説明

フィルム状電子機器用部材

【課題】無機粉体を高濃度含有すると共に高強度で加工性に優れたフィルム状電子機器用部材の提供。
【解決手段】ポリオレフィン樹脂1重量部以上20重量部以下と無機粉体80重量部以上99重量部以下からなるフィルム状多孔体に、該多孔体を構成するポリオレフィンとは異なる樹脂類を含浸させてなるフィルム状電子機器用部材。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はフィルム状電子機器用部材およびその製造方法に関する。より詳しくは、電子機器部品の高密度部品集積化又は部品内蔵多層回路基板化、エネルギー蓄積材等に用いられる部材、発熱や放熱、絶縁や導電、電磁波に対処させるための部材等に好適なフィルム状電子機器用部材およびその製造方法に関する。
【背景技術】
【0002】
電子機器類のデジタル信号化による信号の大容量化や小型軽量化に伴い使用部品の高密度充填化が必要とされている。
従来、電子部品は表面実装によりモジュール基板化されていたが、小型化が進行するにつれ基板の多層化が考案され、部品が基板に内蔵される事となった。
このため、各層表面の導電体を覆い層間の絶縁層形成、あるいは配線の高密度化による配線間容量の増大による信号速度の遅延を防止するための低誘電層形成が行われている。
又、電子部品の高集積と電気容量の増大により発熱対策が重要となり、より高効率な熱伝導性あるいは放熱性の部材が要求される。
これら電子機器部品の高密度部品集積化又は部品内蔵多層回路基板化は今後も急速に進む事が予想され、それに対応したより高性能なフィルム状電子機器用部材が求められる事となる。
【0003】
フィルム状電子機器用部材として無機粉体の持つ特性を利便的に発揮させる方法としては一般的に無機粉体高含有フィルムを作成する方法が知られておりその手法としてポリイミド系樹脂、液晶性樹脂の製膜時に無機粉体を分散させたフィルムやシリコン系樹脂、エポキシ系樹脂、アクリル系樹脂、ゴム系等の比較的柔軟な樹脂類に無機粉体を混練してロール間で圧延しシート状物を得る方法、或いは該樹脂類をその良溶媒と混合して溶液にし、該溶液に無機粉体を配合して均一に混合しドープ状とした後、PET等の支持体フィルム上にコーターでコーティングし、良溶媒を蒸発等で取除き無機粉体高含有フィルムを得る方法も知られている。
また、無機粉体の特性効果を発揮させるために、該ドープ状のものを目的に応じて電子機器や部品類上に塗布や浸漬等によって皮膜形成させ無機粉体高含有フィルムを得る方法も知られている。
【0004】
これら従来の方法において無機粉体を該樹脂類に多量に混入させ且つ高分散化させるために、無機粉体を表面処理させ無機粉体の凝集を防ぎ樹脂との親和性を向上させる方法、或いは該樹脂類の良溶媒を多量に配合させて樹脂溶液粘度を下げる方法等が行われている。
更に、絶縁膜や封止材或いは熱伝導材として機能を発揮するために、熱硬化性エポキシ樹脂と硬化開始剤を混合した液に無機粉体を高濃度に混合させて混合溶液を作成し、該電子機器部品に直接塗布後、高温雰囲気中で硬化させ該電子機器部品を覆う方法も知られている。
しかしながら、これらの方法では、該電子機器部品の凹凸により該混合溶液は硬化するまでの流下により均一な皮膜を形成せず、部分的に厚さが不均一となり無機粉体量がバラツク結果、期待する特性が発揮できない事由が発生している。また、極端な場合には該混合溶液や塗布作業中に発生した気泡による皮膜のピンホール、或いは該電子機器部品等の鋭角な部分での該混合溶液塗布の不良個所が発生する事もある。
【0005】
熱硬化性エポキシ樹脂に無機粉体を混合させ混合溶液を作成する場合、該無機粉体は大量に混入させる事が機能を向上させることに繋がるが、該混合溶液を塗布或いはコーティ
ングしても塗膜形成が困難でヒビ割れを生じ、従って止む得ず該無機粉体混合量を減らす必要がある。
一方、部品内蔵多層回路基板は、各層毎に回路基板はコンデンサーや電池或いはインダクターやIC等の電子部品を配置しあるいは又、配線による回路設置してなり、それら個別に作成した各層の回路基板を重ねて多層化する際に隣接する層の電子部品や配線との接触短絡を防止する絶縁性封止材が必要である。
【0006】
例えば、液状物絶縁封止材としては、特許文献1は「半導体封止材、電気積層板等の電気絶縁材料として使用する事を目的に、構造を改良したエポキシ樹脂を提案している。又、液状絶縁樹脂に絶縁性粉末を混入させた絶縁封止材も多く実用化され、例えば特許文献2はエポキシ樹脂に無機粉末充填材を65重量%以上含有させながら、成形時の流動性とバリの発生を改善させ半導体素子保護のためのエポキシ樹脂封止材を提案している。更に、封止材と同じく、液状の熱硬化性樹脂に有機や無機粉末を混合し保持するマトリックス樹脂として使用し、シート状に成形して部品内蔵多層回路基板作成時に使用する方法も提案している。即ち熱硬化性エポキシ樹脂にシリカやアルミナ等のフィラーを約85重量%高充填して樹脂の分子量分布やフィラー設計、製膜条件等を検討してシート状に成形する事により、多機能有機グリーンシートとして使用し、多層基板を容易に製造できる方法を提案している。この様なシート状封止材は、使用される無機粉体の種類、即ちその性能を変える事によってシート状封止材の性能が変わり、新たな期待される性能をもったフィルム状電子機器用部材が得られる事となる。
【0007】
