説明

ビフェニル誘導体、レジスト下層膜材料、レジスト下層膜形成方法及びパターン形成方法

【課題】優れたエッチング耐性、高い耐熱性等を有するレジスト下層膜を形成する。
【解決手段】一般式(1)で表されるビフェニル誘導体。


(Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体素子などの製造工程における微細加工に用いられる反射防止膜として有効なレジスト下層膜を形成するためのレジスト下層膜形成材料、下層膜形成方法及びこれを用いた遠紫外線、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、F2レーザー光(157nm)、Kr2レーザー光(146nm)、Ar2レーザー光(126nm)、軟X線(EUV、13.5nm)、電子線(EB)、X線露光等に好適なパターン形成方法に関するものである。
【背景技術】
【0002】
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
【0003】
レジストパターン形成の際に使用するリソグラフィー用の光源として、水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられており、更なる微細化のための手段として、露光光を短波長化する方法が有効とされてきた。このため、64MビットDRAM加工方法の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用された。しかし、更に微細な加工技術(加工寸法が0.13μm以下)を必要とする集積度1G以上のDRAMの製造には、より短波長の光源が必要とされ、特にArFエキシマレーザー(193nm)を用いたリソグラフィーが検討されてきている。
【0004】
一方、従来、段差基板上に高アスペクト比のパターンを形成するには二層プロセスが優れていることが知られており、更に、二層レジスト膜を一般的なアルカリ現像液で現像するためには、水酸基やカルボキシル基等の親水基を有する高分子シリコーン化合物が必要である。
【0005】
シリコーン系化学増幅ポジ型レジスト材料としては、安定なアルカリ可溶性シリコーンポリマーであるポリヒドロキシベンジルシルセスキオキサンのフェノール性水酸基の一部をt−Boc基で保護したものをベース樹脂として使用し、これと酸発生剤とを組み合わせたKrFエキシマレーザー用シリコーン系化学増幅ポジ型レジスト材料が提案された(特許文献1:特開平6−118651号公報参照)。また、ArFエキシマレーザー用としては、シクロヘキシルカルボン酸を酸不安定基で置換したタイプのシルセスキオキサンをベースにしたポジ型レジスト材料が提案されている(特許文献2:特開平10−324748号公報参照)。更に、F2レーザー用としては、ヘキサフルオロイソプロピルアルコールを溶解性基として持つシルセスキオキサンをベースにしたポジ型レジスト材料が提案されている(特許文献3:特開2002−55456号公報参照)。上記ポリマーは、トリアルコキシシラン、又はトリハロゲン化シランの縮重合によるラダー骨格を含むポリシルセスキオキサンを主鎖に含むものである。
【0006】
珪素が側鎖にペンダントされたレジスト用ベースポリマーとしては、珪素含有(メタ)アクリルエステル系ポリマーが提案されている(特許文献4:特開平9−110938号公報参照)。
【0007】
二層プロセスのレジスト下層膜としては、酸素ガスによるエッチングが可能な炭化水素化合物であり、更にその下の基板をエッチングする場合におけるマスクになるため、高いエッチング耐性を有することが必要である。酸素ガスエッチングにおいては、珪素原子を含まない炭化水素のみで構成される必要がある。また、上層の珪素含有レジスト膜の線幅制御性を向上させ、定在波によるパターン側壁の凹凸とパターンの崩壊を低減させるためには、反射防止膜としての機能も有し、具体的にはレジスト下層膜からレジスト上層膜内への反射率を1%以下に抑える必要がある。
【0008】
ここで、最大500nmの膜厚までの反射率を計算した結果を図2,3に示す。露光波長は193nm、レジスト上層膜のn値を1.74、k値を0.02と仮定し、図2ではレジスト下層膜のk値を0.3に固定し、縦軸にn値を1.0〜2.0、横軸に膜厚0〜500nmの範囲で変動させたときの基板反射率を示す。膜厚が300nm以上の二層プロセス用レジスト下層膜を想定した場合、レジスト上層膜と同程度かあるいはそれよりも少し屈折率が高いn値が1.6〜1.9の範囲で反射率を1%以下にできる最適値が存在する。
【0009】
また、図3では、レジスト下層膜のn値を1.5に固定し、k値を0〜0.8の範囲で変動させたときの反射率を示す。膜厚が300nm以上の二層プロセス用レジスト下層膜を想定した場合、k値が0.15〜0.24の範囲で反射率を1%以下にすることが可能である。一方、40nm程度の薄膜で用いられる単層レジスト用の反射防止膜の最適k値は0.4〜0.5であり、300nm以上で用いられる二層プロセス用のレジスト下層膜の最適k値とは異なる。二層プロセス用のレジスト下層膜では、より低いk値、即ちより高透明なレジスト下層膜が必要であることが示されている。
【0010】
ここで、波長193nm用のレジスト下層膜材料として、非特許文献1(SPIE vol.4345(2001) p50)に紹介されているようにポリヒドロキシスチレンとアクリル酸エステルの共重合体が検討されている。ポリヒドロキシスチレンは193nmに非常に強い吸収を持ち、そのもの単独ではk値が0.6前後と高い値である。そこで、k値が殆ど0であるアクリル酸エステルと共重合させることによって、k値を0.25前後に調整しているのである。
【0011】
しかしながら、ポリヒドロキシスチレンに対して、アクリル酸エステルの基板エッチングにおけるエッチング耐性は弱く、しかもk値を下げるためにかなりの割合のアクリル酸エステルを共重合せざるを得ず、結果的に基板エッチングの耐性はかなり低下する。エッチングの耐性は、エッチング速度だけでなく、エッチング後の表面ラフネスの発生にも現れてくる。アクリル酸エステルの共重合によってエッチング後の表面ラフネスの増大が深刻なほど顕著になっている。
【0012】
一方、珪素を含まない単層レジスト膜をレジスト上層膜、その下に珪素を含有するレジスト中間層膜、更にその下に有機膜のレジスト下層膜を積層する三層プロセスが提案されている(例えば、非特許文献2:J.Vac.Sci.Technol.,16(6),Nov./Dec.1979参照)。一般的には珪素含有レジスト膜より単層レジスト膜の方が解像性に優れ、三層プロセスでは高解像な単層レジスト膜を露光イメージング層として用いることができる。レジスト中間層膜としては、スピンオングラス(SOG)膜が用いられ、多くのSOG膜が提案されている。
【0013】
ここで三層プロセスにおける基板反射を抑えるための最適な下層膜の光学定数は二層プロセスにおけるそれとは異なっている。基板反射をできるだけ抑え、具体的には1%以下にまで低減させる目的は二層プロセスも三層プロセスも変わらないのであるが、二層プロセスはレジスト下層膜だけに反射防止効果を持たせるのに対して、三層プロセスはレジスト中間層膜とレジスト下層膜のどちらか一方あるいは両方に反射防止効果を持たせることができる。
【0014】
反射防止効果を付与させた珪素含有層材料が、特許文献5(米国特許第6506497号明細書)、特許文献6(米国特許第6420088号明細書)に提案されている。一般的に単層の反射防止膜よりも多層の反射防止膜の方が反射防止効果は高く、光学材料の反射防止膜として広く工業的に用いられている。レジスト中間層膜とレジスト下層膜の両方に反射防止効果を付与させることによって高い反射防止効果を得ることができる。
三層プロセスにおいて珪素含有レジスト中間層膜に反射防止膜としての機能を持たせることができれば、レジスト下層膜に二層プロセスの時のような反射防止膜としての最高の効果は特に必要がない。三層プロセスの場合のレジスト下層膜としては、反射防止膜としての効果よりも基板加工における高いエッチング耐性が要求される。
そのために、芳香族基を多く含有し、エッチング耐性が高いノボラック樹脂が三層プロセス用のレジスト下層膜として用いられてきた。
【0015】
ここで、図4にレジスト中間層膜のk値を変化させたときの基板反射率を示す。
レジスト中間層膜のk値として0.2以下の低い値と、適切な膜厚設定によって、1%以下の十分な反射防止効果を得ることができる。
通常反射防止膜として、膜厚100nm以下で反射を1%以下に抑えるためにはk値が0.2以上であることが必要であるが(図3参照)、レジスト下層膜である程度の反射を抑えることができる三層レジスト膜のレジスト中間層膜としては0.2より低い値のk値が最適値となる。
【0016】
次に、レジスト下層膜のk値が0.2の場合と0.6の場合の、レジスト中間層膜とレジスト下層膜の膜厚を変化させたときの反射率変化を図5と図6に示す。
図5のk値が0.2のレジスト下層膜は、二層プロセスに最適化されたレジスト下層膜を想定しており、図6のk値が0.6のレジスト下層膜は、波長193nmにおけるノボラック樹脂やポリヒドロキシスチレンのk値に近い値である。
レジスト下層膜の膜厚は基板のトポグラフィーによって変動するが、レジスト中間層膜の膜厚は殆ど変動せず、設定した膜厚で塗布できると考えられる。
【0017】
ここで、レジスト下層膜のk値が高い方(0.6の場合)が、より薄膜で反射を1%以下に抑えることができる。レジスト下層膜のk値が0.2の場合、膜厚250nmでは反射を1%にするためにレジスト中間層膜の膜厚を厚くしなければならない。しかし、このようにレジスト中間層膜の膜厚を上げると、レジスト中間層膜を加工するときのドライエッチング時に最上層のレジスト膜に対する負荷が大きく、好ましいことではない。
【0018】
図5と図6は、露光装置のレンズのNAが0.85のドライ露光の場合の反射であるが、三層プロセス用のレジスト中間層膜のn、k値と膜厚を最適化することによって、レジスト下層膜のk値によらずに1%以下の反射率にすることができることが示されている。ところが、液浸リソグラフィーによって投影レンズのNAが1.0を超え、レジスト膜だけでなくレジスト膜の下の反射防止膜に入射する光の角度が浅くなってきている。反射防止膜は、膜自体の吸収だけでなく、光の干渉効果による打ち消しの作用を用いて反射を抑えている。斜めの光は光の干渉効果が小さくなるため、反射が増大する。三層プロセスの膜の中で光の干渉作用を用いて反射防止を行っているのはレジスト中間層膜である。レジスト下層膜は干渉作用を用いるには十分に厚いために干渉効果による打ち消し合いによる反射防止効果はない。レジスト下層膜表面からの反射を抑える必要があり、そのためにはレジスト下層膜のk値を0.6より小さく、n値を上層のレジスト中間層膜に近い値にしなければならない。k値が小さすぎて透明性が高すぎると、基板からの反射も生じてくるため、液浸露光のNA1.3の場合、k値は0.25〜0.48程度が最適となる。n値は中間層、下層共にレジスト膜のn値1.7に近い値が目標値となる。
【0019】
ベンゼン環構造は吸収が非常に強く、これを含むクレゾールノボラック樹脂やポリヒドロキシスチレンのk値は0.6を超える。ベンゼン環よりも波長193nmにおける透明性が高く、エッチング耐性が高いものの一つにナフタレン環構造がある。例えば、特許文献7(特開2002−14474号公報)にナフタレン環、アントラセン環を有するレジスト下層膜が提案されている。本発明者らの測定値では、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂のk値は0.3〜0.4の間である。また、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂の波長193nmにおけるn値は低く、ナフトール共縮合ノボラック樹脂で1.4、ポリビニルナフタレン樹脂に至っては1.2である。例えば、特許文献8(特開2001−40293号公報)、特許文献9(特開2002−214777号公報)で示されるアセナフチレン重合体においては、193nmにおけるn値は1.5、k値は0.4で目標値に近い。n値が高く、k値が低く、透明でかつエッチング耐性が高い下層膜が求められている。
ここで、特許文献10(特開2010−122656号公報)にビスナフトール基を有するレジスト下層膜形成材料が提案されており、n値、k値共に目標値に近く、エッチング耐性に優れる特徴を有している。
【0020】
また、下地の被加工基板に段差がある場合、レジスト下層膜によって段差を平坦化させる必要がある。レジスト下層膜を平坦化させることによって、その上に成膜するレジスト中間層膜やレジスト上層膜であるフォトレジスト膜の膜厚変動を抑え、リソグラフィーのフォーカスマージンを拡大することができる。
【0021】
しかし、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDによって形成されたアモルファスカーボン下層膜は、段差をフラットに埋め込むことが困難である。一方、レジスト下層膜をスピンコーティングによって形成した場合、基板の凹凸を埋め込むことができる長所がある。また、更に、塗布型の材料において埋め込み特性を向上させるために特許文献11(特開2002−47430号公報)に示すように、分子量が低く、分子量分布が広いノボラック樹脂を用いる方法、特許文献12(特開平11−154638号公報)に示されるようにベースポリマーに低融点の低分子化合物をブレンドする方法が提案されている。
