説明

フィットネスアッセイおよび関連する方法

【課題】複製する生物学的エンティティが関与する疾患において薬剤耐性が出現する可能性があるかどうかを予測する方法を提供する。
【解決手段】阻害剤の選択圧力下での、そのプレデセサーと比べた、突然変異した複製する生物学的エンティティの生物学的フィットネスを決定するためのアッセイ。さらに、プロテアーゼ阻害剤の抗HIVプロテアーゼ活性を測定するための連続発蛍光アッセイ。また、治療における薬剤耐性の出現の可能性を低減する治療化合物を投与する方法。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の技術分野)
本発明は、生化学的フィットネス(fitness)アッセイおよび関連する方法に関する。
【背景技術】
【0002】
(発明の背景)
薬剤耐性の発生は、薬剤分野における最も複雑な難題の1つである。複製する生物学的エンティティ(replicating biological entity)が関与する疾患(例えば、ガンおよび感染性疾患)の処置における薬剤不全(drug failure)の最も一般的な原因の1つは、薬剤耐性の出現である。薬剤耐性の最も劇的で悲惨な例の1つは、後天性免疫不全症候群(AIDS)の抗ウイルス治療に関連して見出すことができる。
【0003】
AIDSは、致命的な疾患であり、この報告例は過去数年間で劇的に増加している。極近い将来の報告症例推定数もまた、劇的に増加し続けている。
【0004】
AIDSウイルスは、1983年に初めて同定された。それは、幾つかの名称および頭字語で知られている。それは、第3の公知のTリンパ球ウイルス(HTLV−III)であり、そして免疫系の細胞内で複製する能力を有し、深刻な細胞破壊を引き起こす。AIDSウイルスは、レトロウイルス、すなわち複製中に逆転写酵素を用いるウイルスである。この特定のレトロウイルスはまた、リンパ節症関連ウイルス(LAV)、AIDS関連ウイルス(ARV)として、そして最近はヒト免疫不全ウイルス(HIV)として知られている。今日までに、HIVの2つの異なるファミリー、すなわち、HIV−1およびHIV−2が現在までに明らかにされている。頭字語HIVは、本明細書中ではHIVウイルスを包括的に言及するために使用する。
【0005】
特に、HIVは、CD4+ヘルパー/インデューサT細胞に対して深刻な細胞変性効果を及ぼし、それによって免疫系を激しく傷つけることが知られている。HIV感染はまた、神経学的悪化を生じ、最終的には感染した個体を死に至らしめる。
【0006】
ウイルス化学療法学の分野は、レトロウイルス、特にHIVに対して有効な薬剤の必要性に応じて発展してきた。例えば、抗レトロウイルス剤(3’−アジド−2’,3’−ジデオキシチミジン(AZT)、2’3’−ジデオキシシチジン(ddC)、および2’3’−ジデオキシイノシン(ddI)等)は、逆転写酵素を阻害することが知られている。トランスアクチベーター蛋白質を阻害する抗ウイルス剤もまた存在する。ヌクレオシドアナログ(AZT等)は、抗ウイルス治療に現在利用可能である。非常に有用であるが、AZTおよび関連化合物の有用性は、その毒性や、十分適度な治療のためには治療指数が不十分であることによって限度がある。
【0007】
レトロウイルスプロテアーゼ阻害剤は、抗レトロウイルス剤のクラスとしても同定されている。レトロウイルスプロテアーゼは、ポリ蛋白質前駆体をウイルス構造蛋白質および複製酵素にプロセシングする。このプロセシングは、完全感染性ビリオンのアッセンブリーおよび成熟にとって必須である。従って、プロテアーゼ阻害剤の設計は、いまだAIDSの処置における重要な治療目標である。
【0008】
異なる抗レトロウイルス機構を有する薬剤(例えば、AZT、ddIおよびddT)と組み合わせてのHIVプロテアーゼ阻害剤の使用もまた、明らかにされている。例えば、HIV−1に対する相乗作用は、特定のC対称HIV阻害剤とAZTとの間で観察されている(Kageyama et al., Antimicrob. Agents Chemother., 36, 926-933(1992))。
【0009】
プロテアーゼの強力なペプチド阻害剤の多数のクラスが、出発点としての前駆体ポリ蛋白質の天然開裂部位を用いて設計されている。これらの阻害剤は、代表的には、ペプチド基質アナログであり、そのなかの開裂可能なP−P’アミド結合が四面体形状を有する非加水分解性等電子体によって置き換えられている(Moore et al., Perspect. Drug Dis. Design, 1, 85 (1993);Tomasselli et al., Int. J. Chem. Biotechnology, 6 (1991);Huff, J. Med. Chem., 34, 2305 (1991);Norbecket al., Ann. Reports Med. Chem., 26, 141 (1991);およびMeek, J. Enzyme Inhibition, 6, 65 (1992))。これらの阻害剤はレトロウイルスプロテアーゼが機能するのを防げるのに有効であるが、それらは幾つかの異なる不利点を持っている。一般的に、ペプチド擬態物(peptidomimetics)は、それらの潜在的に不利な薬理学的特性(すなわち、乏しい経口吸収性、乏しい安定性および迅速な代謝)のため、質の悪い薬剤になることが多い(Plattner et al., Drug Discovery Technologies, Clark et al., eds., Ellish Horwood, Chichester, England (1990))。
【0010】
遷移状態の擬態概念に基づくHIV−1プロテアーゼ阻害剤の設計は、インビトロでのウイルス複製に対して高活性な種々のペプチドアナログの産生をもたらした(Erickson et al., Science, 249, 527-533 (1990);Kramer et al., Science, 231, 1580-1584 (1986);McQuade et al., Science, 247, 454-456 (1990);Meek et al., Nature (London), 343, 90-92 (1990);およびRoberts et al., Science, 248, 358-361 (1990))。これらの活性な薬剤は、アスパラギン酸プロテアーゼ触媒反応の推定遷移状態を模倣する活性部分として、非加水分解性のジペプチド等電子体、例えばヒドロキシエチレン(McQuade et al., 上記;Meek et al.,Nature(London), 343, 90-92 (1990);およびVacca et al., J. Med. Chem., 34, 1225-1228 (1991))またはヒドロキシエチルアミン(Ghosh et al., Bioorg. Med. Chem. Lett., 8, 687-690 (1998);Ghosh et al., J. Med. Chem., 36, 292-295 (1993);Rich et al., J. Med. Chem., 33, 1285-1288 (1990);およびRoberts et al., Science, 248, 358-361 (1990))を含む。
【0011】
HIVプロテアーゼの2回(C)対称阻害剤は、別のクラスの強力なHIVプロテアーゼ阻害剤の代表であり、これは、酵素活性部位の3次元対称に基づいてEricksonらによって作製された(Erickson et al., (1990)、上記)。しかし、代表的には、現在利用できるHIVプロテアーゼ阻害剤のAIDSの処置における有用性は、比較的短い血漿半減期、乏しい経口バイオアベイラビリティーおよび大規模合成の技術的困難性のせいで限度がある(Meek et al., (1992)、上記)。
【0012】
短い血漿半減期および乏しいバイオアベイラビリティーの問題を解決するための絶え間ない努力中で、新しいHIVプロテアーゼ阻害剤が同定されている。例えば、2,5−ジアミノ−3,4−二置換−1,6−ジフェニルへキサン等電子体を含むHIVプロテアーゼ阻害剤が、Ghosh et al., Bioorg. Med. Chem. Lett., 8, 687-690 (1998)および米国特許第5,728,718号(Randad et al.)に記載されている。ヒドロキシエチルアミン等電子体を含むHIVプロテアーゼ阻害剤が、米国特許第5,502,060号(Thompson et al.)、同第5,703,076号(Talley et al)、および同第5,475,027号(Talley et al.)に記載されている。
【0013】
しかし、近年の研究では、プロテアーゼがC対称阻害剤に対して耐性であるHIV突然変異株の出現が明らかになった(Otto et al., PNAS USA, 90, 7543 (1993);Ho et al., J. Virology, 68, 2016-2020 (1994);およびKaplan et al., PNAS USA, 91, 5597-5601 (1994))。1つの研究では、C対称に基づく阻害剤に対して見出された最も豊富な突然変異は、8位のArgからGln(R8Q)であった。これは、プロテアーゼ結合ドメインのS/S3’サブサイトに強力に影響を及ぼす。この研究では、P/P3’残基の短縮で、野生型およびR8Q突然変異プロテアーゼの両方に対して同等に強力な阻害剤が得られた(Majer et al., 13th American Peptide Symposium, Edmonton, Canada (1993))。阻害剤は、活性を顕著に損失することなく、P/P2’まで切り詰められた(Lyle et al., J. Med. Chem., 34, 1230 (1991);およびBone et al., J. Am. Chem. Soc., 113, 9382 (1991))。これらの結果は、阻害剤は切り詰めることができ、強力な結合に必要な極めて重大な相互作用をまだ保つことができることを示唆している。このようなアプローチの利点としては、2つ以上のペプチド結合の除去、分子量の減少、および分解酵素による認識の可能性の減少が挙げられる。
【0014】
さらに近年、HIVの新しい突然変異株が出現しており、これらは多数の、構造的に異なる、実験的および化学療法用のレトロウイルスプロテアーゼ阻害剤に対して耐性である。このような多剤耐性HIV株は、代表的には、HIVプロテアーゼ阻害剤の組み合わせまたは一連の異なるHIVプロテアーゼ阻害剤での処置を受けた感染患者において見出される。多剤耐性HIVに感染した患者の報告例の数は、劇的に増加している。これらの患者にとっては悲劇的なことに、AIDS化学療法および/またはHIV処理での利用可能な選択肢は、非常に限られているか、さもなくば全く存在しない。
【0015】
薬剤耐性は、不幸にも、一般に薬剤不全の最も一般的な原因である。耐性による薬剤不全の最も劇的な例の1つは、HIV治療において存在する。最前線の治療に対して一度HIV耐性が獲得されると、多剤交叉耐性の発生のために将来の成功の可能性が大いに減少する。感染性因子(例えば、ウイルス、細菌、原生動物、およびプリオン)または他の疾患の原因となる細胞(例えば、腫瘍細胞)を含む他の疾患は、薬剤耐性が薬剤不全の主要な原因であるので、同様の難題を提示することになる。
【発明の概要】
【発明が解決しようとする課題】
【0016】
前述の問題を考慮して、突然変異体が薬剤の存在下で複製できるかどうかを決定する必要性が存在する。複製する生物学的エンティティが関与する疾患において薬剤耐性が出現する可能性があるかどうかを予測する方法の必要性もまた存在する。複製する生物学的エンティティが関与する疾患において耐性が発生する可能性を最小にする長期治療養生法を考案する方法の必要性もある。さらに、このような疾患における薬剤耐性の発生を予防または阻害する方法の必要性がある。
【0017】
本発明は、このような方法を提供する。本発明のこれらおよび他の利点、ならびにさらなる発明の特徴は、本明細書中に提供される本発明の記載から明らかとなる。
【課題を解決するための手段】
【0018】
(発明の簡単な要旨)
本発明は、下記のような生化学的「バイタリティ(vitality)」が、阻害剤の選択圧力下での、そのプレデセサー(predecessor)と比べた、突然変異した複製する生物学的エンティティの生物学的フィットネスを決定するために使用できるという驚くべきかつ予想されなかった発見に基づいている。本発明は、生化学的ターゲット(target)に作用する化合物の存在下での、そのプレデセサーの生化学的ターゲットと比べた、突然変異した複製する生物学的エンティティの生化学的ターゲット(すなわち、生化学的機能を有する生体分子)の生化学的フィットネスを決定するためのアッセイを提供する。本発明のアッセイ方法は、プレデセサーを得ること、プレデセサーの生化学的ターゲットに作用する化合物の存在下で、プレデセサーおよび突然変異体の両方の生化学的ターゲットの生化学的バイタリティを測定すること、および突然変異体の生化学的ターゲットのバイタリティをプレデセサーの生化学的ターゲットのバイタリティと比較することを含む。突然変異体の生化学的バイタリティがプレデセサーの生化学的フィットネスよりも大きい場合、突然変異体は該化合物の存在下でより生物学的に適応していると予測される。従って、該アッセイ方法は、薬剤(例えば、阻害剤)の存在下で特定の複製する生物学的エンティティ(例えば、疾患の原因となる細胞)について薬剤耐性の出現を予測するために使用することができる。本発明のアッセイを利用することによって、薬剤耐性が発生する可能性を減少させるように、阻害剤または阻害剤を組み合わせて投与することで疾患を処置することが可能となる。
【0019】
本発明はさらに、プロテアーゼ阻害剤の抗HIVプロテアーゼ活性を測定するための連続発蛍光アッセイ(continuous fluorogenicassay)を提供する。本発明の連続発蛍光アッセイは、式Ala−Arg−Val−Tyr−Phe(NO)−Glu−Ala−Nle−NHの基質を利用する。本発明の連続発蛍光アッセイは、高感度であり、特に突然変異HIVに対する化合物の抗ウイルス阻害活性の予測に有用である。
【0020】
本発明はさらに、疾患の原因となる複製する生物学的エンティティの生化学的ターゲットを阻害する治療化合物を投与する方法を提供する。治療化合物は、本発明の方法に従って投与されると、疾患の原因となるエンティティが薬剤耐性を発生する可能性を最少にする。そのように、本発明の治療化合物を投与する方法は、治療における長期の成功の可能性を改善する。
【0021】
本発明の治療化合物を投与する方法は、疾患の原因となる複製する生物学的エンティティ(プレデセサー)から生じ得る少なくとも1つの、突然変異した複製する生物学的エンティティ(突然変異体)の同定を含む。生化学的フィットネスは、突然変異体の生化学的ターゲットの生化学的バイタリティをプレデセサーの生化学的ターゲットの生化学的バイタリティと比較することによって決定される。生化学的フィットネスは、薬剤(例えば、阻害剤)の存在下で決定される。突然変異体の生化学的ターゲットの生化学的バイタリティは、薬剤の存在下でプレデセサーの生化学的ターゲットの生化学的バイタリティと比較される。処置に利用可能な薬剤が2つ以上ある場合、生化学的フィットネスは、本発明に従って各薬剤について決定することができる。次いで、1つ以上の突然変異体に関する生化学的フィットネスについてより低い値を生じる化合物のなかから治療化合物が投与される。特定の突然変異体についてより低いフィットネスの値を生じる治療化合物を投与することは、その化合物の存在下でプレデセサーが耐性を生じさせる蓋然性がより低いことを示す。
【0022】
本発明はまた、薬剤耐性阻害有効量の式:
【0023】
【化1】

