説明

フィルター及びその製造方法

【課題】厚みのある三次元構造であるにも拘わらず、優れた濾過性を示すとともに、圧力損失も少なく、長期間使用できるフィルターを提供する。
【解決手段】湿熱接着性繊維を含む繊維ウェブを高温水蒸気で加熱し、前記湿熱接着性繊維を融着させて前記不織繊維構造を固定してフィルターを製造する。このフィルターは、厚み方向の断面において、厚み方向に三等分した各々の領域における繊維接着率がいずれも10〜50%であり、かつ各領域における繊維接着率の最大値に対する最小値の割合が50%以上である。このフィルターは、0.05〜0.2g/cm3の見掛け密度を有するとともに、少なくとも一方向における最大曲げ応力が0.05MPa以上であり、最大曲げ応力を示す曲げ量に対して1.5倍の曲げ量における曲げ応力が、最大曲げ応力に対して1/5以上である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、湿熱接着性繊維で構成された液体又は気体用フィルター及びその製造方法に関し、さらに詳しくは、比較的粗大な微粒子を除去するためのプレフィルター及びその製造方法に関する。
【背景技術】
【0002】
気体や液体に含まれる微粒子を除去するためのフィルターとして、従来からフィラメント、不織布、膜などが使用されている。これらのうち、膜系フィルターは、均一な微小孔径を有し、精密な濾過が可能であるが、反面、膜は緻密な構造を有し、分子レベルの空隙による濾過が行われるため、濾過される気体や液体が膜を透過するのに長い時間を必要とするとともに、表面濾過となるために、ダストによる圧力損失の上昇が急激であり、フィルター交換を頻繁にする必要がある。これに対して、繊維系フィルターは、その繊維径や繊維分布状態が不均一であるため、均一で微小孔径のシートを容易には得難いという欠点を有するものの、シート内の繊維空隙を液体や気体が通過しながら濾過されるため、透過速度が速く、また、捕捉されたダストによる圧力損失の上昇が緩やかであり、フィルター寿命が長いというメリットを有するため、汎用されている。特に、比較的粗い微粒子を除去するためのプレフィルターとしては、不織布などの繊維系フィルターは特に有効である。さらに、このような繊維系フィルターの表面積を上げるために、立体構造とする試みもされており、例えば、ロール型やプリーツ型に加工したフィルターも提案されている。
【0003】
例えば、特開2007−111692号公報(特許文献1)には、繊維と、その表面の湿熱ゲル化樹脂(エチレン−ビニルアルコール共重合樹脂など)と、前記湿熱ゲル化樹脂に固着された機能性フィラーとを含むフィラー固着繊維を有しており、前記機能性フィラーが前記湿熱ゲル化樹脂を湿熱ゲル化したゲル化物によって固着されている機能層と、前記機能層の少なくとも片面に、繊維径が10μm以下の極細繊維を含む目付0.5〜20g/m2の極細繊維層を含む表面繊維層が積層されている機能性分離材が開示されている。この文献では、湿熱ゲル化樹脂を、スチーム処理などによって湿熱処理することによって、フィラーを繊維表面に固着させている。さらに、この文献には、エンボス構造、プリーツ折り構造、ハニカム構造などに加工して、できるだけ大きな表面積を確保することで、濾過性能を向上させることも記載されている。
【0004】
しかし、フィルターを構成する繊維にフィラーを固定することは、繊維間の空隙をフィラーで埋めることとなり、表面層の極細繊維の存在と共に大きな圧力損失を示唆している。さらに、フィルターを構成する繊維に多くのフィラーを固定し、かつ脱落しないようにすることは困難であるため、フィラーを固定するための表面層が必要となり、構造が複雑化する。
【0005】
このような二次元平面状フィルターに対して、ブロック状の三次元構造とした繊維系フィルターも開発されている。例えば、特開2004−74089号公報(特許文献2)には、捲縮された短繊維の積層圧縮ブロック状体で構成され、各短繊維同士が接触箇所で接着されていると共に繊維積層方向のみに圧縮されて前記繊維積層方向と直交する方向に優先的に通液可能に設けられている液体濾過フィルターが開示されている。この文献では、各繊維同士の接着は、熱融着性短繊維を熱処理炉に入れて熱処理することが記載されている。
【0006】
しかし、このフィルターでは、濾過方向が限定される上に、繊維束同士の空隙の調整が困難である。さらに、繊維同士の接着が内部で不均一であるため、圧力損失が大きく、濾過性能との両立も困難である。
【0007】
さらに、特開2007−70944号公報(特許文献3)には、建築物の一部に取り付けられて建築物内から建築物外への換気を行う建築物用の換気プレートにおいて、建築物の所定箇所に取り付けられる平板状の基板と、この基板の表面に固着された厚みが調節自在な3次元細繊維フィルターとを具備する建築物用換気プレートが開示されている。この換気プレートのフィルターとしては、溶融させた合成樹脂を紡糸して互いに接着させた不織布状布団が使用されている。
【0008】
しかし、このフィルターでも、硬度が低く、不織布単独で形態を保持できないため、プレート基板に固定する必要があり、圧力損失も大きい。
【特許文献1】特開2007−111692号公報(特許請求の範囲、段落[0013][0059]、実施例)
【特許文献2】特開2004−74089号公報(請求項1、段落[0034])
【特許文献3】特開2007−70944号公報(特許請求の範囲、段落[0026])
【発明の開示】
【発明が解決しようとする課題】
【0009】
従って、本発明の目的は、厚みのある三次元構造であるにも拘わらず、優れた濾過性を示すとともに、圧力損失も少なく、長期間使用できるフィルター及びその製造方法を提供することにある。
【0010】
本発明の他の目的は、形態保持性が高く、支持体などを必要とせずに単独で使用できるとともに、成形性にも優れるフィルター及びその製造方法を提供することにある。
【0011】
本発明のさらに他の目的は、有害な成分や脱落し易い成分を含まず、高い濾過性を実現できるフィルター及びその製造方法を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは、前記課題を達成するため鋭意検討した結果、繊維が湿熱接着性繊維により適度に接着された不織繊維構造を有する成形体をフィルターとして用いると、厚みのある三次元構造であるにも拘わらず、優れた濾過性を示すとともに、圧力損失も少なく、長期間使用できることを見出し、本発明を完成した。
【0013】
すなわち、本発明のフィルターは、湿熱接着性繊維を含み、かつ不織繊維構造を有するフィルターであって、前記湿熱接着性繊維の融着により前記不織繊維構造が固定された成形体で構成されている。このフィルターは、厚み方向の断面において、厚み方向に三等分した各々の領域における繊維接着率がいずれも5〜50%であり、かつ各領域における繊維接着率の最大値に対する最小値の割合が50%以上であってもよい。また、本発明のフィルターは、0.05〜0.2g/cm3の見掛け密度を有するとともに、少なくとも一方向における最大曲げ応力が0.05MPa以上であり、最大曲げ応力を示す曲げ量に対して1.5倍の曲げ量における曲げ応力が、最大曲げ応力に対して1/5以上であってもよい。前記成形体は、少なくとも40質量%以上の湿熱接着性繊維を含有し、かつ前記湿熱接着性繊維の表面がエチレン−ビニルアルコール系共重合体で構成されていてもよい。本発明のフィルターは、さらに非湿熱接着性繊維を含有し、湿熱接着性繊維と非湿熱接着性繊維との割合(質量比)が、湿熱接着性繊維/非湿熱接着性繊維=99/1〜40/60程度であってもよい。さらに、本発明のフィルターは、平均繊維長20〜80mmの繊維のみで構成された不織繊維構造を有しており、非繊維状無機フィラーなどのフィラーを実質的に含有しない。
【0014】
本発明には、湿熱接着性繊維を含む繊維をウェブ化する工程と、生成した繊維ウェブを高温水蒸気で加熱処理して繊維を融着し、不織繊維構造を有する成形体を得る工程とを含む前記フィルターの製造方法も含まれる。
【発明の効果】
【0015】
本発明のフィルターは、繊維が湿熱接着性繊維により適度に接着された不織繊維構造を有するため、厚みのある三次元構造であるにも拘わらず、優れた濾過性(厚み方向において均一な濾過性)を示すとともに、圧力損失も少なく、長期間使用できる。さらに、適度な硬さ(剛性)を有するため、形態保持性が高く、支持体などと組み合わせることなく、単独で使用できるとともに、成形性にも優れる。さらに、このフィルターは、実質的に20〜80mm程度の繊維のみで構成でき、特殊な薬剤や、脱落し、濾過性能を低下させる原因となるフィラー(活性炭粒子などの粒状又は非繊維状フィラー)を含まずに、簡便に優れた濾過性を実現できる。このようなフィルターは、繊維接着点が少なく、かつ低密度であることから、比較的粗大な粒子を除去するための液体又は気体用プレフィルターとして適している。
