説明

フルオロアルキル(メタ)アクリレートコポリマーコーティング組成物

【課題】回路基板のような感応性基材を保護するためのバリヤコーティングとして、及び潤滑剤の移行を防ぐための抗移行コーティングとして有用な樹脂組成物、併せて組成物の硬化物としての膜を提供する。
【解決手段】フルオロアルキル(メタ)アクリレート/(メタ)アクリル酸コポリマーを含むコーティング組成物が開示されており、ここでは前記コポリマーは5重量%以下の(メタ)アクリル酸を含み、そして前記フルオロアルキル基は6以下の炭素原子を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、重合されたフルオロアルキル(メタ)アクリレートコーティング組成物に関する。特に、本発明は、フルオロアルキル(メタ)アクリレート/(メタ)アクリル酸コポリマーを含むコーティング組成物であって、フルオロアルキル基がペルフルオロアルキル基である場合、前記コポリマーが5重量%以下の(メタ)アクリル酸を含み、そして前記フルオロアルキル基が6個以下の炭素原子を有するコーティング組成物に関する。さらに特に、コーティング組成物は、コンピューターハードドライブ用抗スティクションコーティング、回路基板のような感応性基材を保護するためのバリヤコーティングとして、および潤滑剤の移行を防ぐための抗移行コーティングとして有用であることが開示されている。
【発明の概要】
【発明が解決しようとする課題】
【0002】
フルオロケミカル組成物は、例えば、撥油および/または撥水性組成物における用途、界面活性剤組成物における用途を含む様々な用途において、広範囲の使用を成し遂げた。いくつかの既知のフルオロケミカル組成物は、その環境で見られる生分解、熱分解、酸化、加水分解および光分解条件に曝された時、最終的にペルフルオロオクチル含有化合物まで分解する。ある種のペルフルオロオクチル含有化合物は、生きている生体系において生体蓄積する傾向があることが報告されており、この傾向は、いくつかのフルオロケミカル組成物に関する潜在的懸念として述べられている。例えば、米国特許第5,688,884号(Baker等)を参照のこと。結果として、より有効に生物系から排除しながら、所望の機能性、例えば、撥水および撥油性、界面活性剤特性等を提供するのに有効なフッ素含有組成物に関する願望がある。
【課題を解決するための手段】
【0003】
本発明は、フルオロアルキル(メタ)アクリレート/(メタ)アクリル酸コポリマーを含むコーティング組成物であって、前記コポリマーが5重量%以下、好ましくは2重量%以下の(メタ)アクリル酸を含み、そして前記フルオロアルキル基が6以下の炭素原子を有するコーティング組成物を提供する。本コーティング組成物は、回路基板コーティング、抗スティクションコーティング、抗移行コーティングのような用途における使用に低表面エネルギーコーティングを提供することにおいて、そしてミクロリソグラフィーペリクルに使用される膜およびコーティングとして、驚くべきほど有効である。
【0004】
フルオロアルキルアクリレート(フルオロアルキル基が6未満の炭素原子を有するもの)を含む本発明の組成物は、最後にフルオロアルキルカルボン酸(またはそれらの塩)まで分解し、これはより有効にペルフルオロオクチル含有化合物を排除すると考えられる。
【0005】
本コーティング組成物から調製されたコーティングの性能は、ペルフルオロオクチル基のような、より長鎖のペルフルオロアルキル基より、より低級のペルフルオロアルキル基が著しく効果が弱いという教示の点で驚くべきものである。例えば、ペルフルオロカルボン酸およびペルフルオロスルホン酸から誘導された界面活性剤は、鎖長の機能としての性能において、かなりの差異を示すことが実証されている。例えば、Organofluorine Chemicals and their Industrial Applications,R.E.Banks編,Ellis Horwood Ltd.(1979),p56;J.O.Hendrichs,Ind.Eng Chem.,45,1953,p103;M.K.BernettおよびW.A.Zisman,J.Phys.Chem.,63,1959,p1912を参照のこと。
【0006】
さらに、低表面エネルギーおよび結果として生じる、空気/液体界面に存在するフッ素化カルボン酸またはスルホン酸の単層をベースとするフッ素化ポリマーコーティングの高い接触角データを説明するために、様々なモデルが考案されている。このデータは、フルオロアルキル基(C715−)の7つの最も外側の炭素原子が完全にフッ素化された後にのみ、表面上の様々な液体の接触角(および従って、表面エネルギー)がペルフッ素化酸単層のものに接近したことを暗示している(N.O.Brace,J.Org.Chem.,27,1962,p4491およびW.A.Zisman,Advan.Chem,1964,p22を参照)。従って、ペルフルオロカルボン酸およびペルフルオロスルホン酸誘導体の既知の性能から、フルオロアルキル基含有フッ素化コーティング(例えば、フルオロアルキル(メタ)アクリレートを重合することにより製造されたコーティング)の性能を予想できること、およびフルオロポリマーコーティングの表面エネルギーはフルオロポリマーコーティングのフルオロアルキル基の鎖長に関連することが予期される。
【0007】
驚くべきことに、炭素原子6以下のフルオロアルキル基を有するフルオロアルキル(メタ)アクリレートを含むコーティングが、ペルフルオロオクチル基を有する(メタ)アクリレートのような、より長鎖の同族体のフルオロアルキル(メタ)アクリレートを含むコーティングに匹敵する表面エネルギーおよび接触角性能を示すことが見出された。
【0008】