例えば、比誘電率の高い絶縁体フィラーをマトリックス樹脂に高充填させたシート状封止材を作成して、上下を電極で挟み込み多層基板を形成させる事によりキャパシタ内蔵の基板を作成する事も報告されている。
又、電子機器類は信号のデジタル化や高密度化或いは高エネルギー容量化に伴い、発生する熱の処理が大きな課題となっており、この様な発熱に対する熱の外部放出には、一般に金属、非金属、セラミック等の無機物或いは有機物の熱伝導体、熱放射体が種々の形に加工されて使用される事も有るが、寧ろこれら熱伝導体、熱放射体の粉末を樹脂に高充填させて柔軟なシート状等に成形し発熱体に密着させ、或いは電子部品の複雑な形状に沿って接着して使用する方法が効率向上から有効な手段である。
【0008】
同様に、電子機器類の回路には電磁波ノイズによる機器の誤作動を防止するために電磁波吸収シートが使用され、回路への外部からの電磁波障害と回路からの外部への電磁波放射を防止する手法がとられている。
これらはフェライト磁性体粉末の様な電磁波吸収物質の粉末を樹脂に高充填させ柔軟なシート状として障害を受ける個所、或いは発生させる個所に貼り付ける方法が取られている。
しかし、この様にバインダーに無機粉体を高含有させシート状に形成させる事は一般に可能であるが、シート状に形成させたものを電子機器部材に適応する際に、加工性と性能の関係に問題が生じる。
【0009】
即ち、バインダーである樹脂に混合させる無機粉体の特性を効率的に発揮させるためには、該バインダーを出来る限り少量使用することが必要とされるが無機粉体を結着させる事が難しく、該バインダー量が少ない塗膜やシート状の無機粉体高含有シートは、弱く脆い構造体となり当然にして引張り強度が小さくなり、ピンホールや破膜が出来易く薄膜化が困難で加工性に問題が生じる。そのため、該無機粉体高含有シートとして作成する際には、やむを得ず電子機器類への加工部材として適応可能な強度にまで該バインダー配合量を多くして、期待する無機粉体性能を犠牲にせざるを得ない状態となっている。
【0010】
又、別の手法であるコーティング方法により該無機粉体高含有シートを得る場合には、
薄膜や表面状態を均一にさせる必要あるいは製膜時の気泡混入を防ぐため、ドープ状の粘度を下げ流動性をよくする必要があるが、その手法の一つとして無機粉体のバインダーである樹脂量の削減、低分子量樹脂の使用等が行われるが何れも樹脂の分子配向性や絡みあいが小さくなる方向にあり、無機粉体が多量に配合される該無機粉体高含有シートの引張り強度は顕著に小さなものとなる。
更に、多孔構成物に樹脂類を含浸させて複合化させて両素材の持つ特性を飛躍的に向上させる方法が利用され、例えばガラス繊維や炭素繊維の織物あるいは不織布である構造体にエポキシ樹脂やポリイミド樹脂等を含浸させて熱硬化した素材も電子回路用樹脂基板等として多く使用されている。
【0011】
例えば、特許文献3は、構造体に液状樹脂を含浸させて一体化する手法を利用し、より精密化したシート状電子部材を得る方法として、PTFEに無機粉体を混合させて圧延や延伸によりフィブリル化して得られた多孔体にシリコンゴムを含浸させる方法を開示している。しかし、単に無機粉体を多量にPTFEと混合させた原料を圧延等によりフィブリル化させてフィルム状多孔体を形成させるため無機粉体が不均一に分布する事や、その原因により裂け易くなる事がある。この現象は特許文献4でも指摘されている。
また、この現象による欠点を克服させるために前記特許文献4では、PTFE等から形成した多孔質に接着性樹脂と粒状充填材よりなるペーストを充填させて薄い接着シートを作成し、エレクトロニクス装置製作用の素材を提案している。
【0012】
しかし、該多孔質には無機粉体が全く配置されておらず該素材の性能を効果よく発現させるためには粒状充填材を接着性樹脂に多量に含有させたペースト状のものを作成してコーティングや浸漬により該多孔質の空孔に充填させる事が必要とされている。そのため、該ペースト状のものは低粘度で流動性を持つ事が空孔に充填させる重要な条件となるため、該接着性樹脂の溶剤により希釈しなければならず該ペースト中に含まれる該粒状充填剤濃度は小さくならざるを得ない。又、微小で高空隙率を持つ該多孔質の空孔中に該ペースト状のものを大量且つ均一に充填されなければならず、当然にして該多孔質の空孔に該粒状充填材を充填するためには該粒状充填材の形状や粒径も選定する必要があり、該多孔質の孔径や形状によっては濾過効果が発生して充填不可能となることも懸念されるため、より小さな該粒子充填材のものに限定され実使用範囲は極めて狭いものになる。
【0013】
【特許文献1】特開平6−49173号公報
【特許文献2】特開平5−205901号公報
【特許文献3】特開昭62−100539号公報
【特許文献4】特開平8−259915号公報
【発明の開示】
【発明が解決しようとする課題】
【0014】
上記のとおり、従来、電子機器部品の高密度部品集積化又は部品内蔵多層回路基板化、エネルギー蓄積材用部材、発熱や放熱、絶縁や電磁波に対処させるための部材としては種種の無機粉体の樹脂成形体が多く使用されているが、いずれも無機粉体を多く保持させたフィルム状の樹脂成形体は期待性能や強度、品質、加工性或いは使用条件下での安定性に問題があった
本発明は、無機粉体を高濃度含有すると共に高強度で加工性に優れたフィルム状電子機器用部材を提供することを目的とする。更には、無機粉体を高濃度含有すると共に、高強度で加工性に優れ、使用条件下で安定した性能を有する薄いフィルム状電子機器用部材を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明のフィルム状電子機器用部材は前記の問題を解決すべく、鋭意検討した結果、本
