なニトロ含有化合物には、限定されないが、2−ニトロフタル酸、3−ニトロフタル酸、4−ニトロフタル酸および/またはm−ニトロベンゼンスルホン酸が挙げられる。典型的には、ニトロ含有化合物は浴の0.1〜200g/L、より典型的には0.5〜175g/L、およびより典型的には1〜150g/Lの量で使用される。このようなニトロ含有化合物は、概して様々なソース、例えばアルドリッチケミカルカンパニーなどから市販されている。
【0049】
様々な界面活性剤がめっき組成物中で使用されうる。アニオン性、カチオン性、両性および非イオン性界面活性剤が使用されうる。代表的な非イオン性界面活性剤にはコハク酸のエステルが挙げられる。界面活性剤はカチオン性および両性界面活性剤から選択されうる。代表的なカチオン性界面活性剤には、限定されないが、デグサから商標TEGOTAIN(商標)で入手可能な1,3−ジデシル−2−メチルイミダゾリウムクロライドが挙げられる。界面活性剤は、デグサから商標TEGOTAIN(商標)で入手可能なアルキルベタインのような両性であることができる。界面活性剤の混合物が使用されうる。このような界面活性剤は典型的には0.1〜5g/Lの量でめっき組成物中に存在する。
【0050】
任意に、めっき組成物が銀を含む場合には、ビタミンが含まれうる。それらは脂溶性または水溶性であり得る。典型的には水溶性ビタミンが使用される。好適な脂溶性ビタミンには、A、D、D、D、K、KおよびEが挙げられる。好適な水溶性ビタミンには、C、B、B、B、BおよびB12が挙げられる。代表的なビタミンには、限定されないが、レチノール、ステロール、エルゴカルシフェロール、コレカルシフェロール、フィトナジオン、マルチプレニルメナキノン、α−トコフェロール、β−トコフェロール、アスコルビン酸、チアミン、ニコチン酸、リボフラビン、パントテン酸、ビオチン、ピリドキシン、葉酸およびシアノコバラミンが挙げられる。典型的には、使用されるビタミンはアスコルビン酸、チアミン、ニコチン酸、リボフラビン、パントテン酸、ビオチン、ピリドキシンおよび葉酸である。本明細書において使用される場合、用語「ビタミン」はビタミンの塩を含むものと意図される。
【0051】
概して、ビタミンが組成物に添加される場合には、ビタミンはめっき組成物中に0.01〜150g/L、典型的には0.5〜100g/L、およびより典型的には1〜100g/Lの量で存在する。ビタミンは概してアルドリッチケミカルカンパニーなどの様々なソースから市販されている。
【0052】
様々なアミド化合物が使用されうる。好適なアミド含有化合物には、限定されないが、スルホン酸アミド、例えば、コハク酸スルファミドおよびカルボン酸アミド、例えば、コハク酸アミド(スクシンアミド酸)が挙げられる。
【0053】
概して、使用される場合、アミド化合物はめっき組成物中で0.01〜150g/L、典型的には0.5〜100g/Lおよびより典型的には1〜100g/Lの量で存在する。アミド化合物は概してアルドリッチケミカルカンパニーなどの様々なソースから市販されている。さらに、アミド化合物はイミド、例えば、スクシンイミドなどからその場で生じさせることができる。理論に拘束されるものではないが、アルカリ浴に添加されるイミドは浴温度でその対応するアミド化合物に変換する。これはイミドの炭素−窒素結合(C−N)でのヒドロキシルイオン(OH)による求核攻撃により起こると考えられる。
【0054】
アミノ酸の誘導体およびアミノ酸の塩を包含するアミノ酸もめっき組成物中に使用されることができる。アミノ酸は1以上のアミノ基に加えて1以上のメルカプト基を含みうる。好適なアミノ酸の例としては、限定されないが、グリシン、アラニン、システイン、メチオニンおよび4−アミノ−ニコチン酸が挙げられる。めっき浴中でアミノ酸が使用される場合には、それは0.1〜150g/L、より典型的には0.5〜150g/L、およびより典型的には0.5〜125g/Lの量で使用される。アミノ酸の混合物が使用されうる。このようなアミノ化合物は概してアルドリッチケミカルカンパニーなどの様々なソースから市販されている。金属が銀の場合には、水可溶性アミノ酸化合物が典型的には銀の化学量論量を超えて存在する。
【0055】
様々な水可溶性スルホン酸がめっき組成物中に使用されうる。代表的なスルホン酸には、電解質について上述されたあらゆるスルホン酸が挙げられる。スルホン酸が電解質として使用される場合には、追加のスルホン酸は必要ない。典型的には、スルホン酸は0.1〜200g/Lの量で存在する。
【0056】