本コーティング組成物は、付加的な利益を提供する。第一に、同じ重量基準で有効な低表面エネルギーコーティングとしてのそれらの有効性を維持しながら、より高い収率のため、重量に対してより低費用で、本発明のコーティング組成物に有用な、より短いフルオロアルキル基を含有する前駆体化合物を製造することができる。例えば、電気化学的フッ素化プロセスにおいて、ペルフルオロオクタノイルフッ化前駆体(31%)と比べて、ヘプタフルオロブチリルフッ化前駆体を60%の収率で調製することができる(Preparation,Properties,and Industrial Applications of Organofluorine Compounds,R.E.Banks編,Ellis Horwood Ltd (1982),p26)。さらに、短鎖カルボン酸(仮定された中間分解生成物)は、より長鎖の同族体より毒性が低く、より生体蓄積しない。
【発明を実施するための形態】
【0009】
フルオロアルキル(メタ)アクリレート/(メタ)アクリル酸コポリマー(以下、フルオロコポリマー)は1重量%未満のアクリル酸またはメタクリル酸を含有し、フルオロアルキル(メタ)アクリレートおよび(メタ)アクリル酸のランダムコポリマーであることが好ましい。少量の(メタ)アクリル酸をフルオロコポリマーに組み入れることは、コンピューターハードドライブまたは光学ペリクルフレームの金属表面のような極性基材へのコーティングの接着性を改善し、フルオロコポリマーの低表面エネルギー特性および屈折率の両方を最適化する。フルオロコポリマーにおける5重量%より高い(メタ)アクリル酸の存在は、表面エネルギーおよび屈折率の両方を過度に高め、しばしば、それを、光学的に透明であることが望まれる使用に容認できないものにする曇ったコーティングを生じる。さらに、高いレベルの(メタ)アクリル酸は、好ましい溶媒に必要な溶解性を欠くことが見出された。
【0010】
本明細書で使用される場合、(メタ)アクリレートはアクリレートおよびメタアクリレートの両方を指し、そして(メタ)アクリル酸はアクリル酸およびメタアクリル酸の両方を指す。
【0011】
フルオロコポリマーは次式
【化1】

(式中、a+bの合計は、化合物がポリマー性であるような数であり、
好ましくは、a+bは、数平均分子量Mnが5,000〜20,000であって、Mw/Mn=2〜3であるようなものであり、
1は水素原子またはメチル基であり、
2は水素原子であるか、または1〜約4の炭素原子を含有する直鎖または分枝鎖アルキル基であり、
Qは共有結合または有機二価架橋基であり、
fは、6未満の炭素を有する完全に、または部分的にフッ素化された末端基を含むフルオロ脂肪族基であり、
そしてXは水素原子または遊離ラジカル開始剤から誘導された基である)で表わされる。
【0012】
フルオロコポリマーの顕著な成分は、ここではRfと示されるフルオロアルキル基である。本発明のフッ素化化合物は、もう1つに近接した多数のペンダントRf基(例えば2〜約10)を含有し、化合物の全重量を基準にして重量で、好ましくは約5%〜約80%、より好ましくは約20%〜約65%、そして最も好ましくは約25%〜約55%のフッ素を含有し、フッ素の位置は本質的にRf基にある。Rfは安定、不活性、非極性、好ましくは飽和の一価部分であり、疎油性および疎水性の両方である。Rfは好ましくは、少なくとも約3の炭素原子、より好ましくは3〜約5の炭素原子、そして最も好ましくは3または4の炭素原子を含有する。Rfは直鎖または分枝鎖を含有し得る。Rfは好ましくは重合性オレフィン系不飽和を含まない。Rfが重量で約35%〜約78%のフッ素を含有することが好ましく、重量で約40%〜約78%のフッ素を含有することがより好ましい。Rf基の末端部分は、完全にフッ素化された末端基、例えば−CF3を含有するか、または例えばHCF2−のように部分的にフッ素化されていてもよい。
【0013】
好ましくは、(メタ)アクリレートは、CF3CHFCF2CH2OH、HCF2CF2CH2OH、C25CH(OH)CF(CF32、C37CH2OHおよびC49CH2OHから選択されるアルコールから誘導される。
【0014】
好ましくはQは次式−Cn2n−(式中、nは1〜4の整数である)で表わされる二価の架橋基であり、最も好ましくはQは−CH2−である。式に関して、aおよびbは、aおよびbが非整数値を表わすような数であるか、または存在する各モノマー単位の数の平均である。好ましくはaおよびbは、フルオロコポリマーが約5,000〜20,000の分子量Mnを有し、Mw/Mnが2〜3の範囲に及ぶような数である。
【0015】
フルオロケミカル(メタ)アクリレートおよびフルオロコポリマーは、米国特許第2,803,615号(Ahlbrecht等)および第2,841,573号(Ahlbrecht等)に記載の通りに調製することができ、この開示は本明細書に参照として組み入れられる。好ましいフルオロケミカル(メタ)アクリレートとしては、1,1−ジヒドロペルフルオロブチル(メタ)アクリレート、1,1−ジヒドロペンタフルオロプロピル(メタ)アクリレートおよびヘキサフルオロイソプロピル(メタ)アクリレートが挙げられる。
【0016】
所望の場合、コーティング組成物はさらに溶媒を含んでよい。フッ素化および非フッ素化溶媒の両方を含む従来の溶媒のいずれであってもよいが、非オゾン破壊性、不燃性および速乾性である溶媒が選択されることが好ましい。フッ素化溶媒が好ましい。フッ素化溶媒の中でも、ペルフルオロカーボンの長い大気寿命のため、ペルフッ素化溶媒より部分的にフッ素化された溶媒が好ましい。部分的にフッ素化された溶媒としては、ヒドロクロロフルオロカーボン(HCFC)、ヒドロフルオロカーボン(HFC)およびヒドロフルオロエーテル(HFE)が挙げられる。
【0017】
用語「ヒドロクロロフルオロカーボン」は、炭素、水素、フッ素および塩素の元素のみからなる化合物を意味する。有用なHCFCとしては、CF3CHCl2、CH3CCl2F、CF3CF2CHCl2およびCClF2CF2CHClFが挙げられる。
【0018】