【0022】
ノボラック樹脂が加熱だけで分子間架橋し硬化することは従来からよく知られている(非特許文献3:SPIE vol.469、p72(1984))。ここでは、加熱によってクレゾールノボラック樹脂のフェノール性水酸基にフェノキシラジカルが発生し、共鳴によってノボラック樹脂の連結基のメチレンにラジカルが移動し、メチレン同士が架橋するラジカルカップリングによる架橋メカニズムが報告されている。特許文献13(特許第3504247号公報)にポリアリーレンやナフトールノボラック樹脂、ヒドロキシアントラセンノボラック樹脂などの多環芳香族化合物を熱によって脱水素あるいは脱水縮合反応によって炭素密度を高めた下層膜を用いるパターン形成方法が報告されている。
ガラス状のカーボン膜は800℃以上の加熱によって形成される(非特許文献4:Glass Carbon Bull.Chem.Soc.JPN.41(12)3023−3024(1968))。しかしながら、デバイスダメージやウエハーの変形への影響を考えると、リソグラフィーのウエハープロセスでの加熱できる温度の上限は600℃以下、好ましくは500℃以下である。
【0023】
加工線幅の縮小に伴い、レジスト下層膜をマスクに被加工基板をエッチングするときにレジスト下層膜がよれたり曲がったりする現象が起きることが報告されている(非特許文献5:Proc.of Symp.Dry.Process(2005) p11)。当該文献では、水素含有率の低いレジスト下層膜を適用することによってよれが防止できることが示されている。CVDで作製したアモルファスカーボン膜は、膜中の水素原子を極めて少なくすることができ、よれ防止には非常に有効である。しかしながら、前述のようにCVDは段差の埋め込み特性が悪く、またCVD装置の価格と装置フットプリント面積の占有により導入が困難な場合がある。コーティング、特にスピンコート法で成膜可能な下層膜材料でよれの問題を解決することができれば、プロセスと装置の簡略化のメリットは大きい。
【0024】
レジスト下層膜の上にCVD法でハードマスクを形成するマルチレイヤープロセスが検討されている。シリコン系のハードマスク(珪素酸化膜、珪素窒化膜、珪素窒化酸化膜)の場合においてもスピンコート法で形成するハードマスクよりもCVD等で形成した無機ハードマスクの方がエッチング耐性が高い。また、被加工基板が低誘電率膜であり、そこからのフォトレジスト膜への汚染(ポイゾニング)が生じる場合があるが、CVD膜の方がポイゾニング防止の遮断膜としての効果が高い。
【0025】
そこで、平坦化のためにレジスト下層膜をスピンコートで形成し、その上のレジスト中間層膜としての無機ハードマスク中間層膜をCVD法で作製するプロセスが検討されている。CVD法で無機ハードマスク中間層膜を作製する場合、特に窒化物系の膜の作製において最低300℃、通常は400℃の基板の加熱が必要とされる。従って、スピンコート法でレジスト下層膜を作製した場合、400℃の耐熱性が必要であるが、通常のクレゾールノボラック樹脂、ナフトールノボラック樹脂、及び耐熱性が高いフルオレンビスフェノールにおいても400℃の加熱に耐えることができず、加熱後大きな膜減りが生じてしまう。このように、CVD法で無機ハードマスク中間層膜を形成する際の高温の加熱にも耐えることができるようなレジスト下層膜が求められている。
【0026】
また、このような耐熱性が原因となる加熱後の膜減りや樹脂の劣化の問題から、従来レジスト下層膜材料の熱処理は通常300℃以下(好ましくは80〜300℃の範囲内)で行われていた。しかしながら、溶媒処理後に減膜が生じたり、基板のエッチング中にパターンによれが生じてしまうという問題は生じたままであった。
【0027】
以上より、反射防止膜としての最適なn、k値と埋め込み特性、優れたエッチング耐性、耐溶媒性を有し、更にCVD法などによる無機ハードマスク中間層膜形成中の高温にも耐えることができる耐熱性を有し、基板のエッチング中によれが生じないレジスト下層膜を形成するための方法が求められているのである。
【先行技術文献】
【特許文献】
【0028】
【特許文献1】特開平6−118651号公報
【特許文献2】特開平10−324748号公報
【特許文献3】特開2002−55456号公報
【特許文献4】特開平9−110938号公報
【特許文献5】米国特許第6506497号明細書
【特許文献6】米国特許第6420088号明細書
【特許文献7】特開2002−14474号公報
【特許文献8】特開2001−40293号公報
【特許文献9】特開2002−214777号公報
【特許文献10】特開2010−122656号公報
【特許文献11】特開2002−47430号公報
【特許文献12】特開平11−154638号公報
【特許文献13】特許第3504247号公報
【非特許文献】
【0029】
【非特許文献1】SPIE vol.4345(2001) p50
【非特許文献2】J.Vac.Sci.Technol.,16(6),Nov./Dec.1979
【非特許文献3】SPIE vol.469(1984) p72
【非特許文献4】Glass Carbon Bull.Chem.Soc.JPN.41(12)3023−3024(1968)
【非特許文献5】Proc.of Symp.Dry.Process(2005) p11
【発明の概要】
【発明が解決しようとする課題】
【0030】
本発明は、上記事情に鑑みなされたもので、リソグラフィーで用いられる少なくとも三層を有する多層レジスト膜のレジスト下層膜材料であるビフェニル誘導体、それを用いたレジスト下層膜材料、レジスト下層膜形成方法及びパターン形成方法を提供することを目的とするものであって、反射率を低減でき、エッチング耐性が高く、高い耐熱性、耐溶媒性を有し、特に基板のエッチング中によれの発生がないレジスト下層膜を実現する手段を提供する。
【課題を解決するための手段】
【0031】
本発明は、下記一般式(1)で表されるビフェニル誘導体を提供する。
【化1】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。)
【0032】
また、本発明は、下記一般式(2)で表される部分構造を有するビフェニル誘導体を提供する。
【化2】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。Lは単結合又は炭素数1〜20のアルキレン基を表す。)
【0033】
また、本発明は、(i)上記一般式(1)で表されるビフェニル誘導体又は(ii)上記一般式(2)で表される部分構造を有するビフェニル誘導体又は(iii)上記(ii)のビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物を用いたレジスト下層膜材料を提供する。更に、リソグラフィーで用いられる少なくとも三層を有する多層レジスト膜のレジスト下層膜の形成方法であって、上記一般式(1)又は(2)で表されるビフェニル誘導体又はそれを含有する高分子化合物を用いたレジスト下層膜材料を基板上にコーティングし、そのコーティングしたレジスト下層膜材料を150℃を超え600℃以下の温度で、10〜600秒間の範囲で熱処理して硬化させることを特徴とするレジスト下層膜形成方法を提供する。
【0034】
また、本発明はリソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に上記下層膜形成方法によりレジスト下層膜を形成し、そのレジスト下層膜の上に珪素原子を含有するレジスト中間層膜材料を用いてレジスト中間層膜を形成し、そのレジスト中間層膜の上にフォトレジスト組成物からなるレジスト上層膜材料を用いてレジスト上層膜を形成して、上記レジスト上層膜のパターン回路領域を露光した後、現像液で現像して上記レジスト上層膜にレジストパターンを形成し、得られたレジストパターンをエッチングマスクにして上記レジスト中間層膜をエッチングし、得られたレジスト中間層膜パターンをエッチングマスクにして上記レジスト下層膜をエッチングし、得られたレジスト下層膜パターンをエッチングマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する。
【0035】
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に上記レジスト下層膜形成方法によりレジスト下層膜を形成し、そのレジスト下層膜の上に珪素酸化膜、珪素窒化膜及び珪素酸化窒化膜から選ばれる無機ハードマスク中間層膜を形成し、その無機ハードマスク中間層膜の上にフォトレジスト組成物からなるレジスト上層膜材料を用いてレジスト上層膜を形成して、上記レジスト上層膜のパターン回路領域を露光した後、現像液で現像して上記レジスト上層膜にレジストパターンを形成し、得られたレジストパターンをエッチングマスクにして上記無機ハードマスク中間層膜をエッチングし、得られた無機ハードマスク中間層膜パターンをエッチングマスクにして上記レジスト下層膜をエッチングし、得られたレジスト下層膜パターンをエッチングマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する。
【0036】
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に上記レジスト下層膜形成方法によりレジスト下層膜を形成し、そのレジスト下層膜の上に珪素酸化膜、珪素窒化膜及び珪素酸化窒化膜から選ばれる無機ハードマスク中間層膜を形成し、その無機ハードマスク中間層膜の上に有機反射防止膜を形成し、その有機反射防止膜の上にフォトレジスト組成物からなるレジスト上層膜材料を用いてレジスト上層膜を形成して、上記レジスト上層膜のパターン回路領域を露光した後、現像液で現像して上記レジスト上層膜にレジストパターンを形成し、得られたレジストパターンをエッチングマスクにして上記有機反射防止膜と上記無機ハードマスク中間層膜をエッチングし、得られた無機ハードマスク中間層膜パターンをエッチングマスクにして上記レジスト下層膜をエッチングし、得られたレジスト下層膜パターンをエッチングマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する。
【発明の効果】
【0037】
本発明の上記一般式(1)又は(2)のビフェニル誘導体又はそれを含有するレジスト下層膜材料を用いた少なくとも三層を有する多層レジスト膜のレジスト下層膜形成方法により、反射防止膜としての最適なn、k値と埋め込み特性、優れたエッチング耐性を有し、高い耐熱性、耐溶媒性を有し、ベーク中のアウトガスの発生を抑制でき、特には60nmよりも細い高アスペクトラインにおける基板のエッチング中によれが生じないレジスト下層膜を形成することが可能となる。更に、本発明であるスピンコート法を用いて形成されたレジスト下層膜の上にCVD法により無機ハードマスクを形成する際、無機ハードマスク中間層膜形成時の高温処理にも耐えうる高い耐熱性を有するレジスト下層膜を形成できるため、スピンコート法で得られたレジスト下層膜とCVD法で得られた無機ハードマスクを組み合わせたパターン形成方法を提供することができる。
【図面の簡単な説明】
【0038】
【図1】三層プロセスの説明図で、(A)〜(F)は三層の積層とエッチング工程を示す断面図である。
【図2】二層プロセスにおける下層膜屈折率k値が0.3固定で、n値を1.0〜2.0の範囲で変化させた下層膜の膜厚と基板反射率の関係を示すグラフである。
【図3】二層プロセスにおける下層膜屈折率n値が1.5固定で、k値を0〜0.8の範囲で変化させた下層膜の膜厚と基板反射率の関係を示すグラフである。
【図4】三層プロセスにおける下層膜屈折率n値が1.5、k値が0.6、膜厚500nm固定で、中間層のn値が1.5、k値を0〜0.3、膜厚を0〜400nmの範囲で変化させたときの基板反射率の関係を示すグラフである。
【図5】三層プロセスにおける下層膜屈折率n値が1.5、k値が0.2、中間層のn値が1.5、k値を0.1固定で下層と中間層の膜厚を変化させたときの基板反射率の関係を示すグラフである。
【図6】三層プロセスにおける下層膜屈折率n値が1.5、k値が0.6、中間層のn値が1.5、k値を0.1固定で下層と中間層の膜厚を変化させたときの基板反射率の関係を示すグラフである。
【発明を実施するための形態】
【0039】
以下、本発明についてより具体的に説明する。なお、以下の説明中、化学式で表される構造によっては不斉炭素が存在し、エナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るものがあるが、その場合は一つの式でそれらの異性体を代表して表す。それらの異性体は単独で用いてもよいし、混合物として用いてもよい。
【0040】
本発明のビフェニル誘導体は、下記一般式(1)で表されるものである。
【化3】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。)
【0041】
Ar1、Ar2はベンゼン環又はナフタレン環を表す。即ち、部分構造
【化4】