場合によっては、めっき組成物は1種以上の追加の成分を含みうる。このような追加の成分には、限定されないが、光沢剤、結晶粒微細化剤(grain refiner)、延性増強剤(ductility enhancer)、変色防止剤(anti−tarnish agent)および凍結防止剤が挙げられる。スルホン含有化合物は光沢剤として使用されうる。特に好適なスルホン含有化合物はスルホン基上に1または2つの芳香環を含む。このような芳香環は、場合によっては、ニトロ、アミノ、ハロ、アルキルおよび金属から選択される1以上の置換基によって置換されうる。存在する場合には、スルホン含有化合物は典型的にはめっき組成物の0.001〜5g/Lの量で使用される。
【0057】
様々な変色防止剤が場合によってはめっき組成物中に使用されうる。好適な変色防止剤には、限定されないが、トリアゾール類、ベンゾトリアゾール類、テトラゾール類、イミダゾール類、ベンゾイミダゾール類およびインダゾール類が挙げられる。典型的な変色防止剤は、(C−C16)アルキルイミダゾールおよびアリールイミダゾールである。代表的な変色防止剤には、限定されないが、メチルイミダゾール、エチルイミダゾール、プロピルイミダゾール、ヘキシルイミダゾール、デシルイミダゾール、ウンデシルイミダゾール、1−フェニルイミダゾール、4−フェニルイミダゾール、ヒドロキシベンゾトリアゾール、アミノベンゾトリアゾール、2−イミダゾールカルボキシアルデヒド、ベンゾトリアゾールカルボン酸、2−グアニジノベンゾイミダゾール、2−アミノインダゾール、クロロベンゾトリアゾール、ヒドロキシエチルベンゾトリアゾール、ヒドロキシエチルイミダゾール、ヒドロキシベンゾイミダゾールおよび1,2,4−トリアゾールが挙げられる。変色防止剤の混合物がめっき浴中で使用されうる。概して、変色防止剤が使用される場合には、それは0.005〜50g/Lの量で存在する。
【0058】
金属めっき組成物が無電解または浸漬金属組成物である場合には、還元剤が含まれうる。このような金属めっき組成物のための様々な還元剤が当該技術分野において知られている。このような還元剤には、限定されないが、次亜リン酸ナトリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、チオ尿素およびチオ尿素誘導体、ヒダントインおよびヒダントイン誘導体、ヒドロキノンおよびヒドロキノン誘導体、レゾルシノール、並びにホルムアルデヒドおよびホルムアルデヒド誘導体が挙げられる。このような還元剤は0.1g/L〜40g/L、または例えば1g/L〜25g/L、または例えば10g/L〜20g/Lの量で使用されうる。
【0059】
金属めっき組成物は場合によっては緩衝剤を含みうる。代表的な緩衝剤には、限定されないが、ホウ酸塩緩衝剤(例えば、ホウ砂)、リン酸塩緩衝剤、クエン酸塩緩衝剤、炭酸塩緩衝剤およびヒドロキシド緩衝剤が挙げられる。使用される緩衝剤の量は所望の濃度でめっき組成物のpHを維持するのに充分な量であり、そのような量は当業者に周知である。
【0060】
合金形成金属(alloying metal)が場合によってはめっき組成物に添加される。あらゆる好適な合金形成金属が使用されうる。このような合金形成金属は当業者に周知である。
【0061】
金属めっき組成物は1〜14、典型的には1〜12、さらにより典型的には1〜10の範囲のpHを有しうる。金属めっき中のめっき組成物の操作温度は10〜100℃、または例えば20〜60℃である。めっき組成物が銀を含む場合には、操作温度は典型的には10〜20℃、より典型的には15℃〜20℃の範囲である。典型的には、めっき組成物を室温未満の温度に維持するために冷却器が使用される。
【0062】
第2の金属層およびストライク層が堆積された後で、かつ金属を焼成する前に、相変換レジストは誘電体からはぎ取られる。相変換レジストはあらゆる好適な剥離用組成物を用いてはぎ取られうる。このような剥離剤には、限定されないが、アルカリベースの剥離剤、例えば、水酸化ナトリウム、水酸化カリウム、モノエタノールアミン、コリン、テトラメチルアンモニウムヒドロキシドまたはその混合物が挙げられる。さらに、相変換レジストは熱剥離(thermal stripping)によって除去されうる。熱剥離は40℃〜50℃の温度で行われうる。
【0063】