発明に到達した。すなわち、本発明は以下の通りである。
(1)ポリオレフィン樹脂1重量部以上20重量部以下と無機粉体80重量部以上99重量部以下からなるフィルム状多孔体に、該多孔体を構成するポリオレフィンとは異なる樹脂類を含浸させてなるフィルム状電子機器用部材。
(2)前記樹脂類が無機粉体を含有している上記(1)記載のフィルム状電子機器用部材。
(3)前記樹脂類がエポキシ樹脂である上記(1)又は(2)記載のフィルム状電子機器用部材。
(4)前記樹脂類が熱可塑性樹脂である上記(1)又は(2)記載のフィルム状電子機器用部材。
【0016】
(5)前記無機粉体が絶縁性無機粉体、導電性無機粉体、熱伝導性無機粉体、熱放射性無機粉体、高誘電性無機粉体、電磁波吸収無機粉体、及び電極活物質無機粉体からなる群より選ばれる少なくとも一種である上記(1)〜(4)のいずれかに記載のフィルム状電子機器用部材。
(6)ポリオレフィン樹脂1重量部以上20重量部以下と、無機粉体80重量部以上99重量部以下と、該ポリオレフィン樹脂の溶剤とを含む混合物を溶融押出しした後、該溶剤を除去して無機粉体高含有フィルム状多孔体を得る工程、該多孔体の多孔部に、該ポリオレフィン樹脂以外の樹脂類の硬化前のプレポリマー又は溶剤溶液を含浸させる工程とを含むことを特徴とするフィルム状電子機器用部材の製造方法。
【発明の効果】
【0017】
本発明によれば電子機器部材を構成する絶縁性フィルム、導電性フィルム、熱伝導性及びまたは熱放射性フィルム、高誘電性フィルム、電磁波吸収フィルム、蓄電器用部材、その他の無機粉体高含有部材において、無機粉体の持つ特性の発現を向上させると共に、高強度で且つ加工性の高いフィルム状電子機器用部材を容易に且つ安価に提供する事が出来る。
【発明を実施するための最良の形態】
【0018】
本発明のフィルム状電子機器用部材は、ポリオレフィン樹脂1重量部以上20重量部以下と無機粉体80重量部以上99重量部以下からなるフィルム状多孔体と、該多孔体を構成するポリオレフィンとは異なる樹脂類とからなる。
本発明で用いられるポリオレフィン樹脂は、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、超高密度ポリエチレン等のポリエチレン、エチレン・プロピレン、エチレン・酢酸ビニル等の共重合体、ポリプロピレン、環状ポリオレフィン・コポリマー等を包含する。これらは単独で用いても、ブレンドして用いてもよい。
用いるポリオレフィン樹脂の種類は用途に応じて適宜選択できるが、加工性及び強度の点から、ポリエチレン樹脂が好ましい。特に、得られる多孔体が高強度、薄膜である点から、粘度平均分子量Mvが300万以上1000万以下である超高分子量ポリエチレンが好ましく、500万以上800万以下である超高分子量ポリエチレンがより好ましい。
本発明は、電気化学的に不活性であり低誘電性・高絶縁性を有し、且つ低融点であるポリオレフィン樹脂を使用するため、加工性にも優れた安価な素材と言える。
【0019】
無機粉体は使用目的により適宜選択でき、絶縁性無機粉体、導電性無機粉体、熱伝導性無機粉体、熱放射性無機粉体、高誘電性無機粉体、電磁波吸収無機粉体、及び電極活物質無機粉体からなる群より選ばれる少なくとも一種などがある。これらは目的に応じて、単独で又は2種以上混合して用いることができる。
熱伝導性を有する無機粉体、例えば金属酸化物であるAl、ZnO、金属窒化物であるSi、AlN、BN、金属であるAl、Cu、非金属であるグラファイト、等を選択して単独あるいは混合させて本発明の手法により多量に混入させる事によりフィ
ルム状熱伝導性材が得られ、金属軟磁性体や酸化物系磁性材料であるソフトフェライト等の電磁波吸収材を無機粉体として使用した場合、優れたフィルム状電磁波吸収材が得られる。又、SiOやAl等に代表される電気絶縁性の無機粉体を使用して本発明のフィルム状電子機器用部材を得た場合、チップ内蔵型のモジュールや多層型モジュールの埋め込み基板用として、あるいはチップ積層封止材として使用出来る。或いは無機粉体としてBaTiO等の高誘電率絶縁材を使用し、フィルム状高誘電率絶縁体を得て両面を金属箔等の導電性フィルムを形成した場合キャパシタ機能を発現し、多層基板として用いると受動素子内蔵基板が得られる。
【0020】
また、グラファイト等の導電性無機粉体を用いた場合には、フィルム状集電体が、陶製セラミック等の熱放射性無機粉体を使用した場合にはフィルム状放熱材が、黒鉛系炭素粉体等の電極活物質を使用した場合にはリチウムイオン電池の負極材が得られる。
この様に、混合する無機粉体を選択する事により無機粉体の持つ特性を発揮させる事が出来、使用目的に応じた各種のフィルム状電子機器用部材が得られるため特に無機粉体の種類、形状、粒径等の性状を制限するものではない。
【0021】
フィルム状多孔体は、無機粉体の効果を十分に発揮させる点及び強度の点から、ポリオレフィン樹脂1重量部以上20重量部以下、無機粉体80重量部以上99重量部以下である必要がある。両者の割合は、前記範囲内で、無機粉体の種類、形状、粒径や部材の用途に応じて適宜変更できるが、無機粉体の量は、無機粉体の効果をより一層発揮させる点から90重量部以上であることが好ましく、強度、柔軟性の点からは98重量部以下であることが好ましい。