【0024】
[式中、Aは式:
【0025】
【化2】

【0026】
〔式中、Rは、Hであるか、あるいはアルキル、アルケニル、アルキニル、シクロアルキル、シクロアルキルアルキル、アリール、アラルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、ヘテロアリール、またはヘテロアラルキル基であって、置換されていないかまたは置換されているものであり、
YおよびZは、同一かまたは異なって、それぞれCH、O、S、SO、SO、NR、RC(O)N、RC(S)N、ROC(O)N、ROC(S)N、RSC(O)N、RNC(O)N、およびRNC(S)N(ここでRおよびRは、それぞれH、アルキル、アルケニル、またはアルキニルである)からなる群より選択され、
nは1〜5の整数である〕の基であり;
Xは、共有結合、CHR10、CHR10CH、CHCHR10、O、NR10、またはS(ここでR10はH、アルキル、アルケニル、またはアルキニルである)であり;
QはC(O)、C(S)、またはSOであり;
はH、アルキル、アルケニル、またはアルキニルであり;
mは0〜6の整数であり;
はシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールであって、置換されていないかまたは置換されているものであり;
はOH、=O(ケト)、NH、またはその誘導体であり;
はH、C−Cアルキル基、C−Cアルケニル基、または(CH14(ここでqは0〜5の整数であり、そしてR14はシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールであって、置換されていないかまたは置換されているものである)であり;
WはC(O)、C(S)、S(O)、またはSOであり;および
はシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールであって、置換されていないかまたは置換されているものである。RおよびRは、式(I)のN−W結合と一緒になって、環骨格中に少なくとも1つのさらなるヘテロ原子を含んでいてもよい大環式環を構成していてもよい]の化合物またはその医薬的に許容し得る塩、そのプロドラッグ、またはそのエステル、あるいはその医薬組成物を投与することによって、HIV感染哺乳動物内でHIVの薬剤耐性の発生を予防する方法を提供する。
【図面の簡単な説明】
【0027】
【図1】図1は、本発明の化合物の特定のスルホンアミド等電子コアの合成を示す。
【図2】図2は、ビステトラヒドロフランリガンドの合成およびその光学分割を示す。
【図3】図3Aは、ビステトラヒドロフランリガンドを本発明のスルホンアミド等電子体に結合することによる、本発明の化合物の合成を示す。 図3Bは、ビステトラヒドロフランリガンドを本発明のスルホンアミド等電子体に結合することによる、本発明の化合物の合成を示す。
【図4】図4は、本発明の化合物を合成する本発明の方法を一般的に示す。
【図5】図5A〜5Dは、種々の薬剤耐性HIV突然変異体に対して試験した特定の化合物の構造を示す。
【発明を実施するための形態】
【0028】
(好ましい実施態様の説明)
本発明は、そのプレデセサーの生化学的ターゲットのバイタリティと比べた、突然変異した複製する生物学的エンティティの生化学的ターゲットの「バイタリティ」が、生化学的ターゲットの阻害剤の選択圧力下での突然変異体の生物学的フィットネスを予測するために使用できるという驚くべきかつ予想されなかった発見に基づいている。そのプレデセサーの生化学的ターゲットの「バイタリティ」と比べた、突然変異した複製する生物学的エンティティの生化学的ターゲットの「バイタリティ」は、本明細書中では「生化学的フィットネス」と定義される。
【0029】
本明細書中で使用される「バイタリティ」は、特定の生体分子「ターゲット」(すなわち、特定の阻害剤によって阻害されることが意図される生化学的種)の、阻害剤の存在下でのその生化学的機能を遂行する能力をいう。生化学的バイタリティは、少なくとも2つの変数〔特定の阻害剤が問題の複製する生物学的エンティティの生化学的ターゲットを阻害する能力、および(阻害剤に関係なく)該細胞の生化学的ターゲットがその生化学的機能を固有的に遂行する能力〕の関数である。生化学的バイタリティはまた、生化学的ターゲットが阻害剤の存在下でのその生化学的機能を遂行する能力をもたらす他の因子を含むことができる。
【0030】
問題の生化学的ターゲットは、例えば、1つ以上の公知または未知の生物学的機能を有する生化学的種を含むことができる。生化学的ターゲットは、例えば、1つ以上の特定の生化学的機能を有する生化学的種であってもよく、または生化学的機能を直接または間接的にもたらすかまたはそれに影響を与える生化学的種であってもよい。適当な生化学的ターゲットとしては、例えば、酵素、蛋白質、オリゴマー、レセプター等が挙げられる。適当な酵素としては、例えば、逆転写酵素、プロテアーゼ(例えば、レトロウイルスプロテアーゼ、プラスメプシン(plasmepsin)等)、メチラーゼ、オキシダーゼ、エステラーゼ、アシルトランスフェラーゼ等が挙げられる。適当な酵素としてはまた、例えば、ウイルスおよび非ウイルスヘリカーゼ、トポイソメラーゼ、DNAジャイレース、DNAおよびRNAポリメラーゼ、寄生体コード化(parasite-encoded)プロテアーゼ等も挙げられる。
【0031】
適当な蛋白質としては、例えば、主要な機能的要求としてコンフォメーション変化を含む蛋白質等が挙げられる。このような蛋白質の例としては、HIV gp41および他のフソゲニック(fusogenic)ウイルス蛋白質およびペプチド、トポイソメラーゼ、および全てのDNA酵素等が挙げられる。
【0032】
適当なオリゴマーとしては、例えば、生化学的機能を遂行するためにオリゴマー化を必要とするオリゴマーが挙げられる。このようなオリゴマーの例としては、HIVプロテアーゼ、レトロウイルス融合蛋白質、ペプチド、HIV gp41、ウイルスおよび非ウイルス膜融合蛋白質、腫瘍サプレッサ蛋白質(例えば、p53等)、プリオン、リボソーム等が挙げられる。
【0033】
特定の阻害剤が特定の複製する生物学的エンティティの生化学的ターゲットを阻害する能力は、任意の適当な方法によって決定することができ、および/または任意の適当な供給源から得ることができる。特定の阻害剤が複製する生物学的エンティティの生化学的機能を阻害する能力は、例えば、阻害剤がターゲットを阻害する能力と相関する、測定可能な特性または特性の測定可能な関係に基づいて決定することができる。阻害剤がターゲットを阻害する能力を決定するための適当な方法としては、例えば、アッセイ等が挙げられる。幾つかの場合では、阻害剤がターゲットを阻害する能力は、1つ以上の適当な供給源(例えば、データベース、教科書、または文献からのアッセイデータ)から得ることができる。
【0034】
生化学的ターゲットが蛋白質である場合、阻害剤が蛋白質を阻害する能力は、例えば、薬剤結合が蛋白質の機能を妨げる場合にはターゲットに対する薬剤結合の平衡解離定数(K)を得ることによって決定することができる。
【0035】
生化学的ターゲットが酵素である場合、阻害剤が酵素を阻害する能力は、例えば、阻害定数(Kinh)を得ること等によって決定することができる。阻害定数は、薬剤結合が酵素機能の阻害に相関する場合、基質触媒作用に対する薬剤の効果についての薬剤阻害定数(例えば、K)または薬剤結合についての解離定数(例えば、K)に関するものであってよい。
【0036】
生化学的ターゲットがオリゴマーである場合、阻害剤がオリゴマーを阻害する能力は、例えば、薬剤結合がターゲットのオリゴマー化を妨げる場合には薬剤結合についての平衡解離定数(K)を得ることによって決定することができる。
【0037】
生化学的ターゲットが、その機能のためにコンフォメーション変化を必要とする蛋白質である場合、阻害剤がコンフォメーション変化を阻害する能力は、例えば、薬剤結合がターゲットのコンフォメーション変化を妨げる場合には薬剤結合についての平衡解離定数(K)を得ることによって決定することができる。
【0038】
生化学的ターゲットが、その生化学的機能を遂行するためにリガンド、高分子、または高分子複合体に結合することを必要とする蛋白質である場合、阻害剤が蛋白質機能を阻害する能力は、薬剤結合がリガンド結合、高分子結合、または高分子複合体結合を妨げる場合には薬剤結合についての平衡解離定数(K)を得ることによって決定することができる。
【0039】
生化学的ターゲットが核酸結合蛋白質である場合、阻害剤が核酸結合蛋白質の機能を阻害する能力は、薬剤結合が核酸結合を妨げる場合には薬剤結合についての平衡解離定数(K)を得ることによって決定することができる。
【0040】
バイタリティはまた、生化学的ターゲットが(阻害剤に関係なく)その生化学的機能を固有的に遂行する能力の関数である。生化学的ターゲットがその生化学的機能を固有的に遂行する能力は、任意の適当な方法によって決定することができ、および/または任意の適当な供給源から得ることができる。生化学的ターゲットがその生化学的機能を固有的に遂行する能力は、例えば、生化学的ターゲットの能力がその生化学的機能を固有的に遂行する能力と相関する、測定可能な特性または特性の測定可能な関係に基づいて決定することができる。生化学的ターゲットがその生化学的機能を固有的に遂行する能力を決定するための適当な方法としては、例えば、生化学的アッセイ等が挙げられる。幾つかの場合では、細胞の生化学的ターゲットがその生化学的機能を固有的に遂行する能力は、1つ以上の適当な供給源(例えば、データベース、教科書、または文献からのアッセイデータ)から得ることができる。
【0041】
生化学的ターゲットが酵素である場合、酵素がその生化学的機能を固有的に遂行する能力は、例えば、酵素の触媒効率を測定することによって決定することができる。例えば、ミカエリス−メンテンの反応速度論を示す酵素についての触媒効率は、kcat/K比を得ることによって、または類似の方法によって決定することができる。ここでkcatは触媒速度であり、Kはミカエリス定数である。
【0042】
生化学的ターゲットが蛋白質である場合、蛋白質がその生化学的機能を固有的に遂行する能力は、例えば、蛋白質の生化学的機能についての平衡定数(Keq)を得ること等によって決定することができる。
【0043】
生化学的ターゲットがオリゴマーである場合、阻害剤がその生物学的機能を遂行する能力は、例えば、オリゴマー化に関係する平衡定数(Keq)を得ることによって決定することができる。
【0044】
生化学的ターゲットが、その機能のためにコンフォメーション変化を必要とする蛋白質である場合、ターゲットがその機能を遂行する能力は、例えば、コンフォメーション変化に関連する平衡定数(Keq)を得ることによって決定することができる。
【0045】
生化学的ターゲットが、その機能を遂行するためにリガンドに結合することを必要とする蛋白質である場合、ターゲットがその機能を遂行する能力は、例えば、リガンド結合についての平衡解離定数(K)を得ることによって決定することができる。
【0046】
生化学的ターゲットが核酸結合蛋白質である場合、阻害剤がその機能を遂行する能力は、核酸結合についての平衡解離定数(K)を得ることによって決定することができる。
【0047】
バイタリティはまた、阻害剤の存在下でのその生化学的機能を遂行する生化学的ターゲットの能力をもたらす他の因子の関数であってもよいことが理解される。例えば、生化学的ターゲットがダイマー種である場合、生化学的バイタリティに影響を与える他の因子は、その種が阻害剤の存在下および/または非存在下で二量化する能力を含み得る。例として、突然変異によって、二量化速度がそのプレデセサーと比べた突然変異体の生化学的ターゲットの生化学的機能における因子になる場合、二量化速度はバイタリティの決定に含まれ得る。
【0048】
突然変異した複製する生物学的エンティティおよびそのプレデセサーの生化学的バイタリティは、比較すると、突然変異細胞のターゲットの生化学的フィットネスを表す。本発明によると、生化学的フィットネスは、阻害剤の存在下での突然変異体の生物学的フィットネスに関連していることがわかった。突然変異体のターゲットの生化学的バイタリティの値が、突然変異体のプレデセサーのターゲットの生化学的バイタリティの値を超える場合、突然変異体のターゲットは、阻害剤の存在下でより大きな生化学的フィットネスを有する。このような場合では、突然変異した複製する生物学的エンティティは、プレデセサーよりも恵まれており、そしてプレデセサーを処置するために使用される阻害剤に対する耐性が発生すると見込まれる。
【0049】
生化学的バイタリティは、ターゲットの生化学的バイタリティに関連する種々の因子を適当に関連付ける多くの異なる方法で決定することができる。例えば、数学関数を用いて種々の因子を関連付けてもよい。例示として、生化学的ターゲットが酵素である場合、バイタリティは、Kinh(例えば、KまたはK)と酵素または触媒効率(例えば、Kcat/K)との関数として決定することができる。バイタリティは、Kinhと酵素効率との積、例えば、(Kinh)×(触媒効率)、または(K)×(触媒効率)または(K)(触媒効率)として決定することができる。あるいは、バイタリティは、例えば、Kinhと酵素効率との積のlog、例えば、log[(Kinh)×(触媒効率)]、またはlog[(K)×(触媒効率)]またはlog[(K)×(触媒効率)]として決定することができる。同様に、ミカエリス−メンテンの反応速度論を示す酵素については、バイタリティは、Kinh(例えば、KまたはK)とkcat/K比との関数として決定することができる。例えば、バイタリティは、Kinhとkcat/Kとの積、例えば、(Kinh)×(kcat/K)(ここでKinhはKまたはKである)として決定することができる。あるいは、バイタリティは、例えば、Kinhとkcat/Kとの積のlog、例えば、log[(Kinh)×(kcat/K)](ここでKinhはKまたはKである)として決定することができる。好ましい実施態様では、生化学的ターゲットは酵素であり、バイタリティは(K)×(kcat/K)、またはlog[(K)×(kcat/K)]である。
【0050】
「フィットネス」は、他に示さない限り、生化学的フィットネスを意味する。本明細書中で使用する「生化学的フィットネス」は、そのプレデセサーの生化学的ターゲットのバイタリティと比べた、突然変異した複製する生物学的エンティティの生化学的ターゲットのバイタリティを表す値である。生化学的フィットネスは、突然変異した複製する生物学的エンティティの生化学的ターゲットのバイタリティをそのプレデセサーの生化学的ターゲットのバイタリティと比較することによって決定される。フィットネスを決定する際には、突然変異した複製する生物学的エンティティの生化学的ターゲットのバイタリティとそのプレデセサーの生化学的ターゲットのバイタリティとの全ての適当な比較を使用することができる。例えば、生化学的フィットネスは、プレデセサーの生化学的ターゲットの生化学的バイタリティ(生化学的バイタリティpred)と、プレデセサーから生じ得る特定の突然変異した複製する生物学的エンティティの生化学的ターゲットの生化学的バイタリティ(生化学的バイタリティmut)との間の差、例えば、(生化学的バイタリティmut)−(生化学的バイタリティpred)として決定することができる。生化学的フィットネスがこの差に基づいて決定される場合、正の値は、阻害剤の存在下で、突然変異体がそのプレデセサーと比較してより高いフィットネスを有することを示し、一方、負の値は、突然変異体がそのプレデセサーと比較してフィットネスが低いことを示す。ゼロの値は、突然変異体とプレデセサーのフィットネスが等しいことを示す。高い正の値が大きいほど、阻害剤に対する耐性が出現する可能性がより高いことを示し、一方、負の値が大きいほど、阻害剤に対する耐性が出現する可能性がより低いことを示す。
【0051】
あるいは、そして好ましくは、フィットネスは、2つの生化学的バイタリティの商として、例えば、特定の突然変異した複製する生物学的エンティティの生化学的ターゲットとプレデセサーの生化学的ターゲットの生化学的バイタリティとの商、例えば、
【0052】
【数1】

【0053】
として決定することができる。フィットネスがこの商に基づいて決定される場合、1より大きい値は、阻害剤の存在下で、突然変異体がそのプレデセサーと比較してより高いフィットネスを有することを示す。1の値は、突然変異体とプレデセサーのフィットネスが等しいことを示す。1より小さい値は、突然変異体がそのプレデセサーと比較してフィットネスが低いことを示す。値が高いほど、阻害剤/薬剤に対する耐性が出現する可能性がより高いことを示し、一方、値が低いほど、阻害剤/薬剤に対する耐性が出現する可能性がより低いことを示す。1より小さい値は、阻害剤/薬剤の存在下で突然変異体が出現しないであろうことを示す。
【0054】
あるいは、フィットネスは、2つの生化学的バイタリティの商のlogとして、例えば、特定の突然変異した複製する生物学的エンティティの生化学的ターゲットとプレデセサーの生化学的ターゲットの生化学的バイタリティとの商のlog、例えば、
【0055】
【数2】

【0056】
として決定することができる。フィットネスがこのlogに基づいて決定される場合、ゼロより大きい値は、阻害剤の存在下で、突然変異体がそのプレデセサーと比較してより高いフィットネスを有することを示す。負の値は、突然変異体がそのプレデセサーと比較してフィットネスが低いことを示す。ゼロの値は、突然変異体とプレデセサーのフィットネスが等しいことを示す。正の値が高いほど、阻害剤/薬剤に対する耐性が出現する可能性がより高いことを示し、一方、正の値が低いほど、阻害剤/薬剤に対する耐性が出現する可能性がより低いことを示す。負の値は、阻害剤/薬剤の存在下で突然変異体が出現しないであろうことを示す。
【0057】
フィットネスは、生化学的ターゲットがその生物学的機能を遂行するのを阻害する任意の適当な化合物の存在下で決定することができる。例えば、阻害剤は、酵素を阻害する化合物であってもよい。適当な酵素阻害剤としては、例えば、プロテアーゼ阻害剤、逆転写酵素阻害剤、DNAポリメラーゼ阻害剤、メチラーゼ阻害剤、オキシダーゼ阻害剤、エステラーゼ阻害剤、アシルトランスフェラーゼ阻害剤等が挙げられる。
【0058】
適当なプロテアーゼ阻害剤としては、例えば、ウイルスプロテアーゼ阻害剤、プラスメプシン阻害剤、およびカテプシンD阻害剤が挙げられる。好ましい実施態様では、阻害剤はウイルスプロテアーゼ阻害剤であり、より好ましくはレトロウイルスプロテアーゼ阻害剤であり、さらにより好ましくはHIV−1またはHIV−2プロテアーゼ阻害剤であり、最も好ましくはHIV−1プロテアーゼ阻害剤である。代表的なHIV−1プロテアーゼ阻害剤としては、例えば、サキナビル、リトナビル、インジナビル、ネルフィナビル(nelfinavir)、アンプレナビル(amprenavir)、および臨床試験を受けているHIV−1プロテアーゼ阻害剤(例えば、チプラナビル(tipranavir)(PNU-140690))が挙げられる。
【0059】
適当なプラスメプシン阻害剤としては、例えば、プラスメプシンIまたはIIの阻害剤(抗マラリア活性を有するプラスメプシンIまたはIIの阻害剤を含む)が挙げられる。カテプシンDの適当な阻害剤としては、例えば、原発性乳ガン組織においてカテプシンDを阻害するカテプシンD阻害剤(原発性乳ガン組織においてカテプシンDを阻害し、乳ガン患者における転移および/または再発がない生存期間が短い危険性を低下させることが期待されるカテプシンD阻害剤を含む)が挙げられる。例えば、Gulnik et al., J. Mol. Biol., 227, 265-270 (1992)参照)。
【0060】
適当な逆転写酵素阻害剤としては、例えば、レトロウイルス逆転写酵素阻害剤(例えば、AZT、3TC、ddI、ddC、D4T等)が挙げられる。
【0061】
適当な蛋白質阻害剤としては、例えば、蛋白質のコンフォメーション変化を阻害する化合物等が挙げられる。適当なオリゴマー化阻害剤としては、例えば、HIV−1融合のT−20ペプチド阻害剤、および細胞表面上または細胞膜内でのオリゴマーのオリゴマー化を阻害する他の化合物が挙げられる。
【0062】
本発明によれば、阻害剤の存在下でのフィットネスは、阻害剤の生物学的ターゲットを産生するか、または含む生物学的エンティティについて決定することができる。生物学的エンティティは、好ましくは複製する生物学的エンティティ、例えば、ウイルス、寄生体、または細胞、好ましくは疾患の原因となる細胞である。疾患の原因となる複製する生物学的エンティティとしては、例えば、腫瘍細胞、ガン細胞、および感染性生物(例えば、真菌、原生動物、細菌等)ならびにプリオンが挙げられる。
【0063】
ガン細胞としては、例えば、乳ガン、結腸ガン、肺ガン等に関連する細胞が挙げられる。フィットネスは、迅速に増殖する腫瘍細胞について決定することができる。
【0064】
真菌としては、例えば、カンジダアルビカンス等が挙げられる。原生動物としては、例えば、トリパノソーマ種、住血吸虫種、マラリア原生動物(例えば、プラスモディウムスピーシーズ(Plasmodium species))が挙げられる。プラスモディウムスピーシーズとしては、例えば、熱帯熱マラリア原虫、卵形マラリア原虫、三日熱マラリア原虫、四日熱マラリア原虫等が挙げられる。細菌としては、例えば、ヘリコバクターピロリ、大腸菌、サルモネラ、化膿連鎖球菌、黄色ブドウ球菌、炭疽菌、ヒト結核菌、インフルエンザ菌等が挙げられる。ウイルスとしては、例えば、レトロウイルス(例えば、HIV−1およびHIV−2)、ヘルペスウイルス、サイトメガロウイルス、インフルエンザウイルス、エプスタイン−バーウイルス(EBV)、カポージ肉腫ヘルペスウイルス(KSHV)、水痘−帯状疱疹ウイルス(VZV)、ヒト乳頭腫ウイルス(HPV)、エコーウイルス、ピコルナウイルス、ライノウイルス、ポリオウイルス、コクサッキーウイルス、はしか、おたふくかぜ、ヒトT細胞白血病ウイルス(HTLV−1)、風疹、ロタウイルス、黄熱病ウイルス、エボラウイルス、および他の病原性ウイルス等が挙げられる。
【0065】
複製する生物学的エンティティはまた、多細胞生物、例えば、感染性微生物(例えば、蠕虫)を含む。蠕虫としては、例えば、鉤虫(例えば、ズビニ鉤虫)、糞線虫、肝蛭、ヒト鞭虫、旋毛虫、有鉤条虫、無鉤条虫等が挙げられる。
【0066】
薬剤耐性は、薬剤(または生物学的活性を有する任意の化合物)の存在下での突然変異細胞/微生物のフィットネスに基づく選択の発展の結果であると考えられる。本発明によれば、疾患の原因となる複製する生物学的エンティティによって引き起こされる疾患における薬剤耐性の出現(または非出現)は、薬剤存在下での突然変異体の生化学的ターゲットのフィットネスを決定することによって予測することができる。従って、薬剤耐性の出現(または非出現)は、生化学的フィットネスに基づいて予測することができる。幾つかの場合では耐性プロフィールはフィットネスを反映し得るが、特定の突然変異体についての薬剤耐性の出現はその耐性プロフィールのみに基づいて直接予測することができると推定することはできない。
【0067】
従って、本発明は、特定の阻害剤の存在下での、複製する生物学的エンティティの生物学的フィットネスを予測するために使用することができるアッセイを提供する。好ましい実施態様では、アッセイは、そのプレデセサーと比べた、突然変異した複製する生物学的エンティティの生化学的ターゲットの生化学的フィットネスを決定するために提供される。本発明のアッセイによれば、突然変異体に対するプレデセサーが得られ、プレデセサーの生化学的ターゲットを阻害し得る化合物の存在下でのプレデセサーの生化学的ターゲットの生化学的バイタリティが決定され、該化合物の存在下での該突然変異体の生化学的ターゲットの生化学的バイタリティが決定され、そして突然変異体の生化学的ターゲットの生化学的バイタリティがプレデセサーの生化学的ターゲットの生化学的バイタリティと比較される。
【0068】
アッセイは、上述のような広範な種々の感染性微生物(例えば、ウイルス、真菌、原生動物、または細菌、レトロウイルス(HIV−1またはHIV−2を含む)を含む)、およびガン細胞を用いて使用することができる。感染性微生物が原生動物である場合、好ましくはマラリア原虫であり、より好ましくはプラスモディウムスピーシーズである。
【0069】
別の実施態様では、プレデセサーはガン細胞であり、好ましくは迅速に増殖する腫瘍細胞、例えば、乳ガン、結腸ガン、肺ガン、リンパ球由来の腫瘍細胞、高い転移潜在能を有する腫瘍由来細胞等において見出される迅速に増殖するガン細胞である。
【0070】
本発明のアッセイは、任意の適当な生化学的ターゲット、好ましくはアッセイによって得ることができる測定可能な特性を用いてその生化学的バイタリティを決定することができる生化学的ターゲットに適用できる。望ましくは、生化学的ターゲットは、エンティティの複製および増殖に重要な役割をはたすものである。例として、プレデセサー(および突然変異体)の生化学的ターゲットは、酵素であってもよく、化合物はプレデセサーの酵素の阻害剤であってよい。
【0071】
酵素はウイルス酵素であってもよい。ウイルス酵素の例は、ウイルスプロテアーゼ酵素、ウイルス逆転写酵素、ウイルスインテグラーゼ、ウイルスポリメラーゼ、酵素活性を有するウイルス蛋白質、またはレトロウイルス酵素(HIV−1またはHIV−2酵素を含む)である。ウイルスプロテアーゼ酵素としては、レトロウイルスプロテアーゼ(例えば、HIV−1プロテアーゼまたはHIV−2プロテアーゼ)が挙げられる。ウイルスインテグラーゼ酵素としては、例えば、HIV−1インテグラーゼ、HIV−2インテグラーゼ等が挙げられる。ウイルスポリメラーゼは、レトロウイルスポリメラーゼ(HIV−1ポリメラーゼまたはHIV−2ポリメラーゼを含む)であってもよい。酵素活性を有するウイルス蛋白質は、レトロウイルス蛋白質(例えば、HIV−1蛋白質またはHIV−2蛋白質)であってもよい。
【0072】
酵素はまた、原生動物酵素(原生動物プロテアーゼ酵素を含む)であってもよい。原生動物プロテアーゼは、マラリアプロテアーゼであってもよい。マラリアプロテアーゼは、プラスメプシン(プラスメプシンIまたはプラスメプシンIIを含む)であってもよい。マラリア酵素はまた、プラスモディウム酵素または酵素活性を有する蛋白質であってもよい。
【0073】
さらに別の実施態様では、プレデセサーの生化学的ターゲットはオリゴマーであり、化合物はプレデセサーのオリゴマーのオリゴマー化を阻害する。さらに別の実施態様では、プレデセサーの生化学的ターゲットは蛋白質であり、化合物はプレデセサーの蛋白質のコンフォメーション変化を阻害する。
【0074】
生化学的バイタリティの決定はまた、阻害剤の存在下で生化学的ターゲットがその生化学的機能を遂行する能力をもたらす他の因子、好ましくは測定可能な因子を考慮することができる。生化学的ターゲットが酵素であり、かつ化合物が酵素阻害剤である場合、突然変異した複製する生物学的エンティティの酵素の生化学的バイタリティは、好ましくはKinh−mut、kcat−mut、KM−mutに合致し、そしてプレデセサーの酵素の生化学的バイタリティは、好ましくはKinh−pred、kcat−pred、およびKM−predに合致する。Kinhは化合物の阻害定数であり、kcatは生化学的触媒速度であり、そしてKはミカエリス定数である。より好ましくは、酵素のバイタリティは、Kinh、kcatおよびKに合致し、突然変異した複製する生物学的エンティティの酵素の生化学的バイタリティは、Kinh−mut(kcat−mut/KM−mut)(すなわち、(Kinh−mut)×(Kcat−mut/KM−mut))の関係によって定義され、そしてプレデセサーの酵素の生化学的バイタリティは、Kinh−pred(kcat−pred/KM−pred)の関係によって定義される。変数Kinh−mut、Kinh−pred、kcat−mut、kcat−pred、KM−mutおよびKM−predは、任意の適当な手段によって得ることができ、好ましくは測定(例えば、アッセイから)によって得られる。バイタリティがこれらの関係に基づいて決定される場合、所定の阻害剤/薬剤の存在下での生化学的フィットネスは、好ましくは以下の式によって定義される:
【0075】
【数3】