強化のために、1以上の追加の金属層が第2の金属層の上に堆積されうる。このような追加の金属層はニッケル、銅、銀またはスズでありうる。スズとニッケルとの混合物が、塩化第一スズ、塩化ニッケル、水酸化アンモニウムおよびフッ化アンモニウムを含む水性浴からめっきされうる。スズニッケル混合物については、他の金属層上の環境的に不活性なキャップとしての用途が見いだされている。さらに、最終金属層が銅の場合には、銀またはスズのストライク被膜が銅上に堆積され、銅の酸化を抑制できる。このような追加の金属層は、従来のめっき浴を使用する、無電解、浸漬、電解、光アシストまたは光誘導金属めっきによって堆積されうる。典型的には、このような強化金属層は1μm〜10μmの範囲である。銀またはスズのストライク被膜は0.01μm〜0.5μmの範囲であり得る。
【0064】
1以上の追加の金属層が電解めっきにより堆積される場合には、使用される印加電位は様々な電流密度を有しうる。典型的な電流密度は0.1A/dm〜20A/dm、より典型的には1A/dm〜10A/dmである。具体的な電流要求は使用されるウェハの具体的なサイズに依存する。使用される電気めっきプロセスは従来のものである。
【0065】
相変換レジストは30%以上の放射エネルギーの透過性を有し、ドープされた半導体ウェハ上の金属めっきを可能にする。相変換レジストがめっきレジストとして機能するのと同時に、誘電体上のあらゆるバックグラウンドめっきを抑制し、これによりドープされた半導体の選択的に望まれる部分に金属めっきが限定される。金属めっきプロセスは等方性であり、めっきされる金属の厚みは典型的に誘電層の厚みより大きいので、レジストは金属の側方成長を制限し、めっきされる金属によるあらゆる望まれない光のシャドウイングを低減させるように機能する。これは、金属成長のせいで、ドープされた半導体層上の入射光の損失を妨げる。さらに、相変換レジストはエッチングレジストとして機能し、かつリソグラフィープロセスに使用される多くの従来の酸および緩衝酸化物エッチング剤に適合性である。
【0066】
次の実施例は、本発明の様々な態様を例示するために記載されるのであり、本発明の範囲を限定することを意図するものではない。
【実施例】
【0067】
実施例1
pn接合を有するドープされた単結晶シリコンウェハが提供される。ドープされた単結晶シリコンウェハの前面またはエミッタ層がテクスチャー形成され、かつn++ドープされる。背面はアルミニウムでp++ドープされる。n++ドープされたエミッタ層とp++ドープされた背面との間の領域がn+ドープされる。ドープされた単結晶シリコンウェハの前面は500nm厚のSiの層で被覆される。Siは反射防止層として機能する誘電体である。
【0068】
20重量%のSylgavel(登録商標)6100ポリアミド樹脂、40重量%のメタクリル酸イソデシル、35重量%のジメタクリル酸プロポキシ化ネオペンタイルグリコール、および5重量%の1−ヒドロキシ−シクロヘキシル−フェニル−ケトンと2−イソプロピルチオキサントンとからなる光開始剤パッケージを含む相変換レジストが、誘電層を被覆し、導電電流トラックのための部分を輪郭形成するパターンを形成するように、100℃で、従来のインクジェット装置(Schmidから入手可能)によって選択的に堆積される。それぞれの電流トラック間の距離が2mmであるように相変換レジストは堆積される。誘電層を覆う相変換レジストは10μmである。次いで、相変換レジストはフュージョンUVベルトシステム(fusion UV belt system)によって、400〜1600mJ/cmで硬化させられる。レジスト組成物の光透過性は、300nm以上の波長範囲において91%より大きいことが予想される。
【0069】
次いで、ドープされた半導体ウェハは40%フッ化水素酸で、25℃で2〜10分間エッチングされて、相変換レジストによって覆われていないSi誘電体の部分をエッチング除去して、n++ドープされたエミッタ層を露出させる。エッチングプロセス中に、ウェハのアルミニウム背面は、前面に適用されるのと同じ相変換レジストによって酸エッチング剤から保護される。エッチングによってエミッタ層に形成される電流トラックは20μm幅で0.9μm深さである。酸エッチング剤は相変換レジストをエッチング除去しないと予想される。ウェハは酸エッチング剤から取り出され、脱イオン水ですすがれる。
【0070】
下記表の配合を有する無電解ニッケル浴中に、ドープされた半導体ウェハを浸漬することによって、0.5μm厚のニッケルシード層が電流トラックに堆積される。
【0071】
【表1】

【0072】
次いで、下記の表に開示された成分を有する水性電気めっき組成物を用いて、電流トラックが光誘導めっきによって銀の層でめっきされる。
【0073】