【0022】
上記無機粉体は多孔体表面に存在するものもあるため、樹脂類を含浸させた状態では樹脂類に含まれるものもあるが、その少なくとも一部は多孔体内に存在する。
上記の無機粉体高含有多孔体フィルムは、無機粉体を多量に含有し、且つ強固に維持させて取扱い易く高強度で柔軟性あるフィルム状であるため、本発明の部材に不可欠で重要な素材の一つである。
フィルム状多孔体の厚みは特に制限はないが10μm以上1000μm以下であることが好ましく、20μm以上500μm以下であることがより好ましい。
【0023】
本発明の部材は、電子機器部材として用いられる際の熱変形等を防止するために、上記フィルム状多孔体に樹脂類を含浸させてなることが必要である。ここで、樹脂類は多孔体の少なくとも一部に含浸されていればよい。多孔体の表面を覆う状態であっても、多孔体内部に含まれている状態でもよい。
多孔体に含浸させる樹脂類は、多孔体を構成する樹脂とは異なる樹脂であり、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ウレタン樹脂等の熱硬化性樹脂、ポリアミド樹脂、ポリカーボネート樹脂、酢酸セルロース樹脂、液晶樹脂、メチルペンテン樹脂や熱可塑性エラストマー等の熱可塑性樹脂が挙げられる。
これらのうち、取り扱い性、耐熱性、多品種等の点からエポキシ樹脂が好ましい。
【0024】
また、熱可塑性樹脂を用いる場合には、ポリアミド樹脂、ポリカーボネート樹脂、酢酸セルロース樹脂、液晶樹脂、メチルペンテン樹脂や熱可塑性エラストマー等、その融点が、多孔体を構成するポリオレフィン樹脂よりも50℃以上高い樹脂が好ましい。
このような熱可塑性樹脂を用いる場合は、熱可塑性樹脂の軟化温度以上で比較的自由な形状に成形できることができ、透明性や高電気抵抗など、期待される目的に応じた熱可塑性樹脂を選定できる。
上記樹脂類には、必要に応じ、多孔体に含まれる無機粉体と同一又は異なる無機粉体を含有せしめてもよい。
【0025】
本発明のフィルム状電子機器用部材は、ポリオレフィン樹脂1重量部以上20重量部以下と、無機粉体80重量部以上99重量部以下と、該ポリオレフィン樹脂の溶剤とを含む混合物を溶融押出しした後、該溶剤を除去して無機粉体高含有フィルム状多孔体を得る工程、該多孔体の多孔部に、該ポリオレフィン樹脂以外の樹脂類の硬化前のプレポリマー又は溶剤溶液を含浸させる工程とを含むことを特徴とするフィルム状電子機器用部材の製造方法により好適に得られる。
【0026】
以下、本発明の製造方法について説明する。
即ち、本発明の方法により作成したフィルム状電子機器用部材は無機粉体の持つ特性と加工性である電子機器用部材として取り扱う際の強度や柔軟性等を十分に発揮させるには該フィルム状多孔体部を構成するポリオレフィン樹脂に強靭な特性を持つものを使用すると共に可能な限り該無機粉体を多量に且つ強固に保持させる製造方法が重要である。
【0027】
本発明の製造方法は、ポリオレフィン樹脂1重量部以上20重量部以下と、無機粉体80重量部以上99重量部以下と、該ポリオレフィン樹脂の溶剤とを含む混合物を溶融押出しした後、該溶剤を除去して無機粉体高含有フィルム状多孔体を得る工程を含む。
又、次に示す様に本発明に使用される無機粉体高含有フィルム状多孔体は、ポリオレフィン樹脂と該ポリオレフィン樹脂の溶剤及び無機粉体より相分離法により比較的容易に得られ、特に本発明に有効に使用できるものである。
【0028】
上記工程で使用する溶剤は、ポリオレフィン樹脂を室温では溶解させず完全分離状態に有るが、該ポリオレフィン樹脂の融点以上にまで昇温し混合させた場合に該ポリオレフィン樹脂と該溶剤が完全溶解して1相の状態となる様な溶剤の選定が必要である。
この様な該ポリオレフィン樹脂と該溶剤の関係により、高温溶解状態から低温状態に移行させる際に、溶解温度を過ぎた時点で二相に相分離し、より低温状態にさせた場合は、該ポリオレフィン樹脂の固相と該溶剤の液相とに完全分離して多孔構造の前駆体となり、これら前駆体から該溶剤を取除いた場合に該ポリオレフィン樹脂よりなる三次元網目構造多孔体が得られる(いわゆる2成分多孔体製法)。
【0029】
また、2成分多孔体製法に無機粉体を加え加熱混合し、該ポリオレフィン樹脂と該溶剤が高温となり完全溶融状態となった場合、添加した該無機粉体は高粘度のため凝集しにくく混練により溶融液中に良分散し、且つ多量に含有させる事が可能となる事がわかり、この様な樹脂部、溶剤部、無機部の3素材よりなる製法から3成分多孔体製法とされている。
この3成分多孔体製法は2成分多孔体製法に比べ、使用する樹脂素材を複数種混合したり或いは同一樹脂種であっても分子量の広範囲のものを比較的容易に均一に混合・分散させる事が出来、無機粉体が何らかの均一混合機能を有するものと考えられている。本発明でもこの3成分多孔体製法を用いることにより、無機粉体を高濃度で且つ均一に分散させ無機粉体高含有フィルム状多孔体を得ることが可能になっている。
【0030】
本発明の製造方法により高強度の電子機器部材が得られる原理は定かではないが、上記製造方法において使用する溶剤が高温状態で完全溶融状態から低温に移行して相分離する際、主に無機粉体内細孔部、無機粉体集合表面に吸着する事となり、該溶剤の種類や量或いは冷却速度等により該ポリオレフィン樹脂が形成する微細な三次元網目構造多孔体の孔径、空隙率を変化させる事が出来ると共に、該無機粉体は該ポレフィン樹脂によって形成された空隙内部と該ポリオレフィン樹脂内部の双方に保持され高分散された状態になって、強固に保持される事が原因ではないかと推測される。