【0076】
inhは、任意の適当な手段によって決定することができるが、代表的には、KまたはKに基づいて決定される。
【0077】
本発明はまた、治療化合物を投与する方法を提供し、この方法は、長期治療の成功の可能性を増大させる。好ましい実施態様では、本発明は、疾患の原因となるプレデセサーから生じ得る少なくとも1つの突然変異体を同定することを含む、複製する疾患の原因となる複製する生物学的エンティティ(疾患の原因となるプレデセサー)の生化学的ターゲットを阻害する治療化合物を投与する方法を提供する。疾患の原因となるプレデセサーの生化学的ターゲットを阻害し得る第1の化合物の存在下での疾患の原因となるプレデセサーの生化学的ターゲットの第1の生化学的バイタリティ、および該第1の化合物の存在下での突然変異体の生化学的ターゲットの第1の生化学的バイタリティが決定される。
【0078】
疾患の原因となる細胞の生化学的ターゲットを阻害し得るさらなる化合物の存在下での疾患の原因となる複製する生物学的エンティティの生化学的ターゲットのさらなる生化学的バイタリティ、およびさらなる化合物の存在下での突然変異体の生化学的ターゲットのさらなる生化学的バイタリティもまた決定される。
【0079】
異なる阻害剤/薬剤の存在下でのフィットネスを比較することができ、この比較に基づいて治療化合物が投与される。疾患の原因となるプレデセサーと比べた突然変異体の生化学的ターゲットの第1の生化学的フィットネスは、突然変異体の生化学的ターゲットの第1の生化学的バイタリティを疾患の原因となるプレデセサーの生化学的ターゲットの第1の生化学的バイタリティと比較することによって決定され、そして疾患の原因となる複製する生物学的エンティティと比べた突然変異体の生化学的ターゲットの第2の生化学的フィットネスは、突然変異体の生化学的ターゲットの第2の生化学的バイタリティを疾患の原因となる複製する生物学的エンティティの生化学的ターゲットの第2の生化学的バイタリティと比較することによって決定される。さらなる生化学的フィットネスの決定は、さらなる化合物の存在下で行うことができる。各化合物の存在下での1つ以上の突然変異体についての生化学的フィットネスの値が比較される。次いで、第1の化合物およびさらなる化合物のなかから治療化合物が投与される。この治療化合物は生化学的フィットネスの最低値を生じさせる。
【0080】
本発明の方法によれば、複製する疾患の原因となる複製する生物学的エンティティは、治療化合物の存在下では耐性を発生させる蓋然性がより少ない。互いに同一の生化学的ターゲットまたは異なる生化学的ターゲットを有していてもよい任意の特定の化合物セットのなかから治療化合物を投与することができる。従って、本発明の化合物の投与方法は、同一の生化学的ターゲットに作用する化合物の存在下でフィットネスを比較することに限定されない。
【0081】
1つの実施態様では、疾患の原因となる複製する生物学的エンティティは、感染性微生物(例えば、ウイルス、真菌、原生動物、または細菌)、より好ましくはウイルスまたは原生動物である。感染性微生物がウイルスである場合、好ましくはレトロウイルスであり、より好ましくはHIV−1またはHIV−2であり、最も好ましくはHIV−1である。感染性微生物が原生動物である場合、好ましくはマラリア原虫であり、より好ましくはプラスモディウムスピーシーズである。
【0082】
別の実施態様では、疾患の原因となる複製する生物学的エンティティは、ガン細胞であり、好ましくは迅速に増殖する腫瘍細胞、例えば、乳ガン、結腸ガン、肺ガン等において見出される迅速に増殖するガン細胞である。
【0083】
本発明の化合物の投与方法は、任意の適当な生化学的ターゲット、好ましくはアッセイによって得ることができる測定可能な特性を用いてその生化学的バイタリティを決定することができる生化学的ターゲットに適用することができる。1つの実施態様では、プレデセサー(および突然変異体)の生化学的ターゲットは酵素であり、化合物はプレデセサーの酵素を阻害する。酵素は、その生化学的バイタリティを測定することができる任意の酵素(例えば、本発明のフィットネスアッセイに関連して本明細書中に記載の酵素を含む)であってよい。
【0084】
別の実施態様では、疾患の原因となる複製する生物学的エンティティの生化学的ターゲットはオリゴマーであり、化合物はプレデセサーのオリゴマーのオリゴマー化を阻害する。さらに別の実施態様では、疾患の原因となる複製する生物学的エンティティの生化学的ターゲットは蛋白質であり、化合物はプレデセサーの蛋白質のコンフォメーション変化を阻害する。
【0085】
生化学的バイタリティは、任意の適当な方法で決定することができる。例えば、バイタリティは、本明細書中に記載されるように、例えば、本発明のアッセイに関連して記載されるように決定することができる。
【0086】
感染性微生物が本発明のアッセイに従って試験される場合、プレデセサーは野生型種であってもよく、あるいはプレデセサーは、それ自身突然変異種であってもよい。特に好ましい実施態様では、プレデセサーはレトロウイルスであり、より好ましくは野生型HIV−1またはHIV−2株であり、最も好ましくはHIV−1である。プレデセサーが野生型HIV株である場合、突然変異した複製する生物学的エンティティは、好ましくはその生化学的ターゲットに少なくとも1つの突然変異を有する。プレデセサーがその生化学的ターゲットに少なくとも1つの突然変異を有する場合、突然変異体は、好ましくはその生化学的ターゲットに少なくとも2つの突然変異を有する。
【0087】
同様に、本発明の治療化合物の投与方法が感染性微生物に関連して使用される場合、疾患の原因となる複製する生物学的エンティティは野生型種であってもよく、または疾患の原因となるエンティティは、それ自身突然変異種であってもよい。特に好ましい実施態様では、疾患の原因となる複製する生物学的エンティティはレトロウイルスであり、より好ましくは野生型HIV−1またはHIV−2株であり、最も好ましくはHIV−1である。疾患の原因となる複製する生物学的エンティティが野生型HIV株である場合、突然変異体は、好ましくはその生化学的ターゲットに少なくとも1つの突然変異を有する。疾患の原因となる複製する生物学的エンティティがその生化学的ターゲットに少なくとも1つの突然変異を有する場合、突然変異体は、好ましくはその生化学的ターゲットに少なくとも2つの突然変異を有する。
【0088】
本発明のアッセイ、または本発明の化合物の投与方法におけるプレデセサーまたは疾患の原因となる複製する生物学的エンティティが野生型HIV株である場合、突然変異体の生化学的ターゲットは、好ましくは少なくとも1つの活性部位突然変異を有する。本発明のアッセイにおけるプレデセサーが少なくとも1つの突然変異を有し、かつ突然変異した複製する生物学的エンティティが少なくとも2つの突然変異を有する場合、プレデセサーまたは突然変異体の生化学的ターゲットは、好ましくは少なくとも1つの活性部位突然変異を有する。本発明の方法における疾患の原因となる複製する生物学的エンティティがその生化学的ターゲットに少なくとも1つの突然変異を有し、かつ突然変異体がその生化学的ターゲットに少なくとも2つの突然変異を有する場合、疾患の原因となるエンティティまたは突然変異体の生化学的ターゲットは、好ましくは少なくとも1つの活性部位突然変異を有する。
【0089】
本発明はさらに、プロテアーゼ阻害剤の抗HIVプロテアーゼ活性を測定するための連続発蛍光アッセイを提供する。この方法は、HIVプロテアーゼの溶液を基質ストック溶液(ここで基質は式Ala−Arg−Val−Tyr−Phe(NO)−Glu−Ala−Nle−NHを有する)に添加して、基質反応溶液を提供することを含む。次いで、基質反応溶液の蛍光を特定の時間間隔で測定する。次いで、HIVプロテアーゼの溶液をプロテアーゼ阻害剤の溶液および基質ストック溶液に添加して、阻害剤基質反応溶液を提供する。次いで阻害剤基質反応溶液の蛍光を特定の時間間隔で測定する。次いで、阻害剤基質反応溶液の初速度を、式:
【0090】
【数4】

【0091】
を適用することによって算出する。式中、Vは阻害剤反応溶液の初速度であり、Vは基質反応溶液の初速度であり、Kはミカエリス−メンテン定数であり、Sは基質濃度であり、Eはプロテアーゼ濃度であり、そしてIは阻害剤濃度である。
【0092】
本明細書中に記載のアッセイ方法は、高感度であり、突然変異HIV、より特定すると多発性突然変異HIV、特に多剤耐性ヒト免疫不全ウイルスに対する化合物の抗ウイルス阻害活性の予測に特に有用である。本発明の連続発蛍光アッセイは、多剤耐性HIVに対するプロテアーゼ阻害剤の活性を測定することにおいて、標準のアッセイよりも高感度であるという点でまぎれもなく有利である。本発明の連続発蛍光アッセイは、下記の実施例でより詳細に開示される。この連続発蛍光アッセイに従って得られた阻害データは、本発明に従って、プロテアーゼ阻害剤の存在下でのHIV−1プロテアーゼについてのバイタリティおよびフィットネスを決定するために使用することができる。
【0093】
本発明はまた、薬剤耐性を阻害する有効量の式:
【0094】
【化3】