【発明を実施するための最良の形態】
【0016】
[フィルター]
本発明のフィルターは、湿熱接着性繊維を含み、かつ不織繊維構造を有している。特に、本発明のフィルターは、前記湿熱接着性繊維の融着により前記不織繊維構造が固定された成形体で構成され、繊維構造に特有の高い通気性や吸水性を有するだけでなく、不織繊維構造を構成する繊維の配列と、この繊維同士の接着状態を所定の範囲とすることにより、通常の不織布では得られない「曲げ挙動(高い曲げ応力を有し、また最大曲げ応力を示す地点を過ぎてさらに曲げても応力を保持するとともに、応力を解除すると復元しようとする挙動)」と「軽量性」と「表面硬さ(表面に荷重をかけて厚さ方向に力を付与しても容易に変形し難い特性)」とを兼ね備え、さらに折れ難く、形態保持性も確保している。
【0017】
このような成形体は、詳細は後述するように、前記湿熱接着性繊維を含むウェブに高温(過熱又は加熱)水蒸気を作用させて、湿熱接着性繊維の融点以下の温度で接着作用を発現し、繊維同士を部分的に接着させて集束することにより得られる。すなわち、単繊維及び束状集束繊維同士を湿熱下、適度に小さな空隙を保持しながら、いわば「スクラム」を組むように点接着又は部分接着させて得られる。
【0018】
(湿熱接着性繊維)
湿熱接着性繊維は、少なくとも湿熱接着性樹脂で構成されている。湿熱接着性樹脂は、高温水蒸気によって容易に実現可能な温度において、流動又は容易に変形して接着機能を発現可能であればよい。具体的には、熱水(例えば、80〜120℃、特に95〜100℃程度)で軟化して自己接着又は他の繊維に接着可能な熱可塑性樹脂、例えば、セルロース系樹脂(メチルセルロースなどのC1-3アルキルセルロース、ヒドロキシメチルセルロースなどのヒドロキシC1-3アルキルセルロース、カルボキシメチルセルロースなどのカルボキシC1-3アルキルセルロース又はその塩など)、ポリアルキレングリコール樹脂(ポリエチレンオキサイド、ポリプロピレンオキサイドなどのポリC2-4アルキレンオキサイドなど)、ポリビニル系樹脂(ポリビニルピロリドン、ポリビニルエーテル、ビニルアルコール系重合体、ポリビニルアセタールなど)、アクリル系共重合体及びそのアルカリ金属塩[(メタ)アクリル酸、(メタ)アクリルアミドなどのアクリル系単量体で構成された単位を含む共重合体又はその塩など]、変性ビニル系共重合体(イソブチレン、スチレン、エチレン、ビニルエーテルなどのビニル系単量体と、無水マレイン酸などの不飽和カルボン酸又はその無水物との共重合体又はその塩など)、親水性の置換基を導入したポリマー(スルホン酸基やカルボキシル基、ヒドロキシル基などを導入したポリエステル、ポリアミド、ポリスチレン又はその塩など)、脂肪族ポリエステル系樹脂(ポリ乳酸系樹脂など)などが挙げられる。さらに、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、熱可塑性エラストマー又はゴム(スチレン系エラストマーなど)などのうち、熱水(高温水蒸気)の温度で軟化して接着機能を発現可能な樹脂も含まれる。
【0019】
これらの湿熱接着性樹脂は、単独で又は二種以上組み合わせて使用できる。湿熱接着性樹脂は、通常、親水性又は水溶性高分子で構成される。これらの湿熱接着性樹脂のうち、エチレン−ビニルアルコール共重合体などのビニルアルコール系重合体、ポリ乳酸などのポリ乳酸系樹脂、(メタ)アクリルアミド単位を含む(メタ)アクリル系共重合体、特に、エチレンやプロピレンなどのα−C2-10オレフィン単位を含むビニルアルコール系重合体が好ましい。
【0020】
エチレン−ビニルアルコール系共重合体において、エチレン単位の含有量(共重合割合)は、例えば、10〜60モル%、好ましくは20〜55モル%、さらに好ましくは30〜50モル%程度である。エチレン単位がこの範囲にあることにより、湿熱接着性を有するが、熱水溶解性はないという特異な性質が得られる。エチレン単位の割合が少なすぎると、エチレン−ビニルアルコール系共重合体が、低温の蒸気(水)で容易に膨潤又はゲル化し、水に一度濡れただけで形態が変化し易い。一方、エチレン単位の割合が多すぎると、吸湿性が低下し、湿熱による繊維融着が発現し難くなるため、実用性のある強度の確保が困難となる。エチレン単位の割合が、特に30〜50モル%の範囲にあると、シート又は板状への加工性が特に優れる。
【0021】
エチレン−ビニルアルコール系共重合体におけるビニルアルコール単位のケン化度は、例えば、90〜99.99モル%程度であり、好ましくは95〜99.98モル%、さらに好ましくは96〜99.97モル%程度である。ケン化度が小さすぎると、熱安定性が低下し、熱分解やゲル化によって安定性が低下する。一方、ケン化度が大きすぎると、繊維自体の製造が困難となる。
【0022】
エチレン−ビニルアルコール系共重合体の粘度平均重合度は、必要に応じて選択できるが、例えば、200〜2500、好ましくは300〜2000、さらに好ましくは400〜1500程度である。重合度がこの範囲にあると、紡糸性と湿熱接着性とのバランスに優れる。
【0023】
湿熱接着性繊維の横断面形状(繊維の長さ方向に垂直な断面形状)は、一般的な中実断面形状である丸型断面や異型断面[偏平状、楕円状、多角形状、3〜14葉状、T字状、H字状、V字状、ドッグボーン(I字状)など]に限定されず、中空断面状などであってもよい。湿熱接着性繊維は、少なくとも湿熱接着性樹脂を含む複数の樹脂で構成された複合繊維であってもよい。複合繊維は、湿熱接着性樹脂を少なくとも繊維表面の一部に有していればよいが、接着性の点から、湿熱接着性樹脂が表面の少なくとも一部を長さ方向に連続して占めるのが好ましい。
【0024】
湿熱接着性繊維が表面を占める複合繊維の横断面構造としては、例えば、芯鞘型、海島型、サイドバイサイド型又は多層貼合型、放射状貼合型、ランダム複合型などが挙げられる。これらの横断面構造のうち、接着性が高い構造である点から、湿熱接着性樹脂が全表面を長さ方向に連続して占める構造である芯鞘型構造(すなわち、鞘部が湿熱接着性樹脂で構成された芯鞘型構造)が好ましい。
【0025】
複合繊維の場合、湿熱接着性樹脂同士を組み合わせてもよいが、非湿熱接着性樹脂と組み合わせてもよい。非湿熱接着性樹脂としては、非水溶性又は疎水性樹脂、例えば、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、塩化ビニル系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、熱可塑性エラストマーなどが挙げられる。これらの非湿熱接着性樹脂は、単独で又は二種以上組み合わせて使用できる。
【0026】
これらの非湿熱接着性樹脂のうち、耐熱性及び寸法安定性の点から、融点が湿熱接着性樹脂(特にエチレン−ビニルアルコール系共重合体)よりも高い樹脂、例えば、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、特に、耐熱性や繊維形成性などのバランスに優れる点から、ポリエステル系樹脂、ポリアミド系樹脂が好ましい。
【0027】
ポリエステル系樹脂としては、ポリC2-4アルキレンアリレート系樹脂などの芳香族ポリエステル系樹脂(ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなど)、特に、PETなどのポリエチレンテレフタレート系樹脂が好ましい。ポリエチレンテレフタレート系樹脂は、エチレンテレフタレート単位の他に、他のジカルボン酸(例えば、イソフタル酸、ナフタレン−2,6−ジカルボン酸、フタル酸、4,4′−ジフェニルジカルボン酸、ビス(カルボキシフェニル)エタン、5−ナトリウムスルホイソフタル酸など)やジオール(例えば、ジエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、シクロヘキサン−1,4−ジメタノール、ポリエチレングリコール、ポリテトラメチレングリコールなど)で構成された単位を20モル%以下程度の割合で含んでいてもよい。
【0028】
ポリアミド系樹脂としては、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6−12などの脂肪族ポリアミド及びその共重合体、芳香族ジカルボン酸と脂肪族ジアミンとから合成された半芳香族ポリアミドなどが好ましい。これらのポリアミド系樹脂にも、共重合可能な他の単位が含まれていてもよい。