この様な本発明の手法により得られた三次元網目構造多孔体を形成するポリオレフィン樹脂は可尭性が高いため、成形された該無機粉体高含有フィルム状多孔体は曲率半径の小さな曲げにも耐えうる極めて柔軟な薄膜構造体となった。
【0031】
高い引張り強度を有するフィルム状多孔体を得るためには、ポリオレフィン樹脂の分子量を大きくする事が非常に有効で、本発明の場合、特に結晶が生じ易い超高分子量ポリエチレンを使用して該無機粉体高含有フィルム状多孔体を製膜する際は、延伸や圧延工程による分子配向により薄膜で高強度な無機高含有構造体を得る事が出来、強度面からMv300万以上の超高分子量ポリエチレンの使用が好ましい。
この様にしてポリオレフィン樹脂の種類と無機粉体の種類、粒径、形状等を選択する事により高引張強度で曲げ応力にも著しく柔軟で且つ電子部材として有益な性能を発現する為の基本的構造体である無機粉体高含有フィルム状多孔体を得る事が出来る。
【0032】
ポリオレフィン樹脂を熱溶融により溶解させ、その際に使用する溶剤は高温時のみにポリオレフィン樹脂と溶解する溶剤を使用し、該熱可塑性樹脂の高温状態で粘度を下げ無機粉体を良分散させる事を目的に使用するものである為、分子量の非常に大きなポリオレフィン樹脂も使用でき、従って従来にない柔軟で引張り強度の高い均一な無機粉体高含有多孔体フィルム得られるものである。
該溶剤としては、例えば、デカリン、流動パラフィン、フタル酸エステル等が挙げられるが、これに限定するものではなく、一般にポリオレフィン樹脂の多孔フィルム製成形に用いられる溶剤を用いることが出来る。
フィルム状の部材を電子機器類に使用する場合には、往々にして電子機器類の組立て加工中の加熱処理、或いは使用中の発熱等により使用している樹脂の軟化点温度以上となり熱変形の可能性もある。この様な熱によるフィルム状電子機器用部材の変形は使用目的に応じて有益な特性となる場合も有るが、加熱雰囲気での変形が特性上問題となる場合も考えられる。
【0033】
一般的に電子機器類に使用される部材としては熱的に安定したものを必要とする場合が多く、このため、本発明のフィルム状電子機器用部材は無機粉体とポリオレフィン樹脂よりなる無機粉体高含有多孔体フィルムを形成した後、該無機粉体高含有多孔体フィルムの多孔体中にエポキシ樹脂のプレポリマー、即ち熱硬化する前の溶液状であるプレポリマー或いはポリオレフィン樹脂より融点温度の高い熱可塑性樹脂のプレポリマー溶液を含浸させておき、しかる後必要に応じ熱処理や乾燥等を行う事により該プレポリマーを縮・重合或いは溶剤乾燥させて完全に硬化せしめる。その後は加熱雰囲気下でも形状や性能を長期に維持させる事が可能となり、本発明の耐熱性あるフィルム状電子機器用部材として提供できるものである。
特に含浸させる該熱可塑性樹脂は、該無機粉体高含有多孔体フィルムとして使用したポリオレフィン樹脂より高融点である事が重要であり、ポリアミド樹脂、ポリカーボネート樹脂、酢酸セルロース樹脂、液晶樹脂、メチルペンテン樹脂や熱可塑性エラストマー等少なくとも融点が50℃以上の差を有する樹脂である事が望ましい。
【0034】
即ち、本発明のフィルム状電子機器用部材は、具体的にはエポキシ樹脂が重合または縮合等を開始する前のプレポリマー或いは熱可塑性樹脂の溶液状態のものを該無機粉体高含有多孔体フィルムの多孔部に含浸せしめる事により容易に得られるものであり、電子機器類に使用する際には、貼付け、積層、捲き付け等の加工後、熱、電磁波照射等のエネルギー付加や硬化触媒の添加により溶液状の該エポキシ樹脂プレポリマーを硬化させ、或いは熱可塑性樹脂の溶剤を蒸発させ熱的に安定させた高強度のフィルム状電子機器用部材を発現させるものである。
例えば、超高分子量のポリエチレン樹脂を使用した無機粉体高含有多孔体フィルムを作成して熱硬化性樹脂プレポリマーの支持体とし、熱硬化樹脂としてエポキシ樹脂プレポリマーまたはエポキシ樹脂プレポリマーの溶媒にて希釈した該エポキシ樹脂プレポリマーと熱硬化触媒の混合溶液を該支持体の多孔部に含浸させる事により高強度で柔軟な取扱い性良好なフィルム状電子機器用部材の一つが得られる。
【0035】
この様にして作成された本発明のフィルム状電子機器用部材は、電子機器類や半導体基板等に容易に貼付け又は積層等の加工を行う事が出来、その後、加熱処理等をする事によりポリオレフィン樹脂例えば超高分子量ポリエチレン樹脂が主成分の一つである該無機粉体高含有多孔体フィルムが軟化し電子機器類や半導体基板等の凹凸部に沿って変形し密着、その後または同時にエポキシ樹脂或いは熱硬化性樹脂のプレポリマーの硬化が開始されてその形状を保ち強固に接着すると共に耐熱性を有する高強度の皮膜を形成するものである。
【0036】
又、同様にして熱硬化性樹脂の変わりに熱可塑性樹脂、ただし使用したポリオレフィン樹脂より溶融温度が50℃以上高い熱可塑性樹脂を含浸させたフィルム状電子機器用部材の場合は、熱可塑性樹脂の軟化点温度以上で比較的自由な形状に付型させる事が出来、透明性付与や高電気抵抗など期待される目的に応じた熱可塑性樹脂が選定できる。
そのため、該無機粉体高含有多孔体フィルムの空孔率が多いほど該プレポリマーの含浸される量を多くする事が可能となり含浸する樹脂の効果が多く期待できるが、該無機粉体高含有多孔体フィルムの体積に換算した無機粉体の占める割合が小さくなり、期待する無機粉体特性が得られにくくなる事もある。