として具体的には、下記に示す部分構造
【化5】


等を好ましく例示できる。フルオレン環構造、ベンゾフルオレン構造は特に好ましい。また、これらの基中の水素原子はハロゲン原子、炭化水素基、水酸基、アルコキシ基、ニトロ基、シアノ基等で置換されていてもよい。
【0042】
x、zはそれぞれ独立に0又は1を表す。即ち、部分構造
【化6】

はそれぞれ独立に、
【化7】


(破線は結合手を表す。)
等を好ましく例示できる。
【0043】
本発明の一般式(1)で表されるビフェニル誘導体の製造方法として、典型的な限定されない例として、下記ケトン化合物(3)に対する有機金属試薬(4)の付加反応により(5)を得、(5)にフェノール又はナフトールを反応させて(1)を得る経路によることができる。この場合、式(3)のケトン化合物1モルに対して有機金属試薬(4)を0.1〜20モル、特に0.25〜0.5モル使用することが好ましい。
【化8】


(式中、環構造Ar1、Ar2は上記の通り、MはLi又はMgX、Xはハロゲン原子を表す。)
【0044】
有機金属試薬(4)としては、Grignard試薬、有機リチウム試薬、有機亜鉛試薬、有機チタニウム試薬等が例示でき、Grignard試薬、有機リチウム試薬は特に好ましい。Grignard試薬と有機リチウム試薬は4,4’−ジハロビフェニルと金属マグネシウムか金属リチウムとの直接メタル化で調製してもよいし、ハロゲン化イソプロピルマグネシウムやメチルリチウム、ブチルリチウム等の脂肪族有機金属化合物とのメタル−ハロゲン交換反応で調製してもよい。また、有機亜鉛試薬や有機チタニウム試薬は対応するGrignard試薬か有機リチウム試薬からハロゲン化亜鉛やハロゲン化チタニウム(IV)、アルコキシチタニウム(IV)等との反応により調製できる。これらの有機金属試薬(4)の調製の際、及び/又はこれらの有機金属試薬とケトン化合物(3)との反応の際に金属塩化合物を共存させてもよい。金属塩化合物としてはシアン化物、ハロゲン化物、過ハロゲン酸塩が挙げられ、特に塩化リチウム、臭化リチウム、ヨウ化リチウム、過塩素酸リチウム等のリチウム塩類、シアン化銅(I)、シアン化銅(II)、塩化銅(I)、塩化銅(II)、ジリチウムテトラクロロキュープレート等の銅塩類を好ましく例示できる。これらの金属塩化合物は、有機金属試薬に対し0.01〜5.0等量、好ましくは0.2〜2.0等量加えることで、有機金属試薬の溶解性を増加させてその調製を容易にしたり、また、試薬の求核性やLewis酸性を調節することができる。有機金属試薬(4)の調製及びケトン化合物(3)との反応に用いられる溶媒としては、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、シクロペンチルメチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、イソオクタン等の炭化水素類、N,N,N’,N’−テトラメチルエチレンジアミン、ヘキサメチルホスホリックトリアミド、N,N−ジメチルホルムアミド等の非プロトン性極性溶媒類を単独又は混合して用いる。反応温度は、ケトン化合物(3)や有機金属試薬(4)の種類・反応条件に依存するが、好ましくは−70〜150℃、例えば(4)として有機リチウム試薬の場合は−70〜0℃、Grignard試薬の場合は室温〜溶媒の沸点での還流下等、種々選択できる。反応時間は、クロマトグラフィー等で反応を追跡し反応を完結させることが望ましいが、通常30分間から48時間実施するとよい。
【0045】
(5)とフェノール、ナフトールとの脱水縮合反応は通常、無溶媒又は溶媒中で酸又は塩基を触媒として用いて、室温又は必要に応じて冷却又は加熱下に行う。用いられる溶媒として、メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセロール等のアルコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチルエーテル、ジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類、塩化メチレン、クロロフォルム、ジクロロエタン、トリクロロエチレン等の塩素系溶媒類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類、アセトニトリル等のニトリル類、アセトン、エチルメチルケトン、イソブチルメチルケトンなどのケトン類、酢酸エチル、酢酸n−ブチル、プロピレングリコールメチルエーテルアセテートなどのエステル類、ジメチルスルホキシド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒類が例示でき、これらを単独あるいは2種類以上を混合して用いることができる。用いられる酸触媒として、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ヘテロポリ酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機酸類、三塩化アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、四塩化錫、四臭化錫、二塩化ジブチル錫、ジブチル錫ジメトキシド、ジブチル錫オキシド、四塩化チタン、四臭化チタン、チタン(IV)メトキシド、チタン(IV)エトキシド、チタン(IV)イソプロポキシド、酸化チタン(IV)等のルイス酸類を用いることができる。用いられる塩基触媒として、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等の無機塩基類、メチルリチウム、n−ブチルリチウム、塩化メチルマグネシウム、臭化エチルマグネシウム等のアルキル金属類、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt−ブトキシド等のアルコキシド類、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピリジン、4−ジメチルアミノピリジン等の有機塩基類を用いることができる。反応温度は−50℃〜溶媒の沸点程度が好ましく、室温〜100℃が更に好ましい。
【0046】
本発明の一般式(1)で表されるビフェニル誘導体の設計思想(Design concept)について述べる。
本発明の一般式(1)で表されるビフェニル誘導体は、リソグラフィーで用いられる少なくとも三層を有する多層レジスト膜のレジスト下層膜の材料である。上述の通りレジスト下層膜に対する要求特性、特にエッチング耐性、耐熱性、基板のエッチング中によれの発生がない等の特性の実現のためには、炭素原子密度が高く水素原子密度が低い膜が必要とされる。そのため用いる下層膜材料も炭素原子密度が高い(水素原子密度が低い)ことが望まれる。
【0047】
比較のためのレジスト下層膜に用いられるナフタレン誘導体の例として、下記式(6)で表される2−ナフトールとフルオレノンの縮合体、いわゆる、ビスナフトールフルオレン(以下、化合物(6)と呼ぶ)の例が特開2007−99741号公報に示されている。この化合物(6)を高分子化する方法としてノボラック化の手法が知られており、ホルムアルデヒドを用いてノボラック化した樹脂として、例えば、下記式(6’)で表される繰り返し単位を有する樹脂(以下、樹脂(6’)と呼ぶ)が考えられる。
【化9】