【0095】
[式中、Aは式:
【0096】
【化4】

【0097】
〔式中、Rは、Hであるか、あるいはアルキル、アルケニル、アルキニル、シクロアルキル、シクロアルキルアルキル、アリール、アラルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、ヘテロアリール、またはヘテロアラルキル基であって、その少なくとも1つの水素原子がOR、SR、CN、NO、N、およびハロゲン(ここでRはH、アルキル、アルケニル、またはアルキニルである)からなる群より独立して選択される置換基で置換されていてもよいものであり;
YおよびZは、同一かまたは異なって、CH、O、S、SO、SO、NR、RC(O)N、RC(S)N、ROC(O)N、ROC(S)N、RSC(O)N、RNC(O)N、およびRNC(S)N(ここでRおよびRは、H、アルキル、アルケニル、およびアルキニルからなる群より独立して選択される)からなる群より独立して選択され;
nは、1〜5の整数である〕の基であり;
Xは、共有結合、CHR10、CHR10CH、CHCHR10、O、NR10、またはS(ここでR10はH、アルキル、アルケニル、またはアルキニルである)であり;
Qは、C(O)、C(S)、またはSOであり;
は、H、アルキル、アルケニル、またはアルキニルであり;
mは、0〜6の整数であり;
は、シクロアルキル、ヘテロシクロアルキル、アリール、またはへテロアリールであって、その少なくとも1つの水素原子がH、アルキル、(CH11、OR12、SR12、CN、N、NO、NR1213、C(O)R12、C(S)R12、CO12、C(O)SR12、C(O)NR1213、C(S)NR1213、NR12C(O)R13、NR12C(S)R13、NR12CO13、NR12C(O)SR13、およびハロゲン(ここでpは0〜5の整数であり、
11は、シクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールであって、その少なくとも1つの水素原子がハロゲン、OH、OCH、NH、NO、SH、およびCNからなる群より独立して選択される置換基で置換されていてもよいものであり、そして
12およびR13は、H、アルキル、アルケニル、およびアルキニルからなる群より独立して選択される)からなる群より独立して選択される置換基で置換されていてもよいものであり;
は、OH、=O(ケト)、またはNHであり(ここでRがOHである場合、それは医薬的に許容し得るエステルまたはプロドラッグの形態であってもよく、そしてRがNHである場合、それはアミド、ヒドロキシルアミノ、カルバメート、尿素、アルキルアミノ、ジアルキルアミノ、プロトン性塩、またはテトラアルキルアンモニウム塩であってもよい);
は、H、C−Cアルキル基、C−Cアルケニル基、または(CH14(ここでqは0〜5の整数であり、そしてR14はシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリール基であって、その少なくとも1つの水素原子がハロゲン、OH、OCH、NH、NO、SH、およびCNからなる群より独立して選択される置換基で置換されていてもよいものである)であり;
Wは、C(O)、C(S)、S(O)、またはSOであり;そして
は、シクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリール基であって、その少なくとも1つの水素原子がハロゲン、OR15、SR15、S(O)R15、SO15、SONR1516、SON(OH)R15、CN、CR15=NR16、CR15=N(OR16)、N、NO、NR1516、N(OH)R15、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、C(O)N(OH)R15、C(S)N(OH)R15、NR15C(O)R16、NR15C(S)R16、N(OH)C(O)R15、N(OH)C(S)R15、NR15CO16、N(OH)CO15、NR15C(O)SR16、NR15C(O)NR1617、NR15C(S)NR1617、N(OH)C(O)NR1516、N(OH)C(S)NR1516、NR15C(O)N(OH)R16、NR15C(S)N(OH)R16、NR15SO16、NHSONR1516、NR15SONHR16、P(O)(OR15)(OR16)、アルキル、アルコキシ、アルキルチオ、アルキルアミノ、シクロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、アリール、アリールオキシ、アリールアミノ、アリールチオ、アラルキル、アリールオキシアルキル、アリールアミノアルキル、アラルコキシ、(アリールオキシ)アルコキシ、(アリールアミノ)アルコキシ、(アリールチオ)アルコキシ、アラルキルアミノ、(アリールオキシ)アルキルアミノ、(アリールアミノ)アルキルアミノ、(アリールチオ)アルキルアミノ、アラルキルチオ、(アリールオキシ)アルキルチオ、(アリールアミノ)アルキルチオ、(アリールチオ)アルキルチオ、ヘテロアリール、ヘテロアリールオキシ、ヘテロアリールアミノ、ヘテロアリールチオ、ヘテロアラルキル、ヘテロアラルコキシ、ヘテロアラルキルアミノ、およびヘテロアラルキルチオ(ここでR15、R16、およびR17は、H、非置換アルキル、および非置換アルケニルである)からなる群より独立して選択される置換基で置換されていてもよいものであり;
ここでRの少なくとも1つの水素原子が、ハロゲン、OR15、SR15、S(O)R15、SO15、SONR1516、SON(OH)R15、CN、CR15=NR16、CR15=N(OR16)、N、NO、NR1516、N(OH)R15、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、C(O)N(OH)R15、C(S)N(OH)R15、NR15C(O)R16、NR15C(S)R16、N(OH)C(O)R15、N(OH)C(S)R15、NR15CO16、N(OH)CO15、NR15C(O)SR16、NR15C(O)NR1617、NR15C(S)NR1617、N(OH)C(O)NR1516、N(OH)C(S)NR1516、NR15C(O)N(OH)R16、NR15C(S)N(OH)R16、NR15SO16、NHSONR1516、NR15SONHR16、またはP(O)(OR15)(OR16)以外の置換基で置換されていてもよい場合、該置換基上の少なくとも1つの水素原子は、ハロゲン、OR15、SR15、S(O)R15、SO15、SONR1516、SON(OH)R15、CN、CR15=NR16、CR15=N(OR16)、N、NO、NR1516、N(OH)R15、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、C(O)N(OH)R15、C(S)N(OH)R15、NR15C(O)R16、NR15C(S)R16、N(OH)C(O)R15、N(OH)C(S)R15、NR15CO16、N(OH)CO15、NR15C(O)SR16、NR15C(O)NR1617、NR15C(S)NR1617、N(OH)C(O)NR1516、N(OH)C(S)NR1516、NR15C(O)N(OH)R16、NR15C(S)N(OH)R16、NR15SO16、NHSONR1516、NR15SONHR16、またはP(O)(OR15)(OR16)で置換されていてもよい]で表される化合物またはその医薬的に許容し得る塩、そのプロドラッグ、またはそのエステル、あるいはその医薬組成物を投与することを含む、HIV感染哺乳動物内で薬剤耐性の出現を予防する方法を提供する。
【0098】
およびRは、RおよびRが式(I)のN−W結合と一緒になって12〜18員環を構成するように、共有結合していてもよい。12〜18員環は、環内のN−W結合の窒素以外に、環骨格中に少なくとも1つのさらなるヘテロ原子(例えば、N、O、またはS)を含むことができる。HIV感染哺乳動物内で薬剤耐性の出現を予防する方法の実施において、感染体から生じ得る突然変異体ウイルスが、投与される化合物または化合物の組み合わせの存在下で、感染ウイルスと比較して低いフィットネスを有することが好ましい。
【0099】
本明細書中で使用する用語「アルキル」は、約1個〜約20個の炭素原子鎖、好ましくは約1個〜約10個の炭素原子、より好ましくは約1個〜約8個の炭素原子、なおより好ましくは約1個〜約6個の炭素原子を含む直鎖または分岐鎖のアルキル基を意味する。このような置換基の例としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、sec−ブチル、イソブチル、tert−ブチル、ペンチル、イソアミル、ヘキシル、オクチル、ドデカニル等が挙げられる。
【0100】
用語「アルケニル」は、1つ以上の二重結合を有し、かつ約2個〜約20個の炭素原子鎖、好ましくは約2個〜約10個の炭素原子、より好ましくは約2個〜約8個の炭素原子、なおより好ましくは約2個〜約6個の炭素原子を含む直鎖または分岐鎖のアルケニル基を意味する。このような置換基の例としては、ビニル、アリル、1,4−ブタジエニル、イソプロペニル等が挙げられる。
【0101】
用語「アルキニル」は、1つ以上の三重結合を有し、かつ約2個〜約20個の炭素原子鎖、好ましくは約2個〜約10個の炭素原子、より好ましくは約2個〜約8個の炭素原子、なおより好ましくは約2個〜約6個の炭素原子を含む直鎖または分岐鎖のアルキニル基を意味する。このような基の例としては、エチニル、プロピニル(プロパルギル)、ブチニル等が挙げられる。
【0102】
用語「アルコキシ」は、アルキルエーテル基を意味し、ここで用語「アルキル」は上記で定義した通りである。アルコキシ基の例としては、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシ、ヘキサノキシ等が挙げられる。
【0103】
用語「アルキルチオ」は、アルキルチオエーテル基を意味し、ここで用語「アルキル」は上記で定義した通りである。アルキルチオ基の例としては、メチルチオ(SCH)、エチルチオ(SCHCH)、n−プロピルチオ、イソプロピルチオ、n−ブチルチオ、イソブチルチオ、sec−ブチルチオ、tert−ブチルチオ、n−ヘキシルチオ等が挙げられる。
【0104】
用語「アルキルアミノ」は、アルキルアミン基を意味し、ここで用語「アルキル」は上記で定義した通りである。アルキルアミノ基の例としては、メチルアミノ(NHCH)、エチルアミノ(NHCHCH)、n−プロピルアミノ、イソプロピルアミノ、n−ブチルアミノ、イソブチルアミノ、sec−ブチルアミノ、tert−ブチルアミノ、n−ヘキシルアミノ等が挙げられる。
【0105】
用語「シクロアルキル」は、1つ以上のアルキル炭素環式環によって規定される単環式または多環式アルキル基を意味し、このアルキル炭素環式環は、シクロアルキルが各環における炭素環式骨格中に3個〜約10個の炭素原子、好ましくは約4個〜約7個の炭素原子、より好ましくは5個〜6個の炭素原子を有する多環式基である場合、同一であっても異なってもよい。単環式シクロアルキル基の例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル、シクロデシル等が挙げられる。多環式シクロアルキル基の例としては、デカヒドロナフチル、ビシクロ[5.4.0]ウンデシル、アダマンチル等が挙げられる。
【0106】
用語「シクロアルキルアルキル」は、アルキル基上の少なくとも1つの水素原子が、本明細書中で定義したシクロアルキル基によって置き換えられている、本明細書中で定義したアルキル基を意味する。シクロアルキルアルキル基の例としては、シクロへキシルメチル、3−シクロペンチルブチル等が挙げられる。
【0107】
用語「ヘテロシクロアルキル」は、炭素環骨格を規定する少なくとも1個の炭素が、ヘテロ原子(例えば、O、N、またはS等)で置換されており、環内に1個以上の二重結合を含んでいてもよい、本明細書中で定義したシクロアルキル基(多環を含む)を意味する。ただし、該環は本明細書中で定義したヘテロアリールではない。好ましくはヘテロシクロアルキルは、各環の炭素環骨格中に3個〜約10個の原子(メンバー)、好ましくは約4個〜約7個の原子、より好ましくは5個〜6個の原子を有する。ヘテロシクロアルキル基の例としては、エポキシ、アジリジル、オキセタニル、テトラヒドロフラニル、ジヒドロフラニル、ピペラジル(piperadyl)、ピペリジニル、ピペラジル(pyperazyl)、ピペラジニル、ピラニル、モルホリニル等が挙げられる。
【0108】
用語「ヘテロシクロアルキルアルキル」は、アルキル基上の少なくとも1つの水素原子が、本明細書中で定義したヘテロシクロアルキル基によって置き換えられている、本明細書中で定義したアルキル基を意味する。ヘテロシクロアルキルアルキル基の例としては、2−モルホリノメチル、3−(4−モルホリノ)−プロピル、4−(2−テトラヒドロフラニル)−ブチル等が挙げられる。
【0109】
用語「アリール」は、当該分野で一般的に理解されているように、芳香族炭素環式基をいい、そして単環式および多環式芳香環(例えば、フェニル基およびナフチル基等)を含み、ハロゲン、アルキル、アルコキシ、アミノ、シアノ、ニトロ等からなる群より選択される1つ以上の置換基で置換されていてもよい。
【0110】
用語「アリールオキシ」は、水素原子が酸素によって置き換えられている、本明細書中で定義したアリールを意味する。アリールオキシ基の例としては、フェノキシ、ナフトキシ、4−フルオロフェノキシ等が挙げられる。
【0111】
用語「アリールアミノ」は、水素原子がアミンによって置き換えられている、本明細書中で定義したアリールを意味する。アリールアミノ基の例としては、フェニルアミノ、ナフチルアミノ、3−ニトロフェニルアミノ、4−アミノフェニルアミノ等が挙げられる。
【0112】
用語「アリールチオ」は、水素原子が硫黄原子によって置き換えられている、本明細書中で定義したアリールを意味する。アリールチオ基の例としては、フェニルチオ、ナフチルチオ、3−ニトロフェニルチオ、4−チオフェニルチオ等が挙げられる。
【0113】
用語「アラルキル」は、アルキルの水素原子が本明細書中で定義したアリールによって置き換えられている、本明細書中で定義したアルキルを意味する。アラルキル基の例としては、ベンジル、フェネチル、3−(2−ナフチル)−ブチル等が挙げられる。
【0114】
用語「アリールオキシアルキル」は、アルキルの水素原子が本明細書中で定義したアリールオキシによって置き換えられている、本明細書中で定義したアルキルを意味する。アリールオキシアルキル基の例としては、フェノキシエチル、4−(3−アミノフェノキシ)−1−ブチル等が挙げられる。
【0115】
用語「アリールアミノアルキル」は、アルキルの水素原子が本明細書中で定義したアリールアミノによって置き換えられている、本明細書中で定義したアルキルを意味する。アリールアミノアルキル基の例としては、フェニルアミノエチル、4−(3−メトキシフェニルアミノ)−1−ブチル等が挙げられる。
【0116】
用語「アラルコキシ」は、アルキルの水素原子が本明細書中で定義したアリールによって置き換えられている、本明細書中で定義したアルコキシを意味する。アラルコキシ基の例としては、2−フェニルエトキシ、2−フェニル−1−プロポキシ等が挙げられる。
【0117】
用語「(アリールオキシ)アルコキシ」は、アルキルの水素原子が本明細書中で定義したアリールオキシによって置き換えられている、本明細書中で定義したアルコキシを意味する。(アリールオキシ)アルコキシ基の例としては、2−フェノキシエトキシ、4−(3−アミノフェノキシ)−1−ブトキシ等が挙げられる。
【0118】
用語「(アリールアミノ)アルコキシ」は、アルキルの水素原子が本明細書中で定義したアリールアミノによって置き換えられている、本明細書中で定義したアルコキシを意味する。(アリールアミノ)アルコキシ基の例としては、2−(フェニルアミノ)−エトキシ、2−(2−ナフチルアミノ)−1−ブトキシ等が挙げられる。
【0119】
用語「(アリールチオ)アルコキシ」は、アルキルの水素原子が本明細書中で定義したアリールチオによって置き換えられている、本明細書中で定義したアルコキシを意味する。(アリールチオ)アルコキシ基の例としては、2−(フェニルチオ)−エトキシ等が挙げられる。
【0120】
用語「アラルキルアミノ」は、アルキルの水素原子が本明細書中で定義したアリールによって置き換えられている、本明細書中で定義したアルキルアミノを意味する。アラルキルアミノ基の例としては、2−フェネチルアミノ、4−フェニル−n−ブチルアミノ等が挙げられる。
【0121】
用語「(アリールオキシ)アルキルアミノ」は、アルキルの水素原子が本明細書中で定義したアリールオキシによって置き換えられている、本明細書中で定義したアルキルアミノを意味する。(アリールオキシ)アルキルアミノ基の例としては、3−フェノキシ−n−プロピルアミノ、4−フェノキシブチルアミノ等が挙げられる。
【0122】
用語「(アリールアミノ)アルキルアミノ」は、アルキルの水素原子が本明細書中で定義したアリールアミノによって置き換えられている、本明細書中で定義したアルキルアミノを意味する。(アリールアミノ)アルキルアミノ基の例としては、3−(ナフチルアミノ)−1−プロピルアミノ、4−(フェニルアミノ)−1−ブチルアミノ等が挙げられる。
【0123】
用語「(アリールチオ)アルキルアミノ」は、アルキルの水素原子が本明細書中で定義したアリールチオによって置き換えられている、本明細書中で定義したアルキルアミノを意味する。(アリールチオ)アルキルアミノ基の例としては、2−(フェニルチオ)−エチルアミノ等が挙げられる。
【0124】
用語「アラルキルチオ」は、アルキルの水素原子が本明細書中で定義したアリールによって置き換えられている、本明細書中で定義したアルキルチオを意味する。アラルキルチオ基の例としては、3−フェニル−2−プロピルチオ、2−(2−ナフチル)−エチルチオ等が挙げられる。
【0125】
用語「(アリールオキシ)アルキルチオ」は、アルキルの水素原子が本明細書中で定義したアリールオキシによって置き換えられている、本明細書中で定義したアルキルチオを意味する。(アリールオキシ)アルキルチオ基の例としては、3−フェノキシプロピルチオ、4−(2−フルオロフェノキシ)−ブチルチオ等が挙げられる。
【0126】
用語「(アリールアミノ)アルキルチオ」は、アルキルの水素原子が本明細書中で定義したアリールアミノによって置き換えられている、本明細書中で定義したアルキルチオを意味する。(アリールアミノ)アルキルチオ基の例としては、2−(フェニルアミノ)−エチルチオ、3−(2−ナフチルアミノ)−n−プロピルチオ等が挙げられる。
【0127】
用語「(アリールチオ)アルキルチオ」は、アルキルの水素原子が本明細書中で定義したアリールチオによって置き換えられている、本明細書中で定義したアルキルチオを意味する。(アリールチオ)アルキルチオ基の例としては、2−(ナフチルチオ)−エチルチオ、3−(フェニルチオ)−プロピルチオ等が挙げられる。
【0128】
用語「ヘテロアリール」は、当該分野で一般的に理解されている芳香族複素環式環を意味し、例えば、イミダゾール、チアゾール、ピラゾール、ピロール、フラン、ピラゾリン、チオフェン、オキサゾール、イソオキサゾール、ピリジン、ピリドン、ピリミジン、ピラジン、およびトリアジン基のような単環式基、および例えば、キノリン、イソキノリン、インドール、およびベンゾチアゾール基のような多環式基が挙げられる。これらのヘテロアリール基は、ハロゲン、アルキル、アルコキシ、アミノ、シアノ、ニトロ等からなる群より選択される1つ以上の置換基によって置換されていてもよい。ヘテロシクロアルキル置換基およびヘテロアリール置換基が窒素のようなヘテロ原子を介して本発明の化合物と結合できること(例えば、1−イミダゾリル)がよく理解される。
【0129】
用語「ヘテロアリールオキシ」は、ヘテロアリール環上の水素原子が酸素によって置き換えられている、本明細書中で定義したヘテロアリールを意味する。ヘテロアリールオキシ基としては、例えば、4−ピリジルオキシ、5−キノリルオキシ等が挙げられる。
【0130】
用語「ヘテロアリールアミノ」は、ヘテロアリール環上の水素原子が窒素によって置き換えられている、本明細書中で定義したヘテロアリールを意味する。ヘテロアリールアミノ基としては、例えば、4−チアゾリルアミノ、2−ピリジルアミノ等が挙げられる。
【0131】
用語「ヘテロアリールチオ」は、ヘテロアリール環上の水素原子が硫黄によって置き換えられている、本明細書中で定義したヘテロアリールを意味する。ヘテロアリールチオ基としては、例えば、3−ピリジルチオ、3−キノリルチオ、4−イミダゾリルチオ等が挙げられる。
【0132】
用語「ヘテロアラルキル」は、アルキルの水素原子が本明細書中で定義したヘテロアリールで置き換えられている、本明細書中で定義したアルキルを意味する。ヘテロアラルキル基の例としては、2−ピリジルメチル、3−(4−チアゾリル)−プロピル等が挙げられる。
【0133】
用語「ヘテロアラルコキシ」は、アルキルの水素原子が本明細書中で定義したヘテロアリールによって置き換えられている、本明細書中で定義したアルコキシを意味する。ヘテロアラルコキシ基の例としては、2−ピリジルメトキシ、4−(1−イミダゾリル)−ブトキシ等が挙げられる。
【0134】
用語「ヘテロアラルキルアミノ」は、アルキルの水素原子が本明細書中で定義したヘテロアリールによって置き換えられている、本明細書中で定義したアルキルアミノを意味する。ヘテロアラルキルアミノ基の例としては、4−ピリジルメチルアミノ、3−(2−フラニル)−プロピルアミノ等が挙げられる。
【0135】
用語「ヘテロアラルキルチオ」は、アルキルの水素原子が本明細書中で定義したヘテロアリールによって置き換えられている、本明細書中で定義したアルキルチオを意味する。ヘテロアラルキルチオ基の例としては、3−ピリジルメチルチオ、3−(4−チアゾリル)−プロピルチオ等が挙げられる。
【0136】
式(I)の化合物において、Aは、好ましくは、式:
【0137】
【化5】

【0138】
〔式中、RはHであるか、あるいはアルキル、アルケニル、シクロアルキル、シクロアルキルアルキル、アリール、アラルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、ヘテロアリールまたはヘテロアラルキル基であって、その少なくとも1つの水素原子がOR、SR、CN、NO、Nおよびハロゲン(ここでRはH、非置換アルキルまたは非置換アルケニルである)からなる群より独立して選択される置換基で置換されていてもよいものであり;YおよびZは同一かまたは異なって、CH、O、S、SO、SO、NR、RC(O)N、RC(S)N、ROC(O)N、ROC(S)N、RSC(O)N、RNC(O)N、およびRNC(S)N(ここでRおよびRはH、非置換アルキルおよび非置換アルケニルからなる群より独立して選択される)からなる群より独立して選択され;Xは共有結合、CHR10、CHR10CH、CHCHR10、O、NR10、またはS(ここでR10はH、非置換アルキルまたは非置換アルケニルである)であり;RはH、C−Cアルキル基またはC−Cアルケニル基であり;R12およびR13は、Rについて定義したように、H、非置換アルキルおよび非置換アルケニル基からなる群より独立して選択され;RはOH、NHまたはNHCHであり;WはC(O)、C(S)またはSOであり;およびRはシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリール基であって、その少なくとも1つの水素原子がハロゲン、OR15、SR15、CN、N、NO、NR1516、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、NR15C(O)R16、NR15C(S)R16、NR15CO16、NR15C(O)SR16、NR15C(O)NR1617およびNR15C(S)NR1617、アルキル、アルコキシ、アルキルチオ、アルキルアミノ、シクロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、アリール、アリールオキシ、アリールアミノ、アリールチオ、アラルキル、アリールオキシアルキル、アリールアミノアルキル、アラルコキシ、(アリールオキシ)アルコキシ、(アリールアミノ)アルコキシ、(アリールチオ)アルコキシ、アラルキルアミノ、(アリールオキシ)アルキルアミノ、(アリールアミノ)アルキルアミノ、(アリールチオ)アルキルアミノ、アラルキルチオ、(アリールオキシ)アルキルチオ、(アリールアミノ)アルキルチオ、(アリールチオ)アルキルチオ、ヘテロアリール、ヘテロアリールオキシ、ヘテロアリールアミノ、ヘテロアリールチオ、ヘテロアラルキル、ヘテロアラルコキシ、ヘテロアラルキルアミノ、およびヘテロアラルキルチオ(ここでR15、R16およびR17はH、非置換アルキル、および非置換アルケニルである)からなる群より独立して選択される置換基によって置換されていてもよいものであり、ただしRの水素原子の少なくとも1つがハロゲン、OR15、SR15、CN、N、NO、NR1516、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、NR15C(O)R16、NR15C(S)R16、NR15CO16、NR15C(O)SR16、NR15C(O)NR1617またはNR15C(S)NR1617以外の置換基で置換されていてもよい場合、Rに結合する該置換基上の少なくとも1つの水素原子がハロゲン、OR15、SR15、CN、N、NO、NR1516、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、NR15C(O)R15、NR15C(S)R16、NR15CO16、NR15C(O)SR16、NR15C(O)NR1617またはNR15C(S)NR1617で置換されていてもよい。
【0139】
がアルキルまたはアルケニル基(すなわち、アルキルまたはアルケニル置換基)である場合、C−Cアルキルがさらに好ましく、またRがアルケニルである場合にはC−Cアルケニルがさらに好ましい。Rが、例えば、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリールのような単環式置換基である場合、単環骨格を規定する環内に4〜7個のメンバーを含むことが好ましい。R、RまたはRが非置換アルキルである場合は、C−C非置換アルキルが好ましく;およびR、RまたはRが非置換アルケニルである場合は、C−C非置換アルケニルが好ましい。Rで定義される環は、好ましくは4〜7個のメンバーから構成され、また多環式の場合には各環が好ましくは4〜7個のメンバーから構成される。Rが(CH11である場合、R11で定義される環は、好ましくは4〜7個のメンバーから構成され、また多環式の場合には各環が好ましくは4〜7個のメンバーから構成される。R12またはR13のどちらかが非置換アルキルである場合は、C−C非置換アルキルが好ましく、R12またはR13のどちらかが非置換アルケニルである場合はC−C非置換アルキルが好ましい。R14がシクロアルキル、ヘテロシクロアルキル、アリールまたはヘテロアリールである場合、R14で定義される環は、好ましくは4〜7個のメンバーから構成され、また多環式の場合には各環が好ましくは4〜7個のメンバーから構成される。Rがシクロアルキル、ヘテロシクロアルキル、アリールまたはヘテロアリールである場合、Rで定義される環は好ましくは4〜7個のメンバーから構成され、多環の場合には各環が好ましくは4〜7個のメンバーから構成される。そしてRがアルキル、アルキルチオまたはアルキルアミノである置換基で置換されている場合、該置換基は1個から6個の炭素原子から構成されることが好ましく、そしてRがシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールである置換基で置換されている場合、置換基によって定義される環は、好ましくは4〜7個のメンバーから構成され、また多環式の場合には各環は好ましくは4〜7個のメンバーから構成される。
【0140】
好ましい実施態様において、本発明の耐性の出現を予防する方法は、式(I)(式中、QはC(O)であり、RはHであり、そしてWはC(O)またはSOである)の化合物を投与することを含む。さらに好ましい実施態様においては、QはC(O)であり、RはHであり、Rは水酸基であり、WはSOであり、そして不斉中心の立体化学的配置が下記の式(IA)または(IB)で表される。
【0141】
【化6】