【0037】
本発明のフィルム状電子機器用部材の支持体である該無機粉体高含有多孔体フィルムの空孔率は、含浸させるプレポリマー、即ちエポキシ樹脂或いは熱可塑性樹脂の種類によるため一概に設定出来ないが、無機粉体特性の効果を考慮して一般に該支持体の空孔率は5%以上40%以下が好ましく、10%以上30%以下がより好ましい。
該含浸させる樹脂または樹脂と無機粉体混合物を該支持体に付着させる量は多孔部への含浸量だけでなく該支持体表面に付着させて調節する事も可能であり、空孔率は比較的小さくてもアンカー効果等により該支持体に強固に保持され、期待する効果に問題ない。
【0038】
又、予め該支持体に使用した無機粉体と同種の該無機粉体を該プレポリマーに分散させて該支持体の多孔部に含浸或いは表面に付着させる場合も該無機粉体の特性効果をより効果的にさせることが出来る。
あるいは、該支持体に使用した無機粉体と異なる無機粉体Bをプレポリマーに分散させて該支持体の多孔部に含浸或いは表面に付着させる場合も、両導電性無機粉体の相乗効果により著しい効果を発現できる場合がある。
【0039】
本発明に使用する該無機粉体高含有多孔体フィルムに含浸させるプレポリマー或いは無機含有プレポリマーの量は、該無機粉体高含有多孔体フィルムの多孔部への充填可能な量及び該フィルム上には該フィルム厚さの50%以内の量が適当であり、これ以上の上塗りは性能上好ましくない。
本発明のフィルム状電子機器用部材の用途は、使用する樹脂類即ち熱可塑性樹脂及び熱硬化性樹脂の性能も無視できないが、寧ろ混入させる無機物即ち各種無機物の持つ特性を有効に効率よく利用する事が目的であり、その為には如何に大量に無機物を粉体として混入させ、且つフィルム状電子機器用部材としての高精度或いは形状の自由性や加工時の取扱性及び無機粉体を強固に維持継続させられるかがポイントである。
【0040】
本発明に使用される熱可塑性樹脂や熱硬化性樹脂は電子機器用部材として使用目的に応じたものを選択して使用できるが、例えば直接に半導体部品近くで使用される場合、従来の熱伝導体や絶縁体として多く使用されるシリコーン系熱硬化性樹脂は低分子シロキサンが接点不良等の不具合発生因として注意が必要でありその用途で十分に使い分ける注意が必要である。
一般に電子機器用の絶縁性熱硬化性樹脂としてエポキシ系樹脂が多く使用され、本発明においても取扱性やその特性においてエポキシ樹脂の使用を勧めるものである。
エポキシ樹脂の硬化条件は、硬化開始剤の種類や量または混入状態等により調整が可能であり、フィルム状電子機器用部材として使用する際の条件によって硬化状態を調整する事が出来る。
【0041】
実際には無機粉体高含有フィルム状多孔体にエポキシ樹脂のプレポリマーを含浸させ使用する場合、該プレポリマーと180〜200℃で硬化する硬化開始剤を予め混合させたものをプレポリマーの溶剤であるメチルエチルケトンで希釈した溶液に該無機粉体高含有フィルム状多孔体を浸漬して含浸させ、メチルエチルケトンを蒸発で取除き本発明のフィルム状電子機器用部材を得、しかる後マイクロチップ等の電子機器部品上に設置して昇温雰囲気に置いたところ200℃近辺で該プレポリマーが硬化して高濃度に無機粉体を含んだエポキシ樹脂により該電子機器部品を覆う事が出来た。
【0042】
この様に、本発明に使用される無機粉体高含有フィルム状多孔体は無機粉体と熱硬化性樹脂或いは熱可塑性樹脂のプレポリマーの支持材として有益であり、流動性あるプレポリマー状態は容易に取り扱う事が出来、特に熱硬化樹脂であるエポキシ樹脂は熱硬化処理時の昇温状態で該プレポリマーがより一層低粘度化する際も該支持体の空孔部に保持されるため流下する事も殆ど無く期待した性能を阻害せず、一体化した状態で均一な層を形成し硬化温度に達した時点でもエポキシ樹脂の均一皮膜が達成出来るものである。
そればかりでなく、当然にして該支持体は硬化前のエポキシ樹脂プレポリマー溶液より強度が高く電子機器部品類の突部に接しても突き破れることはなく、また従来技術の塗布加工の様に該エポキシ樹脂プレポリマーに気泡が混入する恐れのある工程が無いためピンホール発生も無く、欠点の極めて少ない耐熱性皮膜形成が可能となった。
【0043】
使用できる熱硬化性樹脂としてはエポキシ樹脂のみならず硬化前のプレポリマー溶液あるいはプレポリマーを溶剤で希釈した溶液で粘度が低く該支持体に含浸するものであれば使用が可能である。
この様に、該プレポリマーを電子機器部品類の凹凸に沿って熱硬化させ、均一な皮膜を形成するには該支持体を構成する樹脂としてポリオレフィン樹脂が重要であり、該ポリオレフィン樹脂の使用により熱硬化性樹脂のプレポリマーを加熱硬化させる際に、先に加熱により軟化させ電子機器部品の形状に沿って密着させ、その後該熱硬化性樹脂を熱硬化させ形状を維持させる。
【0044】
本発明に使用される、無機粉体高含有フィルム状多孔体のポリオレフィン樹脂は特にポリエチレン樹脂を使用する事が望ましく特に強度面からMv300万以上の超高分子量ポリエチレンの使用が好ましい。
本発明のフィルム状電子機器用部材にするための手法として、該無機粉体高含有フィルム状多孔体の多孔部にエポキシ樹脂等の熱硬化性樹脂或いは熱可塑性樹脂のプレポリマーを含浸させるタイミングはフィルム状電子機器用部材として使用する直前でも、或いは前もって含浸させておいても良く、樹脂の選択と相まって硬化方式、或いは使用目的により決められるものである。