用語「ヒドロフルオロカーボン」は、炭素、水素およびフッ素の元素のみからなる化合物を意味する。HFCの炭素骨格鎖は直鎖、分枝鎖、環式またはこれらの混合であり得、そして3〜8の炭素原子を含有し得る。有用なHFCとしては、炭素に結合した水素およびフッ素原子の全数を基準として約5モル%より多いフッ素置換または95モル%未満のフッ素置換を有する化合物が挙げられ、かかる化合物としては、CF3CFHCFHCF2CF3、C511H、C613H、CF3CH2CF2CH3、CF3CF2CH2CH2F、CHF2CF2CF2CHF2、1,2−ジヒドロペルフルオロシクロペンタンおよび1,1,2−トリヒドロペルフルオロシクロペンタンが挙げられる。有用なHFCは、E.I.duPont de Nemours & Co.から入手可能なVERTRELTMおよび日本ゼオン株式会社(日本、東京)から入手可能なZEORORA−HTMで入手可能である。
【0019】
用語「ヒドロフルオロエーテル」は、本発明に関して、炭素、水素、フッ素および少なくとも1つのエーテル酸素を含有し、そして塩素、臭素およびヨウ素を含まない化合物を意味する。本発明で有用なヒドロフルオロエーテルは典型的に周囲温度および圧力(約20℃および760トール)で液体であり、非オゾン破壊性であり、不燃性であり得る。不燃性ヒドロフルオロエーテルは、本発明の溶媒または分散媒体として好ましい。本発明に関して、用語「不燃性ヒドロフルオロエーテル」は、ASTM D56−87により行われる密閉式引火点試験で試験された時に引火点を示さないヒドロフルオロエーテルを意味する。
【0020】
1つの有用な種類のヒドロフルオロエーテルとしては、本明細書に参照として組み入れられる米国特許第5,658,962号(Moore等)に記載のもの、およびMarchionni等により、「Hydrofluoropolyethers」、Journal of Fluorine Chemistry 95(1999)、pp.41−50に記載されたものであって、式I:
X−[Rf’−O]yR’’H (I)
(式中、XはF、H、または任意にオメガ位でヒドロ置換された1〜3の炭素原子を含有するペルフルオロアルキル基のいずれかであり、
各Rf’は、独立して−CF2−、−C24−および−C36−からなる群から選択され、ここではXがペルフッ素化されている場合、Xおよび少なくとも一部の隣接Rf’基は一緒になってペルフルオロシクロアルキル基を形成することができ、
R’’は1〜3の炭素原子を有する二価の有機基であり、ペルフッ素化、未フッ素化または部分的にフッ素化されていてもよく、そして
yは1〜7の整数であり、
ここではXがFである場合、R’’は少なくとも1つのF原子を含有し、そして好ましくは炭素原子の全数は約3〜約8である)で示される一般構造式により記載され得るもののようなアルファ−、ベータ−およびオメガ−置換ヒドロフルオロアルキルエーテルが挙げられる。
【0021】
本発明において有用な式VIIIで記載される代表的な化合物としては、限定されないが、次の化合物:
49OC24
HC36OC36
HC36OCH3
511OC24
613OCF2
37OCH2
HCF2OCF2OCF2
HCF2OCF2OC24OCF2
HCF2OC24OC24OCF2
37O[CF(CF3)CF2O]pCF(CF3)H(式中、p=0〜1)
HCF2OC24OCF2
HCF2OCF2OCF2OCF2
HCF2OC24OC24OCF2
c−C611OCF2
c−C611OCH2
が挙げられる。
【0022】
好ましい不燃性の、非分離型(すなわち、エーテル酸素原子の両側にフッ素原子を有する)HFEとしては、C49OC24H、C613OCF2H、HC36OC36H、C37OCH2F、HCF2OCF2OCF2H、HCF2OC24OCF2H、HCF2OCF2OCF2OCF2H、HCF2OCF2CF2OCF2H、HC36OCH3、HCF2OCF2OC24OCF2Hおよびそれらの混合物が挙げられる。非分離型HFEは、Ausimont Corp.,Milano,ItalyからGALDEN HTMで入手可能である。
【0023】
特に好ましいヒドロフルオロエーテルはペルフルオロアルキルアルキルエーテルであり、そしてより好ましくは次式II:
(R−O)x−R’f (II)
(式中、xは約1または2であり、Rは、約1〜4の炭素原子を有するアルキル基を表わし、そしてR’fはフルオロ脂肪族基を表わす)に相当するヒドロフルオロエーテルである。
【0024】
R’fは好ましくは約2〜9の炭素原子を含有し、xが1である場合、好ましくは直鎖または分枝鎖ペルフルオロアルキル基、ペルフルオロシクロアルキル基含有ペルフルオロアルキル基、ペルフルオロシクロアルキル基、1以上のカテナリー原子を有する直鎖または分枝鎖ペルフルオロアルキル基、1以上のカテナリーヘテロ原子(例えば、N、OまたはS)を有するペルフルオロシクロアルキル基含有ペルフルオロアルキル基、および1以上のカテナリーヘテロ原子を有するペルフルオロシクロアルキル基からなる群から選択され、xが2である場合、好ましくは直鎖または分枝鎖ペルフルオロアルキレン基、ペルフルオロシクロアルキル基含有ペルフルオロアルキレン基、ペルフルオロシクロアルキレン基、1以上のカテナリー原子を有する直鎖または分枝鎖ペルフルオロアルキレン基、1以上のカテナリーヘテロ原子を有するペルフルオロシクロアルキル基含有ペルフルオロアルキレン基、および1以上のカテナリーヘテロ原子を有するペルフルオロシクロアルキレン基からなる群から選択される。
【0025】
より好ましくは、xは1であり、化合物は通常、液体である。R’fは、3〜約9の炭素原子を有する直鎖または分枝鎖ペルフルオロアルキル基、5〜約7の炭素原子を有するペルフルオロシクロアルキル含有ペルフルオロアルキル基、および5〜約6の炭素原子を有するペルフルオロシクロアルキル基からなる群から選択され、Rはメチルまたはエチル基であり、R’fは1以上のカテナリー酸素または窒素ヘテロ原子を含有することができ、そしてR’fにおける炭素原子数とRにおける炭素原子数の合計は約4以上である。かかるヒドロフルオロエーテルは、不燃性であり、オゾン破壊性がなく、地球温暖化の可能性が低く、コーティングからの蒸発が容易であり、そしてヒドロフルオロエーテルにおけるフルオロコポリマーの溶解性のため、本発明のコーティング組成物において特に好ましい。他の重合媒体溶媒の除去の必要性を避けるために、フルオロコポリマーをヒドロフルオロエーテルにおいて調製することがさらに好ましい。