【0029】
湿熱接着性樹脂と非湿熱接着性樹脂(繊維形成性重合体)とで構成された複合繊維の場合、両者の割合(質量比)は、構造(例えば、芯鞘型構造)に応じて選択でき、湿熱接着性樹脂が表面に存在すれば特に限定されないが、例えば、湿熱接着性樹脂/非湿熱接着性樹脂=90/10〜10/90(例えば、60/40〜10/90)、好ましくは80/20〜15/85、さらに好ましくは60/40〜20/80程度である。湿熱接着性樹脂の割合が多すぎると、繊維の強度を確保し難く、湿熱接着性樹脂の割合が少なすぎると、繊維表面の長さ方向に連続して湿熱接着性樹脂を存在させるのが困難となり、湿熱接着性が低下する。この傾向は、湿熱接着性樹脂を非湿熱接着性繊維の表面にコートする場合においても同様である。
【0030】
湿熱接着性繊維の平均繊度は、用途に応じて、例えば、0.01〜100dtex程度の範囲から選択でき、好ましくは0.1〜50dtex、さらに好ましくは0.5〜30dtex(特に1〜10dtex)程度である。平均繊度がこの範囲にあると、繊維の強度と湿熱接着性の発現とのバランスに優れる。
【0031】
湿熱接着性繊維の平均繊維長は、例えば、10〜100mm程度の範囲から選択でき、好ましくは20〜80mm、さらに好ましくは30〜70mm(特に35〜55mm)程度である。平均繊維長がこの範囲にあると、繊維が充分に絡み合うため、成形体の機械的強度が向上する。
【0032】
湿熱接着性繊維の捲縮率は、例えば、1〜50%、好ましくは3〜40%、さらに好ましくは5〜30%(特に10〜20%)程度である。また、捲縮数は、例えば、1〜100個/25mm、好ましくは5〜50個/25mm、さらに好ましくは10〜30個/25mm程度である。このような捲縮を有することにより、フィルター内部で適度な隙間を確保でき、フィルター特性が向上する。
【0033】
(他の繊維)
フィルターは、さらに非湿熱接着性繊維を含んでいてもよい。非湿熱接着性繊維としては、ポリエステル系繊維(ポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維などの芳香族ポリエステル繊維など)、ポリアミド系繊維(ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612などの脂肪族ポリアミド系繊維、半芳香族ポリアミド系繊維、ポリフェニレンイソフタルアミド、ポリヘキサメチレンテレフタルアミド、ポリp−フェニレンテレフタルアミドなどの芳香族ポリアミド系繊維など)、ポリオレフィン系繊維(ポリエチレン、ポリプロピレンなどのポリC2-4オレフィン繊維など)、アクリル系繊維(アクリロニトリル−塩化ビニル共重合体などのアクリロニトリル単位を有するアクリロニトリル系繊維など)、ポリビニル系繊維(ポリビニルアセタール系繊維など)、ポリ塩化ビニル系繊維(ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−アクリロニトリル共重合体の繊維など)、ポリ塩化ビニリデン系繊維(塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−酢酸ビニル共重合体などの繊維)、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリフェニレンサルファイド繊維、セルロース系繊維(例えば、レーヨン繊維、アセテート繊維など)などが挙げられる。これらの非湿熱接着性繊維は、単独で又は二種以上組み合わせて使用できる。
【0034】
これらの非湿熱接着性繊維は、用途に応じて適宜選択して使用できる。水や水蒸気などのフィルターとして利用し、吸水速度や保水性を重視する場合などには、吸湿性の高い親水性繊維、例えば、ポリビニル系繊維やセルロース系繊維、特に、セルロース系繊維を使用するのが好ましい。セルロース系繊維には、天然繊維(木綿、羊毛、絹、麻など)、半合成繊維(トリアセテート繊維などのアセテート繊維など)、再生繊維(レーヨン、ポリノジック、キュプラ、リヨセル(例えば、登録商標名:「テンセル」など)など)が含まれる。これらのセルロース系繊維のうち、例えば、レーヨンなどの半合成繊維が好適に使用でき、エチレン−ビニルアルコール共重合体を含む湿熱接着性繊維と組み合わせると、湿熱接着性繊維との親和性が高いため、収縮が進むとともに、接着性も向上し、本発明の中では相対的に高密度で硬質のフィルターが得られる。
【0035】
一方、水や水蒸気などのフィルターとして利用し、濾過速度を重視する場合などには、吸湿性の低い疎水性繊維、例えば、ポリオレフィン系繊維、ポリエステル系繊維、ポリアミド系繊維、特に、諸特性のバランスに優れるポリエステル系繊維(ポリエチレンテレフタレート繊維など)を使用してもよい。これらの疎水性繊維をエチレン−ビニルアルコール共重合体を含む湿熱接着性繊維と組み合わせると、繊維の融着点が減少し、繊維間の空隙も増大するため、密度が小さく、通気性の高いフィルターが得られる。
【0036】
これらの非湿熱接着性繊維の平均繊度及び平均繊維長は、湿熱接着性繊維と同様である。
【0037】
湿熱接着性繊維と非湿熱接着性繊維との割合(質量比)は、フィルターの種類や用途などに応じて、湿熱接着性繊維/非湿熱接着性繊維=10/90〜100/0(例えば、20/80〜100/0)の範囲から選択できる。硬質なフィルターを製造する場合には、湿熱接着性繊維の割合が多い方(好ましくは40質量%以上)が好ましく、両者の割合(質量比)は、湿熱接着性繊維/非湿熱接着性繊維=40/60〜100/0、好ましくは50/50〜100/0(例えば、70/30〜100/0)、さらに好ましくは80/20〜100/0(特に90/10〜100/0)程度である。湿熱接着性繊維の割合がこの範囲にあると、硬度が高く、濾過性も優れたフィルターが得られる。
【0038】
非湿熱接着性繊維の特性を利用したフィルターを製造する場合には、両者の割合(質量比)は、湿熱接着性繊維/非湿熱接着性繊維=20/80〜99/1、好ましくは30/70〜90/10、さらに好ましくは40/60〜80/20程度である。
【0039】
フィルター(又は繊維)は、さらに、慣用の添加剤、例えば、安定剤(銅化合物などの熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤など)、分散剤、着色剤、繊維状フィラー(例えば、炭素繊維、ガラス繊維などの無機繊維など)、帯電防止剤、難燃剤、可塑剤、潤滑剤、結晶化速度遅延剤などを含有していてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。これらの添加剤は、成形体表面に担持されていてもよく、繊維中に含まれていてもよい。但し、本発明のフィルターは、湿熱接着性繊維の接着力で固定された繊維構造を有するため、接着剤成分や、濾過性能を向上させるためなどの非繊維状無機化合物(粒状無機化合物)を実質的に含有しない。
【0040】
(フィルターの物性)
本発明のフィルターは、前記繊維で構成されたウェブから得られる不織繊維構造を有しており、その形状はシート状又は板状である。平面形状は、特に限定されず、例えば、円形又は楕円形状、多角形状などであってもよく、正方形や長方形などの四方形状であってもよい。さらに、用途に応じて、曲げ加工などを施してもよい。
【0041】
さらに、フィルターにおいて、適度な剛性(形態安定性)を有するとともに、優れた濾過性をもバランスよく備えた不織繊維構造を有するためには、前記不織繊維のウェブを構成する繊維の配列状態及び接着状態が適度に調整されている必要がある。すなわち、繊維ウェブを構成する繊維が、概ね繊維ウェブ(不織繊維)面に対して平行に配列しながら、お互いに交差するように配列させるのが望ましい。さらに、フィルターを構成する成形体は、各繊維が交差した交点で融着しているのが好ましい。特に、高い形態安定性が要求される成形体は、交点以外の繊維が略平行に並んでいる部分において、数本〜数十本程度で束状に融着した束状融着繊維を形成していてもよい。これらの繊維が、単繊維同士の交点、束状繊維同士の交点、又は単繊維と束状繊維との交点において融着した構造を部分的に形成することにより、「スクラム」を組んだような構造(繊維が交点部で接着し、網目のように絡み合った構造、又は交点で繊維が接着し隣接する繊維を互いに拘束する構造)とし、目的とする曲げ挙動や硬度を発現させることができる。本発明では、このような構造が、繊維ウェブの面方向及び厚み方向に沿って概ね均一に分布するような形態とするのが望ましい。