(式中、nは分子量が700〜50,000になる任意の自然数である。)
【0048】
化合物(6)や樹脂(6’)と比較して、本発明のビフェニル誘導体(1)は種々の構造上の利点を有する。即ち、
〈1〉化合物(6)はナフトール構造2つに対して常に1つのフルオレンを有する。それに対して本発明のビフェニル誘導体(1)はナフトール又はフェノール構造2つに対して2つのフルオレン骨格と1つのビフェニル骨格を有すこととなる。つまり、本発明のビフェニル誘導体は、化合物(6)に比べて、常にフルオレン骨格とビフェニル骨格1つずつ分だけエッチング耐性に優位な芳香環が多くなる構造を有する。これにより、フルオレン及びビフェニル骨格で炭素原子密度が多くなると共にフェノール又はナフトールの水酸基が希釈され、酸素原子密度、水素原子密度を小さくすることができる。
〈2〉化合物(6)は単量体(Monomer)であり、下層膜材料として使用するためにはノボラック化などの手法により高分子(Polymer)化することが必須であるが、本発明のビフェニル誘導体(1)は、単独での成膜も可能でありノボラック化等の高分子化をせずにそのまま樹脂として用いることが可能である。
〈3〉ノボラック化された樹脂(6’)ではノボラック架橋−CH2−のために炭素原子密度が低下する(水素原子密度が上昇する)が、本発明のビフェニル誘導体はポリマー化を行う必要がないためこのような不利益がない。
〈4〉(6’)のノボラック樹脂は埋め込み性の改善のため低分子成分を添加する必要があるが、本発明のビフェニル誘導体(1)は単体で埋め込みが可能である。また、埋め込み性改善のための低分子成分として用いることも可能であり、他のポリマーと組み合わせて使用し、良好なエッチング耐性と埋め込み性を付与することが可能である。
〈5〉(6’)のノボラック樹脂は埋め込み性の改善のため低分子成分を添加することで高温条件下でのハードベーク時のアウトガス及び膜減りが問題となるが、本発明のビフェニル誘導体(1)は高温ベーク時に自身の架橋性により高分子量化が可能で、かつ高い耐熱性を持っているため、アウトガス及び膜減りの低減が可能である。
〈6〉本発明のビフェニル誘導体は、必要があれば重縮合可能なモノマーとのノボラック化等の方法により高分子化させることもできる。
これらの利点による下層膜の特性の向上については、実施例で詳しく述べる。
【0049】
上記一般式(1)のビフェニル誘導体をレジスト下層膜材料として用いる場合、本発明のビフェニル誘導体(1)を必要に応じて更に高分子化させ、下記一般式(2)で表される部分構造を有するビフェニル誘導体を得ることができる。
【化10】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。Lは単結合又は炭素数1〜20、好ましくは1〜15のアルキレン基を表す。nは分子量が200,000以下、好ましくは700〜50,000となるような任意の自然数を表す。)
【0050】
ここで、上記連結基−L−は1個に限られず、複数個の連結基があってもよい。連結基の個数は1〜5、特に1〜3が好ましい。連結基−L−が1個の場合、複数の前記ビフェニル誘導体(1)が連結基−L−を介して、線状(一次元的)につながっているものであり、連結基−L−が複数個ある場合は、一次元的なつながりに加えて、各部分構造間に−L−を介した架橋が存在し、三次元的網目状構造になっているものである。
【0051】
従って、高分子化したビフェニル誘導体は上記式(2)の部分構造を常に含むものであるが、上記複数の連結基をも有するビフェニル誘導体は、下記式(2’)で表すことができる。
【化11】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。Lは単結合又は炭素数1〜20、好ましくは1〜15のアルキレン基を表す。wは自然数を表すが、好ましくは1〜5、特に1〜3である。nは分子量が200,000以下、好ましくは700〜50,000となるような任意の自然数を表す。)
【0052】
ビフェニル誘導体(1)の高分子化の例として、他の成分との縮合によりノボラック化する方法について説明する。ノボラック化反応は上記一般式(2)においてLが炭素数1〜20のアルキレン基である場合に相当する。ノボラック化反応に用いられるアルデヒド化合物としては、例えばホルムアルデヒド、トリオキサン、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、プロピオンアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピオンアルデヒド、β−フェニルプロピオンアルデヒド、1−ナフトアルデヒド、2−ナフトアルデヒド、フルフラール等を挙げることができる。また、これらのアルデヒド化合物中の水素原子はハロゲン原子、炭化水素基、水酸基、アルコキシ基、ニトロ基、シアノ基等で置換されていてもよい。これらのうち、特にホルムアルデヒド及びその等価体、ベンズアルデヒド、1−ナフトアルデヒド、2−ナフトアルデヒド、及びその置換体を好適に用いることができる。これらのアルデヒド化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0053】
上記アルデヒド化合物の使用量は、本発明のビフェニル誘導体(1)1モルに対して0.1〜5モルが好ましく、より好ましくは0.3〜2モルである。
【0054】
ノボラック化反応においては触媒を用いてもよい。特に酸触媒が好ましい。酸触媒として、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ヘテロポリ酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機酸類、三塩化アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、四塩化錫、四臭化錫、二塩化ジブチル錫、ジブチル錫ジメトキシド、ジブチル錫オキシド、四塩化チタン、四臭化チタン、チタン(IV)メトキシド、チタン(IV)エトキシド、チタン(IV)イソプロポキシド、酸化チタン(IV)等のルイス酸類を用いることができる。具体的には塩酸、硝酸、硫酸、ギ酸、シュウ酸、酢酸、メタンスルホン酸、カンファースルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等の酸性触媒を挙げることができる。これらの酸性触媒の使用量は、本化合物のビフェニル誘導体(1)1モルに対して1×10-5〜5×10-1モルである。反応方法としては、ビフェニル誘導体(1)、アルデヒド化合物、触媒を一括で仕込む方法や、任意の成分を滴下していく方法がある。反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130〜230℃にまで上昇させ、1〜50mmHg程度で揮発分を除去することができる。
【0055】
本発明のビフェニル誘導体(1)のノボラック化反応の際、他のフェノール化合物を共存させて共重合してもよい。共重合可能なフェノール化合物は、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2−t−ブチルフェノール、3−t−ブチルフェノール、4−t−ブチルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、3,5−ジフェニルフェノール、2−ナフチルフェノール、3−ナフチルフェノール、4−ナフチルフェノール、4−トリチルフェノール、レゾルシノール、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、カテコール、4−t−ブチルカテコール、2−メトキシフェノール、3−メトキシフェノール、2−プロピルフェノール、3−プロピルフェノール、4−プロピルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、2−メトキシ−5−メチルフェノール、2−t−ブチル−5−メチルフェノール、ピロガロール、チモール、イソチモール−1−ナフトール、2−ナフトール、2−メチル−1−ナフトール、4−メトキシ−1−ナフトール、7−メトキシ−2−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、3−ヒドロキシナフタレン−2−カルボン酸メチル、4−トリチルフェノール、ヒドロキシアントラセン、ジヒドロキシアントラセン、トリヒドロキシアントラセン、ヒドロキシピレン、ビスフェノール、トリスフェノール等を挙げることができる。また、これらの化合物中の水素原子はハロゲン原子、炭化水素基、水酸基、アルコキシ基、ニトロ基、シアノ基等で置換されていてもよい。
【0056】
また、本発明のビフェニル誘導体(1)を重縮合可能なモノマーと重縮合させて高分子化してレジスト下層膜材料として用いることができる。具体的にはインデン、ヒドロキシインデン、ベンゾフラン、アセナフチレン、ビフェニル、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、5−ビニルノルボルナ−2−エン、α−ピネン、β−ピネン、リモネンなどが挙げられる。また、これらの化合物中の水素原子はハロゲン原子、炭化水素基、水酸基、アルコキシ基、ニトロ基、シアノ基等で置換されていてもよい。三元以上の共重合体であっても構わない。なお、上記他のフェノール化合物、重縮合可能なモノマーの使用割合は、ビフェニル誘導体に対し0質量%を超え50質量%以下とすることが好ましい。
【0057】
上記ノボラック化樹脂や重縮合樹脂の分子量は、溶媒としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)が1,000〜200,000、特に2,000〜50,000であることが好ましい。分子量分布は1.2〜7の範囲内が好ましく用いられる。モノマー成分、オリゴマー成分又は分子量(Mw)1,000未満の低分子量成分をカットして分子量分布を狭くした方が架橋効率が高くなり、またベーク中の揮発成分を抑えることによりベークカップ周辺の汚染を防ぐこともできる。
【0058】
ビフェニル誘導体(1)の高分子化の別の例として、脱水素による酸化的カップリング反応による方法について説明する。酸化的カップリング反応は、上記一般式(2)においてw=1でLが単結合である場合に相当する。酸化的カップリング反応は、空気又は酸素の存在下に80〜500℃に加熱することで進行する。触媒あるいは反応剤として、四酢酸鉛、ジアセトキシヨードベンゼン、オキシ塩化バナジウム、オキシフッ化バナジウム、塩化鉄(III)、過塩素酸鉄(III)、ヘキサシアノ鉄(III)カリウム、酸化ルテニウム、フッ化コバルト、トリフルオロ酢酸タリウム、塩化銅(II)、塩化ジ−μ−ヒドロキソ−(N,N,N’,N’−テトラメチルエチレンジアミン)銅(II)等の金属塩や錯体を用いてもよい。予めビフェニル誘導体(1)を高分子化しておく手法として用いることもできるが、成膜時に空気中加熱することで反応を進行させることができる。なお、この酸化的カップリング反応で得られるビフェニル誘導体(樹脂)の分子量は上記ノボラック化樹脂や重縮合樹脂の場合と同様である。
【0059】
また、上記一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物に縮合芳香族、あるいは脂環族の置換基を導入することができる。ここで導入可能な置換基は、具体的には下記に挙げることができる。
【0060】
【化12】