【0142】
さらに好ましくは、下記式で示される、Rは単環式置換基、好ましくは芳香族環であり、該基は好ましくは置換されたベンゼン環である。
【0143】
【化7】

【0144】
(式中、Arは、メチル、アミノ、ヒドロキシ、メトキシ、メチルチオ、ヒドロキシメチル、アミノメチルおよびメトキシメチルからなる群より選択される置換基で置換されていてもよいフェニルである)
【0145】
好ましい系列(series)のものにおいて、YおよびZが酸素原子であり、nが2であり、得られるビス−テトラヒドロフラニル環系が上記式(1C)および(ID)で示される立体化学的配置を有し、mが1であり、そしてRがフェニルである場合の化合物は、式:
【0146】
【化8】

【0147】
(式中、Arはメチル、アミノ、ヒドロキシ、メトキシ、メチルチオ、ヒドロキシメチル、アミノメチル、およびメトキシメチルからなる群より選択される置換基で置換されていてもよいフェニルである)で表される。化合物が式(IE)または(IF)(式中、Ar上の少なくとも1つの水素原子は、メチル、アミノ、ヒドロキシ、メトキシ、メチルチオ、ヒドロキシメチルおよびメトキシメチルからなる群より選択される置換基で置換されている)の化合物の場合、Xが酸素であることがさらに好ましい。さらにより好ましくは、Xは酸素であり、Rはイソブチルである。適当なAr置換基としては、パラ位、メタ位および/またはオルト位で置換されているフェニル基が挙げられる。適当なAr置換基の例を表4、ならびに図3および図5A〜5Dに示す。
【0148】
耐性阻害有効量は、突然変異HIVの生化学的バイタリティがHIV感染哺乳動物に感染しているHIV(プレデセサー)の生化学的バイタリティよりも低くなる、インビボ薬剤濃度またはレベルを生じさせるのに十分な量である。例えば、耐性阻害有効量は、プレデセサーの生化学的バイタリティに対する突然変異体の生化学的バイタリティの比によって決定される場合、生化学的フィットネスについての値が1未満である、インビボ薬剤濃度またはレベルを生じさせるのに十分な量である。化合物は、第一線の耐性の出現を予防するため、野生型HIV感染哺乳動物に投与することができ、あるいはさらなる突然変異体に起因する薬剤耐性の出現を予防するため、突然変異HIVに感染した哺乳動物に投与することができる。
【0149】
化合物は、好ましくは医薬組成物の形態で投与される。医薬組成物は、好ましくは医薬的に許容し得る担体と、耐性阻害有効量の上述した化合物の少なくとも1つを、単独で、または例えば、野生型HIVプロテアーゼ阻害剤、突然変異HIVレトロウィルスプロテアーゼ阻害剤または逆転写酵素阻害剤のような別の抗レトロウィルス化合物と組み合わせて含む。一般的に、本発明の医薬組成物は、耐性阻害有効量の本明細書中で開示した式(I)の少なくとも1つの化合物と、医薬的に許容し得る担体とを含む。
【0150】
好ましい実施態様において、耐性阻害有効量の式(IA)または式(IB)の少なくとも1つの化合物、その医薬的に許容し得る塩、そのプロドラッグ、またはそのエステルと、医薬的に許容し得る担体とを含む医薬組成物が投与される。さらに好ましい実施態様において、医薬組成物は、耐性阻害有効量の式(IC)または式(ID)の少なくとも1つの化合物、その医薬的に許容し得る塩、そのプロドラッグ、またはそのエステルと、医薬的に許容し得る担体とを含む。さらにより好ましい実施態様において、医薬組成物は、耐性阻害有効量の、式(IE)の化合物ならびにその医薬的に許容し得る塩、そのプロドラッグおよびそのエステルの少なくとも1つと、医薬的に許容し得る担体とを含む。
【0151】
医薬的に許容し得る担体は、当業者に周知である。担体の選択は、特定の組成物および特定の投与方式によってある程度決定される。従って、本発明による広範な種々の適当な投与剤形が存在する。
【0152】
医薬組成物は、例えば、錠剤、トローチ剤、ロゼンジ剤、水性もしくは油性の懸濁剤または液剤、分散性の散剤または顆粒剤、乳剤、硬または軟カプセル剤、シロップ剤またはエリキシル剤のような経口用に適した形態で投与してもよい。経口用を意図する組成物は、当該分野で知られているいかなる医薬組成物の製造方法によっても製造され得る。そしてそのような組成物は、医薬的に洗練されたおよび/または美味な製剤を得るために、1つ以上の薬剤、例えば、甘味剤、着香剤、着色剤および防腐剤を含むことができる。錠剤は、活性成分を、錠剤の製造に適した非毒性の医薬的に許容し得る賦形剤との混合状態で含むことができる。このような賦形剤としては、不活性希釈剤(例えば、炭酸カルシウム、ラクトース、リン酸カルシウムまたはリン酸ナトリウム等);顆粒化剤および崩壊剤(例えば、トウモロコシデンプンまたはアルギン酸等);結合剤(例えば、デンプン、ゼラチンまたはアカシア等);潤滑剤(例えば、ステアリン酸またはタルク等)を挙げることができる。錠剤はコートされていなくてもよいし、または消化管での崩壊および吸収を遅らせ、これにより長期間に渡る持続作用を得るための公知の技術でコートされていてもよい。例えば、時間を遅らせる物質(例えば、モノステアリン酸グリセリン、ジステアリン酸グリセリン)単独で、またはこれをワックスと一緒に使用してもよい。
【0153】
経口用の製剤はまた、活性成分を、不活性固形希釈剤(例えば、炭酸カルシウム、リン酸カルシウムまたはカオリン)と混合した硬ゼラチンカプセルとして、または活性成分を、水または油状媒体(例えば、落花生油、ピーナッツ油、流動パラフィン、オリーブ油)と混合した軟ゼラチンカプセルとして提供することができる。
【0154】
水性懸濁剤は、典型的には、活性成分を、水性懸濁剤の製造に適した賦形剤との混合状態で含む。そのような賦形剤には、例えば、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシプロピルメチルセルロース、アルギン酸ナトリウム、ポリビニルピロリドン、トラガカントゴムおよびアカシアゴム等の懸濁化剤があり;分散剤または湿潤剤は、天然ホスファチド(例えば、レシチン)、アルキレンオキサイドと脂肪酸との縮合物(例えば、ポリオキシエチレンステアレート)、エチレンオキサイドと長鎖脂肪族アルコールとの縮合物(例えば、ヘプタデカエチレンオキシセタノール)、エチレンオキサイドと、脂肪酸およびヘキシトールから誘導される部分エステルとの縮合物(ポリオキシエチレンソルビトールモノオレエート等)、エチレンオキサイドと、脂肪酸およびヘキシトール無水物から誘導される部分エステルとの縮合物(例えば、ポリオキシエチレンソルビタンモノオレエート)であってもよい。また、水性懸濁剤は、1つ以上の防腐剤(例えば、エチルまたはn−プロピルp−ヒドロキシベンゾエート)、1つ以上の着色剤、1つ以上の着香剤、および1つ以上の甘味剤(例えば、ショ糖またはサッカリン)を含むことができる。
【0155】
油状懸濁剤は、植物油(例えば、落花生油、オリーブ油、ごま油、やし油)、または鉱油(例えば、流動パラフィン)中に活性成分を懸濁することによって製剤化してもよい。油状懸濁剤は、増粘剤(例えば、蜜ろう、固形パラフィンまたはセチルアルコール)を含んでいてもよい。上記したような甘味剤、および着香剤を加えて、美味な経口製剤を得てもよい。これらの組成物は、例えば、アスコルビン酸のような酸化防止剤を加えることにより、保存することができる。
【0156】
水を添加することによって水性懸濁剤を製剤するのに適した分散性の散剤および顆粒剤は、活性成分を、分散剤または湿潤剤、懸濁化剤および1つ以上の防腐剤と混合して提供する。適当な分散剤または湿潤剤および懸濁化剤としては、既に上述したものが例示される。さらなる賦形剤(例えば、甘味剤、着香剤および着色剤)もまた、存在してもよい。
【0157】
該医薬組成物はまた、水中油形乳剤の形態で投与することもできる。油相は、植物油(例えば、オリーブ油、落花生油)または鉱油(例えば、流動パラフィン)、あるいはこれらの混合物であってよい。適当な乳化剤は、天然ゴム(例えば、アカシアゴムもしくはトラガントゴム)、天然ホスファチド(例えば、大豆レシチン)、脂肪酸とヘキシトール無水物とから誘導されるエステルまたは部分エステル(例えば、ソルビタンモノオレエート)、および該部分エステルとエチレンオキサイドとの縮合物(例えば、ポリオキシエチレンソルビタンモノオレエート)であってよい。また、乳剤は、甘味剤および着香剤を含むこともできる。
【0158】
該医薬組成物はまた、シロップ剤およびエリキシル剤の形態で投与することができる。これは、典型的には、例えば、グリセロール、ソルビトールまたはスクロースのような甘味剤とともに製剤化される。そのような製剤はまた、粘滑薬、保存剤、着香剤および着色剤を含み得る。
【0159】
さらに、該医薬組成物は、例えば、無菌の注射用水性または油性懸濁液として無菌注射用製剤の形態で投与することができる。非経口投与用の適当な懸濁液は、上述した適当な分散剤または湿潤剤および懸濁化剤を用いる公知の技術により製剤化することができる。非経口投与用の適当な製剤としては、例えば水性および非水性の、等張の無菌注射溶液(これは、抗酸化剤、緩衝剤、静菌剤および意図されるレシピエントの血液と等張にする溶質を含み得る)、ならびに水性および非水性の無菌懸濁剤(これは懸濁化剤、可溶化剤、増粘剤、安定化剤および保存剤を含み得る)が挙げられる。該無菌注射用製剤は、例えば、水溶液または1,3−ブタンジオール溶液のような、非毒性の非経口的に許容し得る希釈剤または溶媒中の溶液または懸濁液であってもよい。用いることができる許容し得るビヒクルおよび溶媒としては、例えば、水、リンゲル溶液および等張塩化ナトリウム溶液が挙げられる。加えて、無菌の固定油が溶媒または懸濁媒体として慣例的に用いられている。この目的で、合成モノ−またはジグリセリドを含め、任意の無刺激性の固定油を用いることができる。さらに、注射剤の調製においては、例えば、オレイン酸のような脂肪酸の使用が認められる。
【0160】
さらに、該化合物は該薬剤の直腸投与用坐剤の形態で投与され得る。これらの組成物は該薬剤を適当な非刺激性の賦形剤(これは、室温では固体であるが直腸温では液状であり、従って直腸内では融解して該薬剤を放出する)とともに混合することによって調製することができる。このような物質としては、例えば、カカオバターおよびポリエチレングリコール類が挙げられる。膣投与に適当な製剤は、ペッサリー、タンポン、クリーム、ゲル、ペーストおよびフォーム剤として提供することができる。
【0161】
局所投与に適当な製剤は、活性成分に加えて、当該分野で適切であると知られているような担体を含む、クリーム、ゲル、ペーストまたはフォーム剤として提供することができる。
【0162】
該組成物は吸入による投与用にエアロゾル製剤に製してもよい。このようなエアロゾル製剤は、加圧された許容し得るプロペラント(例えば、ジクロロジフルオロメタン、プロパン、窒素等)中に置くことができる。これらはまた、ネブライザまたはアトマイザのような非加圧製剤用の医薬として製剤化することができる。
【0163】
該製剤は、単位用量または複数回用量を封入した容器(例えば、アンプルおよびバイアル)で提供することができ、注射用に使用直前に無菌の液状賦形剤(例えば、水)を添加すればよいだけのフリーズドライ(凍結乾燥)された状態で保存することができる。即席の注射用液剤および懸濁剤は、先に記載した種類の無菌の散剤、顆粒剤および錠剤から調製され得る。
【0164】
本発明の医薬組成物において、任意の適当な投薬量レベルを用いることができる。本発明において、動物、特にヒトに投与される量は、適当な時間枠に渡って該動物に予防的または治療的応答をもたらすのに十分であるべきである。単回投与形態に製するために担体物質と合わせることができる活性成分の量は、治療される受容者および特定の投与様式に依存して変動するであろう。服用量の規模もまた、特定の組成物の投与に伴い得る何らかの不利な副作用の存在、性質、程度によって決定される。薬剤耐性を予防するのに適当な用量および薬剤投与計画は、感染した個体内でのレトロウイルスの増殖を阻害することが知られている抗レトロウイルス化学療法剤と比較することによって決定することができる。好ましい投薬量は、結果として、突然変異薬剤耐性レトロウイルスの出現、特に多剤耐性レトロウイルスHIVの出現を顕著な副作用なしに阻害する量である。ある化合物の適切な用量および適当な投与により、広範な抗レトロウイルス化学療法組成物が可能である。適当な用量としては、野生型またはプレデセサーウイルスの増殖を完全に抑制するのには不十分であるが、突然変異体の増殖を阻害する、または効果的に抑制するのに十分であろう量が挙げられる。
【0165】
本発明によれば、該化合物または組成物は、医薬的に許容し得る担体中、他の抗レトロウイルス化合物(例えば、リトナビル、アンプレナビル、サキナビル、インジナビル、AZT、ddI、ddC、D4T、ラミブジン(lamivudine)、3TC等)ならびそれらの混合物および併用剤とともに組み合わせて投与することができる。これらの組み合わせの個々の一日投薬量は、推奨される最小臨床投薬量の1/5〜各々を単独で投与する場合に推奨される最大レベルであり得る。
【0166】
本発明はまた、HIV感染哺乳動物内で多剤耐性レトロウイルスの出現を予防する方法を提供する。当該方法は、多剤耐性を阻害する有効量の本発明の化合物を該哺乳動物に投与し、そうして哺乳動物内で多剤耐性レトロウイルスが出現するのを阻害することを含む。本発明において、動物、特にヒトに投与する用量は、適当な時間枠に渡って、該動物内で治療的応答をもたらすのに十分な量であるべきである。該用量は、使用される特定の組成物の効力および動物の状態、ならびに治療されるべき動物の体重によって決定される。服用量の規模もまた、特定の化合物の投与に伴い得る何らかの不利な副作用の存在、性質、程度によって決定される。特定の投薬量に影響を与える他の要因としては、例えば、特定の患者に投与されるべき特定の化合物に関連したバイオアベイラビリティー、代謝プロファイルおよび薬力学が挙げられる。当業者は、任意の特定の患者についての特定の服用量レベルは多くの要因(例えば、使用する特定の化合物の活性、年齢、体重、一般的な健康状態、性別、食事、投与の時間、投与経路、排泄速度、薬剤の組み合わせ、CD4カウント、阻害されるべき特定の突然変異レトロウイルス株に関する活性化合物の効力および治療前または治療中に呈せられる症状の深刻度を含む)に依存することを認識する。耐性阻害に貢献するものの有効量を、本明細書中に記載される1または2以上のアッセイ、特に本発明のフィットネスアッセイを用いて部分的に決定することができる。
【0167】
当業者には、化合物および医薬組成物を投与するのに適当な方法を用いることができること、および1つを超える経路を特定の組成物を投与するのに使用できるが、特定の経路が別の経路よりも、より迅速および/またはより効果的な反応を提供し得ることが理解されよう。
【0168】
非常に多くの化合物について、野生型のHIVに対する強力な抗レトロウイルス活性(特にレトロウイルスのプロテアーゼ活性)を示すことが確認されてきた。しかしながら、現在、FDAが承認している15の抗レトロウイルス剤(これらは全て野生型HIVの強力な阻害剤であることが知られている)のうち、5つは野生型HIVプロテアーゼの強力な阻害剤であり、これらの化合物のなかで高レベルの交叉耐性に関連した薬剤耐性突然変異の出現を防ぐことができるものは存在しない。従って、これらの阻害剤は、これらの阻害剤の選択圧下で出現し得る(そしてほぼ間違いなく出現する)十分なフィットネスを有する突然変異レトロウイルスの発生を抑制する能力を持たない。
【0169】
驚いたことに、強力な野生型HIV阻害剤である化合物32(図3Aに示す)が、組換え突然変異HIVプロテアーゼターゲットの一団に対して、著しく強力で、かつ前例のない広範なスペクトルの阻害活性を有していることが発見された。これらの酵素は、鍵となるまたは主要な耐性突然変異(そのほとんどが活性部位領域内で発生する)を示す。これらの知見に基づいて、該化合物をHIVの薬剤耐性突然変異患者単離株の一団に対して試験し、そして広範な臨床的に単離された、多剤耐性のヒト免疫不全ウイルスに対して広範なスペクトルの抗ウイルス活性を有することを見出した。本明細書中に記載される他の化合物も同様の活性を示した。突然変異ウイルスが、幾つかの抗ウイルス剤を受けていた感染ヒトから得られた。出願人はいかなる1つの理論によって満たされるものではないが、二環式リガンド(vii)の等電子体(vi)との組み合わせが、本発明の抗レトロウイルス化合物に多剤耐性ヒト免疫不全ウイルスの突然変異プロテアーゼの活性部位に結合するためのユニークな能力(概してこの特徴は、任意の既知の化療法および/または実験に基づくプロテアーゼ阻害剤については、これまで報告されてこなかった)を付与すると考えられる。野生型HIVに対するアナログの抗レトロウイルス活性を測定するために野生型予備的ふるいを利用した。野生型HIVに対して強力な抗レトロウイルスまたはプロテアーゼ阻害活性を有する式(I)化合物がまた、野生型HIV(またはその突然変異体でさえも)における薬剤耐性(多剤耐性でさえも)の強力な阻害剤になることが予測される。
【0170】
本発明の耐性阻害化合物は、この技術における公知のどんな適切な方法によっても合成できる。好適な合成方法は一般に図4で説明され、これは、好適な一連の化合物の製造への合成アプローチを表し、ここで式(I)の化合物は、アジドエポキシド(i)(ここでR〜R17、m、n、p、Q、W、X、yおよびzは上記のように定義される)から出発して幾つかのステップで合成される。図4に関して、アミン(ii)はアジドエポキシド(i)に求核的に付加して、アミノアルコール(iii)を得る。次いで、アミノアルコール(iii)のアミン官能基は、中間体(iv)(式中、Lは脱離基(例えば、ハロゲン、N−オキシスクシンイミド)を表し、これは、アミノアルコール(iii)のアミンによって置き換えられ得る)と反応して、アジド(v)を得る。アジド(v)の還元、または、Rが水素ではない場合のアルデヒドRCH=Oを用いる還元アミノ化により、中間体(vi)を得、続いて活性化した二環式リガンド(vii)とカップリングして、式Iの化合物を得る。望ましくない副反応が生じることなく、望ましい合成的変換が確実に起こるようにするために、特定の反応条件下において反応性があり、そして当該分野において公知の適切な保護基(単数または複数)を利用することを必要とする置換基、官能基、R−基等の組み合わせが存在することは、当業者には勿論理解されよう。例えば、Rにおける可能性のある置換基(例えば、NH)は、アミン(ii)を用いるエポキシド(i)の開環における妥当な選択性を得るために、その適切な保護基(例えば、ベンジルオキシカルボニル、tert−ブトキシカルボニル)の結合を必要とする拮抗的求核基であり得る。
【0171】
図1〜3Bは、本発明による、耐性の出現を防止する方法で使用するのに好適な一連の化合物の合成を説明する。図1は、特定のスルホンアミドを合成するための合成スキームであり、好適な等電子コア、特に、アミノスルホンアミド15で代表されるスルホンアミド等電子コアの合成を説明する。図1に関して、アミノスルホンアミドコア15は、初めに、アジドエポキシド11を得、それにアミン12を求核付加させてアミノアルコール13を得、続いて、4−メトキシベンゼンスルホニルクロライドとの反応によりスルホンアミド14に変換する、ことにより合成できる。次いで、14のアジド基を還元して、アミノスルホンアミド15を得る。これは、本発明の多くの多剤耐性レトロウィルスプロテアーゼ阻害剤の合成のためのコアとして使用できる。
【0172】
図2は、二環式アルコールの製造を詳しく述べる反応スキームであり、好ましい一連の二環式リガンド、特にビステトラヒドロフラン類25および26の合成を説明する。図2に関して、ジヒドロフラン21を、プロパルギルアルコールの存在下、N−ヨードスクシンイミドで処理して、ヨードエーテル22を得、メチレン置換ビステトラヒドロフラン23に環化する。23のエキソ−メチレン残基のオゾン分解、続いて還元により、二環式ラセミアルコール24を得、これを分割して別々に二環式アルコール25およびその鏡像異性のアセテートエステル26を得、続いて26のエステル基を加水分解して鏡像異性体27を得る。
【0173】