【0042】
ここでいう「概ね繊維ウェブ面に対し平行に配列している」とは、局部的に多数の繊維が厚み方向に沿って配列している部分が繰り返し存在するようなことがない状態を示す。より具体的には、成形体の繊維ウェブにおける任意の断面を顕微鏡観察した際に、繊維ウェブでの厚みの30%以上に亘り、厚み方向に連続して延びる繊維の存在割合(本数割合)が、その断面における全繊維に対して10%以下(特に5%以下)である状態をいう。
【0043】
繊維を繊維ウェブ面に対して平行に配列するのは、厚み方向(ウェブ面に対して垂直な方向)に沿って配向している繊維が多く存在すると、周辺に繊維配列の乱れが生じて不織繊維内に必要以上に大きな空隙を生じ、成形体の曲げ強度や硬さが低減するためである。従って、できるだけこの空隙を少なくすることが好ましく、このために繊維を可能な限り繊維ウェブ面に対して平行に配列させるのが望ましい。なお、厚み方向に沿った繊維の存在を低減して空隙を減少させると濾過性(通気性及び通液性)も低下するが、本発明では、後述するように、成形体の密度を低くし、平行に配向した繊維間の空隙を形成することにより濾過性を確保している。
【0044】
なお、ウェブをニードルパンチなどの手段で交絡させると、高密度な成形体の製造が容易となる。さらに、繊維を湿熱接着させる前に交絡させると、接着前の繊維の形態が保持されるため、厚みの大きい成形体の製造が容易となり、生産効率上有利となる。しかし、ニードルパンチなどによる繊維の交絡は、繊維を繊維ウェブ面に対して平行に配列させる点からは不利である。さらに、交絡によって成形体の密度が高まるため、硬質でありながら、低密度で濾過性も優れたフィルターの製造は困難となる。従って、繊維を平行に配列させる点からは、繊維の交絡の程度を低減するか、交絡しないのが好ましい。
【0045】
特に、成形体がシート状又は板状である場合に、成形体の厚み方向に荷重がかかった場合、大きな空隙部が存在すると、この空隙部が荷重により潰れて成形体表面が変形し易くなる。さらに、この荷重が成形体全面にかかると全体的に厚みが小さくなり易くなる。成形体自体を空隙のない樹脂充填物とすればこのような問題を回避できるが、濾過性が低下する。
【0046】
一方で、硬度を向上させるために、繊維を細くし、より密に繊維を充填することが考えられるが、細い繊維のみで軽量性及び通気性を確保しようとすると、各々の繊維の剛性が低くなり、逆に曲げ応力が低下する。曲げ応力を確保するためには、繊維径をある程度太くすることが必要であるが、単純に太い繊維を混合したのでは、太い繊維同士の交点付近で、大きな空隙ができやすく、濾過性が低下するとともに、厚み方向へ変形し易くなる。
【0047】
そこで、本発明のフィルターは、低密度にするとともに、繊維の方向をウェブの面方向に沿って平行に並べ、分散させる(又は繊維方向をランダム方向に向ける)ことにより、繊維同士がお互いに交差し、その交点で接着することにより、小さな空隙を生じて濾過性を確保している。さらに、このような繊維構造が連続することにより、適度な硬さも確保している。
【0048】
本発明のフィルターにおいて、前記湿熱接着性繊維の融着による繊維接着率は、例えば、5〜50%、好ましくは6〜40%、さらに好ましくは8〜35%(特に10〜30%)程度である。本発明における繊維接着率は、後述する実施例に記載の方法で測定できるが、不織繊維断面における全繊維の断面数に対して、2本以上接着した繊維の断面数の割合を示す。従って、繊維接着率が低いことは、複数の繊維同士が融着する割合(集束して融着した繊維の割合)が少ないことを意味する。
【0049】
本発明では、さらに、不織繊維構造を構成する繊維は、湿熱接着性繊維によって、各々の繊維の接点で接着しているが、できるだけ少ない接点数で大きな曲げ応力を発現するためには、この接着点が、厚み方向に沿って、成形体表面から内部(中央)、そして裏面に至るまで、均一に分布しているのが好ましい。接着点が表面又は内部などに集中すると、優れた機械的特性及び成形性を確保するのが困難となるだけでなく、接着点の少ない部分における形態安定性が低下する。例えば、従来の方法で、充分に接着と捲縮を発現させるために、高温で長時間処理すると、熱源に近い部分が過剰に接着してフィルム化し、濾過性能が低下する。
【0050】
これに対して、本発明における不織繊維集合体は、集合体の表面付近から内部に亘って概ね均一に分布し、効率よく繊維を固定しているため、湿熱接着性繊維による融着点数が少なく、エラストマー成分を使用していないにも拘わらず、適度な硬度と緻密性とを有している。さらに、湿熱接着性繊維によって、各繊維が融着されているため、繊維の脱落も抑制でき、例えば、成形体を目的のサイズに切断して使用しても、切断面からの繊維の脱落が抑制される。
【0051】
融着の均一性について、成形体の厚み方向の断面において、厚み方向に三等分した各々の領域における繊維接着率がいずれも前記範囲にあるのが好ましい。さらに、各領域における繊維接着率の最大値に対する最小値の割合(最小値/最大値)(繊維接着率が最大の領域に対する最小の領域の比率)が、例えば、50%以上(例えば、50〜100%)、好ましくは55〜99%、さらに好ましくは60〜98%(特に70〜97%)程度である。本発明では、繊維接着率が、厚み方向において、このような均一性を有しているため、少ない融着点でも、硬さや曲げ強度において優れている。
【0052】
なお、本発明において、「厚み方向に三等分した領域」とは、板状成形体の厚み方向に対して直交する方向にスライスして三等分した各領域のことを意味する。
【0053】
このように、本発明のフィルターでは、湿熱接着性繊維による融着が均一に分散して点接着しているだけでなく、これらの点接着が短い融着点距離(例えば、数十〜数百μm)で緻密にネットワーク構造を張り巡らしている。このような構造により、本発明のフィルターは、外力が作用しても、繊維構造が有する柔軟性により、歪みに対して追従性が高くなるとともに、微細に分散した繊維の各融着点に外力が分散して小さくなるため、高い曲げ強度を発現していると推定できる。これに対して、従来の多孔質成形体や発泡体などは、空孔の周囲が連続した界面を形成しているため、本発明のフィルターに比べて、大きな面積で外力を受け止めることとなり、歪みが発生し易く、曲げ強度が低下すると推定できる。
【0054】
本発明のフィルターにおいて、厚み方向の断面における単繊維(単繊維端面)の存在頻度は特に限定されず、例えば、その断面の任意の1mm2に存在する単繊維の存在頻度が平均100個/mm2以上(例えば、100〜300個/mm2程度)であってもよいが、特に、機械的特性が要求される場合には、単繊維の存在頻度は、例えば、平均100個/mm2以下、好ましくは60個/mm2以下(例えば、1〜60個/mm2)、さらに好ましくは25個/mm2以下(例えば、3〜25個/mm2)であってもよい。単繊維の存在頻度が多すぎると、繊維の融着が少なく、成形体の強度が低下する。なお、単繊維の存在頻度が100個/mm2を超えると繊維の束状融着が少なくなるため、高い曲げ強度の確保が困難となる。さらに、板状成形体の場合、束状に融着された繊維が成形体の厚み方向に薄く、面方向(長さ方向又は幅方向)に幅広い形を有するのが好ましい。
【0055】
なお、本発明では、前記単繊維の存在頻度は、次のようにして測定する。すなわち、成形体断面の走査型電子顕微鏡(SEM)写真の中から選んだ1mm2に相当する範囲を観察し、単繊維断面の数を数える。写真の中から任意の数箇所(例えば、無作為に選択した10箇所)について同様に観察し、単繊維端面の単位面積当たりの平均値を単繊維の存在頻度とする。このとき、断面において、単繊維の状態である繊維の数を全て数える。すなわち、完全に単繊維の状態である繊維以外に、数本の繊維が融着した繊維であっても、断面において融着部分から離れて単繊維の状態にある繊維は単繊維として数える。
【0056】
フィルター中の湿熱接着性繊維は、厚み方向で繊維が成形体を貫通しないことにより、繊維の抜けなどによるフィルターからの繊維の脱落を抑制できる。湿熱接着性繊維をこのように配置するための製造方法は特に限定されないが、湿熱接着性繊維を交絡させた成形体を複数積層して、湿熱接着する手段が簡便かつ確実である。また、繊維長と成形体の厚みの関係を調整することにより、成形体の厚み方向で貫通する繊維を大幅に低減できる。このような点から、成形体の厚みは、繊維長に対して10%以上(例えば、10〜1000%)、好ましくは40%以上(例えば、40〜800%)、さらに好ましくは60%以上(例えば、60〜700%)、特に100%以上(例えば、100〜600%)である。このような調整により、成形体の曲げ応力などの機械的強度が低下することなく、フィルターからの繊維の脱落を抑制できる。