【0026】
本発明のプロセスおよび組成物での使用に適切なヒドロフルオロエーテルの代表例としては、次の化合物:n−C49OCH3、n−C49OCH2CH3、CF3CF(CF3)CF2OCH3、CF3CF(CF3)CF2OC25、C817OCH3、CH3O−(CF24−OCH3、C511OC25、C37OCH3、CF3OC24OC25、C37OCF(CF3)CF2OCH3、(CF32CFOCH3、C49OC24OC2FOC25、C49O(CF23OCH3および1,1−ジメトキシペルフルオロシクロヘキサンが挙げられる。
【0027】
本発明の組成物は、所望の潤滑領域を超えて潤滑剤が拡散するのを防ぐための抗移行コーティングとして有用である。典型的に、接触部分で使用される潤滑剤は、潤滑剤が拡散するのを防ぐために閉じ込められなければならないか、または包含されなければならない。望ましくない潤滑剤の拡散または移行は典型的に潤滑剤を枯渇させ、装置の重大な障害を生じさせる。典型的に15ダイン/cm未満の臨界表面張力を有する本発明のコーティングは、潤滑剤が抗移行コーティングを湿潤させないように、これらの値より高い臨界表面張力を有する潤滑剤の移動を防ぐかまたは遅らせる。バリアコーティングは潤滑領域に隣接し、潤滑剤の移行を防ぐのに十分な大きさおよび形状のものであり、そして潤滑剤を包囲していてよく、従って所望の潤滑領域にそれを包含する。例えば、潤滑表面に接触する多量の潤滑剤を囲んでいる環の形状でフルオロコポリマーをコートすることができる。シリコーン、石油およびグリース、脂肪族ジエステル油およびポリエーテル油を含むいずれの適切な潤滑剤も使用されてよい。インクおよび融剤のような移行を仮定する他の流体を包含するために、抗移行コーティングを使用してもよい。
【0028】
従って、本発明は、摩擦接触の領域を超えて潤滑剤が拡散するのを防ぐように、配置された摩擦接触の領域付近に予め定められたパターンで本発明のコーティングを提供することにより、機械的集合の部分間の摩擦接触の領域に潤滑剤を含有するための方法を提供する。モーター、ギア、アクセルまたは潤滑剤の移動を防ぐことが望まれるもの全てを含む、摩擦接触に部品を有する適切な機械的集合のいずれかにより、抗移行コーティングを使用することができる。
【0029】
汚染物質から隔離するため、および電子的性能を維持するために、印刷回路基板上の電子部品を本コーティング組成物でコートしてよいことが見出された。かかるコーティングは熱的および化学的に安定であり、大気の湿分から回路基板を保護する。
【0030】
湿分、泥、油、ほこりまたは他の汚染物質から部品を保護するために、電子部品が取付けられる前に回路基板をコートしてもよいが、一般的にコーティングの前に部品を取付ける。有用な電子部品としては、回路チップ、トランジスター、抵抗器、蓄電器、サーミスター、サイリスタ、ダイオード等が挙げられる。電子部品は一般的に、ハンダ付け、溶接、超音波および加熱により2つの表面を摩擦接触に接合する他の方法のようないずれかの適切な手段を使用して、電子的連結で回路に取付けられる。
【0031】
従って、本発明は、回路基板の少なくとも一部に本発明のコーティング組成物を適用すること、およびコーティング組成物に存在するいずれの溶媒も蒸発することによる回路基板上に保護コーティングを形成する方法を提供する。本発明はさらに、本発明のコーティング組成物を含む保護コーティングを有する回路基板を提供する。
【0032】
本発明は、磁気記録ヘッドおよびマイクロモーター、マイクロギアおよび可変鏡装置のようなミクロ機械的装置用の抗スティクションコーティングも提供する。スティクションは、磁気ディスクのような表面からの並進運動に抵抗する、磁気記録ヘッドのような不動の装置の傾向である。高いスティクションは、始動時における装置の機械的故障を導く可能性がある。
【0033】
磁気ディスク装置において、空気力学的にディスク表面上に磁気トランスデューサーを飛行させるためにスライダーを使用する。スライダーとディスク表面の間の所望の圧力を発現してスライダーに所望の飛行特性を達成するために、スライダーは圧力領域を形成する。空気軸受スライダーに関する1つの問題は、媒体がスピンを停止し、スライダーがディスク上に静止する時、ウィッキングにより、ディスク表面上の液体潤滑剤がスライダーに移動し得るということである。このウィッキングは、ほこりのような他の破片の蓄積とともに、スライダーとディスク間のスティクションを増加させ、従って、スライダーを浮上させるために追加の力を必要とする。加えて、スライダーの表面にウィッキングする潤滑剤およびその上にたまるいずれの破片も、スライダーの飛行特性に悪影響を及ぼし得る。
【0034】
本コーティング組成物の薄膜をスライダーの表面に適用することによって、これらの問題の多くを克服することができる。得られたコーティングは非常に低い表面エネルギーを有し、スライダー表面へのディスク潤滑剤のウィッキングに抵抗し、さらに、ほこり粒子のような他の破片の蓄積に抵抗する。スライダーをコーティング組成物中に浸漬すること、および(必要であれば)付着させたコーティング組成物を硬化して、スライダー上に一般的に厚さ15オングストローム未満の薄膜を形成することのようないずれかの従来の手段により、薄膜をスライダーに適用することができる。従って、本発明は、磁気媒体ディスクに使用するための改良されたスライダーであって、本発明のコーティング組成物の薄膜を有するスライダーを提供する。
【0035】
本発明のコーティング組成物は、ミクロリソグラフィーに使用されるペリクルを製造するために使用されてもよい。半導体チップ産業において、マスクを光源に暴露することによりフォトマスクから基材へのパターン転写が完成することは既知である。パターン転写プロセス(フォトリソグラフィックプロセス)の間に、感光性物質により処理された基材上にフォトマスク上のパターンを投影する。これは結果として、基材に転写されたマスクパターンを生じる。あいにく、マスクの表面上の異質物質はいずれも基材上に再現され、従って、適切なパターン転写を妨害する。
