説明

ファイバーを基礎にした共振器結合のためのシステムおよび方法

【課題】結晶基板支持体(202)上の光ファイバー整列素子を提供すること。
【解決手段】共振器光ファイバージャイロで具体化される例示的実施形態は、光ファイバー(136)の第1の端部分(138)および光ファイバー(136)の第2の端部分(140)を支持する働きをする結晶基板支持構造体(202)を形成するステップと、支持構造体(202)内に第1の端部V溝部分(208)および第2の端部V溝部分(210)を形成するステップと、光ファイバー(136)の第1の端部分(138)を第1の端部V溝部分(208)に物理的に結合するステップと、光ファイバー(136)の第2の端部分(140)を第2の端部V溝部分(210)に物理的に結合するステップとからなる工程によって製作される。

【発明の詳細な説明】
【技術分野】
【0001】
ジャイロは、回転速度すなわち軸の周りの角速度の変化を測定する。基本的な従来の光ファイバージャイロ(FOG)は、光源、ビーム発生素子、およびビーム発生素子に結合され、ある面積を囲む光ファイバーのコイルを含む。ビーム発生素子は、光ファイバーのコアに沿って時計回り(CW)方向および反時計回り(CCW)方向に伝播する光ビームをコイル内に送出する。対向して伝播する(CWおよびCCW)2つのビームは、回転経路を巡って伝播しながら異なる経路長を経験し、2つの経路長の差は、回転速度に比例する。FOGは、光ビームの光学経路によって囲まれる面積とともに一般に高くなる精度を有する。それゆえに、光学経路によって囲まれる面積が大きいほど、FOGの信号対雑音比は大きい。また、FOGの信号対雑音比を改善するために、光学経路は、コイルの巻き数を増やすことによって増やされてもよい。
【0002】
共振器光ファイバージャイロ(RFOG)では、対向して伝播する光ビームは、単色性であり、ファイバー結合器または他の反射素子などの再循環器を使用して、複数巻き数のコイルの中を通り、コイルを複数回通過するために再循環する。共振コイルの共振周波数が観測されてもよいように、ビーム発生素子は典型的には、対向して伝播する光ビームの各々の周波数を変調するおよび/またはシフトする。コイルの中を通るCWおよびCCW経路の各々に対する共振周波数は、各光学経路内で連続して再循環されるビームの建設的干渉に基づく。コイルの回転は、共振コイルのそれぞれの共振周波数のシフトを生成し、回転に起因するコイルの共振周波数シフトに整合させるようにCWビームおよびCCWビームの周波数を調整することに関連する周波数差は、回転速度を示す。反射鏡は、対向して伝播する光ビームをコイル内で再循環させるために使用されてもよいが、これは典型的には、鏡からコイルへの移行時に生成される損失から、信号対雑音比を低下させる。
【0003】
したがって、ナビゲーションシステムにとって十分な精度で回転速度を測定することができる光ファイバージャイロを提供することが望ましい。そのうえ、比較的小さなプラットホームとの一体化のためのおよび比較的安価に作られる高精度光ファイバージャイロを提供することが望ましい。RFOGの良好な性能は、光がファイバーコイルを多数回通過するように、ファイバーからファイバーの低い結合損失を有することを前提としている。この分野における従来技術は、ファイバーからファイバーの結合を行うために高反射鏡(たとえば、98%の反射率)を使用する。この構成は、反射鏡被覆が多重誘電体被覆を使って非常に正確に作ることができるという利点を使用するが、それは、重大な不利益、即ち2つのファイバー端部がお互いに整列されることを保証することが困難であるということを経験する。この設計の実施には、時間のかかるならびに高価な能動的および手動による整列を必要とするであろう。
【0004】