図3Aおよび3Bは、2つのプロテアーゼ阻害剤の製造を記述する反応スキームであり、本発明の2つの好適な多剤耐性HIVプロテアーゼ阻害剤の製造を説明する。図3Aに関して、化合物32は、スクシンイミドカーボネート31をアミノスルホンアミド15とカップリングすることにより合成した。スクシンイミドカーボネート31は、トリエチルアミンの存在下、光学的に純粋な二環式アルコール25をジスクシンイミジルカーボネートと反応させることにより製造した。阻害剤34は、鏡像異性のビステトラヒドロフラニルリガンド(阻害剤32に関連する)を持ち、これは、図3Bで説明するように、アルコール25の代わりに鏡像異性の二環式アルコール27を用いる以外は同様の方法で製造した。
【0174】
以下の実施例は本発明をさらに説明するが、勿論、どんな場合でも、本発明の範囲を限定すると解釈されるべきではない。
【実施例】
【0175】
実施例1
この実施例は、本発明の範囲内の特定の一連の化合物の合成における中間体として使用される、代表的なエポキシド11の合成を記述する(図1)。
【0176】
無水CuCN(4.86g、54mmol)を、ブタジエンモノオキサイド(38g、540mmol)の無水テトラヒドロフラン(1.2L)溶液に添加し、得られた混合物を−78℃で撹拌した。市販のフェニルマグネシウムブロマイドのエーテル(65mmol)溶液(Aldrich)を、10分間かけて滴下した。次いで、得られた反応混合物を放置して0℃まで戻し、反応混合物が均一となるまで撹拌を続けた。この期間後、反応混合物を−78℃まで冷却し、0.58モルのフェニルマグネシウムブロマイドのエーテル溶液を30分間滴下した。反応混合物を放置して1時間で23℃まで戻した。飽和NHCl水溶液(120mL)、続いてNHOH(70mL)、飽和NHCl(500ML)、次いでHO(300mL)をゆっくりと添加することにより、反応をクエンチした。水層を酢酸エチル(2×300mL)で十分に抽出した。合わせた有機層を無水NaSOで乾燥し、濾過し、減圧下濃縮した。残渣を真空下(0.12 torr)、95℃で蒸留して、トランス−4−フェニル−2−ブテン−1−オール(75.6g)を得た。
【0177】
粉末化した4Aのモレキュラーシーブス(6.6g)の無水塩化メチレン(750mL)懸濁液に、チタニウムテトライソプロポキシド(Aldrich、3.2mL)、次いでD−酒石酸ジエチル(2.3mL)を添加した。得られた混合物を−22℃まで冷却し、tert−ブチルハイドロパーオキサイドのイソオクタン溶液(Aldrich、430mmol)を10分間かけて添加した。混合物をさらに30分間撹拌し、次いでトランス−4−フェニル−2−ブテン−1−オール(32.6g、213mmol)の無水塩化メチレン(120mL)溶液を、−22℃で40分間かけて滴下した。次いで、反応混合物を−22℃の冷蔵庫で24時間熟成した。この期間後、水(100mL)を−22℃で反応混合物に添加し、混合物を放置して0℃まで戻した。0℃で45分間撹拌した後、20% NaOHブライン(20mL)を添加した。次いで、得られた混合物を放置して23℃まで戻し、その温度で1時間撹拌した。この期間後、層を分離し、水層を塩化メチレン(2×200mL)で抽出した。合わせた有機層を無水NaSOで乾燥し、減圧下濃縮した。残渣をトルエン(800mL)で希釈し、次いで減圧留去した。残渣をシリカゲルクロマトグラフィー(溶離液として、35%酢酸エチルを含むヘキサン)で分離して、(2R,3R)−エポキシ−4−フェニルブタン−1−オール(21.8g)を得た。
【0178】
チタニウムイソプロポキシド(12mL)の無水ベンゼン(250mL)溶液に、アジドトリメチルシラン(11mL)を添加し、得られた混合物を6時間還流した。(2R,3R)−エポキシ−4−フェニルブタン−1−オール(5.32g)の無水ベンゼン(25mL)溶液を、上記の還流混合物に添加した。得られた混合物をさらに25分間還流した。この期間後、反応混合物を23℃まで冷却し、反応を5% HSO水溶液(400mL)でクエンチした。得られた混合物を1時間撹拌し、層を分離し、水層を酢酸エチル(2×300mL)で抽出した。合わせた有機層を飽和NaHCO(200mL)で洗浄し、NaSOで乾燥し、減圧下濃縮して、(2S,3S)−2−ヒドロキシ−3−アジド−4−フェニル−ブタン−12−オール(5.1g)を白色固体(mp 81〜82℃)として得た。
【0179】
23℃で撹拌した、アジドジオール(5.1g)のクロロホルム(100mL)溶液に、2−アセトキシイソブチリルクロライド(Aldrich、5mL)を添加した。得られた反応混合物を23℃で8時間撹拌した。飽和重炭酸ナトリウム(100mL)を添加して反応をクエンチし、得られた混合物を30分間撹拌した。層を分離し、水層をクロロホルム(2×200mL)で抽出した。合わせた有機層をNaSOで乾燥し、減圧留去した。得られた残渣を無水THF(50mL)に溶解し、固体のNaOMe(2.1g)を添加した。混合物を23℃で4時間撹拌し、この期間後、飽和NHCl(50mL)で反応をクエンチした。得られた混合物を酢酸エチル(2×200ML)で抽出した。合わせた有機層を無水NaSOで乾燥し、減圧下濃縮して残渣を得、これをシリカゲルクロマトグラフィー(ヘキサン中の10%酢酸エチル)で分離して、3(S)−アジド−(1,2R)−エポキシ−4−フェニルブタン11(3.3g)をオイルとして得た。1H NMR (300 MHz): CDCl3; ( 7.4-7.2(m, 5H), 3.6(m, 1H), 3.1(m, 1H), 2.95(dd, 1H, J = 4.6, 13.9 Hz), 2.8(m, 3H).
【0180】
実施例2
本実施例は、好ましい一連の本発明の化合物の合成における中間体として使用することができるアジドアルコール13の合成を示す(図1)。
【0181】
撹拌した、上記アジドエポキシド11(700mg,3.7mmol)のイソプロパノール(70mL)溶液に、イソブチルアミン(Aldrich、0.74mL、7.4mmol)を加え、得られた混合物を80℃で12時間加熱した。この期間の後、反応混合物を減圧下で濃縮し、次いで残渣をシリカゲルでクロマトグラフして、アジドアルコール13(800mg)をオイルとして得た。
【0182】
実施例3
本実施例は、図1に示す構造のアジドスルホンアミド14の合成を示す。
【0183】
撹拌した、13(600mg、2.28mmol)のCHCl(20mL)溶液に、4−メトキシベンゼンスルホニルクロライド(Aldrich、530mg、2.52mmol)および飽和NaHCO水溶液(6mL)を加えた。得られた不均一混合物を23℃で12時間撹拌した。反応物をCHClで希釈し、次いで層を分離した。有機層をブラインで洗浄し、無水硫酸マグネシウムで乾燥し、濃縮乾固した。残渣をシリカゲルでクロマトグラフ(25%酢酸エチル/ヘキサン)して、アジドスルホンアミド14(900mg)を得た。
【0184】
実施例4
本実施例は、図1に示される、アジドスルホンアミド14の還元を経るアミノスルホンアミド15の調製を示す。
【0185】
THF(45mL)、MeOH(10mL)および酢酸(0.5mL)中の14(1.53g)の溶液を、10%パラジウム炭素担持触媒(200mg)とともに、50 psiの水素圧下で2時間振盪した。セライトによる濾過によって触媒を取り除き、減圧下濃縮して、粗残渣を得、これをCHCl(100mL)で希釈し、次いで飽和NaHCO水溶液とブラインとで連続して洗浄した。有機層をMgSOで乾燥し、濃縮して、対応するアミノスルホンアミド15(1.2g)を得た。
【0186】
実施例5
本実施例は、trans−2−(プロパルギルオキシ)−3−ヨードテトラヒドロフラン22の合成を示す(図2)。
【0187】
撹拌および氷冷した、N−ヨードスクシンイミド(15g、66.6mmol)のCHCl(150mL)懸濁液に、CHCl(50mL)中のジヒドロフラン21(66.6mmol、4.67g、5.1mL)とプロパルギルアルコール(100mmol、5.0g、5.2mL)との混合物を20分かけて加えた。撹拌しながら2時間かけて24℃まで加温した後、水(200mL)を加え、撹拌を1時間続けた。層を分離し、次いで水層をCHCl(2×100mL)で抽出した。合わせた有機抽出物を、少量のNa(70mg)を含むブライン溶液で洗浄し、無水NaSOで乾燥し、濾過し、濃縮した。ヘキサン中の30%酢酸エチルを用いるシリカゲルクロマトグラフィーにより、表題ヨードエーテル22(15.4g、92%)をオイルとして得た。
【0188】
実施例6
本実施例は、図2に示される、(±)−(3aR,6aS)および(3aS,6aR)−3−メチレン−4H−ヘキサヒドロフロ−[2,3−b]フラン23の合成を示す。
【0189】
還流中の、AIBN(100mg)を含む水素化トリブチルスズ(20.7mL、77mmol)のトルエン(200mL)溶液に、ヨードテトラヒドロフラン22(15.4g、61mmol)のトルエン(50mL)溶液を、1時間かけて滴下した。得られた混合物をさらに4時間還流下で撹拌した(TLCでモニターした)。次いで、この混合物を23℃まで冷却し、減圧下濃縮した。残渣を石油エーテルとアセトニトリル(各200mL)とで分配し、次いでアセトニトリル(下)層を濃縮した。ヘキサン中の10%酢酸エチルを溶出液として用いるシリカゲルクロマトグラフィーにより残渣を精製して、表題生成物23(5.84g、76%)をオイルとして得た。
【0190】
実施例7
本実施例は、図2に示される、(±)−(3SR,3aRS,6aS)および(3R,3aS,6aR)−3−ヒドロキシ−4H−ヘキサヒドロフロ[2,3−b]フラン24の合成を示す。
【0191】
−78℃の、メタノール(150mL)およびCHCl(150mL)中の15(5.84g,46.4mmol)の溶液中に、オゾン流を30分間分散させた。得られた青色の溶液を無色になるまで窒素パージし、次いで、ジメチルスルフィド(20mL)でクエンチし、得られた混合物を放置して23℃まで戻した。この混合物を減圧下濃縮して粗ケトンを得た。得られた粗ケトンをエタノール(50mL)に溶解し、この溶液を0℃まで冷却し、水素化ホウ素ナトリウム(2.1g、55.6mmol)を加えた。反応混合物をさらに2時間、0℃で撹拌し、次いで、10%クエン酸水溶液(10mL)でクエンチした。得られた混合物を減圧下濃縮し、残渣を酢酸エチルとブラインとで分配した。層を分離し、水層を酢酸エチル(2×100mL)で抽出した。合わせた有機層を無水NaSOで乾燥し、次いで慎重に減圧下濃縮した。ヘキサン中の30%酢酸エチルを溶出液として用いて、得られた残渣をシリカゲルでクロマトグラフし、表題のラセミアルコール24(4.52g、75%)をオイルとして得た。
【0192】
実施例8
本実施例は、固定化アマノリパーゼ(Amano Lipase)30の調製を示す。これは、ラセミアミノアルコール24を分割するのに使用した(図2)。
【0193】
市販のセライト(登録商標)521(Aldrich)(4g)をブフナーロートに載せ、脱イオン水(50mL)と0.05Nリン酸緩衝液(pH=7.0;Fisher Scientific)(50mL)とで連続して洗浄した。次いで、洗浄したセライトを、アマノリパーゼ30(1g)の0.05Nリン酸緩衝液(20mL)懸濁液に加えた。得られたスラリーをガラス皿上に広げ、空気中23℃で48時間乾燥させた(重量5.4g;水分含量約2%(Fisher法による))。
【0194】
実施例9
本実施例は、図2に示される、固定化リパーゼが触媒するアシル化による(3R,3aS,6aR) 3−ヒドロキシヘキサヒドロフロ[2,3−b]フラン25の合成を示す。
【0195】
撹拌した、ラセミアルコール24(2g、15.4mmol)および無水酢酸(4g、42.4mmol)のDME(100mL)溶液に、固定化アマノリパーゼ2.7g(lipae PS30の約25重量%)を加え、得られた懸濁液を23℃で撹拌した。50%の変換が達成されるまで、TLCおよびH NMR分析により反応をモニターした。反応混合物を濾過し、次いでこのフィルターケーキを酢酸エチルで繰り返し洗浄した。合わせた濾液を、浴温を15℃未満に維持しながら、ロータリーエバポレーターで慎重に濃縮した。残渣をシリカゲルでクロマトグラフして、843mg(42%)の25(95% ee; aD23° -11.9°, MeOH)を得た;1H-NMR (CDCl3) d 1.85(m, 2H), 2.3(m, 1H), 2.9(m, 1H), 3.65(dd, J=7.0, 9.1, 1H), 3.85-4.0(m, 3H), 4.45(dd, J=6.8, 14.6, 1H), 5.7(d, J=5.1, 1H);また、5%炭酸ナトリウム水溶液で洗浄後、1.21gの26(45%, aD23° +31.8°, MeOH)を得た;1H-NMR (CDCl3) d 1.85-2.1(m, 2H), 2.1(s, 3H), 3.1(m, 1H), 3.75(dd, J=6.6, 9.2, 1H), 3.8-4.1(m, 3H), 5.2(dd, J=6.4, 14.5, 1H), 5.7(d, J=5.2, 1H)。アセテート26をTHF(5mL)に溶解し、1M LiOH水溶液(20mL)をそれに添加した。得られた混合物を23℃で3時間撹拌し、次いで反応物をクロロホルム(3×25mL)で抽出した。合わせた有機層を無水NaSOで乾燥し、減圧下でエバポレートした。残渣をシリカゲルでクロマトグラフして、733mgの27(97% ee; αD23° -12.5°, MeOH)を得た。
【0196】
実施例10
本実施例は、図3Aおよび3Bに示される、活性化カーボネート31および33の合成を示す。
【0197】
23℃で撹拌した、[3R,3aS,6aS]−3−ヒドロキシヘキサヒドロフロ[2,3−b]フラン25(65mg、0.5mmol)の乾燥CHCN(5mL)溶液に、ジスクシンイミジルカーボネート(192mg、0.75mmol)およびトリエチルアミン(0.25mL)を加えた。得られた混合物を23℃で12時間撹拌した。反応を飽和NaHCO水溶液(10mL)でクエンチし、次いでこの混合物を減圧下濃縮した。残渣をCHCl(2×25mL)で抽出し、次いで合わせた有機層をブライン(10mL)で洗浄し、無水NaSOで乾燥した。減圧下で溶媒をエバポレートして残渣を得、これをシリカゲルでクロマトグラフ(50%酢酸エチル/ヘキサン)して、(3R,3aS,6aR) 3−ヒドロキシヘキサヒドロフロ[2,3−b]フラニル−スクシンイミジルカーボネート31(70mg)を褐色のオイルとして得た。カーボネート33(65mg)は、60mgのアルコール27から、同様の手順に従って調製した。
【0198】
実施例11
本実施例は、図3Aに示される、多剤耐性HIV阻害剤32の調製を示す。
【0199】
撹拌した、アミン15(82mg、0.2mmol)の乾燥CHCl(5mL)溶液に、スクシンイミジルカーボネート31(55mg、0.18mmol)を加えた。得られた溶液を23℃で12時間撹拌した。この期間の後、反応を飽和NaHCO水溶液(10mL)でクエンチし、次いでCHCl(25mL)で希釈した。層を分離し、有機層をブライン(15mL)で洗浄し、無水NaSOで乾燥した。減圧下で溶媒をエバポレートして残渣を得、これをシリカゲルクロマトグラフィー(75%酢酸エチル/ヘキサン)で精製して、化合物32(85mg)を白色固体(m.p 55−58℃)として得た。1H-NMR (CDCl3, 400 MHz); δ 7.71(d, 2H, J=8.8 Hz), 7.29-7.20(m, 5H), 6.99(d,2H,J=7.0 Hz), 5.65(d,1H,J=5.19), 5.01(m, 2H), 3.95-3.82(m, 7H), 3.69(m,2H), 3.0-2.7(m, 6H), 1.85(m, 1H), 1.64-1.45(m, 3H), 0.90(two d, 6H, J=6.5Hz, 6.6 Hz).
【0200】
実施例12
本実施例は、図3Bに示される、多剤耐性HIV阻害剤33の調製を示す。
【0201】
上述した手順に従って、カーボネート33(55mg)をアミン15(82mg,0.2mmol)と反応させて、化合物34(81mg)を得た。1H-NMR(CDCl3, 300 MHz); δ 7.69(d, 2H, J=8.8 Hz), 7.28-7.21(m, 5H), 6.87(d, 2H, J=5.84 Hz), 5.67(d, 1H, J=5.46 Hz), 5.0(m, 2H), 3.86-3.81(m, 7H), 3.58(dd, 2H, J=6.6 Hz, 3.6 Hz, 3.17-2.73(m, 6H), 2.17-1.83(m, 4H), 0.90(two d, 6H, J=6.5Hz, 6.6 Hz).
【0202】
実施例13
本実施例は、本発明のHIVプロテアーゼ用高感度連続発蛍光アッセイのプロトコールおよびその応用を示す。本アッセイを用いて、化合物32(図3A)の阻害活性を、野生型HIV−1(WT)のプロテアーゼおよび種々の突然変異酵素:D30N、V32I、I84V、V32I/I84V、M46F/V82A、G48V/L90M、V82F/I84V、V82T/I84V、V32I/K45I/F53L/A71V/I84V/L89M、V32I/L33F/K45I/F53L/A71V/I84Vおよび20R/36I/54V/71V/82T(これらのプロテアーゼ酵素は、書面による請求によりDr. John W. Erickson, Structural Biochemistry Program, SAIC Frederick, P.O. Box B, Frederick, MD 21702-1201から入手可能である)に対して試験した。野生型HIV−1についての阻害定数、Kimnt/Kiwt比、およびバイタリティを測定した(Gulnik et al., Biochemistry, 34, 9282-9287 (1995)参照)。プロテアーゼ活性を、発蛍光基質Lys−Ala−Arg−Val−Tyr−Phe(NO)−Glu−Ala−Nle−NH(Bachem Bioscience, Inc.)を用いて測定した(Peranteauet al., D.H. (1995) Anal. Biochem.参照)。
【0203】
典型的には、1.25M (NHSO、6.25mM DTTおよび0.1% PEG−8000を含む490μlの0.125M ACES−NaOH緩衝液(pH 6.2)を、5μlの滴定したプロテアーゼ(終濃度1〜5nM)と混合し、37℃で3分間インキュベートした。反応を、基質ストック水溶液5μlを添加することによって開始した。306nmの発光極大(励起波長は277nm)における蛍光強度の増大を、Aminco Bowman-2発光光度計(SLM Instruments, Inc.)を用いて、時間の関数としてモニターした。加水分解の初速度をSLM AB2 2.0オペレーティングソフトウェアを用いて、二次多項式フィット(second degree polynomial fit)により計算した。反応速度論的パラメータを、Enzfiterversion 1.05プログラムを用いて、初速度対基質濃度データをミカエリス−メンテン等式に非線形回帰フィッティングすることによって決定した。
【0204】
阻害の研究のために、阻害剤を、ジメチルスルホキシド中の種々の濃度を持つストック溶液として調製した。典型的な実験では、1.25M (NHSO、6.25mM DTTおよび0.1% PEG−8000を含む485μlの0.125M ACES−NaOH緩衝液(pH 6.2)を、5μlの阻害剤ストック溶液および5μlの滴定したプロテアーゼ(終濃度1〜5nM)と混合し、37℃で3分間プレインキュベートした。反応を、基質ストック水溶液5μlを添加することによって開始した。データ解析には、強固結合阻害剤(tight-binding inhibitor)についての数学モデルを使用した(Williams and Morrison (1979), In: Methods of Enzymol. 63, (ed. D.L. Purich), 437-467, AcademicPress, NY, London参照)。データを、Enzfiter(version 1.05)プログラムを用いて、非線形回帰分析により等式:
【0205】
【数5】