【0036】
マスク表面の汚染を除去するために、ペリクルと呼ばれるフレーム付きの薄膜を、ペリクル膜がマスクに対して平面に伸長するようにマスク表面上に取付け、そしてペリクルフレームを用いてマスク表面から予め定められた距離間隔で置く。通常、マスク上に着くいずれの汚染も、代わりにペリクル膜上に落ちる。ペリクル上の汚染は一般的に基材上に投影されない。汚染をペリクル表面から除去することができるか、またはパターン転写の間に焦点外となるように調整することができる。
【0037】
ペリクルは、入射光の領域において非常に透明でなければならず、厳しい加工基準に適応するために清浄でなければならない。膜の表面に渡って均一な張力を維持するために、ペリクル膜はフレームに完全に取付けられるべきである。一般的に、膜はフレームに接着されて固定される。一般的に、ペリクル膜は厚さ5マイクロメートル未満であり、基材の直径に依存して予め定められた領域のものである。
【0038】
近年、ますます小さいサイズの装置を製造するために、フォトリソグラフィーでは300ナノメートル未満の波長を有するUV光を使用している。いわゆる深UVで使用されるペリクルは一般的に、248ナノメートルのような波長でペリクル膜を通して最大透過を得るために、より薄く、通常2マイクロメートル未満、しばしば1.2マイクロメートル未満である。
【0039】
本発明は、当該フルオロコポリマーの膜を含む、フォトリソグラフィーに使用されるペリクルであって、前記膜がフレームに固定されたペリクルを提供する。一般的に、フルオロコポリマー膜は、フレームに接着されて固定されている。適切な接着剤は、例えば米国特許第5,772,817号(Yen等)に記載されており、これは本明細書に参照として組み入れられる。一般的に、ペリクル膜は、5マイクロメートル未満、好ましくは1.2マイクロメートル未満の本フルオロコポリマー膜を含む。所望である場合、ペリクル膜は、ニトロセルロースまたは他のセルロース系ポリマーのような従来のペリクル膜上にフルオロコポリマーのコーティングを含んでよい。ブローンフィルムのようないずれかの従来技術により、または、そのまま(ニートで)もしくは適切な溶媒からキャスティングすることにより、フルオロコポリマーの独立膜を調製することができる。ペリクルがセルロース系膜上のフルオロコポリマーのコーティングを含む場合、フルオロコポリマーの溶液を既存のセルロース系膜上にコーティングすることにより、または2つの膜の層の共押出により、調製することもできる。
【0040】
フルオロコポリマーの低表面エネルギーは、ブラシ掛けまたは送風により、ほこりのような汚染物質をペリクルから除去し易くする。加えて、フルオロコポリマーは、ペリクル表面に微粒子汚染物質を引きつけて保持する静電荷の蓄積を受け難い。
【0041】
本ペリクルは、フルオロコポリマーの低い屈折率のため、他の利益にも恵まれている。1つの屈折率の媒体からもう1つのものへと光が通過する時、いくらかの表面反射が生じ、これは透過率の損失を生じる。空気は1.0002の屈折率を有する(Handbook of Chemistry and Physics,第56版,CRC Press,1975,E−224)。従来のセルロース系ポリマーの屈折率は1.48〜1.5および1.5〜1.51である(Polymer Handbook,第4版、編集者、J.Brandrup,E.H.Immergut,E.A.Grulke、John Wiley and Sons,1999,pVI/578)。本発明のフルオロコポリマーの屈折率は一般的に,より低く、典型的に1.339〜1.437の範囲である。
【0042】
屈折率n1およびn2の2つの非吸収媒体間の界面の反射率は、方程式R=[(n1−n2)/(n1+n2)]2により与えられる。
【0043】
フラクション(1−R)2のみの入射光が、いずれの反射も受けずにペリクルを透過する(Handbook of Optics,Vol1,Michael Bass,編集者,McGraw Hill,1995,p42.19)。ペリクルを透過する光のみが、エッチング後に回路となるマスクポリマーの重合を開始できる。ペリクル上に低屈折率フルオロコポリマーの反射防止コーティングを使用することにより、マスク上の光入射の反射が減少し、そして透過率が増加する。
【0044】
いずれの所望の用途に関しても、コーティング組成物はそのままコートされてよく、またはフルオロコポリマーが適切な程度まで溶解されているいずれかの適切な溶媒から実現されてもよい。かかる溶媒は、(回路基板または取付け部品のような)基材に有害な影響を及ぼさず、導電性残渣のような有害な残渣を残さない。典型的に、コーティング組成物は約50重量%までのフルオロコポリマーを含み得るが、組成物が20重量%以下のフルオロコポリマーを含むことが好ましく、そして10重量%以下のフルオロコポリマーを含むことが最も好ましい。得られたコーティングは一般的に、用途に依存して厚さ約10ミルであるが、より厚いコーティングを調製してもよい。これらに限定されないが、刷毛塗り、浸漬、吹付け等を含む、当該技術で既知のいずれかの適切なコーティング手段を使用して、基材にコーティング組成物を被着することができる。溶媒が存在する場合、所望により加熱により助けられる蒸発により、組成物を硬化することができるか、または乾燥することができる。
【実施例】
【0045】
実施例
次の非限定的な例の参照により、本発明をさらに説明する。特記されない限り、全ての部、パーセントおよび比率は重量によるものである。
【0046】
フルオロコポリマー1:2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(CF3CF2CF2CH2OC(O)C(CH3)=CH2)/アクリル酸コポリマー(99.5/0.5)