図1は、例示的共振器光ファイバージャイロ102の構成図である。例示的共振器光ファイバージャイロ102の動作は、本明細書で以下に述べられ、2005年12月9日に出願され、今は米国2007/0133003として公開されている、出願番号11/298439を有する本願の譲受け人に譲渡された米国出願でさらに詳細に述べられ、それは参照により本明細書に全体として組み込まれる。共振器光ファイバージャイロ102は、光ビームをそれぞれ合成する2つのレーザー104、106(たとえば、波長可変レーザー、レーザダイオードなどの光源、または他の適切な光源)、対向して伝播する方向に光ビームを循環させ、レーザー104、106からの光ビームの一部分を共振器108内へ導入する再循環器110を有する共振器108、共振器108内を循環する光をサンプリングする光検出器112、114、光検出器114、112にそれぞれ結合され、対向して伝播する方向の各々に対して共振器108の共振ディップの中心を検出する共振検出器116、118、ならびに共振検出器116、118にそれぞれ結合される入力およびレーザー104、106にそれぞれ結合される出力を有するサーボ機構120、122を含む。それゆえに、共振器光ファイバージャイロ102のこれらの部品は、対向して伝播する各方向(たとえば、時計回り(CW)および反時計回り(CCW))に対して共振追跡ループ124、126を形成する。
【0005】
共振器108は、再循環器110および複数のループを持つ光ファイバーコイル136を含む。任意の適切な光ファイバーが使用されてもよいが、例示的実施形態では、光ファイバーコイル136は、中空コア光ファイバーである。光ファイバーコイル136は、第1の端部138および第2の端部140を有する。各端部138、140は、再循環器110のそれぞれの支持部分に物理的に結合される。再循環器110は、CWおよびCCW入射光ビームを光ファイバーコイル136内に導入し、変調された光ビームの一部分を光ファイバーコイル136の中を通って循環させる。再循環器110は、光ファイバーコイル136の1つの端部から出てくる光を光ファイバーコイル136のもう1つの端部内へ再導入し、このようにして光に何度も光ファイバーコイル136の中を通って伝播させる。サニャク効果(Sagnac Effect)の応用により、光ファイバージャイロ102は、光ファイバージャイロ102の軸の周りの回転速度を感知する。効率の良い光再循環には、光ファイバーコイル端部138、140の正確な整列を必要とする。
【特許文献1】米国特許出願第11/298439号
【発明の開示】
【発明が解決しようとする課題】
【0006】
結晶基板支持体上の光ファイバー整列素子のためのシステムおよび方法が開示される。
【課題を解決するための手段】
【0007】
共振器光ファイバージャイロで具体化される光ファイバー整列素子の例示的実施形態は、光ファイバーの第1の端部分および光ファイバーの第2の端部分を支持する働きをする結晶基板支持構造体を形成するステップと、支持構造体内に第1の端部V溝部分および第2の端部V溝部分を形成するステップと、光ファイバーの第1の端部分を第1の端部V溝部分に物理的に結合するステップと、光ファイバーの第2の端部分を第2の端部V溝部分に物理的に結合するステップとからなる工程によって製作される。
【0008】
さらなる態様によると、例示的実施形態は、光ファイバーの第1の端部分および光ファイバーの第2の端部分を支持する働きをする結晶基板支持構造体を形成するステップと、軸に沿って支持構造体内にV溝を形成し、そのV溝は、中央V溝部分、第1の端部V溝部分、および第2の端部V溝部分によって規定され、そのV溝部分の各々は、軸に沿って端から端まで整列されるステップと、光ファイバーの第1の端部が中央V溝部分の方へ向けられ、軸に沿って整列されるように、光ファイバーの第1の端部分を第1の端部V溝部分に物理的に結合するステップと、光ファイバーの第2の端部が中央V溝部分の方へ向けられ、軸に沿って整列され、光ファイバーの第1の端部と向かい合うように、光ファイバーの第2の端部分を第2の端部V溝部分に物理的に結合するステップとからなる工程によって製作される。
【0009】
他の態様によると、光ファイバーシステムは、中央部分、第1の端部を持つ第1の端部分、および第2の端部を持つ第2の端部分によって規定され、第1の端部および第2の端部が光を送出し、受け取る働きをする光ファイバーと、光ファイバーの第2の端部によって受け取ることができ、光ファイバーの中央部分の方へ進む第1の光ビームを発生する働きをする第1の光源と、軸に沿って整列され、中央V溝部分および第1の端部V溝部分によって規定される少なくとも1つのV溝をその上に持つ結晶基板支持構造体と、光ファイバーの第1の端部が中央V溝部分の方へ向けられ、軸に沿って整列されるように、第1の端部V溝部分を光ファイバーの第1の端部分に物理的に結合する働きをするバインダーと、軸に沿って整列され、介在する自由空間経由で光ファイバーの第1の端部から出る光ビームを受け取る働きをする光透過光学部品とを有する。