【0045】
本発明に使用した語句及び測定方法を以下に記載する。
多孔体厚さ;測定 : 微小側厚計にて3点測定した平均値
側定圧 : 63.7±7.5kPa
測定端子径:5±0.05mm
雰囲気 : 23±3℃
多孔体空孔率;試料 : 10cm角を3点
測定法 : 重量測定 電子天秤にて
膜厚測定 膜厚測定にて
計算方法 :
多孔体の重量a(g)
多孔体の体積A(cm)=厚さ(イ)cm×面積(ロ)cm
多孔体中の無機粉体体積B(cm)=無機粉体重量b(g)/無機粉体密度(g/cm
無機粉体重量bは灰分測定による
多孔体中の樹脂体積 C(cm)=樹脂重量(a−b)(g)/樹脂密度(g/cm
空孔率D(%) = 100×[A−(B+C)]/A
【0046】
引張り強度 ;測定方法: JIS K−7127に準じる
灰分 ;試料の秤量
試料を電子天秤で約5g秤量(W1)する
るつぼの秤量
(1) 900℃×1Hr電気炉で焼成してデシケータにて1Hr冷却後重量測定する
(2) (1) の操作を繰り返し、るつぼの秤量差が0.001g以下の恒量(W2)になるまで繰り返す
試料の灰分測定
(1) 恒量となったるつぼにサンプル(無機含有多孔膜)を入れ800℃に保つた電気炉に入れる
(2) 電気炉で1Hr焼成後取り出しデシケータに入れ1Hr冷却する
(3) 冷却後電子天秤で秤量(W3)する
灰分算出方法
灰分X(%) = 100×[(W3−W2)/W1]
熱伝導率 ; 測定方式:細線加熱法(ホットワイヤ法)、薄膜用オープションソフト使用
測定器 :迅速熱伝導率計 QTM−500(京都電子工業社製)
測定試料:縦100mm×横50mm
【実施例】
【0047】
「実施例1」
無機粉体として窒化ホウ素(BN)比重1.3を90重量部、Mv600万「ハイゼックスミリオン630M」(品名 三井化学製)の粉末状ポリエチレン10重量部、流動パラフィン(松村石油研究所社製 モレスコホワイトP−350P)30重量部をミキサーにて均一混合させた混合原料を熱溶融押出し機に送り出し、200℃で加熱溶融混合し、熱溶融押出し機の出口に設けたTダイより厚さ約1000μmのシート状に押出して縦方向に2.5倍延伸し、25℃の流動パラフィンの溶剤で抽出して乾燥し空孔率73%、厚さ430μmの均一なフィルムを得た。その後180℃に加熱したロールにて該フィルムを圧延して厚さ148μmのBN粉体高含有フィルム状多孔体を得た。
得られた該BN粉体高含有フィルム状多孔体の空孔率は23%であり、灰分測定によってBN粉体90重量部、ポリエチレン10重量部を有する無機粉体高含有フィルム状多孔体薄膜である事を確認した。
【0048】
次に、プレポリマー状態であるエポキシ樹脂(ジャパンエポキシレジン社製 JER1001B80)と熱硬化剤触媒(ジャパンエポキシレジン社製 JERキュアW)をメチルエチルケトンで希釈して固形分換算30%低粘度溶液とし、直ちに該BN粉体高含有フィルム状多孔体を該低粘度溶液に十分に浸漬して該低粘度溶液を含浸させた後取り出し、溶剤を除去する事により、熱硬化性樹脂を含んだ無機粉体高含有フィルム状多孔体となり、本発明の一つである熱伝導性フィルム状電子機器用部材を得る事が出来、引張り強度は
113Kgf/cmで容易に破断せず支持フィルムも不要で高強度な取扱性良好な部材であった。
得られた該熱伝導性フィルム状電子機器用部材を平板に配置し、180℃雰囲気中で4時間放置して冷却後、直ちに熱伝導性を測定したところ4.52W/m・Kの高い熱伝導性を確認した。
【0049】
同じく、得られた該熱伝導性フィルム状電子機器用部材で平板上に配置した高さ5mmx縦10mmx横10mmのブロックを覆い、180℃雰囲気中で4時間放置して冷却後、該熱伝導性フィルム状電子機器用部材を観察したが該ブロックの角の膜厚に変化なく、破れ等の薄化部は観察できず、完全に該ブロックを覆っており優れた形状維持効果を証明した。
その後、硬化した該熱伝導性フィルム状電子機器用部材を再度150℃雰囲気中に30分間放置したが溶融等による形状の変形は確認されず高性能な該熱伝導性フィルム状電子機器用部材が得られる事を確認した。
【0050】
「実施例2」
無機粉体としてAl(比重3.8)90重量部、Mv600万の粉末状ポリエチレン(同実施例1)10重量部、流動パラフィン(同実施例1)30重量部をミキサーにて均一混合させた混合原料を熱溶融押出し機に送り出し200℃で加熱溶融混合し、熱溶融押出し機の出口に設けたTダイよりシート状に押出してロール圧延して厚さ950μmの均一なシートを得、その後、ポリエチレン樹脂溶融温度近辺での雰囲気中で縦横方向に各々2倍延伸してAl粉体高含有フィルム状多孔体薄膜を得た。
次に該薄膜を25℃の流動パラフィンの溶剤で抽出して乾燥し灰分測定でAl粉体90重量部、ポリエチレン10重量部を有する無機粉体高含有フィルム状多孔体、空孔率35%厚さ220μmの薄膜を作成した。
【0051】
プレポリマー状態であるエポキシ樹脂(同実施例1)10重量部とAl粉体90重量部及び熱硬化剤触媒(同実施例1)を混合した後、MEKで希釈して低粘度溶液とし、直ちに該Al粉体高含有フィルム状多孔体を該低粘度溶液に十分に浸漬して該低粘度溶液を含浸させた後取り出し、溶剤を除去する事により該多孔体の空隙部分及び表面に熱硬化性樹脂とAl粉体を混合した溶液が含浸された無機粉体高含有フィルム状多孔体となり、本発明の一つである高性能な絶縁性フィルム状電子機器用部材を得る事が出来、引張り強度は138Kgf/cmで容易に破断せず支持フィルムも不要で高強度な取扱性良好な部材が得られた。