【0057】
このような束状融着繊維を含む成形体は、濾過性と、曲げ強度及び硬さなどの剛性(形態安定性)とを適度にバランスさせるために、束状融着繊維の存在頻度が少なく、かつ各繊維(束状繊維及び/又は単繊維)の交点で高い頻度で接着しているのが好ましい。但し、繊維接着率が高すぎると、接着している点同士の距離が近接し過ぎて柔軟性が低下し、外部応力による歪みの解消が困難となる。このため、成形体は、繊維接着率が50%以下である必要がある。繊維接着率が高すぎないことにより、成形体内に細かな空隙による通路が確保でき、濾過性を向上できる。また、空隙が広すぎず、適度な通路を形成することにより、液体フィルターの場合には、液体に対する繊維の親和力と毛管現象とを発現させて吸液性も向上できる。従って、できるだけ少ない接点数で大きな曲げ応力、硬さ及び濾過性を発現するためには、繊維接着率が成形体表面から内部(中央)、そして裏面に至るまで、厚み方向に沿って均一に分布しているのが好ましい。接着点が表面や内部などに集中すると、前述の曲げ応力や形態安定性に加えて、適度な空隙が形成できず、濾過性を確保するのも困難となる。また、接着点が不均一であると、適度な大きさの空隙が得られず、空隙の小さい部分で目詰まりを起こし、かつ空隙の大きな部分では濾過性が低下する。
【0058】
このように本発明のフィルターは、束状融着繊維の割合や存在状態により、密度や機械的特性は影響を受ける。融着の度合いを示す繊維接着率は、走査型電子顕微鏡(SEM)を用いて、フィルターの断面を拡大した写真を撮影し、所定の領域において、接着した繊維断面の数に基づいて簡便に測定できる。しかし、湿熱接着性繊維の割合が多い場合など、束状に繊維が融着している場合には、各繊維が束状に又は交点で融着しているため、特に密度が高い場合には、繊維単体として観察することが困難になり易い。この場合、例えば、本発明のフィルターが湿熱接着性繊維で構成された鞘部と繊維形成性重合体で構成された芯部とで形成された芯鞘型複合繊維で接着されている場合には、融解や洗浄除去などの手段で接着部の融着を解除し、解除前の切断面と比較することにより繊維接着率を測定できる。一方、本発明では、この繊維融着の度合を反映する指標として、成形後の成形体断面(厚み方向の断面)における繊維及び束状の繊維束の形成する断面の占める面積比率、すなわち繊維充填率を用いることもできる。厚み方向の断面における繊維充填率は、例えば、20〜80%、好ましくは20〜60%、さらに好ましくは30〜50%程度である。繊維充填率が小さすぎると、成形体内の空隙が多すぎて、剛性が低下する。逆に、大きすぎると、硬さを充分に確保できるが、濾過性が低下する。
【0059】
このような束状融着繊維を含む成形体は、硬さと微細な繊維構造とを高い次元でバランスさせるために、束状融着繊維の存在頻度が少なく、かつ各繊維(束状繊維及び/又は単繊維)の交点で高い頻度で接着しているのが好ましい。但し、繊維接着率が高すぎると、接着している点同士の距離が近接し過ぎて濾過性が低下する。このため、成形体は、繊維接着率が5〜50%程度である必要がある。繊維接着率が高すぎないことにより、成形体内に細かな空隙による通路が確保できる。従って、できるだけ少ない接点数で大きな硬度を発現するためには、繊維接着率が成形体表面から内部(中央)、そして裏面に至るまで、厚み方向に沿って均一に分布しているのが好ましい。接着点が表面や内部などに集中すると、均一な濾過性ができず、フィルターとしての耐久性も低下する。
【0060】
そこで、本発明のフィルターでは、厚み方向の断面において、厚み方向に三等分した各々の領域における繊維充填率がいずれも前記範囲にあるのが好ましい。さらに、各領域における繊維充填率の最大値に対する最小値の割合(最小値/最大値)が50%以上(例えば、50〜100%)、好ましくは60〜99%、さらに好ましくは70〜98%程度である。本発明では、繊維充填率が、厚み方向において、均一であると、剛性と濾過性とのバランスが優れる。本発明における繊維充填率は、SEM写真からイメージアナライザーを用いた方法などによって測定できる。
【0061】
本発明のフィルターは、優れた曲げ挙動を示す。本発明では、この曲げ挙動を表すため、JIS K7017「繊維強化プラスチック−曲げ特性の求め方」に準じて、サンプルを徐々に曲げたときに生ずるサンプルの反発力を測定し、最大応力(ピーク応力)を曲げ応力として表し、曲げ挙動の指標として用いた。すなわち、この曲げ応力が大きいほど硬い成形体であり、さらに測定対象物が破壊するまでの曲げ量(変位)が大きい程よく曲がる成形体である。
【0062】
本発明のフィルターは、少なくとも一方向(好ましくは全ての方向)における最大曲げ応力が0.05MPa以上(例えば、0.05〜100MPa)であり、好ましくは0.1〜30MPa、さらに好ましくは0.2〜20MPa程度であってもよい。この最大曲げ応力が小さすぎると、板状で使用したときに自重やわずかな荷重により簡単に折れ易い。また、最大曲げ応力が高すぎると、硬くなり過ぎて、応力のピークを過ぎて折り曲げると折れて破損し易くなる。なお、100MPaを超えるような硬さを得るためには、成形体の密度を高くすることが必要となり、濾過性の確保が困難になる。
【0063】
この曲げ量(変位)とそれによる曲げ応力との相関を見ると、最初、曲げ量の増加とともに応力も増加し、例えば、略直線的に増加する。本発明のフィルターにおいて、測定サンプルが固有の曲げ量に到達すると、その後は徐々に応力が低くなる。すなわち、曲げ量と応力とをグラフにすると、上に凸の放物線状にカーブを描く相関関係を示す。本発明のフィルターは、最大曲げ応力(曲げ応力のピーク)を超えて、さらに曲げようとした場合においても、急激な応力降下を生じることなく、いわゆる「粘り(又は靱性)」を有することも特徴の一つである。本発明では、このような「粘り」を表す指標として、曲げ応力のピーク時の曲げ量(変位)を超えた状態において残っている曲げ応力を用いることができる。すなわち、本発明のフィルターは、最大曲げ応力を示す曲げ量の1.5倍の変位まで曲げた時の応力(以下、「1.5倍変位応力」と称することがある)が、最大曲げ応力の1/5以上(例えば、1/5〜1)を維持していればよく、例えば、1/3以上(例えば、1/3〜9/10)、好ましくは2/5以上(例えば、2/5〜9/10)、さらに好ましくは3/5以上(例えば、3/5〜9/10)維持していてもよい。また、2倍変位応力が、最大曲げ応力の1/10以上(例えば、1/10〜1)、好ましくは3/10以上(例えば、3/10〜9/10)、さらに好ましくは5/10以上(例えば、5/10〜9/10)維持していてもよい。
【0064】
本発明のフィルターは、このような曲げ応力を有する硬質なフィルターであるため、支持体などと組み合わせることなく、単独でフィルターとして利用できるとともに、剛性を利用して所望の形状に容易に加工できる。なお、濾過性の改良など、必要に応じて、他のフィルターなどと組み合わせてもよい。例えば、本発明のフィルターをプレフィルターとして用い、他の精密なフィルターと組み合わせてもよい。
【0065】
本発明のフィルターは、繊維間に生ずる空隙により高い濾過性を確保できる。また、これらの空隙は、独立した空隙ではなく連続しているため、高い通気性及び通液性を有している。このような構造は、樹脂を含浸する方法や、表面部分を密に接着させてフィルム状構造を形成する方法など、これまでの一般的な硬質化手法では製造することが極めて困難な構造である。
【0066】
本発明のフィルターの見掛け密度は、用途に応じて、0.01〜0.5g/cm3程度の範囲から選択でき、形態安定性を保持しつつ、濾過性を確保する点から、例えば、0.05〜0.2g/cm3、好ましくは0.06〜0.18g/cm3、さらに好ましくは0.08〜0.15g/cm3程度である。見かけ密度が低すぎると、剛性が低下し、逆に高すぎると、剛性は確保できるものの、濾過性が低下する。本発明のフィルターは、このように比較的低い密度及び繊維接着率を有しているため、比較的粗大な微粒子(例えば、10μm以上、好ましくは50μm以上、さらに好ましくは50〜500μm程度の微粒子)を効率良く除去でき、プレフィルターとして好適である。
【0067】
フィルターの目付は、例えば、50〜10000g/m2程度の範囲から選択でき、好ましくは200〜5000g/m2、さらに好ましくは300〜3000g/m2(特に400〜2000g/m2)程度である。目付が小さすぎると、硬さや剛性を確保することが難しく、また、目付が大きすぎると、ウェブが厚すぎて湿熱加工において、高温水蒸気が充分にウェブ内部に入り込めず、厚み方向で均一に接着された成形体とするのが困難になる。