【0010】
好ましい代替の実施形態は、次の図面を参照して以下で詳細に述べられる。
【発明を実施するための最良の形態】
【0011】
V溝支持体の実施形態は、吸収されたガスを検出する光ファイバー共振器システム、物体の変形を検出する光ファイバーシステム、および光ファイバーを用いる他の種類の光ファイバーシステムなどの、しかしそれらに限定されない、様々な光ファイバー素子で実施されてもよい。例示的実施形態では、V溝は、シリコンを基礎にした光学ベンチ内にエッチングされ、ここではV溝をエッチングするためにマスクが使用される。そのマスクは、V溝のマスクパターンに沿った正確な幅を使用する。エッチング工程は、光ファイバーの端部がV溝内に取り付けられるとき、光ファイバー端部がお互いに正確に整列されるようなV溝を形成する。したがって、光は、正確に整列された光ファイバーの端部間を再循環されてもよい。V溝支持体の実施形態は、様々な種類の光ファイバージャイロおよび光ファイバーの端部の正確な整列を必要とする他の光ファイバー素子で使用されてもよい。
【0012】
図2は、V溝支持体を持つシリコン光学ベンチの例示的実施形態による、光ファイバーシステム200の端部の方向付けの図である。V溝支持体は、共振器108内に存在する。シリコン光学ベンチは、その上にV溝204が配置された支持構造体202を含む。シリコン光学ベンチ202は、単結晶シリコン基板などの、しかしそれには限定されない、シリコン結晶基板構造体でもよい。他の実施形態では、シリコン光学ベンチと似ている支持構造体が、その上にV溝204をともなって使用されてもよい。
【0013】
例示的V溝204は、中央V溝部分206および2つの端部V溝部分208、210を含む。この例示的実施形態では、V溝204の方向付けは、V溝204の方向と平行な軸212を形成する。したがって、V溝部分206、208、210の各々は、軸212に沿って整列される。
【0014】
光ファイバーシステム200の1つの端部分138は、端部V溝部分208に物理的に結合される。光ファイバーシステム200の反対側の端部分140は、もう1つの端部V溝部分210に物理的に結合される。様々な光学部材は、V溝204の中央V溝部分206上に製作されてもよくおよび/またはそれに取り付けられてもよい。
【0015】
光ファイバー端部分138がV溝端部分208に物理的に結合される(即ち、接着剤でつけられる、エポキシで接着される、またははんだ付けされる)とき、光ファイバーシステム200の端部214は、軸212と整列され、中央V溝部分206と向かい合っている。光ファイバー端部分140がV溝端部分210に物理的に結合されるとき、光ファイバーシステム200の端部216は、軸212と整列され、中央V溝部分206と向かい合っている。したがって、端部214および216はV溝204内に存在するので、端部214および216はお互いに向かい合っており、正確に整列している。
【0016】
V溝部分206は、端部214と216との間に介在する自由空間218を有する。自由空間218はガスで充填されてもよく、または自由空間218は真空であってもよい。それゆえに、端部214および216に入るおよび/またはそこから出る光は、介在する自由空間218を通り抜ける。上で述べられたように、様々な光学部品もまた、中央に設置されたV溝部分206の介在する自由空間218内に存在してもよい。
【0017】
図3は、例示的シリコン結晶支持構造体202内に製作されたV溝204の面3−3´(図1)に沿った側面図である。V溝204は、(111)ミラー(Miller)指数、しかしそれには限定されないが、によって規定される結晶面などの、シリコン結晶構造体の選択された面に沿ったシリコン結晶支持構造体202の異方性エッチングによって形成される。V溝204は、角度αおよび幅Wによって特徴づけられてもよい。V溝204がシリコンベンチ内にエッチングされるとき、角度αは(111)面に対応する。好ましくは、幅Wは、V溝204の長さに沿って一定であり、さらに詳細には端部分138、140の長さに沿って一定である。幅Wにおけるこの整合性は、厳密に制御されたマスクの線およびエッチング工程によって容易になる。