【0206】
にフィッティングさせた。式中、VおよびVは、それぞれ阻害剤ありおよび阻害剤なしでの初速度であり、Kはミカエリス−メンテン定数であり、そしてS、EおよびIは、それぞれ基質、活性酵素および阻害剤の濃度である。各突然変異体についての生化学的フィットネスを、各突然変異体の生化学的バイタリティ(バイタリティmut)と野生型参照体の生化学的バイタリティ(バイタリティwt)とを式
【0207】
【数6】

【0208】
に従って比較することによって決定した。式中、バイタリティは(K)(kcat/K)である。結果を以下の表1に示す。
【0209】
【表1】

【0210】
上記結果は、化合物32が、主要なまたは鍵となる薬剤耐性突然変異を含む多数のHIVプロテアーゼ突然変異体の強力な阻害剤であることを示している。これらのデータにより、化合物32が強力で、かつ広範なスペクトルの多剤耐性抗レトロウイルス活性を有することが予測される。さらに、野生型に比べた各突然変異体の生化学的フィットネスは、化合物32の存在下での生化学的フィットネスと等しいか、それよりも低い。このフィットネスプロフィールに基づくと、本明細書中でアッセイした特徴的な突然変異を含む薬剤耐性ウイルスは、化合物32の存在下では野生型から出現しないと考えられる。
【0211】
実施例14
本実施例は、本発明の代表的な化合物の、強力で、かつ広範なスペクトルの多剤耐性抗レトロウイルス活性を示す。
【0212】
図3Aに示す化合物32を、種々の野生型HIV−1株(HIV−1ERS104pre、HIV−1LAI、およびHIV−1BAL)、ならびに単一でまたは組み合わせて多数の抗ウイルス剤を投薬された8人の異なる患者から臨床的に単離した突然変異多剤耐性HIV−1株に対して、4つの他の公知のHIV−1プロテアーゼ阻害剤と並列に試験を行った。突然変異株を単離した患者には、種々の異なる薬剤(例えば、リトナビル、サキナビル、インジナビル、アンプレナビル、AZT、ddI、ddC、d4T、3TC、ABV(アバカビル)、DLV(デラビリジン(delaviridine))、およびPFA(ホスカルネット)等)を用いた抗HIV治療の経歴があった。患者のプロフィールを以下の表2に示す。
【0213】
【表2】

【0214】
本実施例において比較目的で使用した、4つの公知の化学療法用HIVプロテアーゼ阻害剤は、実際のヒトHIV化学療法に利用されており、そしてこれらは、リトナビル(「RTV」 Abbott Laboratories);インジナビル(「IDV」 Merck Research Laboratories);アンプレナビル(AMV、Ghosh et al., Bioorg. Med. Chem Lett., 8, 687-690 (1998)参照);およびサキナビル(「SAQ」 Roche Research Centre)である。5つ全ての化合物についてのIC50値(μM)を、野生型および多剤耐性HIV−1に関して測定した。
【0215】
多剤耐性HIVに対するプロテアーゼ阻害活性を決定するために、IC50を、臨床的に単離された突然変異HIV単離株群に対して測定した。HIV−1(50 TCID50用量/1×10 PBMC)に暴露したPHA−PBMCをターゲット細胞として利用し、p24 Gag蛋白質産生の阻害をエンドポイントとして使用して、IC50を決定した。
【0216】
ターゲット細胞をHIV−1(50 TCID50用量/1×10 PBMC)に暴露し、p24 Gag蛋白質産生の阻害をエンドポイントとして使用する、PHA−PBMCアッセイを利用してIC50を決定した。薬剤感受性は全て3回行った。HIV単離株がシンシチウム誘導型(SI)であるか非シンシチウム誘導型(NSI)であるかを決定するために、100 TCID50を含むウイルスストック上清のアリコートを、12ウェルプレート中、1×10 MT−2細胞とともに培養した。培養物を4週間維持し、シンシチウム形成を1週間に2回調べた。結果を以下の表3に示す。
【0217】
【表3】

【0218】
上記IC50は、実施例13における生化学的フィットネスプロフィールから予想されたように、試験された、野生型HIV−1および8つの異なる多剤耐性臨床単離株に対する化合物32の広範なスペクトルおよび甚だしく強力な活性を明らかに示す。例えば、化合物32は試験された多剤耐性株の全てに対してナノモルおよびサブナノモルの効力を示す一方、リトナビル(適当に強力な野生型阻害剤)は耐性ウイルスに対して実質的に不活性である。さらに、化合物32は多剤耐性ウイルスに対して、サキナビル(公知のHIV−1多剤耐性株に対して最も強力な公知化合物のうちの1つ)よりも約9〜約150倍強力である。10,000 RNA コピー/mmより大きいウイルス血漿負荷を有する患者は、致命的なAIDS合併症を起こす危険がある。これらの患者がこれらの多剤耐性ウイルスに感染しても有効な治療の選択肢は現在存在しない。化合物32およびそのアナログは、インビボでのこれらのウイルス株の選択を強力に阻止することが予想される。
【0219】
実施例15
本実施例は、本発明の化合物の野生型抗レトロウイルス活性を示す。
【0220】
野生型HIVプロテアーゼに対する本発明の化合物の活性は、多剤耐性HIVに対する抗レトロウイルス活性に相関することが予想される。多数の本発明の化合物を野生型HIVに対して試験した(Ghosh et al., J. Bioorg. Med. Chem. Lett., 8,6870690 (1998)参照)。強力な野生型HIVプロテアーゼ活性を示す代表的な化合物を以下の表4に示す。
【0221】
【表4】

【0222】
上記表4の化合物は、HIVに感染したヒトにおいて、耐性の出現を阻止すると考えられる。
【0223】
実施例16
本実施例は、インビボ実験モデルにおける化合物32の経口吸収性を示す。
【0224】
化合物32を、体重1kgあたり約40mgの用量で、PEG 300ビヒクルを担体として用いて、ラットに経口投与した。化合物32の血漿血中レベルを経口投与後24時間に渡って測定した。結果を以下の表5に示す。
【0225】
【表5】

【0226】
これらの結果は、化合物32が経口投与後、高い血中レベル(例えば、6時間後、ほぼ0.6μM)を長く維持することを示す。出願人は、ある特定の一理論に縛られることを望まないが、本発明の化合物の非ペプチド構造が、化合物を生物学的(例えば、酵素的)に分解されにくくし、そのため経口投与後の長時間の血中レベルに寄与すると考えられる。これらのデータから、本発明の化合物は、ヒトにおける優れた経口バイオアベイラビリティーを示し、かつ、経口投与後の長期間に渡って、治療上有意な血中レベルを維持することが予測される。
【0227】
実施例17
本実施例は、化合物32の抗ウイルス活性に対するヒト蛋白質結合の影響を示す。強力で、かつ経口バイオアベイラビリティーを有するHIVプロテアーゼ阻害剤の幾つかは、インビボ抗ウイルス効力を示さなかった。明確に証明されてはいないが、これらが有効性を示さないのはヒト血漿蛋白質(特に血清アルブミンおよびAAG)への過剰な結合の結果であるとされてきた。ヒトのアルファ酸性糖蛋白質(AAG、10μM)に対する蛋白質結合、およびヒト血清アルブミン(HAS、300μM)に対する蛋白質結合を、化合物32およびアンプレナビル(FDA承認薬剤である構造的関連アナログ)について比較した。結果を表6に示す。
【0228】
【表6】

【0229】
これらのデータは、生理学的に過剰量のAAGおよびHASの存在は、化合物32の抗ウイルス活性に悪影響を及ぼさないことを示す。これらのデータから、ヒトAAGおよびHASに対する化合物32のアフィニティーは、公知の薬剤であるアンプレナビルのそれより実際に低いことが予想される。これらのデータから、本発明の化合物は、ヒトにおける優れたインビボ効力を有し、かつ、治療上有意なレベルを長期間に渡って維持することが期待される。
【0230】
実施例18
本実施例は、化合物35(図5A)、36(図5B)、37(図5C)および38(図5D)の阻害活性を説明する。上記実施例13に開示された技法に従って、野生型HIV−1のプロテアーゼに対するこれらの化合物の阻害活性を試験した。また、化合物36、37および38を、有害な薬剤耐性に関係した突然変異V82F/I84VおよびG48V/V82Aを含むプロテアーゼに対しても試験した。実施例13に従って、フィットネスを測定した。これらの実験の結果を以下の表7に示す。
【0231】
【表7】

【0232】
これらの結果はさらに、本発明の化合物が突然変異プロテアーゼに対して強力な阻害剤であることを示す。このフィットネスプロファイルに基づくと、本明細書中でアッセイした特徴的な突然変異を含む薬剤耐性ウイルスは、化合物37の存在下では野生型から出現しないと考えられる。
【0233】
実施例19
本実施例はさらに、多剤耐性臨床単離株に対する本発明の代表的な化合物の広範なスペクトルおよび強力な活性を示す。
【0234】
化合物32、35、36、37および38の全てについてのIC50値(μM)を、野生型臨床単離株HIV−1LAIおよびHIV−1BaLに関して測定した。後者は、HIVの向単球性(monocytotropic)株である。
【0235】
種々の濃度の化合物32、35、36、37および38の存在下、PHA−刺激PBMCをHIV−1(50 TCID50用量/1×10 PBMC)に暴露し、培養7日目にp24 Gag蛋白質産生の阻害をエンドポイントとして使用して、単離株HIV−1LAIおよびHIV−1Ba−Lに関するIC50を決定した(「p24 アッセイ」)。薬剤感受性は全て3回行った。単離株HIV−1LAIに対するIC50も、種々の濃度の化合物32、35、36、37および38の存在下で培養されたHIV−1LAIの100 TCID50に、MT−2細胞(2×10)を暴露することにより決定した。培養7日目にMTTアッセイを用いてIC50を決定した。感受性は全て2回決定した。結果を以下の表8に示す。
【0236】
【表8】

【0237】
これらの結果は、本発明の特定の化合物の強力な抗レトロウイルス活性を実証するものである。
【0238】
実施例20
本実施例はさらに、本発明の代表的な化合物の強力で、かつ広範なスペクトルの多剤耐性抗レトロウイルス活性を表す。
【0239】
図3Aに示す化合物32を、患者から臨床的に単離された種々の突然変異多剤耐性HIV−1株に対して試験した。これらの単離株は全て、その高いレベルの臨床耐性のために、1つ以上のHIVプロテアーゼ阻害剤による治療がうまくいかなかった患者から採種された。これらの単離株は全て、通常用いられるHIVプロテアーゼ阻害剤の多くに対する抗ウイルスアッセイにおいて、高いレベルの表現型耐性を示す。これらの多剤耐性の臨床単離株に対して、化合物32を、逆転写酵素阻害剤(例えば、AZT、3TC、DDI、DDC、D4T)およびプロテアーゼ阻害剤(例えば、インジナビル(Ind.)、ネルフィナビル(Nel.)、リトナビル(Rit.)、サキナビル(Saq.))を含むHIV抗ウイルス治療で通常用いられる公知の薬剤と並列に試験した。多剤耐性HIV−1臨床単離株に対する、そして野生型HIV−1(WT)に対する、化合物32および比較薬剤のIC50を表9aに示す。
【0240】
番号9〜35の各患者に対応する突然変異多剤耐性HIV−1株の、プロテアーゼ(PR)核酸配列および逆転写酵素(RT)遺伝子の一部の核酸配列を遺伝子分析し、これから、これらの酵素における突然変異を決定した。各患者から単離された多剤耐性ウイルスのプロテアーゼおよび逆転写酵素における突然変異を以下の表9bに示す。
【0241】
【表9】

【0242】
【表10】

【0243】
【表11】

【0244】
【表12】

【0245】
【表13】

【0246】
【表14】

【0247】
本実験の結果はさらに、他の周知の阻害剤と比較した、本発明の代表的な化合物の広範なウイルス突然変異体に対する有効性を示す。これらの突然変異ウイルスは、治療に用いられるHIVプロテアーゼ阻害剤に対する耐性を持つということで、現在までに知られている最も広範な交叉耐性を示す臨床単離株群を代表している。化合物32は、試験された臨床的に単離された突然変異ウイルス全てに対して一貫して強力であり、かつ、これらの多剤耐性ウイルスに対して、現在ヒトHIV−1治療に用いられている比較薬剤よりもはるかに強力であった。化合物32は、これらのウイルスに対して、多剤耐性HIV−1に対して最も強力な公知化合物の1つであるサキナビルと比較してさえ、10〜1000倍強力であった。この高い有効性に基づくと、この化合物がプレデセサーウイルスに感染した患者に投与されれば、これらの突然変異体は阻害されるばかりでなく、これらの突然変異体は出現することもできないだろうと考えられる。
【0248】
本明細書中で引用された、特許、特許出願、公開公報を含む全ての参考文献は、参照により本明細書に全て包含される。
【0249】
好ましい実施態様を強調して本発明を詳述したが、好ましい実施態様の変形が用いられてもよく、本明細書に明確に記載された以外の方法で発明を実施してもよいことが意図されることは当業者にとって自明であろう。従って、本発明は、上記の請求項によって定義される発明の精神と範囲に包含される全ての修正を含む。