【0068】
フィルターの厚みは、用途に応じて選択でき、特に限定されないが、本発明のフィルターは厚み方向において均一に接着され、厚み方向において均一な繊維構造を有するため、慣用のフィルターよりも厚みが大きくても、優れた濾過性を示し、例えば、比較的大きな粒子を除去し、長期間使用されるブロック状プレフィルターとして好適である。具体的な厚みは1〜500mm程度の範囲から選択でき、例えば、2〜300mm、好ましくは3〜200mm、さらに好ましくは4〜100mm(特に5〜50mm)程度である。厚みが薄すぎると、硬さ及び濾過処理能力の確保が難しくなり、厚すぎると、これも質量が重くなるため、取扱性が低下する。
【0069】
本発明のフィルターは、不織繊維構造を有しているため、通気性が高い。具体的にはフラジール形法による通気度が0.1cm3/(cm2・秒)以上[例えば、1〜300cm3/(cm2・秒)]、好ましくは3〜250cm3/(cm2・秒)[例えば、5〜250cm3/(cm2・秒)]、さらに好ましくは10〜200cm3/(cm2・秒)程度であり、通常、5〜100cm3/(cm2・秒)程度である。
【0070】
本発明のフィルターは、吸液速度(特に吸水性)が高く、保液性(特に保水性)も高い。具体的には、フィルターの吸水速度は、JIS L1907滴下法に準じた方法で、例えば、10秒以下、好ましくは5秒以下、さらに好ましくは1秒以下である。また、吸水率(保水率)は、JIS L1907に準じた方法で、例えば、100質量%以上、好ましくは200質量%以上(例えば、200〜5000質量%)、さらに好ましくは500質量%以上(例えば、500〜3000質量%)である。
【0071】
また、本発明のフィルターは、形態安定性が高いため、液体や気体を吸収又は液体や気体が通過しても体積の膨張が少ない。具体的には、充分に(飽和状態に)水を吸収させたときの寸法膨張率(例えば、板状成形体の場合、縦方向、横方向、厚み方向のそれぞれの寸法膨張率)が、例えば、4%以下(例えば、0.0001〜4%)、好ましくは0.001〜3.5%、さらに好ましくは0.01〜3%(特に0.1〜2%)程度である。
【0072】
さらに、本発明のフィルターは、平均繊維長20〜80mmの繊維のみで構成された不織繊維構造を有し、湿熱接着性繊維により厚み方向に均一に接着されて均質な繊維構造を形成し、優れた濾過性を発現している。従って、繊維を固定するためのバインダー成分を実質的に含有しない。さらに、濾過性を向上させるための非繊維状無機化合物(例えば、活性炭粒子など)も実質的に含有しない。従って、湿熱接着性繊維と繊維構造を形成せずに、かつ湿熱接着性繊維との親和性も低い非繊維状無機化合物を含有しないため、繊維からの脱落物が少なく、フィルター自身からの脱落物による濾過性能の低下も抑制されている。
【0073】
[フィルターの製造方法]
本発明のフィルターの製造方法では、まず、前記湿熱接着性繊維を含む繊維をウェブ化する。ウェブの形成方法としては、慣用の方法、例えば、スパンボンド法、メルトブロ一法などの直接法、メルトブロー繊維やステープル繊維などを用いたカード法、エアレイ法などの乾式法などを利用できる。
【0074】
これらの方法のうち、メルトブロー繊維やステープル繊維を用いたカード法、特にステープル繊維を用いたカード法が汎用される。ステープル繊維を用いて得られたウェブとしては、例えば、ランダムウェブ、セミランダムウェブ、パラレルウェブ、クロスラップウェブなどが挙げられる。これらのウェブのうち、束状融着繊維の割合を多くする場合には、セミランダムウェブ、パラレルウェブが好ましい。
【0075】
次に、得られた繊維ウェブは、ベルトコンベアにより次工程へ送られ、次いで過熱又は高温蒸気(高圧スチーム)流に晒されることにより、不織繊維構造を有する成形体が得られる。すなわち、ベルトコンベアで運搬された繊維ウェブは、前記蒸気噴射装置のノズルから噴出される高速高温水蒸気流の中を通過する際、吹き付けられた高温水蒸気により、湿熱接着性繊維が融着し、繊維同士(湿熱接着性繊維同士、又は湿熱接着性繊維と他の繊維)が三次元的に接着される。特に、本発明における繊維ウェブは通気性を有しているため、高温水蒸気が内部にまで浸透し、略均一な融着状態を有する成形体を得ることができる。
【0076】
この融着(及び捲縮)工程の前工程として、繊維が飛散するのを抑制する点などから、得られた繊維ウェブの一部の繊維を、低圧力水(例えば、0.1〜1.5MPa、好ましくは0.5〜1MPa程度の水)をスプレーなどにより噴霧又は噴射(吹き付け)して交絡させる方法などにより軽度に絡合する工程を経てもよい。
【0077】
使用するベルトコンベアは、基本的には加工に用いる繊維ウェブを目的の密度に圧縮しつつ高温水蒸気処理することができれば、特に限定されるものではなく、エンドレスコンベアが好適に用いられる。尚、一般的な単独のベルトコンベアであってもよく、必要に応じて2台のベルトコンベアを組み合わせて、両ベルト間にウェブを挟むようにして運搬してもよい。このように運搬することにより、繊維ウェブを処理する際に、処理に用いる水、高温水蒸気、コンベアの振動などの外力により運搬してきた繊維ウェブの形態が変形するのを抑制できる。また、処理後の不織繊維の密度や厚みをこのベルトの間隔を調整することにより制御することも可能となる。
【0078】
繊維ウェブに水蒸気を供給するためには、慣用の水蒸気噴射装置が用いられる。この水蒸気噴射装置としては、所望の圧力と量で、ウェブ全幅に亘り概ね均一に水蒸気を吹き付け可能な装置が好ましい。2台のベルトコンベアを組み合わせた場合、一方のコンベア内に装着され、通水性のコンベアベルト、又はコンベアの上に載置されたコンベアネットを通してウェブに水蒸気を供給する。他方のコンベアには、サクションボックスを装着してもよい。サクションボックスによって、繊維ウェブを通過した過剰の水蒸気を吸引排出できる。また、繊維ウェブの表及び裏の両側を一度に水蒸気処理するために、さらに前記水蒸気噴射装置が装着されているコンベアとは反対側のコンベアにおいて、前記水蒸気噴射装置が装着されている部位よりも下流部のコンベア内に別の水蒸気噴射装置を設置してもよい。下流部の水蒸気噴射装置及びサクションボックスがない場合、繊維ウェブの表と裏を水蒸気処理したい場合は、一度処理した繊維ウェブの表裏を反転させて再度処理装置内を通過させることで代用してもよい。
【0079】
コンベアに用いるエンドレスベルトは、繊維ウェブの運搬や高温水蒸気処理の妨げにならなければ、特に限定されない。ただし、高温水蒸気処理をした場合、その条件により繊維ウェブの表面にベルトの表面形状が転写される場合があるので、適宜選択するのが好ましい。特に、表面の平坦なフィルターを得たい場合には、メッシュの細かいネットを使用すればよい。なお、90メッシュ程度が上限であり、概ね90メッシュより粗いネット(例えば、10〜50メッシュ程度のネット)が好ましい。これ以上のメッシュの細かなネットは、通気性が低く、水蒸気が通過し難くなる。メッシュベルトの材質は、水蒸気処理に対する耐熱性などの観点より、金属、耐熱処理したポリエステル系樹脂、ポリフェニレンサルファイド系樹脂、ポリアリレート系樹脂(全芳香族系ポリエステル系樹脂)、芳香族ポリアミド系樹脂などの耐熱性樹脂などが好ましい。
【0080】
水蒸気噴射装置から噴射される高温水蒸気は、気流であるため、水流絡合処理やニードルパンチ処理とは異なり、被処理体である繊維ウェブ中の繊維を大きく移動させることなく繊維ウェブ内部へ進入する。この繊維ウェブ中への水蒸気流の進入作用及び湿熱作用によって、水蒸気流が繊維ウェブ内に存在する各繊維の表面を湿熱状態で効率的に覆い、均一な熱接着が可能になると考えられる。また、この処理は高速気流下で極めて短時間に行われるため、水蒸気の繊維表面への熱伝導は充分であるが、繊維内部への熱伝導が充分になされる前に処理が終了してしまい、そのため高温水蒸気の圧力や熱により、処理される繊維ウェブ全体がつぶれたり、その厚みが損なわれるような変形も起こりにくい。その結果、繊維ウェブに大きな変形が生じることなく、表面及び厚み方向における接着の程度が概ね均一になるように湿熱接着が完了する。また、乾熱処理に比べて、不織構造内部に対して充分に熱を伝導できるため、表面及び厚み方向における融着の程度が概ね均一になる。
【0081】