【0018】
光ファイバーシステム200の端部分138、140が、それぞれの端部V溝部分208、210内へ位置付けられるとき、光ファイバーシステム200の端部分138、140は、位置304においてV溝204の側壁320と接触している。上で述べられたように、位置304は、V溝の角度αおよび幅の関数である。
【0019】
端部V溝部分208、210は、長さによって規定できる。長さは、あらかじめ規定されてもよくまたは可変であってもよく、および/または長さは、端部V溝部分208、210に対して異なってもよい。
【0020】
さらに、V溝204の角度αは、端部V溝部分208、210の長さに沿って実質的に一定であり、それによって、端部分138、140のお互いに対する整列および/または光ファイバージャイロ102の光学を改善する。光ファイバーシステム200の端部分138、140は、実質的に同じ直径を有するから、ならびに角度αおよび/または幅Wは、端部V溝部分208、210の両方に対して実質的に一定であるから、支持構造体202の表面306と光ファイバーシステム200の端部分138、140の中心308との間の距離に対応する距離D1は、両端部分138、140に対して実質的に同じである。ここで、V溝204の角度αおよび幅Wは、中心308が表面306よりも下となるようなものである。しかしながら、V溝204の角度αおよび/または幅Wは、中心308が表面306と同じ高さ、またはそれよりも高くなるようなものであってもよい。距離D1は、V溝204の幅Wを規定することによって制御可能である。
【0021】
光ファイバーシステム200の各端部分138、140は、そのそれぞれの端部V溝部分208、210内で実質的に同じ位置に置かれているから、2つの端部分138、140の中心308は、お互いに整列される。すなわち、端部分138の端部214は、端部分140の端部216と向かい合っており、それと整列している。理想的には、端部分138、140が同一の寸法、およびV溝部分208、210が同一の寸法の場合には、端部214および216は、厳密にお互いに整列するであろう。端部分138、140の寸法、および/またはV溝部分208、210の寸法が比較的小さな差異を持つ場合には、端部214および216は、実質的にお互いに整列するであろう。
【0022】
共振器光ファイバージャイロで実施されるV溝実施形態の場合には、CW光は、端部216から出て、軸212に平行な経路内を進む。光ファイバーシステム200の端部分138、140の中心308は、お互いに整列されているから、出てくるCW光のかなりの部分は、光が自由空間の中を通って伝播するときに生じるビーム拡がりの量に応じて、端部214において受け取られる。受け取られたCW光は、光ファイバーシステム200の中を通ってCW方向に進み続ける。
【0023】
CCW光は、端部214から出て、軸212に平行な経路内を進む。光ファイバーシステム200の端部分138、140の中心308は、お互いに整列されているから、CCW光のかなりの部分は、端部216において受け取られる。受け取られたCCW光は、光ファイバーシステム200の中を通ってCCW方向に進み続ける。
【0024】
端部214、216は、実質的にお互いに整列されているから、光ファイバーシステム200の端部分138、140間のずれに起因する光の損失は、著しくかつ予想外に低減される。すなわち、正確な方法で形成されたV溝204は、端部分138、140がお互いに正確に整列されるような支持構造体202内への、光ファイバーシステム200の端部分138、140の正確な物理的結合を可能にする。
【0025】
バインダー310は、光ファイバーシステム200の端部分138、140をそれらのそれぞれの端部V溝部分208、210内へ物理的に結合するために使用される。バインダー310は、紫外線(UV)硬化可能なバインダーなどの、しかしそれには限定されない、光硬化可能なバインダーでもよい。別法として、バインダー310は、熱硬化可能なバインダーでもよい。他の実施形態は、端部分138、140をそれらのそれぞれの端部V溝部分208、210に物理的に結合するために任意の適切なバインダー310を用いてもよい。そのようなバインダー310の限定されない実施例は、ブロック、ひも、棒および他の種類の留め具を含む。