【特許請求の範囲】
【請求項1】
そのプレデセサーに比べた、突然変異した複製する生物学的エンティティの生化学的ターゲットの生化学的フィットネスを決定するためのアッセイであって、
該プレデセサーを得る工程と、
該プレデセサーの該生化学的ターゲットを阻害し得る化合物の存在下、該プレデセサーの該生化学的ターゲットの生化学的バイタリティを決定する工程と、
該化合物の存在下、該突然変異した複製する生物学的エンティティの該生化学的ターゲットの生化学的バイタリティを決定する工程と、
該突然変異した複製する生物学的エンティティの該生化学的ターゲットの該生化学的バイタリティを、該プレデセサーの該生化学的ターゲットの該生化学的バイタリティと比較する工程とを含むアッセイ。
【請求項2】
該プレデセサーが感染性微生物である、請求項1記載のアッセイ。
【請求項3】
該感染性微生物がウイルスである、請求項2記載のアッセイ。
【請求項4】
該ウイルスがレトロウイルスである、請求項3記載のアッセイ。
【請求項5】
該レトロウイルスがHIV−1またはHIV−2である、請求項4記載のアッセイ。
【請求項6】
該感染性微生物がマラリア原虫である、請求項2記載のアッセイ。
【請求項7】
該マラリア原虫がプラスモディウムスピーシーズである、請求項6記載のアッセイ。
【請求項8】
該感染性微生物が細菌である、請求項2記載のアッセイ。
【請求項9】
該プレデセサーがガン細胞である、請求項1記載のアッセイ。
【請求項10】
該ガンの複製する生物学的エンティティが急速に増殖する腫瘍細胞である、請求項9記載のアッセイ。
【請求項11】
該プレデセサーの該生化学的ターゲットが酵素であり、該化合物が該プレデセサーの該酵素を阻害する、請求項1〜10のいずれかに記載のアッセイ。
【請求項12】
該プレデセサーの該生化学的ターゲットが、ウイルスプロテアーゼ、ウイルス逆転写酵素、ウイルスポリメラーゼ、ウイルス酵素、またはウイルス蛋白質である、請求項3〜5のいずれかに記載のアッセイ。
【請求項13】
該マラリア原虫の該生化学的ターゲットが、プラスメプシン、プラスモディウム酵素、または蛋白質である、請求項6または7記載のアッセイ。
【請求項14】
該プレデセサーの該生化学的ターゲットがオリゴマーであり、該化合物が該プレデセサーの該オリゴマーのオリゴマー化を阻害する、請求項1〜10のいずれかに記載のアッセイ。
【請求項15】
該プレデセサーの該生化学的ターゲットが蛋白質であり、該化合物が該プレデセサーの該蛋白質のコンフォメーション変化、リガンド結合、または酵素活性を阻害する、請求項1〜10のいずれかに記載のアッセイ。
【請求項16】
該突然変異した複製する生物学的エンティティの酵素の生化学的バイタリティがKinh−mut、kcat−mut、およびKM−mutに合致し、かつ該突然変異した複製する生物学的エンティティの酵素の該生化学的バイタリティがKinh−mut(kcat−mut/KM−mut)の関係により定義され、
該プレデセサーの酵素の生化学的バイタリティが、Kinh−pred、kcat−pred、およびKM−predに合致し、かつ該プレデセサーの酵素の該生化学的バイタリティがKinh−pred(kcat−pred/KM−pred)の関係により定義され、
ここでKinhは該化合物の阻害定数であり、kcatは生化学的触媒速度であり、KMはミカエリス定数である、請求項11記載のアッセイ。
【請求項17】
inh−mut、Kinh−pred、kcat−mut、kcat−pred、KM−mut、およびKM−predがそれぞれ測定される、請求項16記載のアッセイ。
【請求項18】
inhがKである、請求項16または17記載のアッセイ。
【請求項19】
inhがKである、請求項16または17記載のアッセイ。
【請求項20】
疾患の原因となる複製する生物学的エンティティの生化学的ターゲットを阻害する治療化合物を投与する方法であって、
該疾患の原因となる複製する生物学的エンティティから生じ得る少なくとも1つの突然変異体を同定する工程と、
該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットを阻害し得る第1の化合物の存在下、該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットの第1の生化学的バイタリティを決定する工程と、
該第1の化合物の存在下、該突然変異した複製する生物学的エンティティの該生化学的ターゲットの第1の生化学的バイタリティを決定する工程と、
該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットを阻害し得る少なくとも1つのさらなる化合物の存在下、該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットの第2の生化学的バイタリティを決定する工程と、
該少なくとも1つのさらなる化合物の存在下、該突然変異体の該生化学的ターゲットの第2の生化学的バイタリティを決定する工程と、
該突然変異体の該生化学的ターゲットの第1の生化学的バイタリティを、該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットの第1の生化学的バイタリティと比較することにより、該疾患の原因となる複製する生物学的エンティティと比べた該突然変異体の該生化学的ターゲットの第1の生化学的フィットネスを決定する工程と、
該突然変異体の該生化学的ターゲットの第2の生化学的バイタリティを、該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットの第2の生化学的バイタリティと比較することにより、該疾患の原因となる複製する生物学的エンティティと比べた該突然変異体の該生化学的ターゲットの第2の生化学的フィットネスを決定する工程と、
該第1の化合物の存在下における第1の生化学的フィットネスを、該少なくとも1つのさらなる化合物の存在下における第2の生化学的フィットネスと比較する工程と、
該第1の化合物および該少なくとも1つのさらなる化合物のうち、該第1の生化学的フィットネスまたは該第2の生化学的フィットネスの最低値を生じさせる治療化合物を投与する工程とを含み、
ここで該疾患の原因となる複製する生物学的エンティティが、該治療化合物の存在下で、耐性を発生させる蓋然性がより少ない、方法。
【請求項21】
該複製する疾患の原因となる複製する生物学的エンティティが感染性微生物である、請求項20記載の方法。
【請求項22】
該感染性微生物がウイルスである、請求項21記載の方法。
【請求項23】
該ウイルスがレトロウイルスである、請求項22記載の方法。
【請求項24】
該レトロウイルスがHIVまたはHIV−2である、請求項23記載の方法。
【請求項25】
該感染性微生物がマラリア原虫である、請求項21記載の方法。
【請求項26】
該マラリア原虫がプラスモディウムスピーシーズである、請求項25記載の方法。
【請求項27】
該感染性微生物が細菌である、請求項21記載の方法。
【請求項28】
該複製する疾患の原因となる複製する生物学的エンティティがガン細胞である、請求項20記載の方法。
【請求項29】
該ガン細胞が急速に増殖する腫瘍細胞である、請求項28記載の方法。
【請求項30】
該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットが酵素であり、該化合物が該疾患の原因となる複製する生物学的エンティティの該酵素を阻害する、請求項20〜29のいずれかに記載の方法。
【請求項31】
該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットが、ウイルスプロテアーゼ、ウイルス逆転写酵素、ウイルスポリメラーゼ、ウイルス酵素、またはウイルス蛋白質である、請求項22〜24のいずれかに記載の方法。
【請求項32】
該マラリア原虫の該生化学的ターゲットが、プラスメプシン、プラスモディウム酵素、または蛋白質である、請求項25または26記載の方法。
【請求項33】
該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットがオリゴマーであり、該化合物が該疾患の原因となる複製する生物学的エンティティの該オリゴマーのオリゴマ−化を阻害する、請求項20〜29のいずれかに記載の方法。
【請求項34】
該疾患の原因となる複製する生物学的エンティティの該生化学的ターゲットが蛋白質であり、該化合物が該疾患の原因となる複製する生物学的エンティティの該蛋白質のコンフォメーション変化、リガンド結合、または酵素活性を阻害する、請求項20〜29のいずれかに記載の方法。
【請求項35】
該突然変異体の酵素の生化学的バイタリティがKinh−mut、kcat−mut、およびKM−mutに合致し、かつ該突然変異体の酵素の該生化学的バイタリティがKinh−mut(kcat−mut/KM−mut)の関係により定義され、
該疾患の原因となる複製する生物学的エンティティの酵素の生化学的バイタリティが、Kinh−pred、kcat−pred、およびKM−predに合致し、かつ該疾患の原因となる複製する生物学的エンティティの酵素の該生化学的バイタリティがKinh−pred(kcat−pred/KM−pred)の関係により定義され、
ここでKinhは該化合物の阻害定数であり、kcatは生化学的触媒速度であり、Kはミカエリス定数である、請求項30記載の方法。
【請求項36】
inh−mut、Kinh−pred、kcat−mut、kcat−pred、KM−mut、およびKM−predがそれぞれ測定される、請求項35記載の方法。
【請求項37】
inhがKである、請求項35または36記載の方法。
【請求項38】
inhはKである、請求項35または36記載の方法。
【請求項39】
該プレデセサーが野生型HIV株であり、該突然変異体がその生化学的ターゲットに少なくとも1つの突然変異を有する、請求項1記載のアッセイ。
【請求項40】
該複製する疾患の原因となる複製する生物学的エンティティが野生型HIV株であり、該突然変異体がその生化学的ターゲットに少なくとも1つの突然変異を有する、請求項20記載の方法。
【請求項41】
該プレデセサーがその生化学的ターゲットに少なくとも1つの突然変異を有し、該突然変異体がその生化学的ターゲットに少なくとも2つの突然変異を有する、請求項1記載のアッセイ。
【請求項42】
該複製する疾患の原因となる複製する生物学的エンティティがその生化学的ターゲットに少なくとも1つの突然変異を有し、該突然変異体がその生化学的ターゲットに少なくとも2つの突然変異を有する、請求項20記載の方法。
【請求項43】
該突然変異体が少なくとも1つの活性部位突然変異を有する、請求項39または40記載の方法。
【請求項44】
該プレデセサーまたは該突然変異体が少なくとも1つの活性部位突然変異を有する、請求項41記載の方法。
【請求項45】
該疾患の原因となる複製する生物学的エンティティまたは該突然変異体が少なくとも1つの活性部位突然変異を有する、請求項42記載の方法。
【請求項46】
プロテアーゼ阻害剤の抗HIVプロテアーゼ活性を測定するための連続発蛍光アッセイであって、
HIVプロテアーゼの溶液を、基質ストック溶液(ここで基質は式Ala−Arg−Val−Tyr−Phe(NO)−Glu−Ala−Nle−NHを有する)の少なくとも一部に添加して、基質反応溶液を得る工程と、
該基質反応溶液の蛍光を特定の時間間隔で測定する工程と、
該HIVプロテアーゼの溶液を、プロテアーゼ阻害剤と該基質ストック溶液とを含む阻害剤基質溶液に添加して、阻害剤基質反応溶液を得る工程と、
該阻害剤基質反応溶液の蛍光を特定の時間間隔で測定する工程と、
該阻害剤基質反応溶液の初速度(ここで初速度は該プロテアーゼ阻害剤の抗HIVプロテアーゼ活性を示す)を、等式:
【数1】


(式中、Vは該阻害剤反応溶液の初速度であり、Vは該基質反応溶液の初速度であり、Kはミカエリス−メンテン定数であり、Sは該基質の濃度であり、Eは該プロテアーゼの濃度であり、Iは該阻害剤の濃度である)を適用することにより算出する工程とを含むアッセイ。
【請求項47】
HIV感染哺乳動物内で薬剤耐性の発生を予防する方法であって、薬剤耐性阻害有効量の式:
【化1】

[式中、Aは、式:
【化2】

〔式中、Rは、Hであるか、あるいはアルキル、アルケニル、アルキニル、シクロアルキル、シクロアルキルアルキル、アリール、アラルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、ヘテロアリール、またはヘテロアラルキルであって、その少なくとも1つの水素原子がOR、SR、CN、NO、N、およびハロゲン(ここでRは、H、非置換アルキル、非置換アルケニル、または非置換アルキニルである)からなる群より選択される置換基で置換されていてもよいものであり、
YおよびZは、同一かまたは異なって、CH、O、S、SO、SO、NR、RC(O)N、RC(S)N、ROC(O)N、ROC(S)N、RSC(O)N、RNC(O)N、およびRNC(S)N(ここでRおよびRは、それぞれH、非置換アルキル、非置換アルケニル、および非置換アルキニルからなる群より選択される)からなる群より独立して選択され、
nは、1〜5の整数である〕の基であり;
Xは、共有結合、CHR10、CHR10CH、CHCHR10、O、NR10、またはS(ここでR10は、H、非置換アルキル、非置換アルケニル、または非置換アルキニルである)であり;
Qは、C(O)、C(S)、またはSOであり;
は、H、C−Cアルキル、C−Cアルケニル、またはC−Cアルキニルであり;
mは、0〜6の整数であり;
は、シクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールであって、その少なくとも1つの水素原子がアルキル、(CH11、OR12、SR12、CN、N、NO、NR1213、C(O)R12、C(S)R12、CO12、C(O)SR12、C(O)NR1213、C(S)NR1213、NR12C(O)R13、NR12C(S)R13、NR12CO13、NR12C(O)SR13、およびハロゲン(ここでpは、0〜5の整数であり、
11は、シクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールであって、その少なくとも1つの水素原子がハロゲン、OH、OCH、NH、NO、SH、およびCNからなる群より選択される置換基で置換されていてもよいものであり、そして
12およびR13は、H、非置換アルキル、非置換アルケニル、および非置換アルキニルからなる群より独立して選択される)からなる群より選択される置換基で置換されていてもよいものであり;
は、OH、=O(ケト)、NH、またはNHCHであり;
は、H、C−Cアルキル基、C−Cアルケニル基、または(CH14(ここでqは、0〜5の整数であり、そしてR14はシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリール基であって、その少なくとも1つの水素原子がハロゲン、OH、OCH、NH、NO、SH、およびCNからなる群より選択される置換基で置換されていてもよいものである)であり;
Wは、C(O)、C(S)、またはSOであり;そして
は、シクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリール基であって、その少なくとも1つの水素原子がハロゲン、OR15、SR15、S(O)R15、SO15、SONR1516、SON(OH)R15、CN、CR15=NR16、CR15=N(OR16)、N、NO、NR1516、N(OH)R15、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、C(O)N(OH)R15、C(S)N(OH)R15、NR15C(O)R16、NR15C(S)R16、N(OH)C(O)R15、N(OH)C(S)R15、NR15CO16、N(OH)CO15、NR15C(O)SR16、NR15C(O)NR1617、NR15C(S)NR1617、N(OH)C(O)NR1516、N(OH)C(S)NR1516、NR15C(O)N(OH)R16、NR15C(S)N(OH)R16、NR15SO16、NHSONR1516、NR15SONHR16、P(O)(OR15)(OR16)、アルキル、アルコキシ、アルキルチオ、アルキルアミノ、シクロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、ヘテロシクロアルキルアルキル、アリール、アリールオキシ、アリールアミノ、アリールチオ、アラルキル、アリールオキシアルキル、アリールアミノアルキル、アラルコキシ、(アリールオキシ)アルコキシ、(アリールアミノ)アルコキシ、(アリールチオ)アルコキシ、アラルキルアミノ、(アリールオキシ)アルキルアミノ、(アリールアミノ)アルキルアミノ、(アリールチオ)アルキルアミノ、アラルキルチオ、(アリールオキシ)アルキルチオ、(アリールアミノ)アルキルチオ、(アリールチオ)アルキルチオ、ヘテロアリール、ヘテロアリールオキシ、ヘテロアリールアミノ、ヘテロアリールチオ、ヘテロアラルキル、ヘテロアラルコキシ、ヘテロアラルキルアミノ、およびヘテロアラルキルチオ(ここでR15、R16、およびR17は、H、非置換アルキル、または非置換アルケニルである)からなる群より選択される置換基で置換されていてもよいものであり、
ここでRの少なくとも1つの水素原子がハロゲン、OR15、SR15、CN、N、NO、NR1516、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、NR15C(O)R16、NR15C(S)R16、NR15CO16、NR15C(O)SR16、NR15C(O)NR1617、またはNR15C(S)NR1617以外の置換基で置換されている場合、該置換基上の少なくとも1つの水素原子は、ハロゲン、OR15、SR15、CN、N、NO、NR1516、C(O)R15、C(S)R15、CO15、C(O)SR15、C(O)NR1516、C(S)NR1516、NR15C(O)R15、NR15C(S)R16、NR15CO16、NR15C(O)SR16、NR15C(O)NR1617、またはNR15C(S)NR1617で置換されていてもよく;あるいは
およびRは、式(I)のN−W結合と一緒になって、環骨格中に該N−W結合の窒素以外の少なくとも1つのさらなるヘテロ原子を含む12〜18員環を構成する]の化合物、またはその医薬的に許容し得る塩、そのプロドラッグ、またはそのエステル、あるいは該化合物、該塩、該プロドラッグ、または該エステルの医薬的に許容し得る組成物を該HIV感染哺乳動物に投与することを含む方法であって、ここで該哺乳動物に感染しているHIVウイルスから生じ得る突然変異ウイルスは、該化合物の存在下、該哺乳動物に感染している該HIVウイルスに比べてより低いフィットネスを有する、方法。
【請求項48】
Aが式:
【化3】

の基である、請求項47記載の方法。
【請求項49】
がアルキルである場合、それはC−Cアルキルであり;
がアルケニルである場合、それはC−Cアルケニルであり;
がシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールである場合、Rは4〜7員環であり;
、RまたはRが非置換アルキルである場合、それはC−C非置換アルキルであり;
、RまたはRが非置換アルケニルである場合、それはC−C非置換アルケニルであり;
が4〜7員環であり;
11が4〜7員環であり;
12またはR13が非置換アルキルである場合、それはC−C非置換アルキルであり;
12またはR13が非置換アルケニルである場合、それはC−C非置換アルキルであり;
14がシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールである場合、R14は4〜7員環であり;
がシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールである場合、Rは4〜7員環であり;
がアルキル、アルキルチオ、またはアルキルアミノである置換基で置換されている場合、該置換基は1〜6個の炭素原子を含み;そして
がシクロアルキル、ヘテロシクロアルキル、アリール、またはヘテロアリールである置換基で置換されている場合、該置換基は4〜7員環である;
またはその医薬的に許容し得る塩、そのプロドラッグ、またはそのエステルである、請求項47または48記載の方法。
【請求項50】
QがC(O)であり、RがHであり、そしてWがSOである、またはその医薬的に許容し得る塩、そのプロドラッグ、またはそのエステルである、請求項47〜49のいずれかに記載の方法。
【請求項51】
該化合物が、式:
【化4】


で表される、請求項48記載の方法。
【請求項52】
該化合物が、式:
【化5】

(式中、Arは、メチル、アミノ、ヒドロキシ、メトキシ、メチルチオ、ヒドロキシメチル、アミノメチル、およびメトキシメチルからなる群より選択される置換基で置換されていてもよいフェニルである)で表される、請求項51記載の方法。
【請求項53】
該化合物が、式:
【化6】

で表される、請求項52記載の方法。
【請求項54】
Xが、酸素である、請求項52または53記載の方法。
【請求項55】
が、イソブチルである、請求項52または53記載の方法。
【請求項56】
Arが、パラ位で置換されているフェニルである、請求項52または53記載の方法。
【請求項57】
Arが、メタ位で置換されているフェニルである、請求項52または53記載の方法。
【請求項58】
Arが、オルト位で置換されているフェニルである、請求項52または53記載の方法。
【請求項59】
Arが、パラ−アミノフェニル、パラ−トルイル、パラ−メトキシフェニル、メタ−メトキシフェニル、およびメタ−ヒドロキシメチルフェニルからなる群より選択される、請求項52または53記載の方法。
【請求項60】
該HIV感染哺乳動物が、野生型HIVに感染している、請求項47、48、または51〜53のいずれかに記載の方法。
【請求項61】
該HIV感染哺乳動物が、少なくとも1つのプロテアーゼ突然変異を有する突然変異HIVに感染している、請求項47、48、または51〜53のいずれかに記載の方法。
【請求項62】
該HIV感染哺乳動物が、少なくとも1つの逆転写酵素突然変異を有する突然変異HIVに感染している、請求項47、48、または51〜53のいずれかに記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−88437(P2010−88437A)
【公開日】平成22年4月22日(2010.4.22)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−266865(P2009−266865)
【出願日】平成21年11月24日(2009.11.24)
【分割の表示】特願2000−556057(P2000−556057)の分割
【原出願日】平成11年6月23日(1999.6.23)
【出願人】(596022754)アメリカ合衆国 (6)
【出願人】(505379375)ザ ボード オヴ トラスティーズ オヴ ザ ユニヴァーシティ オヴ イリノイ (2)
【Fターム(参考)】