【0061】
これらの中で248nm露光用には、多環芳香族基、例えばアントラセンメチル基、ピレンメチル基が最も好ましく用いられる。193nmでの透明性向上のためには脂環構造を持つものや、ナフタレン構造を持つものが好ましく用いられる。上記置換基の導入方法としては、上記本発明の一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物に上記置換基の結合位置が水酸基になっているアルコール化合物を酸触媒存在下に導入する方法が挙げられる。酸触媒の例としては、上記ノボラック化反応において例示したものを挙げることができる。これらは、上記ノボラック化反応と同時に進行させることもできる。
【0062】
以上述べた本発明の一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物は、本発明の三層プロセス用レジスト下層膜形成方法で用いるレジスト下層膜材料として用いることができる。これらの化合物は、四級炭素を有し、また炭素原子密度の割合が90%前後の高い値であるために非常に高い耐熱性を有する。レジスト下層膜上にCVD法等で珪素酸化膜、珪素窒化膜、珪素窒化酸化膜等のハードマスクを形成する場合、特に窒化膜系の膜においては300℃以上の高温が必要であり、レジスト下層膜としても高耐熱性が要求される。また、これらの化合物は、ベンゼン環の縮合炭化水素であるために吸収シフトによって波長193nmにおける吸収が比較的小さく、三層プロセスを用いたときに特に100nm以上の膜厚で良好な反射防止効果が期待される。また、これらの化合物は、通常のm−クレゾールノボラック樹脂よりも、基板加工に用いられるCF4/CHF3ガス及びCl2/BCl3系ガスエッチングに対するエッチング耐性が高く、芳香環の数が増えた分だけ水素原子及び酸素原子が減ってエッチング中のパターンよれの発生を抑えることができる。更に300℃を超える温度でベークをすることによって、更に高いエッチング耐性、耐溶媒性を有し、基板エッチング中のパターンよれの発生を抑えることができる。
【0063】
本発明の三層プロセス用レジスト下層膜形成方法で用いるレジスト下層膜材料は、
(A)一般式(1)又は一般式(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物
を必須成分とし、
(B)有機溶媒
を含むものであるが、スピンコート特性、段差基板の埋め込み特性、膜の剛性や耐溶媒性を上げるために
(C)ブレンド用化合物又はブレンド用ポリマー、
(D)架橋剤、
(E)酸発生剤
を加えてもよい。
【0064】
本発明のレジスト下層膜形成方法に用いるレジスト下層膜材料において使用可能な有機溶媒(B)としては、上記の(A)〜(E)やその他の添加剤が溶解するものであれば特に制限はない。具体的には、特開2008−65303号公報中の段落[0120]〜[0121]に記載されている溶媒を添加することができる。より具体的には、シクロヘキサノン、メチル−2−アミルケトン等のケトン類;3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種又は2種以上を混合使用できるが、これらに限定されるものではない。
【0065】
溶媒の配合量は、(A)成分100質量部に対して200〜10,000質量部が好ましく、特に300〜5,000質量部とすることが好ましい。
【0066】
上記レジスト下層膜材料は、有機溶媒を含有することが好ましく、更に、スピンコート特性、段差基板の埋め込み特性、膜の剛性や耐溶媒性を上げるために、架橋剤及び酸発生剤を含むことが好ましい。
【0067】
更に、他のポリマーや化合物をブレンドすることもできる。ブレンド用化合物又はブレンド用ポリマーとしては、一般式(1)又は一般式(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物と混合し、スピンコーティングの成膜性や、段差基板での埋め込み特性を向上させる役割を持つ。また、炭素原子密度が高くエッチング耐性の高い材料が選ばれる。このようなブレンド材料とは、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2−t−ブチルフェノール、3−t−ブチルフェノール、4−t−ブチルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、3,5−ジフェニルフェノール、2−ナフチルフェノール、3−ナフチルフェノール、4−ナフチルフェノール、4−トリチルフェノール、レゾルシノール、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、カテコール、4−t−ブチルカテコール、2−メトキシフェノール、3−メトキシフェノール、2−プロピルフェノール、3−プロピルフェノール、4−プロピルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、2−メトキシ−5−メチルフェノール、2−t−ブチル−5−メチルフェノール、ピロガロール、チモール、イソチモール、4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジメチル−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジアリル−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジフルオロ−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジフェニル−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジメトキシ−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、3,3,3’,3’−テトラメチル−2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、3,3,3’,3’,4,4’−ヘキサメチル−2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−5,5’−ジオール、5,5’−ジメチル−3,3,3’,3’−テトラメチル−2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、1−ナフトール、2−ナフトール、2−メチル−1−ナフトール、4−メトキシ−1−ナフトール、7−メトキシ−2−ナフトール及び1,5−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン等のジヒドロキシナフタレン、3−ヒドロキシナフタレン−2−カルボン酸メチル、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、5−ビニルノルボルナ−2−エン、α−ピネン、β−ピネン、リモネンなどのノボラック樹脂、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート及びこれらの共重合体が挙げられる。また、特開2004−205685号公報記載のナフトールジシクロペンタジエン共重合体、特開2005−128509号公報記載のフルオレンビスフェノールノボラック樹脂、特開2005−250434号公報記載のアセナフチレン共重合体、特開2006−227391号公報記載のフェノール基を有するフラーレン、特開2006−293298号公報記載のビスフェノール化合物及びこのノボラック樹脂、特開2006−285095号公報記載のアダマンタンフェノール化合物のノボラック樹脂、特開2010−122656号公報記載のビスナフトール化合物及びこのノボラック樹脂、下記一般式(7)
【化13】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。Xは単結合又は炭素数1〜20のアルキレン基を表す。mは0又は1を表す。nは分子量が100,000以下、好ましくは700〜50,000となるような任意の自然数を表す。)
で表されるフルオレン、ベンゾフルオレン類とジナフチルエーテル類との脱水縮合によって得られるナフタレン樹脂、下記一般式(8)
【化14】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。nはゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量が100,000以下、好ましくは700〜50,000となるような任意の自然数を表す。)
で表されるフルオレン、ベンゾフルオレン類と1,1’−ビ−2−ナフトールとの脱水縮合によって得られるナフタレン樹脂、特開2008−158002号公報記載のフラーレン樹脂化合物などをブレンドすることもできる。上記ブレンド用化合物又はブレンド用ポリマーの配合量は、本発明の一般式(1)又は(2)で表されるビフェニル誘導体又はそれを含有する高分子化合物100質量部に対して0〜1,000質量部、好ましくは0〜500質量部である。
【0068】
反射防止膜機能を含むレジスト下層膜に要求される性能の一つとして、レジスト下層膜の上に形成される、珪素を含有するレジスト中間層膜及びレジスト上層膜とのインターミキシングがないこと、レジスト上層膜及びレジスト中間層膜ヘの低分子成分の拡散がないことが挙げられる(Proc. SPIE vol.2195、p225−229(1994))。これらを防止するために、一般的に反射防止膜のスピンコート後のベークで熱架橋するという方法が採られている。そのため、反射防止膜材料の成分として架橋剤を添加する場合、ポリマーに架橋性の置換基を導入する方法が採られることがある。架橋剤を特に添加していない場合でも、本発明の一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物の場合は、350℃を超える加熱によって後述の反応機構によって架橋させることができる。
【0069】
本発明のレジスト下層膜形成方法に用いられる本発明の上記一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物は、耐熱性が非常に高いため、これを350℃を超える高温でベークしても熱分解が殆ど起きない。更にこれらの化合物は、350℃を超える高温ベークによって、溶媒等の蒸発が促進され、膜の炭素原子密度、緻密性が高くなる性質を持ち、エッチング耐性が向上することを見出した。また、350℃を超えるベークによって、高い耐溶媒性を有し、基板のエッチング中に発生するよれを防止できることを見出した。耐熱性の低い材料を350℃を超える高温でベークした場合は熱分解が起きるために必ずしも炭素原子密度が高くなるとは限らず、むしろ劣化する場合もある。350℃より低い温度でベークすると十分な架橋を得られない場合があるが、架橋剤や酸発生剤を添加することで、150℃以上、好ましくは200℃以上350℃以下のベークで高い炭素原子密度、高い緻密性を得ることができる。
【0070】
本発明で使用可能な架橋剤は、特開2008−65303号公報中の段落[0075]〜[0080]に記載されている材料を添加することができる。
具体的には、架橋剤としては、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの二重結合を含む化合物を挙げることができる。これらは添加剤として用いてもよいが、ポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いられる。その配合量は、(A)成分100質量部に対して0〜50質量部、特に3〜50質量部が好ましい。
【0071】
本発明においては、熱による架橋反応を更に促進させるための酸発生剤を添加することができる。酸発生剤は熱分解によって酸を発生するものや、光照射によって酸を発生するものがあるが、いずれのものも添加することができる。具体的には、特開2008−65303号公報中の段落[0081]〜[0111]に記載されている材料を添加することができる。
具体的には、酸発生剤としては、オニウム塩、ジアゾメタン誘導体、グリオキシム誘導体、ビススルホン誘導体、N−ヒドロキシイミド化合物のスルホン酸エステル、β−ケトスルホン酸誘導体、ジスルホン誘導体、ニトロベンジルスルホネート誘導体、スルホン酸エステル誘導体等が挙げられ、(A)成分100質量部に対して0〜50質量部、特に0.1〜50質量部の添加量とすることができる。
【0072】
更に、本発明のレジスト下層膜形成方法に用いるレジスト下層膜材料には、保存安定性を向上させるための塩基性化合物を配合することができる。塩基性化合物としては、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、具体的には特開2008−65303号公報中の段落[0112]〜[0119]に記載されている材料を添加することができる。
具体的には、塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシル基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。塩基性化合物の配合量は、(A)成分100質量部に対して0〜2質量部、特に0.001〜2質量部が好ましい。
【0073】
本発明のパターン形成方法に用いる下層膜形成材料においてスピンコーティングにおける塗布性を向上させるために界面活性剤を添加することもできる。界面活性剤は、特開2008−111103号公報中の段落[0165]〜[0166]に記載のものを用いることができる。
【0074】
本発明のレジスト下層膜形成方法では、上記のレジスト下層膜材料を、フォトレジストと同様にスピンコート法などで被加工基板上にコーティングする。スピンコート法などを用いることで、良好な埋め込み特性を得ることができる。スピンコート後、溶媒を蒸発し、レジスト上層膜やレジスト中間層膜とのミキシング防止のため、架橋反応を促進させるためにベークを行う。ベークは150℃を超え600℃以下の範囲内で行い、10〜600秒、好ましくは10〜300秒の範囲内で行う。ベーク温度は、より好ましくは200℃以上400℃以下である。デバイスダメージやウエハーの変形への影響を考えると、リソグラフィーのウエハープロセスでの加熱できる温度の上限は600℃以下、好ましくは500℃以下である。
【0075】
前述のSPIE vol.469、p72(1984)に記載されるように、本発明のレジスト下層膜形成方法に用いられる本発明の一般式(1)、(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物は、加熱によってラジカルが生じ架橋反応が進行する。特に本発明の一般式(1)、(2)で表されるビフェニル誘導体を含有する高分子化合物中のベンジル位にメチレン基又はメチン基が存在する場合、ベンジルラジカル同士が結合し架橋反応が進行し易い。この反応はラジカル的反応なので、脱離する分子が生じないために耐熱性が高い材料であれば架橋による膜収縮は起こらない。
【0076】
ベーク中の雰囲気としては空気中でも構わないが、酸素を低減させるためにN2、Ar、He等の不活性ガスを封入しておくことは、レジスト下層膜の酸化を防止するために好ましい場合がある。酸化を防止するために酸素濃度をコントロールする必要がある場合には、1,000ppm以下、より好ましくは100ppm以下である。ベーク中のレジスト下層膜の酸化を防止すると、吸収が増大したりエッチング耐性が低下したりすることがないため好ましい。反面、酸化的カップリングによる分子架橋を意図する場合には空気又は高酸素濃度の気体中でのベークが好ましい場合もある。
【0077】
レジスト下層膜の厚さは適宜選定されるが、30〜20,000nm、特に50〜15,000nmとすることが好ましい。レジスト下層膜を作製した後、三層プロセスの場合はその上に珪素を含有するレジスト中間層膜、珪素を含まないレジスト上層膜を形成することができる。
【0078】
本発明のパターン形成方法は、本発明の上記一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物を用いたレジスト下層膜材料を基板上にコーティングしてレジスト下層膜を形成し、そのレジスト下層膜の上にレジスト中間層膜を介してフォトレジスト組成物のレジスト上層膜を形成し、このレジスト上層膜の所用領域に放射線等を照射し、現像液で現像してレジストパターンを形成し、得られたレジストパターンをマスクにしてレジスト中間層膜をエッチングし、得られたレジスト中間層パターンをマスクにしてレジスト下層膜及び基板を加工するものである。
【0079】
レジスト下層膜の上に無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、又は珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、特開2002−334869号公報、国際公開第2004/066377号パンフレットに記載されている。無機ハードマスクの膜厚は5〜200nm、好ましくは10〜100nmであり、中でも反射防止膜としての効果が高いSiON膜が最も好ましく用いられる。SiON膜を形成する時の基板温度は300〜500℃となるために、下層膜として300〜500℃の温度に耐える必要がある。本発明の一般式(1)又は(2)で表されるビフェニル誘導体又は一般式(2)で表されるビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物を用いたレジスト下層膜材料は、高い耐熱性を有しており300〜500℃の高温に耐えることができるため、CVD法あるいはALD法で形成された無機ハードマスクと、スピンコート法で形成されたレジスト下層膜の組み合わせが可能である。
【0080】
このようなレジスト中間層膜の上にレジスト上層膜としてフォトレジスト膜を形成してもよいが、レジスト中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。レジスト中間層膜としてSiON膜を用いた場合、SiON膜とBARC膜の二層の反射防止膜によって1.0を超える高NAの液浸露光においても反射を抑えることが可能となる。BARCを形成するもう一つのメリットとしては、SiON膜直上でのフォトレジストパターンの裾引きを低減させる効果があることである。なお、BARC膜としては、一般的なArFリソグラフィーで用いられるBARCが好ましく、ARC−29A、ARC−93(日産化学工業(株)製)、AR−40(ローム・アンド・ハース社製)を挙げることができる。その膜厚は300〜1,000Åが好ましい。
【0081】
三層プロセスの珪素含有レジスト中間層膜としては、ポリシルセスキオキサンベースの中間層膜も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、反射を抑えることができる。具体的には特開2004−310019号公報、特開2007−302873号公報、特開2009−126940号公報に示されるシルセスキオキサンベースの珪素化合物を含む材料が挙げられる。特に193nm露光用としては、レジスト下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなるが、レジスト中間層膜で反射を抑えることによって基板反射を0.5%以下にすることができる。反射防止効果があるレジスト中間層膜としては、248nm、157nm露光用としてはアントラセン、193nm露光用としてはフェニル基又は珪素−珪素結合を有する吸光基をペンダントし、酸あるいは熱で架橋するポリシルセスキオキサンが好ましく用いられる。なお、レジスト中間層膜の厚さは、20〜100nmが好ましい。
【0082】
CVD法よりもスピンコート法による珪素含有レジスト中間層膜の形成の方が簡便でコスト的なメリットがある。
【0083】
三層レジスト膜におけるレジスト上層膜は、ポジ型でもネガ型でもどちらでもよく、通常用いられているフォトレジスト組成物と同じものを用いることができる。上記フォトレジスト組成物により単層レジスト上層膜を形成する場合、上記レジスト下層膜を形成する場合と同様に、スピンコート法が好ましく用いられる。フォトレジスト組成物をスピンコート後、プリベークを行うが、60〜180℃で10〜300秒の範囲が好ましい。その後常法に従い、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターンを得る。なお、レジスト上層膜の厚さは特に制限されないが、30〜500nm、特に50〜400nmが好ましい。
また、露光光としては、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3〜20nmの軟X線、電子ビーム、X線等を挙げることができる。
【0084】
次に、得られたレジストパターンをマスクにしてエッチングを行う。三層プロセスにおけるレジスト中間層膜、特に無機ハードマスクのエッチングは、フロン系のガスを用いてレジストパターンをマスクにして行う。次いでレジスト中間層膜パターン、特に無機ハードマスクパターンをマスクにして酸素ガス又は水素ガスを用いてレジスト下層膜のエッチング加工を行う。
【0085】
次の被加工基板のエッチングも、常法によって行うことができ、例えば基板がSiO2、SiN、シリカ系低誘電率絶縁膜であればフロン系ガスを主体としたエッチング、p−SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う。基板加工をフロン系ガスでエッチングした場合、三層プロセスの珪素含有中間層は基板加工と同時に剥離される。塩素系、臭素系ガスで基板をエッチングした場合は、珪素含有中間層の剥離は基板加工後にフロン系ガスによるドライエッチング剥離を別途行う必要がある。
【0086】
本発明のレジスト下層膜形成方法で形成したレジスト下層膜は、これら被加工基板のエッチング耐性に優れる特徴がある。なお、被加工基板としては、被加工層が基板上に成膜される。基板としては、特に限定されるものではなく、Si、α−Si、p−Si、SiO2、SiN、SiON、W、TiN、Al等で被加工層と異なる材質のものが用いられる。被加工層としては、Si、SiO2、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等種々のLow−k膜及びそのストッパー膜が用いられ、通常50〜10,000nm、特に100〜5,000nm厚さに形成し得る。
【0087】
三層プロセスの一例について図1を用いて具体的に示すと下記の通りである。
三層プロセスの場合、図1(A)に示したように、基板1の上に積層された被加工層2上に本発明によりレジスト下層膜3を形成した後、レジスト中間層膜4を形成し、その上にレジスト上層膜5を形成する。次いで、図1(B)に示したように、レジスト上層膜の所用部分6を露光し、PEB及び現像を行ってレジストパターン5aを形成する(図1(C))。この得られたレジストパターン5aをマスクとし、CF系ガスを用いてレジスト中間層膜4をエッチング加工してレジスト中間層膜パターン4aを形成する(図1(D))。レジストパターン5aを除去後、この得られたレジスト中間層膜パターン4aをマスクとしてレジスト下層膜3を酸素プラズマエッチングし、レジスト下層膜パターン3aを形成する(図1(E))。更にレジスト中間層膜パターン4aを除去後、レジスト下層膜パターン3aをマスクに被加工層2をエッチング加工して、基板にパターン2aを形成するものである(図1(F))。
無機ハードマスク中間層膜を用いる場合、レジスト中間層膜4が無機ハードマスク中間層膜であり、BARCを敷く場合はレジスト中間層膜4とレジスト上層膜5との間にBARC層を設ける。BARCのエッチングはレジスト中間層膜4のエッチングに先立って連続して行われる場合もあるし、BARCだけのエッチングを行ってからエッチング装置を変えるなどしてレジスト中間層膜4のエッチングを行うことができる。
【実施例】
【0088】
以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[合成例]
なお、分子量の測定法は、溶媒としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
【0089】
[合成例1]ビフェニル誘導体(9)の合成
【化15】