【0026】
図4は、複数の光学部材の第1の配置400について光ファイバーシステム200の端部214、216の方向付けを示す例示的V溝実施形態の構成図である。図5は、複数の光学部材の第2の配置500について光ファイバーシステム200の端部214、216の方向付けを示す例示的V溝実施形態の構成図である。光学部材の限定されない実施例は、ボールレンズ402、偏光フィルター404、および透過鏡406を含む。任意の数の選択された光学部材402、404、406が、中央V溝部分206内に置かれてもよく、そのような選択された光学部材402、404、406が、任意の望ましい方法で構成されてもよいことが理解される。
【0027】
図6は、オフセットV溝実施形態600による光ファイバーの端部の方向付けの図である。V溝204a、204bのオフセットは、1つまたは複数の光学部材602に起因する光のオフセットを補償する。すなわち、V溝軸212aおよびV溝軸212bのオフセットは、光学部材602からの光オフセットの量に対応する。
【0028】
V溝204は、光ファイバージャイロ102内の他の光学部材の配置および/または整列を容易にするために使用されてもよい。上で述べられたように、光ファイバーシステム200の端部分138、140は、軸212に沿ってお互いに実質的に整列される。それゆえに、中央V溝部分206の自由空間の中を通る光の進行の経路は、V溝204の位置に対して決定でき、さらに詳細には、軸212に対して決定できる。したがって、ボールレンズ402、偏光フィルター404、透過鏡406、または同様のものなどの他の光学部材は、端部分138、140に対して所望の位置で、中央V溝部分206内に置かれてもよくおよび/またはそれと全体的に整列されてもよい。すなわち、他の光学部材は、V溝204の周知の位置に対して位置付けられてもよく、さらに詳細には、軸212に対して位置付けられてもよい。
【0029】
様々な実施形態では、V型溝204は、端部分138、140をお互いに対して方向付け、位置付ける自己修正手段をV型溝が提供するという点で、望ましい。たとえば、第1の支持構造体は、V型構成内に特定の幅で端部V溝部分208、210を有してもよい。第2の支持構造体もまた、V型構成内に端部V溝部分208、210を有してもよいが、第1の支持構造体のV溝とは異なる別の幅を有する。支持構造体のどちらかについて、それらのそれぞれの光ファイバーシステム200の端部分138、140は、それらのそれぞれの端部214、216がお互いに整列するように位置付けられ、方向付けられるであろう。それゆえに、V溝204の使用は、設計および製造の工程に高い許容度を提供する。
【0030】
任意の適切な製作手段および/または技術が、V溝204を形成するために使用されてもよい。たとえば、異方性エッチング技術が、V溝を形成するために使用されてもよい。
いくつかの実施形態では、2つの分離したV溝が形成されてもよい。好ましくは、V溝は、同じマスクを使用して形成され、同時にエッチングされる。第1のV溝の一部分は、端部分138を位置付け、方向付けるために使用されてもよく、第2のV溝の一部分は、もう1つの端部分140を位置付け、方向付けるために使用されてもよい。V溝204は、光ファイバーシステム200のそれらのそれぞれの端部分138、140を周知の方法で位置付け、方向付けるので、光学素子は、光ファイバーシステム200の端部214、216によって放出されるおよび/または受け取られる光を処理するために、任意の望ましい構成で配置することができる。
【0031】
たとえば、および実際に、光がシリコン部分反射鏡(それは本質的に非ゼロ反射率を持つ窓である)を通り抜けて伝搬するとき、透過光は、入射光に対して横に動かされるであろう。窓の屈折率および厚さ次第では、この変位は無視できない。透過光の垂直高さは、入射光の垂直高さと同じである。光をファイバーからファイバーへ最大限に結合させるためには、V溝、および中間の光学系は、この変位に対処するためにオフセットされる必要がある。変位は、容易に計算され、製作マスクで対処することができる。垂直高さは影響を受けず、依然として自動整列される。
【0032】