さらに、曲げ強度や硬さの高いフィルターを得る場合には、ウェブに高温水蒸気を供給して処理する際に、処理されるウェブを、コンベアベルト又はローラーの間で、目的の見かけ密度に圧縮した状態で高温水蒸気に晒すのが重要である。特に、相対的に高密度のフィルターを得ようとする場合には、高温水蒸気で処理する際に、十分な圧力で繊維ウェブを圧縮する必要がある。さらに、ローラー間又はコンベア間に適度なクリアランスを確保することで、目的の厚みや密度に調整することも可能である。コンベアの場合には、一気にウェブを圧縮することが困難なので、ベルトの張力をできるだけ高く設定し、蒸気処理地点の上流から徐々にクリアランスを狭めていくのが好ましい。さらに、蒸気圧力、処理速度を調整することにより所望の剛性、圧縮変形性を有する成形体に加工する。
【0082】
このとき、硬度を上げたい場合には、ウェブを挟んでノズルと反対側のエンドレスベルトの裏側をステンレス板などにし、水蒸気が通過できない構造とすれば、被処理体であるウェブを通過した水蒸気がここで反射するので、水蒸気の保温効果によってより強固に接着される。逆に、軽度の接着が必要な場合には、サクションボックスを配置し、余分な水蒸気を室外へ排出してもよい。
【0083】
高温水蒸気を噴射するためのノズルは、所定のオリフィスが幅方向に連続的に並んだプレートやダイスを用い、これを供給される繊維ウェブの幅方向にオリフィスが並ぶように配置すればよい。オリフィス列は一列以上あればよく、複数列が並行した配列であってもよい。また、一列のオリフィス列を有するノズルダイを複数台並列に設置してもよい。
【0084】
プレートにオリフィスを開けたタイプのノズルを使用する場合、プレートの厚みは、0.5〜1mm程度であってもよい。オリフィスの径やピッチに関しては、目的とする繊維固定が可能な条件であれば特に制限はないが、オリフィスの直径は、通常、0.05〜2mm、好ましくは0.1〜1mm、さらに好ましくは0.2〜0.5mm程度である。オリフィスのピッチは、通常、0.5〜3mm、好ましくは1〜2.5mm、さらに好ましくは1〜1.5mm程度である。オリフィスの径が小さすぎると、ノズルの加工精度が低くなり、加工が困難になるという設備的な問題点と、目詰まりを起こしやすくなるという運転上の問題点が生じ易い。逆に、大きすぎると、水蒸気噴射力が低下する。一方、ピッチが小さすぎると、ノズル孔が密になりすぎるため、ノズル自体の強度が低下する。一方、ピッチが大きすぎると、高温水蒸気がウェブに充分に当たらないケースが生じるため、ウェブ強度が低下する。
【0085】
高温水蒸気についても、目的とする繊維の固定が実現できれば特に限定はなく、使用する繊維の材質や形態により設定すればよいが、圧力は、例えば、0.1〜2MPa、好ましくは0.2〜1.5MPa、さらに好ましくは0.3〜1MPa程度である。水蒸気の圧力が高すぎたり、強すぎる場合には、ウェブを形成する繊維が必要以上に動いて地合の乱れを生じたり、繊維が溶融しすぎて部分的に繊維形状を保持できなくなる可能性がある。また、圧力が弱すぎると、繊維の融着に必要な熱量をウェブに与えることができなくなったり、水蒸気がウェブを貫通できず、厚み方向に繊維融着斑を生ずる場合がある。また、ノズルからの水蒸気の均一な噴出の制御が困難になる場合がある。
【0086】
高温水蒸気の温度は、例えば、70〜150℃、好ましくは80〜120℃、さらに好ましくは90〜110℃程度である。高温水蒸気の処理速度は、例えば、200m/分以下、好ましくは0.1〜100m/分、さらに好ましくは1〜50m/分程度である。
【0087】
必要であれば、コンベアベルトに所定の凹凸柄や文字などを付与しておき、これらを転写させることで得られる成形体に意匠性を付与することも可能である。また、板状の成形体を複数枚重ねて積層体としてもよく、他の資材(他のフィルターなど)と積層して積層体を形成してもよい。
【0088】
このようにして繊維ウェブの繊維を部分的に湿熱接着した後、得られる不織繊維構造を有する成形体に水分が残留する場合があるので、必要に応じてウェブを乾燥してもよい。乾燥に関しては、乾燥用加熱体に接触した成形体の表面が、乾燥の熱により繊維が溶融して繊維形態が消失しないことが必要であり、繊維形態が維持できる限り、慣用の方法を利用できる。例えば、不織布の乾燥に使用されるシリンダー乾燥機やテンターのような大型の乾燥設備を使用してもよいが、残留している水分は微量であり、比較的軽度な乾燥手段により乾燥可能なレベルである場合が多いため、遠赤外線照射、マイクロ波照射、電子線照射などの非接触法や熱風を吹き付けたり、通過させる方法などが好ましい。
【0089】
さらに、成形体は、前述のように、湿熱接着性繊維を高温水蒸気により接着させて得られるが、部分的に(湿熱接着により得られた成形体同士の接着など)、他の慣用の方法、例えば、部分的な熱圧融着(熱エンボス加工など)、機械的圧縮(ニードルパンチなど)などの処理方法により接着されていてもよい。
【0090】
なお、湿熱接着性繊維は、繊維ウェブを熱湯に漬すことでも融着するが、このような方法では繊維接着率の制御が困難であり、また繊維接着率の均一性が高い成形体を得るのが困難である。その原因は、繊維ウェブ中に必然的に含まれる空気の影響で位置によって湿熱接着性が異なること、この空気が繊維ウェブの外に押し出されることによる構造への影響、湿熱接着させた繊維ウェブを熱湯中から取り出すときの引き取りローラーによる繊維内部の微細構造の変形や取り出した繊維ウェブ中に含まれる熱湯の重さによる上下方向の微細構造の変形の違いなどであると推定できる。
【0091】
このような方法によって得られた成形体は、通常、板状又はシート状であり、目的とするフィルターの形状に合わせて、切断加工などによって、所望の形状に加工される。なお、得られた板状又はシート状成形体は、慣用の熱成形、例えば、圧縮成形、圧空成形(押出圧空成形、熱板圧空成形、真空圧空成形など)、自由吹込成形、真空成形、折り曲げ加工、マッチドモールド成形、熱板成形、湿熱プレス成形などで加工してもよい。
【産業上の利用可能性】
【0092】
本発明のフィルターは、各種の気体及び液体用フィルター、例えば、家電用分野、製薬工業分野、電子工業分野、食品工業分野、自動車工業分野などの液体フィルターや、家電用分野、自動車などのキャビン用分野、マスク用分野などの気体フィルターとして幅広く利用できる。特に、吸水速度や保水率が高い点から、水や水蒸気を濾過するためのフィルター、例えば、家庭用又は工業用浄水器、加湿器などのフィルターとして有用である。さらに、これらのフィルターの中でも、繊維接着点が少なく、かつ低密度である点から、比較的粗大な粒子の捕集し、かつ長期間使用される用途、プレフィルター(特にブロック状プレフィルター)として特に有用である。
【実施例】
【0093】
以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。実施例における各物性値は、以下に示す方法により測定した。なお、実施例中の「%」はことわりのない限り、質量基準である。
【0094】
(1)目付(g/m2
JIS L1913「一般短繊維不織布試験方法」に準じて測定した。
【0095】
(2)厚み(mm)、見掛け密度(g/cm3
JIS L1913「一般短繊維不織布試験方法」に準じて厚みを測定し、この値と目付けの値とから見かけ密度を算出した。
【0096】
(3)通気度
JIS L1096に準じてフラジール形法にて測定した。
【0097】
(4)繊維接着率
走査型電子顕微鏡(SEM)を用いて、成形体断面を100倍に拡大した写真を撮影した。撮影した成形体の厚み方向における断面写真を厚み方向に三等分し、三等分した各領域(表面、内部(中央)、裏面)において、そこに見出せる繊維切断面(繊維端面)の数に対して繊維同士が接着している切断面の数の割合を求めた。各領域に見出せる全繊維断面数のうち、2本以上の繊維が接着した状態の断面の数の占める割合を以下の式に基づいて百分率で表わした。なお、繊維同士が接触する部分には、融着することなく単に接触している部分と、融着により接着している部分とがある。但し、顕微鏡撮影のために成形体を切断することにより、成形体の切断面においては、各繊維が有する応力によって、単に接触している繊維同士は分離する。従って、断面写真において、接触している繊維同士は、接着していると判断できる。
【0098】
繊維接着率(%)=(2本以上接着した繊維の断面数)/(全繊維断面数)×100
但し、各写真について、断面の見える繊維は全て計数し、繊維断面数100以下の場合は、観察する写真を追加して全繊維断面数が100を超えるようにした。なお、三等分した各領域についてそれぞれ繊維接着率を求め、その最大値に対する最小値の割合(最小値/最大値)も併せて求めた。
【0099】