得られた該絶縁性フィルム状電子機器用部材を凹凸を付型した金属板に挟み180℃雰囲気中で4時間加圧熱処理後冷却して金属板より取り出した該絶縁性フィルム状電子機器用部材は硬化し、フィルム状凹凸付型硬化物が得られた。
該フィルム状凹凸付型硬化物を新たに150℃雰囲気中で30分間放置したが、変形は生じず良好な絶縁性フィルム状電子機器用部材が得られる事を確認した。
【0052】
「実施例3」
熱可塑性樹脂である三酢酸セルロース(mp.305℃)をジクロロメタンで溶解させてドープ状としたコーティング剤を、実施例2で得られた厚さ220μm、空孔率35%のAl粉体高含有フィルム状多孔体にコーティングして該Al粉体高含有フィルム状多孔体の空孔部及び表面に含浸、直ちにジクロロメタンを蒸発させた。
この手法により三酢酸セルロースを含浸させた該Al粉体高含有フィルム状多孔体は、使用した素材が総て高絶縁体であり、且つ三酢酸セルロースが熱可塑性樹脂で高耐熱性である事から融点近くの300℃近辺で加熱成型加工可能な絶縁性フィルム状電子機器用部材を得る事が出来た。
【0053】
「実施例4」
実施例1で得られた空孔率73%、厚さ430μmのフィルムを180℃に加熱したロールで加圧して空孔率38%、膜厚190μmのBN粉体高含有フィルム状多孔体を得た。
別途プレポリマー状態であるエポキシ樹脂(同実施例1)40重量部と熱伝導性に優れた炭素繊維VGCF60重量部及び熱硬化剤触媒(同実施例1)を混合してメチルエチルケトンで希釈する事により得られた低粘度溶液を、該BN粉体高含有フィルム状多孔体にコーティングして付設させた後乾燥し、その後ロールにて加圧して本発明の一つである熱伝導性フィルム状電子機器用部材を得る事が出来た。
その後、実施例1と同様に該熱伝導性フィルム状電子機器用部材を平板に配置し、180℃雰囲気中で4時間放置して冷却後、直ちに熱伝導性を測定したところ6.22W/m・Kの高い熱伝導性を確認した。
【0054】
「比較例1」
熱硬化剤触媒を含んだプレポリマー状態のエポキシ樹脂(同実施例1)25重量部とメチルエチルケトン20重量部、およびAl粉体75重量部を混合して絶縁性封止材溶液とした。
該絶縁性封止材溶液を平板上に配置した高さ5mmx縦10mmx横10mmのブロック上に塗布して覆い、40℃で風乾後直ちに180℃雰囲気中で4時間放置して冷却後、該絶縁性封止材溶液を観察したところ、該ブロックの角及び側面の硬化した皮膜が平面に形成された皮膜より薄く、特にブロック角の頂点が著しく薄い事が観察され、当然にして該絶縁性封止材溶液が硬化するまでの間に流下したものによると考えられ、該ブロックに対するAlの絶縁効果は場所によりバラツキがあるものと考えられる。
【産業上の利用可能性】
【0055】
本発明のフィルム状電子機器用部材は、チップ部品内蔵基板の封止材、受動素子内蔵用基板、熱伝導性・放射フィルム、電磁波吸収フィルム、電気絶縁フィルム、エネルギー蓄積材関係等を含めた耐熱性を要求されるフィルム状機能性材料として使用する事が出来る。
【図面の簡単な説明】
【0056】
【図1】無機粉体高含有のフィルム状多孔体部の模式図。
【図2】フィルム状電子機器用部材の模式図。 樹脂類を無機粉体高含有のフィルム状多孔体部に含浸して一体化させたもの。
【図3】フィルム状電子機器用部材の模式図。 無機粉体を樹脂類に混合し、無機粉体高含有のフィルム状多孔体部に含浸し一体化させたもの。

【特許請求の範囲】
【請求項1】
ポリオレフィン樹脂1重量部以上20重量部以下と無機粉体80重量部以上99重量部以下からなるフィルム状多孔体に、該多孔体を構成するポリオレフィンとは異なる樹脂類を含浸させてなるフィルム状電子機器用部材。
【請求項2】
前記樹脂類が無機粉体を含有している請求項1記載のフィルム状電子機器用部材。
【請求項3】
前記樹脂類がエポキシ樹脂である請求項1又は2記載のフィルム状電子機器用部材。
【請求項4】
前記樹脂類が熱可塑性樹脂である請求項1又は2記載のフィルム状電子機器用部材。
【請求項5】
前記無機粉体が絶縁性無機粉体、導電性無機粉体、熱伝導性無機粉体、熱放射性無機粉体、高誘電性無機粉体、電磁波吸収無機粉体、及び電極活物質無機粉体からなる群より選ばれる少なくとも一種である請求項1〜4のいずれかに記載のフィルム状電子機器用部材。
【請求項6】
ポリオレフィン樹脂1重量部以上20重量部以下と、無機粉体80重量部以上99重量部以下と、該ポリオレフィン樹脂の溶剤とを含む混合物を溶融押出しした後、該溶剤を除去して無機粉体高含有フィルム状多孔体を得る工程、該多孔体の多孔部に、該ポリオレフィン樹脂以外の樹脂類の硬化前のプレポリマー又は溶剤溶液を含浸させる工程とを含むことを特徴とするフィルム状電子機器用部材の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−50383(P2008−50383A)
【公開日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2006−224992(P2006−224992)
【出願日】平成18年8月22日(2006.8.22)
【出願人】(303046314)旭化成ケミカルズ株式会社 (2,513)
【Fターム(参考)】