9.95gの2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(FBMA)、0.05gののアクリル酸、0.3gのLUPEROXTM26−M60(Elf Atochem North America,Philadelphia,PAから入手可能)および57gのNOVECTMHFE−7100 Engineering Fluid(メチルペルフルオロブチルエーテル、3M Co.,St.Paul,MNから入手可能)を反応容器に加え、乾燥窒素でパージした。容器を密封し、混合物を80℃で18時間、撹拌下で加熱した。18時間後、容器を冷却し、開封した。次いで、4.1gの混合物を容器から取り出し、125℃に設定されたオーブン中で30分間、小型パン中で加熱し、0.62gの透明な硬質フルオロポリマーを得た。
【0047】
FBMAを次のように調製した。オーバーヘッドスターラー、熱電対および添加漏斗を備えた3リットルフラスコに、1260gのヘプタフルオロブタノール、20gの95%硫酸、1.2gのフェノチアジンおよび1gの4−メトキシフェノール(MEHQ)を加えた。反応混合物を55℃まで加熱し、次いで946gのメタクリル酸無水物の添加を始めた。反応混合物は65℃まで発熱するので、反応混合物の温度が65℃に保たれるように添加速度を調整した。メタクリル酸無水物の添加は2.5時間で完了した。さらに3時間、反応混合物を65℃で加熱し、次いで室温まで冷却した。1200mLの脱イオン水を添加し、得られた反応混合物を30分間撹拌した。混合物を分相させ、半透明紫色のフルオロケミカル下相を保存した。次いで、下相を、416gの炭酸ナトリウム、50gの水酸化ナトリウムおよび1500gの水の混合物とともに30分間撹拌した。再度、混合物を分相させ、下相のフルオロケミカル相を保存し、1500gアリコットの水で2回洗浄して1531gの粗製FBMAを得た。蒸留ヘッドおよび熱電対を備えた3リットルフラスコに粗製メタクリレートを添加した。さらなる重合開始剤(3gのフェノチアジンおよび0.7gのMEHQ)を蒸留フラスコに添加した。176トール、61〜79℃のヘッド温度でアクリレートを蒸留し、138gのプレカット蒸留を得た。次いで、プレカットを79〜85℃および161トールで蒸留し、全量1274gの精製FBMAを得た。
【0048】
フルオロコポリマー2:2,2,3,4,4,4−ヘキサフルオロブチルアクリレート(CF3CFHCF2CH2OC(O)CH=CH2)/アクリル酸コポリマー(98/2)
オーバーヘッドスターラー、熱電対および添加漏斗を備えたフラスコに、175gのNOVECTMHFE−7200 Engineering Fluid(エチルペルフルオロブチルエーテル、3M Co.から入手可能)に溶解した30.3g(0.121モル)の2,2,3,4,4,4−ヘキサフルオロブチルアクリレート(PCRから入手可能)および0.57g(0.0079モル)のアクリル酸の溶液を加えた。次いで、LUPEROXTM26−M50開始剤(1.23gの鉱泉中50%溶液、Elf Atochemから入手可能)を添加し、得られた溶液に乾燥窒素をパージした。次いで、乾燥窒素下で溶液を16時間、73℃で加熱し、その間にポリマーは沈殿した。HFE−7200をデカントし、ポリマーを2時間、周囲実験室条件で空気乾燥させた。ポリマーはHFE−7200およびHFE−7100中に不溶性であったが、ポリマーはNOVECTMHFE−71IPA Engineering Fluid(HFE−7100およびイソプロパノールの95/5混合物、3M Co.から入手可能)に容易に溶解し、7.9%溶液を形成した。
【0049】
フルオロコポリマー3:2,2,3,3−テトラフルオロプロピルメタクリレート(HCF2CF2CH2OC(O)C(CH3)=CH2)/メタクリル酸コポリマー(97.5/2.5)
オーバーヘッドスターラー、熱電対および添加漏斗を備えたフラスコに、145gのHFE−7200に溶解した25g(0.125モル)の2,2,3,3−テトラフルオロプロピルメタクリレート(本質的に実施例1に記載のものと同一手順を用いて、HC24CH2OHとメタクリル酸無水物との反応により調製した)および0.64g(0.0074モル)のメタクリル酸の溶液を加えた。LUPEROXTM26−M50開始剤(1.02gの鉱泉中50%溶液)を添加し、実施例3に記載の通り、重合を行った。ポリマーは重合プロセスの間に完全に沈殿し、ろ過し、空気乾燥させ、次いでMIBKに溶解し、10%溶液を得た。このポリマーに関するガラス転移温度(Tg)は68℃であった。
【0050】
フルオロコポリマー4:2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(CF3CF2CF2CH2OC(O)C(CH3)=CH2)/アクリル酸コポリマー(99/1)
19.8gのヘプタフルオロブチルメタクリレート(フルオロコポリマー1に関して記載された通りに製造した)、0.2gのアクリル酸、0.4gのLUPEROXTM26M60開始剤および113gのNOVECTMHFE−7100 Engineering Fluidを容器に加え、そして容器およびその内容物を乾燥窒素でパージした。容器を密封し、そして内容物を60℃で18時間、撹拌下で加熱した。18時間後、容器を冷却し、開封した。4.2gの物質を取り出し、125℃のオーブン中で30分間、小型パン中で加熱し、0.57gの透明な硬質フルオロポリマーを得た。
【0051】
フルオロコポリマー5:1,1−ジヒドロペルフルオロシクロヘキシルメチルメタクリレート(c−C611CH2OC(O)C(CH3)=CH2)/アクリル酸コポリマー(99/1)
最初に、1,1−ジヒドロペルフルオロシクロヘキシルメチルメタクリレートを調製した。オーバーヘッドスターラーおよび滴下漏斗を備えた3リットル丸底フラスコに、840gのトリフルオロ酢酸無水物(Aldrich Chemical Co.,Milwaukee,WIから入手可能)を加えた。フラスコおよびその内容物を氷水浴(<5℃)中に浸した。380gのメタクリル酸(Aldrich Chemical Co.から入手可能)を10分間かけてフラスコに添加した。次いで、反応混合物を約30分間、氷水温度で撹拌した。冷却された反応混合物に、次いで、1000gの1,1−ジヒドロペルフルオロシクロヘキシルメチルアルコール(このアルコールを米国特許第2,666,797号に記載された一般手順により調製することができる)を加えた。得られた混合物を約30分間、氷水温度で、続いて約16時間、室温で撹拌した。