窒素雰囲気下、マグネシウム26.4g(1.09mol)を秤量した5Lの4つ口フラスコ内に脱水THF(テトラヒドロフラン)1,000mlで予め溶解した4,4’−ジブロモビフェニル168g(0.54mol)、塩化リチウム23.0g(0.54mol)をマグネシウムが浸る程度に加えた。ジブロモエタンを少量加え、反応をスタートさせた後、発熱を維持したまま残りのTHF溶液を3時間かけ滴下した。滴下終了後、THF500mlを加え、還流下で8時間熟成してGrignard試薬を調製した。内温55℃まで冷却した後、予め脱水THF400mlに溶解した9−フルオレノン150g(0.83mol)を2時間かけ滴下した。滴下終了後、還流下で5時間半熟成を行い、氷浴でフラスコを冷却し、飽和塩化アンモニウム水溶液1,000mlと純水1,000mlで反応をクエンチした。このとき溶液は白色の析出物が生じ、懸濁液となった。反応溶液にMIBK(メチルイソブチルケトン)150mlを追加し、懸濁液のまま分液ロートに移し変え、水層を抜き出し、更に純水500mlで分液水洗を行った後、有機層を減圧濃縮した。ジイソプロピルエーテルで再結晶を行い、生じた白色の結晶を濾別し、乾燥することでビフェニル誘導体(9)を109g、収率51.0%で得た。
【0090】
ビフェニル誘導体(9):
IR(D−ATR):ν=3539,3064,3039,1605,1495,1447,1164,1030,909,820,771,754,736cm-1
1H−NMR(600MHz in DMSO−d6):δ=6.34(2H,−OH,s),7.24(4H,t),7.27(8H,d),7.36(4H,t−t),7.45(4H,d),7.81(4H,d)ppm。
13C−NMR(150MHz in DMSO−d6):δ=82.44,120.10,124.66,125.66,126.28,128.07,128.51,138.41,139.14,144.19,151.23ppm。
【0091】
[合成例2]ビフェニル誘導体(10)の合成
【化16】


ビフェニル誘導体(9)40.3g(78.4mmol)、2−ナフトール23.73g(164.6mmol)、1,2−ジクロロエタン240mlを1Lの3つ口フラスコに秤量した。30℃のオイルバス中で撹拌しながら、メタンスルホン酸7.3mlをゆっくり滴下した。滴下終了後オイルバスの温度を50℃に上げ、6時間反応を行った。室温まで放冷後、MIBK500mlで希釈し、不溶分を濾別して分液ロートに移し変え、300mlの超純水で分液水洗を9回繰り返した。有機層を減圧濃縮し、残渣にTHF800ml加え、溶解させた後、ヘキサン2,500mlで晶出後、結晶を濾別、乾燥することでビフェニル誘導体(10)を51.6g、収率85.8%で得た。
【0092】
ビフェニル誘導体(10):
IR(KBr):ν=3528,3389,3059,3030,1633,1604,1506,1493,1446,1219,1181,750,740cm-1
1H−NMR(600MHz in DMSO−d6):δ=6.98(2H,d−d),7.05(2H,s−d),7.17(4H,d),7.24(2H,d−d),7.29(4H,t),7.38(4H,t),7.40(2H,s),7.45(4H,d),7.50(6H,d),7.58(2H,d),7.93(4H,d),9.72(2H,−OH,s)ppm。
13C−NMR(150MHz in DMSO−d6):δ=64.59,108.35,118.77,120.58,125.19,126.11,126.36,126.62,126.94,127.16,127.71,127.88,128.20,129.35,133.39,138.14,139.26,139.59,144.82,150.56,155.39ppm。
TG−DTA(Air;30→500℃):−3.92%、
TG−DTA(He;30→500℃):−17.71%。
空気中では高温で脱水素反応を伴う酸化カップリング反応による架橋反応が起きることでHe中に比べ熱分解が抑制されている。また、空気中における500℃での重量減少はわずかに3.92%と優れた耐熱性を示した。
【0093】
[合成例3]ビフェニル誘導体(11)の合成
【化17】


ビフェニル誘導体(9)10.0g(19.0mmol)、フェノール3.66g(39.0mmol)、1,2−ジクロロエタン60mlを200mlの3つ口フラスコに秤量し、水浴中で撹拌し、メタンスルホン酸2.4mlをゆっくり滴下した。滴下終了後オイルバスの温度を50℃に上げ、2時間反応を行った。室温まで放冷後、MIBK150mlで希釈し、不溶分を濾別して分液ロートに移し変え、100mlの超純水で分液水洗を4回繰り返した。有機層を減圧濃縮し、残渣にTHF28.8g加え、溶解させた後、ヘキサン900mlで晶出、濾別し、乾燥することでビフェニル誘導体(11)を8.3g、収率65.5%で得た。
【0094】
ビフェニル誘導体(11):
IR(KBr):ν=3501,3371,3031,1693,1604,1594,1508,1446,1174cm-1
1H−NMR(600MHz in DMSO−d6):δ=6.63(4H,d),6.93(4H,d),7.12(4H,d),7.28(4H,dd),7.36(4H,dd),7.41(4H,d),7.43(4H,d),7.89(4H,d),9.33(2H,−OH,s)ppm。
13C−NMR(150MHz in DMSO−d6):δ=63.99,115.02,120.43,125.98,126.49,127.50,127.77,128.06,128.74,135.26,138.05,139.42,145.18,150.99,156.12ppm。
【0095】
[合成例4]ビフェニル誘導体(12)の合成
【化18】


窒素雰囲気下、マグネシウム24.3g(1.00mol)を秤量した5Lの4つ口フラスコ内に、脱水THF1,000mlで予め溶解した4,4’−ジブロモビフェニル156g(0.50mol)、塩化リチウム22.5g(0.53mol)をマグネシウムが浸る程度に加えた。ジブロモエタンを少量加え、反応をスタートさせた後、発熱を維持したままTHF溶液を5時間かけ滴下した。滴下終了後、THF500mlを加え、還流下で4時間熟成してGrignard試薬を調製した。内温50℃まで冷却した後、予め脱水THF1,500mlに懸濁した9−ベンゾ[b]フルオレノン177.3g(0.77mol)を30分かけ滴下した。滴下終了後、還流下で5時間熟成を行い、氷浴でフラスコを冷却し、飽和塩化アンモニウム水溶液1,000mlで反応をクエンチした。反応溶液にMIBK500mlを追加し、分液ロートに移し変え、水層を抜き出し、更に純水500ml、飽和食塩水で分液水洗を行った後、有機層を硫酸マグネシウムで乾燥した。乾燥剤を濾別し、溶媒を留去した後、カラムクロマトグラフィーで精製を行い、ビフェニル誘導体(12)を53.2g、収率21.1%で得た。
【0096】
ビフェニル誘導体(12):
IR(KBr):ν=3543,3427,3050,1637,1607,1504,1494,1251,1168,1038,882,817,781,755cm-1
1H−NMR(600MHz in DMSO−d6):δ=6.49(2H,−OH,s),7.29〜7.32(8H,m),7.41〜7.48(10H,m),7.75(2H,s),7.86(2H,d),7.95(2H,d),7.97(2H,d),8.31(2H,d)ppm。
13C−NMR(150MHz in DMSO−d6):δ=82.03,118.21,120.72,123.52,125.05,125.75,125.83,126.22,126.31,128.03,128.33,128.84,128.87,133.35,133.64,137.85,138.40,138.59,144.90,149.64,151.07ppm。
【0097】
[合成例5]ビフェニル誘導体(13)の合成
【化19】