いくつかの実施形態では、光ファイバーの端部分138、140および/またはV溝は、好ましいファイバー軸への光偏光の整列を手伝うために、その上に案内手段を有してもよい。たとえば、端部分138、140は、1つまたは複数の扁平部分、切り込み、縞模様および/または他の案内手段をその上に有してもよい。
【0033】
支持構造体202のいくつかの実施形態は、内部に形成されるV溝204、またはその同等のものを有してもよい。たとえば、シリコン型支持構造体202を有する実施形態では、深いエッチング工程が、内部V溝型構造体を形成するために使用されてもよい。
【0034】
いくつかの実施形態では、端部分138、140は、特定の光偏光軸に沿って整列される必要がある。光ファイバーの第1の端部分138が、第1の端部V溝部分208内へ置かれるとき、光のビームが第1の端部214から放出されながら、第1の端部分が回転される。第1の端部214から放出される光のビームの最大光透過が検出されると、第1の端部分138は、V溝部分208内に固定される。光ファイバーの第2の端部分140が、第2の端部V溝部分210内へ置かれるとき、光のCWビームが第2の端部216から放出されながら、第2の端部分140が回転される。第2の端部216から放出される光のビームの最大光透過が検出されると、第2の端部分140は、V溝部分210内に固定される。
【0035】
本発明の好ましい実施形態は、上で述べられたように、例示され、説明されたが、本発明の精神および範囲から逸脱することなく、多くの変形がなされ得る。したがって、本発明の範囲は、好ましい実施形態の開示によっては限定されない。それよりむしろ、本発明は、添付の特許請求の範囲を参照することによって全体に決定されるべきである。
【図面の簡単な説明】
【0036】
【図1】光ファイバージャイロの例示的実施形態の構成図である。
【図2】例示的実施形態による光ファイバーの端部の方向付けの図である。
【図3】シリコン結晶を基礎にした支持体内に製作されるV溝の側面図である。
【図4】複数の光学部材の第1の配置について光ファイバーの端部の方向付けを示す例示的実施形態の構成図である。
【図5】複数の光学部材の第2の配置について光ファイバーの端部の方向付けを示す例示的実施形態の構成図である。
【図6】オフセットV溝実施形態による光ファイバーの端部の方向付けの図である。

【特許請求の範囲】
【請求項1】
中央部分、第1の端部を持つ第1の端部分、および第2の端部を持つ第2の端部分によって規定される光ファイバーを有する光ファイバーシステムを構成するための方法であって、
前記光ファイバーの前記第1の端部分および前記光ファイバーの前記第2の端部分を支持する働きをする結晶基板支持構造体を形成するステップと、
軸に沿って前記支持構造体内にV溝を形成するステップであって、前記V溝は、中央V溝部分、第1の端部V溝部分、および第2の端部V溝部分によって規定され、前記V溝部分の各々は、前記軸に沿って端から端まで整列されるステップと、
前記光ファイバーの前記第1の端部が、前記中央V溝部分の方へ向けられ、前記軸に沿って整列されるように、前記光ファイバーの前記第1の端部分を前記第1の端部V溝部分に物理的に結合するステップと、
前記光ファイバーの前記第2の端部が、前記中央V溝部分の方へ向けられ、前記軸に沿って整列され、前記光ファイバーの前記第1の端部と向かい合うように、前記光ファイバーの前記第2の端部分を前記第2の端部V溝部分に物理的に結合するステップとを含む方法。
【請求項2】
請求項1に記載の方法において、前記V溝を形成するステップが、前記V溝を形成するために(111)面に沿って前記結晶基板支持構造体を異方的にエッチングするステップを含む方法。
【請求項3】
請求項1に記載の方法において、光学部材を前記中央V溝部分(206)に前記軸(212)と整列させて置くステップをさらに含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−199065(P2009−199065A)
【公開日】平成21年9月3日(2009.9.3)
【国際特許分類】
【外国語出願】
【出願番号】特願2008−332382(P2008−332382)
【出願日】平成20年12月26日(2008.12.26)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)
【Fターム(参考)】