【0052】
<5℃に冷却された1リットルの水に反応混合物を添加すること(すなわち、氷水浴に浸すこと)により、粗製フルオロケミカルメタクリレートモノマーを単離した。得られた二相(水性および有機性)を分離した。有機相を500mLアリコットの脱イオン水で2回、500mLアリコットの0.2N水酸化ナトリウムで2回、そして最後に500mLアリコットの飽和塩化ナトリウム水溶液で洗浄した。洗浄された有機相を無水硫酸マグネシウム上で乾燥させた。
【0053】
固定相としてシリカゲル(Keiselgela60,Merck,Poole,Englandから入手可能)および溶出剤として30℃〜40℃石油エーテル中5%ジエチルエーテルを使用してカラムクロマトグラフィーにより、粗製フッ素化モノマー生成物を含有する乾燥残渣を精製した。減圧下で溶媒を除去し、粗製フッ素化モノマー残渣を9トールで真空蒸留し、純粋な1,1−ジヒドロペルフルオロシクロヘキシルメチルメタクリレートを分離した。これは使用前、5℃に貯蔵された。
【0054】
2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレートの代わりに等量の1,1−ジヒドロペルフルオロシクロヘキシルメチルメタクリレートを使用したことを除き、本質的にフルオロコポリマー1に関して記載されたものと同一の手順を使用して、1,1−ジヒドロペルフルオロシクロヘキシルメチルメタクリレート/アクリル酸の99/1コポリマーを調製した。
【0055】
フルオロコポリマー6:2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(CF3CF2CF2CH2OC(O)CH=CH2)/アクリル酸コポリマー(90/10)
本質的に、フルオロコポリマー1の調製に関して記載された通りの一般手順を使用して、フルオロコポリマー6を調製した。この場合、0.25のVAZOTM64開始剤(2,2’−アゾビスイソブチロニトリル、E.I duPont de Nemours & Co.,Wilmington,DEから入手可能)を使用して、反応混合物を65℃まで17時間加熱することにより、45g(0.168モル)の2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(FBMA)を50mLのメチルエチルケトン中5g(0.069モル)のアクリル酸と共重合した。得られたポリマーは71.3℃のガラス転移温度(Tg)を有した。
【0056】
フルオロコポリマー7:2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(CF3CF2CF2CH2OC(O)C(CH3)=CH2)/メタクリル酸コポリマー(90/10)
本質的に、米国特許第4,849,291号の実施例1に記載された通りの一般手順を使用して、フルオロコポリマー7を調製した。この場合、0.25のVAZOTM64開始剤を使用して、反応混合物を65℃まで17時間加熱することにより、45g(0.168モル)の2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレートを50mLのメチルエチルケトン中5g(0.058モル)のメタクリル酸と共重合した。得られたポリマーは109.1℃のガラス転移温度(Tg)を有した。
【0057】
フルオロコポリマー8:2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(CF3CF2CF2CH2OC(O)C(CH3)=CH2)/アクリル酸コポリマー(99.95/0.05、高分子量)
1120.0gの2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(FBMA)、5.6gのアクリル酸(AA)、45.0gのLUPEROXTM26M50開始剤(開始剤とフルオロケミカルモノマーの比率0.04を与えるように)および6400gのHFE−7100を2ガル(7.6L)Parr反応容器中に入れ、乾燥窒素を加圧することにより酸素をパージし、続いてHFE−7100の蒸気圧まで数回減圧した。容器を密封し、そして混合物を80℃で23時間、撹拌下で加熱し、反応を完了し、15%溶液を提供した。
【0058】
ゲル透過クロマトグラフィー(gpc)を使用して、得られたポリマーの分子量分布を測定した。この分布から、数平均分子量(Mn)、重量平均分子量(Mw)および平均分子量(Mz)を決定し、Mw/Mn比、代表分子量多分散性を計算した。それらの値は以下の通りである。
n=10400
w=22300
z=35400
w/Mn=2.1
【0059】
フルオロコポリマー9:2,2,3,3,4,4,4−ヘプタフルオロブチルメタクリレート(CF3CF2CF2CH2OC(O)C(CH3)=CH2)/アクリル酸コポリマー(99.95/0.05、低分子量)
フルオロコポリマー9に関しては、使用した反応物の量が805.1gのFBMA、4.0gのAA、56.4gのLUPEROXTM26M50開始剤(開始剤とフルオロケミカルモノマーの比率0.07を与えるように)および6400gのHFE−7100であることを除き、本質的にフルオロコポリマー8の調製におけるものと同一の手順に従った。
【0060】
フルオロコポリマー10と同一の組成を有するが、より低い分子量およびより高い多分散性を有する、得られたフルオロコポリマーに関して記録された分子量情報を以下に示す。
n=6180
w=16700
z=35100
w/Mn=2.7
【0061】
接触角測定試験手順
接触角測定に関する優れた参照は「Measurement of Interfacial Tension and Surface Tension−General Review for Practical Man」,GIT Fachzeitschrift fur Das Laboratorium,24(1980),pp.642−648および734−742,G−I−T Verlag Ernst Giebeler,Darmstadtである。