ビフェニル誘導体(12)5.0g(8.13mmol)、2−ナフトール2.58g(17.9mmol)、1,2−ジクロロエタン30mlを1Lの3つ口フラスコに秤量した。室温で撹拌しながらメタンスルホン酸1.5mlをゆっくり滴下し、室温で4時間反応を行った。酢酸エチル100mlで希釈し、不溶分を濾別して分液ロートに移し変え、30mlの超純水で分液水洗を7回繰り返した。有機層を減圧濃縮した後、メタノールで再結晶を行うことでビフェニル誘導体(13)を6.4g、収率90.8%で得た。
【0098】
ビフェニル誘導体(13):
IR(KBr):ν=3545,3325,3048,1634,1604,1505,1492,1433,1216,1176,875,750cm-1
1H−NMR(600MHz in DMSO−d6):δ=6.97(2H,d−d),7.06(2H,s−d),7.21(4H,d),7.32(4H,t),7.40〜7.50(16H,m),7.60(2H,d),7.83(2H,d),7.96〜7.98(4H,m),8.06(2H,d),8.43(2H,d),9.72(2H,−OH,s)ppm。
13C−NMR(150MHz in DMSO−d6):δ=64.21,108.35,118.62,118.77,121.13,124.89,125.40,125.81,126.14,126.40,126.59,127.01,127.16,127.97,128.23,128.33,128.68,129.43,132.98,133.10,133.35,138.04,138.44,138.93,139.87,145.42,148.98,150.91,155.40ppm。
TG−DTA(Air;30→500℃):4.58%、
TG−DTA(He;30→500℃):11.44%。
空気中では高温で脱水素反応を伴う酸化カップリング反応による架橋反応が起きることでHe中に比べ熱分解が抑制されている。また、空気中における500℃での重量減少はわずかに4.58%と優れた耐熱性を示した。
【0099】
[合成例6]ビフェニル誘導体(14)の合成
【化20】


(nは後述する表2に記載の重量平均分子量を与える数である。)
ビフェニル誘導体(10)10.0g(13.0mmol)、1−メトキシ−2−プロパノール30mlを200mlの3つ口フラスコに秤量し、75℃のオイルバス中でN2雰囲気下で撹拌し、溶解させた。パラホルムアルデヒド0.25g(7.8mmol)を加え、予め調製した20質量%p−トルエンスルホン酸1水和物の1−メトキシ−2−プロパノール溶液2.5gを滴下した。滴下終了後、オイルバスの温度を85℃に上げ、4時間反応を行った。室温まで放冷後、MIBK100mlで希釈し、不溶分を濾別して分液ロートに移し変え、30mlの超純水で分液水洗を8回繰り返した。有機層を減圧濃縮してポリマーを回収し、減圧乾燥することでビフェニル誘導体(14)を10.0g、収率99%で得た。
【0100】
ビフェニル誘導体(14):
IR(ATR):ν=3459,3344,3027,2954,1696,1601,1493,1447,1277,1210cm-1
Mw=4,921、Mw/Mn=1.75。
TG−DTA(Air;30→500℃):−22.48%、
TG−DTA(He;30→500℃):−20.20%。
300〜500℃の重量減少はHe中では12.65%に対して空気中では10.62%となった。高温下では脱水素反応を伴う酸化カップリング反応による架橋反応が起きるため空気中での熱分解はHe中に比べ抑制されている。
【0101】
[合成例7]ビフェニル誘導体(15)の合成
【化21】


(nは後述する表2に記載の重量平均分子量を与える数である。)
ビフェニル誘導体(11)2.0g(3.0mmol)、1−メトキシ−2−プロパノール10mlを100mlの3つ口フラスコに秤量し、75℃のオイルバス中でN2雰囲気下で撹拌し、溶解させた。パラホルムアルデヒド0.057g(1.8mmol)を加え、予め調製した20質量%p−トルエンスルホン酸1水和物の1−メトキシ−2−プロパノール溶液0.5gを滴下した。滴下終了後、オイルバスの温度を85℃に上げ、4時間反応を行った。室温まで放冷後、MIBK50mlで希釈し、不溶分を濾別して分液ロートに移し変え、20mlの超純水で分液水洗を8回繰り返した。有機層を減圧濃縮してポリマーを回収し、減圧乾燥することでビフェニル誘導体(15)を2.0g、収率98%で得た。
【0102】
ビフェニル誘導体(15):
IR(ATR):ν=3500,3343,3028,2955,1698,1607,1507,1493,1447,1263,1224,1174cm-1
Mw=15,881、Mw/Mn=7.52。
TG−DTA(Air;30→500℃):−25.11%、
TG−DTA(He;30→500℃):−36.60%。
300〜500℃の重量減少はHe中では24.62%に対して空気中では13.44%となった。高温下では脱水素反応を伴う酸化カップリング反応による架橋反応が起きるため空気中での熱分解はHe中に比べ抑制されている。
【0103】
表1,2に示すように上記合成例で得られたビフェニル誘導体のそれぞれをCompound1〜3並びにPolymer1,2とし、更に表3に示すようにBinder Polymer3〜5、XL1で示される架橋剤、TAG1で示される熱酸発生剤、更に表4に示される比較Polymer6,7及び比較Additive1を界面活性剤FC−4430(住友スリーエム(株)製)を含む溶媒中に溶解し、0.1μmのフッ素樹脂製のフィルターで濾過することによって表5,6に示す下層膜材料を調製した。
なお、Binder Polymer3,4の合成方法は下記の合成例に記載した。
【0104】
【表1】

【0105】
【表2】

【0106】
【表3】

【0107】
【表4】

【0108】
[合成例8]ナフタレン誘導体(1)の合成
【化22】


2,2’−ジナフチルエーテル30.0g(111mmol)、9−フルオレノン20.0g(111mmol)、1,2−ジクロロエタン120mlを3つ口フラスコに加え、オイルバス中で溶解させた。溶解を確認後、3−メルカプトプロピオン酸0.6ml、メタンスルホン酸6.0mlを滴下し、還流下で13時間反応を行った。反応終了後、トルエン500mlで希釈後、分液ロートに移し、水洗分液を行った。水洗を繰り返し、水層が中性になったのを確認後、有機層を減圧濃縮し、残渣にTHF250mlを加え、ヘキサン2,250mlでポリマーを晶出し、減圧乾燥することでナフタレン誘導体(1)を得た。
【0109】
ナフタレン誘導体(1):
Mw=2,867、Mw/Mn=1.95。
IR(KBr):ν=3055,1910,1596,1502,1463,1255,1219,1193,1165cm-1
n=〜6.0(Mwから算出)、〜5.45(13C−NMRから算出)。
【0110】
[合成例9]ナフタレン誘導体(2)の合成
【化23】


1,1’−ビ−2,2’−ナフトール15.9g(5.6mmol)、9−フルオレノン10.0g(5.6mmol)、1,2−ジクロロエタン125mlを3つ口フラスコに加え、オイルバス中で溶解させた。溶解を確認後、3−メルカプトプロピオン酸0.3ml、メタンスルホン酸3.0mlを滴下し、還流下で10時間反応を行った。反応終了後、酢酸エチル300mlで希釈後、分液ロートに移し、水洗分液を行った。水洗を繰り返し、水層が中性になったのを確認後、有機層を減圧濃縮し、残渣にTHF100mlを加え、ヘキサン1,300mlでポリマーを晶出した。晶出したポリマーを濾別し、減圧乾燥することでナフタレン誘導体(2)を得た。
【0111】
ナフタレン誘導体(2)
Mw=3,013、Mw/Mn=1.57。
IR(KBr):ν=3529,3060,2969,1912,1620,1596,1500,1474,1447,1383,1343,1276,1217,1147cm-1
n=〜6.08(Mwから算出)、〜4.87(1H−NMRから算出)。
【0112】
【表5】

PGMEA(プロピレングリコールモノメチルエーテルアセテート、以下同様)
CyH(シクロヘキサノン、以下同様)
【0113】
【表6】

【0114】
(屈折率測定)
上記のように調製したレジスト下層膜溶液をシリコン基板上に塗布して、UDL−1〜16、比較例UDL−2,3を350℃で60秒間ベークし、UDL−17〜32、比較例UDL−1,4〜6を230℃で60秒間ベークし、それぞれ膜厚200nmの下層膜を形成した。但し、比較例UDL−1は後述のように成膜できなかった。その後、J.A.ウーラム社の入射角度可変の分光エリプソメーター(VASE)で波長193nmにおけるUDL−1〜32、比較例UDL−2〜6の屈折率(n,k)を求めた。結果を表5,6に併記する。
【0115】
(溶媒耐性測定;溶媒処理による膜の減少量)
[実施例1〜47、比較例1〜7]
UDL−1〜32、比較例UDL−2〜6をシリコン基板上に塗布して、空気雰囲気下、表7,8に示す温度でそれぞれ60秒間ベークした。その後、膜厚を測定し、その上にPGMEAをディスペンスし、30秒間放置し、スピンドライ、100℃で60秒間ベークしてPGMEAを蒸発させ、膜厚を測定し、PGMEA処理前後の膜厚差を求めた。結果を表7,8に併記する。
【0116】
(CF4/CHF3系ガスでのエッチング試験)
UDL−1〜32、比較例UDL−2〜6をシリコン基板上に塗布して、空気雰囲気下、表7,8に示す温度でそれぞれ60秒間ベークした。それぞれ膜厚350nmの下層膜を形成し、下記条件でCF4/CHF3系ガスでのエッチング試験を行った。この場合、東京エレクトロン(株)製ドライエッチング装置TE−8500を用い、エッチング前後のポリマー膜の膜厚差を求めた。結果を表7,8に併記する。
【0117】
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
CHF3ガス流量 10ml/min
CF4ガス流量 100ml/min
Heガス流量 200ml/min
時間 20sec
【0118】
表7,8において、比較例2のCF4/CHF3系ガスでのエッチングによって減少した膜厚を100としたときの実施例、比較例のそれぞれの膜減少を比率として表した。その比率が小さいほど、エッチング耐性に優れることが判る。
【0119】
(O2系ガスでのエッチング試験)
上記と同様にUDL−1〜32、比較例UDL−2〜6をシリコン基板上に塗布して、空気雰囲気下、表7,8に示す温度でそれぞれ60秒間ベークした。それぞれ膜厚350nmの下層膜を形成し、下記条件でO2系ガスでのエッチング試験を行った。この場合、東京エレクトロン(株)製ドライエッチング装置TE−8500を用い、エッチング前後のポリマー膜の膜厚差を求めた。結果を表7,8に併記する。
【0120】
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 100W
2ガス流量 30ml/min
2ガス流量 70ml/min
時間 60sec
【0121】
上記と同様に、表7,8において、比較例2のO2系ガスでのエッチングによって減少した膜厚を100としたときの実施例、比較例のそれぞれの膜減少を比率として表した。その比率が小さいほど、エッチング耐性に優れることが判る。
【0122】
【表7】

【0123】
【表8】

【0124】
(珪素含有下層膜上中間膜溶液の調製)
FC−4430(住友スリーエム(株)製)0.1質量%を含む溶媒PGMEA中に下記式で示される珪素含有中間層用ポリマー2.0質量部、溶媒100質量部の割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって、上記例示した下層膜上へ塗布する珪素含有中間膜溶液を調製した。このように調製した珪素含有中間層溶液を以下SiL−1と表記する。
【化24】

【0125】
(レジスト上層膜材料の調製及び液浸保護膜の調製)
レジスト上層膜材料としては、表9に示す組成の樹脂、酸発生剤、塩基性化合物をFC−4430(住友スリーエム(株)製)0.1質量%を含む溶媒中に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって調製した。後述の表11,12中において、レジスト上層膜材料をArF用SLレジストと表記した。
【表9】

表9中、ArF単層レジストポリマー、PAG1、TMMEAは下記のものを用いた。
【化25】

【0126】
液浸保護膜(TC−1)としては、表10に示す組成の樹脂を溶媒中に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって調製した。
【表10】