【表2】

【0074】
表2の銀めっき浴を収容し、250ワットランプおよび銀アノードを備えるめっきセルが提供される。パターン形成されたウェハがめっき浴に浸漬される。1−5A/dmの電流密度が照射と共に適用される。ニッケルシード層上に10μmの厚みを有する銀の電気堆積層が得られるまでめっきがなされる。銀のバックグラウンドめっきはSi層上にはないと予想される。
【0075】
3.5%水酸化ナトリウムを用いて、相変換レジストがSi誘電層から剥ぎとられる。次いで、ウェハは従来のオーブン中で600℃で焼成される。
【0076】
実施例2
pn接合を有するドープされた多結晶シリコンウェハが提供される。ドープされた多結晶シリコンウェハの前面またはエミッタ層がテクスチャー形成され、かつn++ドープされる。背面はアルミニウムでp++ドープされる。n++ドープされたエミッタ層とp++ドープされた背面との間の領域がn+ドープされる。ドープされた多結晶シリコンウェハの前面は500nm厚のSiの層で被覆される。Siは反射防止層として機能する誘電体である。
【0077】
20重量%のSylvaclear(登録商標)C75Vポリアミドワックス、40重量%のメタクリル酸イソデシル、35重量%のジメタクリル酸トリプロピレングリコール、および5重量%の1−ヒドロキシ−シクロヘキシル−フェニル−ケトンと2−イソプロピルチオキサントンとからなる光開始剤パッケージを含む相変換レジストが、誘電層の部分を被覆し、電流トラックのためのパターンを形成するように、従来のスクリーン印刷方法および装置によって選択的に堆積される。それぞれの電流トラック間の距離が5mmであるように相変換レジストは堆積される。誘電層を覆う相変換レジストは10μm厚である。次いで、相変換レジストはフュージョンUVベルトシステムによって、400〜1600mJ/cmで硬化させられる。レジストの光透過性は、300nm以上の波長範囲において91%より大きいことが予想される。
【0078】
次いで、ドープされた多結晶シリコンウェハは水性40%フッ化水素酸エッチング剤で25℃で2〜10分間浸漬されて、相変換レジストによって覆われていないSi誘電体の部分をエッチング除去して、n++ドープされたエミッタ層を露出させる。ウェハのアルミニウム背面は、前面におけるのと同じ相変換レジストによって酸エッチング剤から保護される。エッチングによってエミッタ層に形成される電流トラックは20μm幅で0.9μm深さである。フッ化水素酸エッチング剤は相変換レジストをエッチング除去しないと予想される。ウェハは酸エッチング剤から取り出され、脱イオン水ですすがれる。Palladep(商標)BP自動触媒プロセス(マサチューセッツ州、マルボロのロームアンドハースエレクトロニックマテリアルズLLCから入手可能)を用いて0.1μm厚のパラジウム金属のシード層が電流トラックに堆積される。
【0079】
次いで、Copper Gleam(商標)Cu−Pulse銅めっき浴(ロームアンドハースエレクトロニックマテリアルズLLCから入手可能)を用いて、光誘導めっきによって、電流トラックのパラジウムシード層が銅でめっきされる。光源は250ワットランプであり、電流密度は1〜5アンペア/dmである。パラジウムシード層上に、10μmの厚みを有する電気堆積された銅の層が得られるまでめっきがなされる。Si層上に銅のバックグラウンドめっきはないと予想される。
【0080】
銅上に堆積されるスズのストライク層は、銅を酸化から保護する。250ワットランプは光源として機能する。スズめっきは1〜5アンペア/dmでなされる。ストライク層は0.1μmの厚みである。
次いで、0.5%の水酸化カリウムを用いて、相変換レジストはSi誘電層からはぎ取られる。レジストが誘電体からはぎ取られた後、ウェハは従来のオーブン中で700℃で焼成される。
【0081】
実施例3
pn接合を有するドープされた単結晶シリコンウェハが提供される。ドープされた単結晶シリコンウェハの前面またはエミッタ層がテクスチャー形成され、かつn++ドープされる。背面はアルミニウムでp++ドープされる。n++ドープされたエミッタ層とp++ドープされた背面との間の領域がn+ドープされる。ドープされた単結晶シリコンウェハの前面は500nm厚のSiの層で被覆される。Siは反射防止層として機能する誘電体である。
【0082】