(5)曲げ応力
JIS K7017に記載の方法のうちA法(3点曲げ法)に準じて測定した。このとき、測定サンプルは25mm幅×80mm長のサンプルを用い、支点間距離を50mmとし、試験速度を2mm/分として測定を行った。本発明では、この測定結果チャートにおける最大応力(ピーク応力)を最大曲げ応力とした。なお、曲げ応力の測定は、MD方向およびCD方向について測定した。ここで、MD方向とは、測定サンプルの長辺に対しウェブ流れ方向(MD)が平行となるように測定サンプルを採取した状態をいい、一方、CD方向とは、測定サンプルの長辺に対しウェブ幅方向(CD)が平行となるように測定サンプルを採取した状態をいう。
【0100】
(6)1.5倍変位応力
曲げ応力の測定において、最大曲げ応力(ピーク応力)を示す曲げ量(変位)を超え、さらにその変位の1.5倍の変位まで曲げつづけた時の応力を、それぞれ1.5倍変位応力とした。
【0101】
(7)吸水速度(ウィッキング法)
JIS L1907「繊維製品の吸水性試験法」に準じて、吸水速度を測定した。サンプルであるインク保持体の上に、0.05g/滴の水滴を10mmの高さから1滴滴下し、その水滴がインク保持体に吸い込まれるまでの時間を測定した。
【0102】
(8)保水率(吸水率)
JIS L1907「吸水率」に準じて測定した。5cm×5cm角サイズのサンプルを調製し、質量(成形体質量)を測定する。このサンプルを水中に30秒間沈めておき、その後引き上げて、空気中に1つの角を上にした状態で1分間吊して表面の水を切った後、質量(吸水後質量)を測定し、以下の式に基づいて算出した。
【0103】
吸水率=(吸水後質量−成形体質量)/成形体質量×100 (%)。
【0104】
(9)濾過率(フィルター性)
試験用ダスト7種(日本粉体工業技術協会製)を1%濃度になるように、蒸留水に分散させたものを試験液体として用いた。フィルターは、試験前に30分間蒸留水で湿潤処理したものを漏斗に取り付け、漏斗とフィルターとの境界はシリコーンシーリング材(コニシ(株)製、ボンドシリコンシーラント)を用いて漏れを防止した。また、比較例は、板状の形状を保持できないため、10メッシュのステンレス金網で形状を保持しながら濾過を行った。フィルター性試験は、フィルター上に試験液を注いで、濾過を行った後、乾燥して重量を測り、捕集できたダストの質量比で濾過率を求めた。
【0105】
(10)形態保持性
不織繊維試料を5mm角の立方体形状にカットし、50cm3の水を入れた三角フラスコ(100cm3)に投入した。このフラスコを振とう器(ヤマト科学(株)製、「MK160型」)に装着し、振幅30mmの旋回方式にて60rpmの速度で30分間振とうさせた。振とう後、形態変化及び形態保持性状態を目視で観察し、以下の基準に従って3段階評価した。
【0106】
◎:ほぼ処理前の形状を保持している
○:大きく欠落した部分は見られないが、形態の変形が見られる
×:欠落部分の発生が見られる。
【0107】
実施例1
湿熱接着性繊維として、芯成分がポリエチレンテレフタレート、鞘成分がエチレン−ビニルアルコール共重合体(エチレン含有量44モル%、ケン化度98.4モル%)である芯鞘型複合ステープル繊維((株)クラレ製、「ソフィスタ」、繊度3dtex、繊維長51mm、芯鞘質量比=50/50、捲縮数21個/25mm、捲縮率13.5%)を準備した。
【0108】
この芯鞘型複合ステープル繊維を用いて、カード法により目付約100g/m2のカードウェブを作製し、このウェブを5枚重ねて合計目付約500g/m2のカードウェブとした。このカードウェブを、50メッシュ、幅500mmのステンレス製エンドレスネットを装備したベルトコンベアに移送した。尚、このベルトコンベアの金網の上部には同じ金網を有するベルトコンベアが装備されており、それぞれが同じ速度で同方向に回転し、これら両金網の間隔を任意に調整可能なベルトコンベアを使用した。
【0109】
次いで、下側コンベアに備えられた水蒸気噴射装置ヘカードウェブを導入し、この装置から0.4MPaの高温水蒸気をカードウェブの厚み方向に向けて通過するように(垂直に)噴出して水蒸気処理を施し、不織繊維構造を有する成形体を得た。この水蒸気噴射装置は、下側のコンベア内に、コンベアネットを介して高温水蒸気をウェブに向かって吹き付けるようにノズルが設置され、上側のコンベアにサクション装置が設置されていた。また、この噴射装置のウェブ進行方向における下流側には、ノズルとサクション装置との配置が逆転した組合せである噴射装置がもう一台設置されており、ウェブの表裏両面に対して水蒸気処理を施した。
【0110】
なお、水蒸気噴射ノズルの孔径は0.3mmであり、ノズルがコンベアの幅方向に沿って1mmピッチで1列に並べられた蒸気噴射装置を使用した。加工速度は3m/分であり、ノズル側とサクション側の上下コンベアベルト間の間隔(距離)は5mmとした。ノズルはコンベアベルトの裏側にベルトとほぼ接するように配置した。
【0111】
得られた成形体は、ボード状の形態を有していた。得られた成形体のフィルターとしての評価結果を表1に示す。
【0112】
実施例2
カードウェブを10枚重ねるとともに、ノズル側とサクション側の上下コンベアベルト間の間隔を10mmとする以外は実施例1と同様にして成形体を製造した。得られた成形体は、ボード状の形態を有していた。得られた成形体のフィルターとしての評価結果を表1に示す。
【0113】
実施例3
芯鞘型複合ステープル繊維((株)クラレ製、「ソフィスタ」)とレーヨン繊維(繊度1.4dtex、繊維長44mm)とを60/40(質量比)の割合で混綿して目付約100g/m2のカードウェブを作製する以外は実施例1と同様にして成形体を製造した。得られた成形体は、ボード状の形態を有していた。得られた成形体のフィルターとしての評価結果を表1に示す。得られた液体保持材の評価結果を表1に示す。
【0114】
比較例1
レーヨン繊維(繊度1.4dtex、繊維長44mm)で構成された目付約100g/m2のウェブを4枚重ねて、孔径φ0.3mm、1mmピッチのノズルを用いて、水圧8MPaの条件で水流絡合処理して交絡一体化したスパンレース不織布で構成されたフィルターの評価結果を表1に示す。
【0115】
【表1】

【0116】
表1の結果から明らかなように、実施例のフィルターは、硬度が高く、形態保持性に優れる上に、吸水速度や濾過性も高い。これに対して、比較例のフィルターは、濾過性及び形態保持性のいずれも低い。

【特許請求の範囲】
【請求項1】
湿熱接着性繊維を含み、かつ不織繊維構造を有するフィルターであって、前記湿熱接着性繊維の融着により前記不織繊維構造が固定された成形体で構成されているフィルター。
【請求項2】
厚み方向の断面において、厚み方向に三等分した各々の領域における繊維接着率がいずれも5〜50%であり、かつ各領域における繊維接着率の最大値に対する最小値の割合が50%以上である請求項1記載のフィルター。
【請求項3】
0.05〜0.2g/cm3の見掛け密度を有するとともに、少なくとも一方向における最大曲げ応力が0.05MPa以上であり、最大曲げ応力を示す曲げ量に対して1.5倍の曲げ量における曲げ応力が、最大曲げ応力に対して1/5以上である請求項1又は2記載のフィルター。
【請求項4】
成形体が、少なくとも40質量%以上の湿熱接着性繊維を含有し、かつ前記湿熱接着性繊維の表面がエチレン−ビニルアルコール系共重合体で構成されている請求項1〜3のいずれかに記載のフィルター。
【請求項5】
さらに非湿熱接着性繊維を含有し、湿熱接着性繊維と非湿熱接着性繊維との割合(質量比)が、湿熱接着性繊維/非湿熱接着性繊維=99/1〜40/60である請求項1〜4のいずれかに記載のフィルター。
【請求項6】
平均繊維長20〜80mmの繊維のみで構成された不織繊維構造を有し、フィラーを実質的に含有しない請求項1〜5のいずれかに記載のフィルター。
【請求項7】
非繊維状無機フィラーを実質的に含有しない請求項1〜6のいずれかに記載のフィルター。
【請求項8】
湿熱接着性繊維を含む繊維をウェブ化する工程と、生成した繊維ウェブを高温水蒸気で加熱処理して繊維を融着し、不織繊維構造を有する成形体を得る工程とを含む請求項1〜7のいずれかに記載のフィルターの製造方法。

【公開番号】特開2009−233645(P2009−233645A)
【公開日】平成21年10月15日(2009.10.15)
【国際特許分類】
【出願番号】特願2008−86894(P2008−86894)
【出願日】平成20年3月28日(2008.3.28)
【出願人】(307046545)クラレクラフレックス株式会社 (50)
【Fターム(参考)】