表10中、保護膜ポリマーは下記のものを用いた。
【化26】

【0127】
(パターンエッチング試験)
[実施例48〜79、比較例8〜13]
(下層膜の成膜)
下層膜材料(UDL−1〜32、比較例UDL−2〜6)を、膜厚200nmのSiO2膜が形成された直径300mmSiウエハー基板上に塗布して、後述する表11,12中、実施例48〜79、比較例8〜13に示すようなベーク条件でベークして膜厚200nmのレジスト下層膜を形成した。なお、レジスト下層膜のベーク雰囲気は空気雰囲気下で行った。
【0128】
(珪素含有レジスト中間層材料(SiL−1)の成膜)
その上に上記、珪素含有レジスト中間層材料(SiL−1)を塗布して200℃で60秒間ベークして膜厚35nmのレジスト中間層膜を形成した。
【0129】
(レジスト上層膜材料(ArF用SLレジスト)及び保護膜の形成)
レジスト上層膜材料(ArF用SLレジスト溶液)を後述する表11,12中、実施例48〜79、比較例8〜13で示す下層膜上に塗布し、105℃で60秒間ベークして膜厚100nmのレジスト上層膜を形成した。レジスト上層膜に液浸保護膜を塗布し、90℃で60秒間ベークし、膜厚50nmの保護膜を形成した。
【0130】
(液浸露光にパターニング)
次いで、ArF液浸露光装置((株)ニコン製;NSR−S610C,NA1.30、σ0.98/0.65、35度ダイポール偏光照明、6%ハーフトーン位相シフトマスク)で露光し、100℃で60秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で30秒間現像し、43nm1:1のポジ型のラインアンドスペースパターンを得た。
【0131】
(パターニング後のエッチング試験)
次いで、東京エレクトロン(株)製エッチング装置Teliusを用いてドライエッチングによるレジストパターンをマスクにして珪素含有レジスト中間層膜(SOG)の加工、珪素含有レジスト中間層膜をマスクにしてレジスト下層膜、得られたレジスト下層膜パターンをマスクにしてSiO2膜の加工を行った。エッチング条件は下記に示す通りである。
【0132】
レジストパターンの珪素含有レジスト中間層膜への転写条件。
チャンバー圧力 10.0Pa
RFパワー 1,500W
CF4ガス流量 75ml/min
2ガス流量 15ml/min
時間 15sec
【0133】
珪素含有中間膜パターンの下層膜への転写条件。
チャンバー圧力 2.0Pa
RFパワー 500W
Arガス流量 75ml/min
2ガス流量 45ml/min
時間 120sec
【0134】
レジスト下層膜パターンのSiO2膜への転写条件。
チャンバー圧力 2.0Pa
RFパワー 2,200W
512ガス流量 20ml/min
26ガス流量 10ml/min
Arガス流量 300ml/min
2ガス流量 60ml/min
時間 90sec
【0135】
それぞれのパターン断面を(株)日立製作所製電子顕微鏡(S−4700)にて観察し、形状を比較し、表11,12にまとめた。
【0136】
【表11】

【0137】
【表12】

【0138】
(段差基板埋め込み特性)
[実施例80〜88、比較例14,15]
Si基板上に厚み500nmで直径が160nmの密集ホールパターンが形成されているSiO2段差基板上に、平坦な基板上で200nmの膜厚になるよう調製されたUDL−1,2,3,6,7,8,12,14,16と比較例UDL−2,5を塗布し、350℃で60秒間ベークした。基板を割断し、ホールの底まで膜が埋め込まれているかどうかをSEMで観察した。結果を表13に示す。
【0139】
【表13】

【0140】
(アウトガス測定)
[実施例89〜97、比較例16,17]
UDL−1,2,3,6,7,8,12,14,16と比較例UDL−2,3をSi基板上に塗布し、350℃で60秒間ベークし、膜厚200nmの下層膜を形成できる条件で、350℃ベーク中にホットプレートオーブン中に発生するパーティクルをリオン社製パーティクルカウンターKR−11Aを用いて0.3μmと0.5μmサイズのパーティクル数を測定した。結果を表14に示す。
【0141】
【表14】

【0142】
表5,6に示されるように、本発明のレジスト下層膜形成方法で形成したレジスト下層膜は、液浸リソグラフィー用の3層プロセスのレジスト下層膜としても実用に適する屈折率を有している。
また、表6中の比較例UDL−1の比較Additive1は、単体では成膜することができず、比較例UDL−3にあるように、BinderとなるPolymerがないと成膜できない。一方、本発明の実施例であるビフェニル誘導体Compound1〜3を単体でフォーミュレーションしたUDL−1〜3は成膜可能であり、利点として挙げることができる。
【0143】
表7,8に示すように、本発明のように350℃を超える温度でベークして形成すると、溶媒に不溶のレジスト下層膜が形成された(実施例1〜31)。
また、表7,8に示すように、上記表3中に示された熱酸発生剤TAG1、架橋剤XL1を用いた場合、低温のベークが可能となり、溶媒に不溶のレジスト下層膜が形成された(実施例32〜47)。
更に、表7,8に示すように、本発明の方法で形成したレジスト下層膜のCF4/CHF3ガスエッチングの速度、並びにO2ガスエッチングの速度は、Binder Polymer5及び比較Polymer6,7(比較例1〜7)よりもエッチング速度が遅く、非常に高いエッチング耐性を有する。
【0144】
表11,12に示すように、本発明の方法で形成したレジスト下層膜は、現像後のレジスト形状、酸素エッチング後、基板加工エッチング後の下層膜の形状が良好で、パターンのよれの発生も見られなかった(実施例48〜79)。
【0145】
表13に示すように、比較例14,15においては、埋め込み不良が発見された。一方、本発明のビフェニル誘導体であるCompound1〜3はBinderとなるポリマーがなくとも単体で成膜可能であるため良好な埋め込み特性を示す(実施例80〜82)。また、本発明のビフェニル誘導体であるCompound1〜3をレジスト下層膜材料に添加することで、埋め込み特性が更に改善された(実施例83〜88)。
【0146】
表14の比較例16,17に示すように、埋め込み特性を改善するためモノマーを添加するとベーク中のパーティクルが増加し、ホットプレートのオーブンを汚染する。一方、本発明のビフェニル誘導体を含有したレジスト下層膜材料を用いて形成したレジスト下層膜は、高耐熱性を有するためパーティクルの発生がなく、埋め込み特性とパーティクル防止の両方の特性を同時に達成することができる(実施例89〜97)。
【0147】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。
【符号の説明】
【0148】
1 基板
2 被加工層
3 レジスト下層膜
4 レジスト中間層膜
5 レジスト上層膜
6 所用(露光)部分
5a レジストパターン
4a レジスト中間層膜パターン
3a レジスト下層膜パターン
2a パターン

【特許請求の範囲】
【請求項1】
下記一般式(1)で表されるビフェニル誘導体。
【化1】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。)
【請求項2】
下記一般式(2)で表される部分構造を有するビフェニル誘導体。
【化2】


(式中、環構造Ar1、Ar2はベンゼン環又はナフタレン環を表す。x、zはそれぞれ独立に0又は1を表す。Lは単結合又は炭素数1〜20のアルキレン基を表す。)
【請求項3】
(i)請求項1に記載の一般式(1)で表されるビフェニル誘導体又は(ii)請求項2に記載の一般式(2)で表される部分構造を有するビフェニル誘導体又は(iii)上記(ii)のビフェニル誘導体を繰り返し単位の一部として含有する高分子化合物を用いたレジスト下層膜材料。
【請求項4】
更に、有機溶媒を含有する請求項3に記載のレジスト下層膜材料。
【請求項5】
更に、架橋剤及び酸発生剤を含有する請求項3又は4に記載のレジスト下層膜材料。
【請求項6】
リソグラフィーで用いられる少なくとも三層を有する多層レジスト膜のレジスト下層膜の形成方法であって、請求項3〜5のいずれか1項に記載のレジスト下層膜材料を基板上にコーティングし、そのコーティングしたレジスト下層膜材料を150℃を超え600℃以下の温度で、10〜600秒間の範囲で熱処理して硬化させることを特徴とするレジスト下層膜形成方法。
【請求項7】
請求項3〜5のいずれか1項に記載のレジスト下層膜材料をスピンコート法で基板上にコーティングすることを特徴とする請求項6に記載のレジスト下層膜形成方法。
【請求項8】
リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に請求項6又は7に記載のレジスト下層膜形成方法によりレジスト下層膜を形成し、そのレジスト下層膜の上に珪素原子を含有するレジスト中間層膜材料を用いてレジスト中間層膜を形成し、そのレジスト中間層膜の上にフォトレジスト組成物からなるレジスト上層膜材料を用いてレジスト上層膜を形成して、上記レジスト上層膜のパターン回路領域を露光した後、現像液で現像して上記レジスト上層膜にレジストパターンを形成し、得られたレジストパターンをエッチングマスクにして上記レジスト中間層膜をエッチングし、得られたレジスト中間層膜パターンをエッチングマスクにして上記レジスト下層膜をエッチングし、得られたレジスト下層膜パターンをエッチングマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法。
【請求項9】
リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に請求項6又は7に記載のレジスト下層膜形成方法によりレジスト下層膜を形成し、そのレジスト下層膜の上に珪素酸化膜、珪素窒化膜及び珪素酸化窒化膜から選ばれる無機ハードマスク中間層膜を形成し、その無機ハードマスク中間層膜の上にフォトレジスト組成物からなるレジスト上層膜材料を用いてレジスト上層膜を形成して、上記レジスト上層膜のパターン回路領域を露光した後、現像液で現像して上記レジスト上層膜にレジストパターンを形成し、得られたレジストパターンをエッチングマスクにして上記無機ハードマスク中間層膜をエッチングし、得られた無機ハードマスク中間層膜パターンをエッチングマスクにして上記レジスト下層膜をエッチングし、得られたレジスト下層膜パターンをエッチングマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法。
【請求項10】
リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に請求項6又は7に記載のレジスト下層膜形成方法によりレジスト下層膜を形成し、そのレジスト下層膜の上に珪素酸化膜、珪素窒化膜及び珪素酸化窒化膜から選ばれる無機ハードマスク中間層膜を形成し、その無機ハードマスク中間層膜の上に有機反射防止膜を形成し、その有機反射防止膜の上にフォトレジスト組成物からなるレジスト上層膜材料を用いてレジスト上層膜を形成して、上記レジスト上層膜のパターン回路領域を露光した後、現像液で現像して上記レジスト上層膜にレジストパターンを形成し、得られたレジストパターンをエッチングマスクにして上記有機反射防止膜と上記無機ハードマスク中間層膜をエッチングし、得られた無機ハードマスク中間層膜パターンをエッチングマスクにして上記レジスト下層膜をエッチングし、得られたレジスト下層膜パターンをエッチングマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法。
【請求項11】
無機ハードマスク中間層膜が、CVD法あるいはALD法によって形成されることを特徴とする請求項9又は10に記載のパターン形成方法。
【請求項12】
レジスト上層膜材料が珪素原子含有ポリマーを含まず、上記中間層膜をマスクにして行うレジスト下層膜のエッチングを酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことを特徴とする請求項8〜11のいずれか1項に記載のパターン形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−214720(P2012−214720A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2012−58407(P2012−58407)
【出願日】平成24年3月15日(2012.3.15)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】