次いで、電流トラックのためのパターンが誘電層上に形成される。10重量%のポリアミド樹脂、10重量%のパラフィンワックス、40重量%のアクリル酸ステアリル、35重量%のジアクリル酸1,6−ヘキサンジオール、および5重量%の1−ヒドロキシ−シクロヘキシル−フェニル−ケトンと2−イソプロピルチオキサントンとからなる光開始剤パッケージを含む相変換レジストが、誘電層の部分を被覆し、電流トラックのためのパターンを形成するように、OptomecM(登録商標)エアゾール噴射堆積システム(Optomec(商標)から入手可能)によって80℃で選択的に堆積される。それぞれの電流トラック間の距離が3mmであるように相変換レジストは堆積される。誘電層上に、10μmの厚みで相変換レジストが堆積される。次いで、レジストはフュージョンUVベルトシステムによって、400〜1600mJ/cmで硬化させられる。相変換レジストの光透過性は、300nm以上の波長範囲において91%より大きいことが予想される。
【0083】
次いで、レジストで覆われていないSi誘電体がエッチング除去され、n++ドープされたエミッタ層の部分を露出させる。エッチングは、40%フッ化水素酸エッチング剤で25℃で2〜10分間なされて、エミッタ層に20μm幅で0.5μm深さの電流トラックを形成する。酸エッチング剤はレジストをエッチング除去しないと予想される。ウェハのアルミニウム背面も、ウェハの前面に適用されるのと同じレジストによって、酸エッチング剤から保護される。電流トラックが無電解ニッケルでめっきされ、0.1μ厚のニッケルシード層を形成する。ニッケルは、Niplate(商標)600ミッド−リン系無電解ニッケル浴(ロームアンドハースエレクトロニックマテリアルズLLCから入手可能)を用いて堆積される。
【0084】
次いで、ニッケルシード層は10μm厚の銀層で被覆される。Enlight(商標)600銀めっき浴が使用され、光誘導めっきによって銀を堆積させる。めっき浴のpHは9〜12の範囲に維持される。めっき浴の温度は25〜35℃に維持される。銀めっき浴を収容し、250ワットランプおよび銀アノードを備えためっきセルが提供される。ウェハはそのめっき浴に浸漬される。1〜5A/dmの電流密度が照射と共に適用される。銀の所望の厚みが達成されるまでめっきは続けられる。銀のバックグラウンドめっきは誘電層上にないと予想される。
相変換レジストは、熱剥離によってSi誘電体からはぎ取られる。熱剥離は従来のオーブン中、50℃の温度で行われる。次いで、金属化ウェハは従来のオーブン中、800℃で焼成される。

【特許請求の範囲】
【請求項1】
a)nドープされた前面およびpドープされた背面を含むドープされた半導体と、ドープされた半導体のnドープされた前面を覆う誘電層とを提供し;
b)30%以上の光透過性を有する相変換レジストを誘電層上に選択的に堆積させて、誘電層上にパターンを形成し;
c)相変換レジストで覆われていない誘電層の部分をエッチング除去して、ドープされた半導体のnドープされた前面の部分を露出させ;
d)ドープされた半導体のnドープされた前面の露出した部分上に金属シード層を堆積させ;および
e)光誘導めっきによって金属シード層上に金属層を堆積させる;
ことを含む方法。
【請求項2】
相変換レジストが1種以上のワックスを含む、請求項1に記載の方法。
【請求項3】
相変換レジストが1種以上のポリアミド樹脂を含む、請求項1に記載の方法。
【請求項4】
エッチングが酸または緩衝酸化物を用いてなされる、請求項1に記載の方法。
【請求項5】
相変換レジストがインクジェット、エアゾール噴射、スクリーン印刷またはリソグラフィーによって選択的に堆積させられる、請求項1に記載の方法。
【請求項6】
金属シード層がニッケル、パラジウムまたは銀である、請求項1に記載の方法。
【請求項7】
金属層が銅または銀である、請求項1に記載の方法。
【請求項8】
相変換レジストを硬化させる工程をさらに含む、請求項1に記載の方法。
【請求項9】
相変換レジストをはぎ取る工程をさらに含む、請求項1に記載の方法。
【請求項10】
相変換レジストが液体、半固体またはゲルとして堆積させられる、請求項1に記載の方法。

【公開番号】特開2010−70849(P2010−70849A)
【公開日】平成22年4月2日(2010.4.2)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−171826(P2009−171826)
【出願日】平成21年7月23日(2009.7.23)
【出願人】(591016862)ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. (270)
【Fターム(参考)】