【0062】
Kruss Processor Tensiometer,Model K−12(Kruss KmbH,Hamburg,Germanyから入手可能)で、Wilhelmy Plate Methodを使用して、進行および後退接触角測定を行った。
【0063】
進行接触角測定に関しては、試料を懸濁し、プラットフォーム上方から、n−ヘキサデカンまたは水のいずれかをプラットフォーム上のリザーバーに充填し、そして試料が完全に浸水するまで、懸濁試料方向にプラットフォームを上げた。試料が浸水した時、器具から進行接触角を計算した。
【0064】
後退接触角測定に関しては、進行接触角測定と逆の手順に従い、すなわち、懸濁試料を最初にn−ヘキサデカンまたは水に浸水させ、次いで、試料が徐々に試験液から引出されるように、プラットフォームを下げた。試料が引出された時、器具から後退接触角を計算した。
【0065】
Rame−Hart,Mountain Lakes,NJから入手可能なRame−Hart Model 100−00115角度計を使用して、静的接触角を測定した。
【0066】
実施例1〜2および比較例C1
実施例1および2において、フルオロコポリマー1および2の本発明の両フルオロコポリマーを、撥水性に関して3M FLUORADTMFC−732 Fluorochemical Coating(比較例C1)のフルオロコポリマーと比較した。FC−732は、メチルペルフルオロブチルエーテル(3M Company,St.Paul,MNからNOVELTMHFE−7100エンジニアリング流体として入手可能)中99/1のC715CH2OC(O)C(CH3)=CH2/CH2=CHC(O)OHのコポリマーの2%固体である。この試験を行うために、各フルオロコポリマー溶液をHFE−7100で0.2%固体溶液まで希釈し、各試験ウエハーを各希釈フルオロコポリマー試験溶液中に浸し、各ウエハーを周囲条件下で乾燥させ、そしてn−ヘキサデカンにより、および脱イオン水を使用して接触角試験手順に従って、進行(Adv)、静的(Stat)および後退(Rec)接触角を測定した。この一連の試験に関して、使用された試験ウエハーは#310 3M Al23−TiC Ceramicsウエハー(3M Companyから入手可能、1/2インチ(1.3cm)×3/4インチ(1.9cm)×0.054インチ(1.4mm)に切断されている)であった。これらの接触角測定からの結果を表1に表す。
【0067】
【表1】

【0068】
表1のデータは、フッ素化プロピル(C3)末端基(すなわち、CF3CF2CF2−)を含有する実施例1のフルオロコポリマーが本質的に、ペルフッ素化ヘプチル(C7)末端基(すなわち、C715−)を含有する比較例1のフルオロコポリマーと同等の全体的撥水性を実証したことを示す。より高いフッ素化プロピル末端基(すなわち、CF3CFHCF2−)を含有する実施例2のフルオロコポリマーも良好な撥水性を実証するが、実施例1のフルオロコポリマーよりわずかに低い。
【0069】
実施例3〜9および比較例C2
この一連の実験においては、この場合、試験ウエハーが6061T−6裸アルミニウム(Metaspec Co.,San Antonio,TXから入手可能、1インチ(2.5cm)×1インチ(2.5cm)×0.032インチ(0.8mm)のクーポンサイズ、ハンギングホールで研磨された)であることを除き、表1において行われた試験のものと同一の一般手順に従った。全てのフルオロコポリマーをHFE−7100から2%固体で適用した。結果を表2に表わす。
【0070】
【表2】

【0071】
表2のデータは、短鎖フルオロアルキル基を含有する全てのフルオロコポリマーが、長鎖ペルフルオロアルキル基を含有する比較フルオロコポリマーと同等に機能することを示す。
【0072】
実施例10〜16および比較例C3
この一連の実験においては、フルオロコポリマーがHFE−7100から0.1%固体で適用されたことを除き、同一のアルミニウム試験ウエハーを使用して、表2において行われた試験のものと同一の一般手順に従った。またこの一連においては、静的接触角のみを測定した。結果を表3に表わす。
【0073】
【表3】

【0074】
実施例3におけるデータは、短鎖フルオロアルキル基を含有する全てのフルオロコポリマーが、長鎖ペルフルオロアルキル基を含有する比較フルオロコポリマーと同等に機能することを示す。
【0075】
実施例17〜23および比較例C4
この一連の実験においては、#310 3M Al23−TiC Ceramics試験ウエハーおよびフルオロコポリマー1〜9を使用して、表1において行われた試験のものと同一の一般手順に従った。しかしながら、この場合、全てのフルオロコポリマーをHFE−7100から0.1%固体で適用した。結果を表4に表わす。
【0076】
【表4】

【0077】
実施例4におけるデータは、短鎖フルオロアルキル基を含有する全てのフルオロコポリマーが、長鎖ペルフルオロアルキル基を含有する比較フルオロコポリマーと同等に機能することを示す。
【0078】
実施例24および25
フルオロコポリマー8(Mn=10400およびMw=22300)ならびにフルオロコポリマー9(Mn=6180およびMw=16700)で処理されたガラススライドに関して、静的接触角を測定し、接触角に及ぼすポリマー分子量の効果を決定した。両フルオロコポリマーは、99.95/0.05FBMA/AAの同一理論組成を有した。
【0079】
この一連の試験に関しては、静的接触角試験手順をわずかに変更した。透明なガラス顕微鏡スライドを試験フルオロコポリマー溶液に10秒間浸し、処理されたスライドを取り出し、約1分間空気乾燥させた。次いで、1mLシリンジを使用して3滴のn−ヘキサデカン(約0.02mL)または脱イオン水のいずれかを処理スライド表面に適用し、上記Rame−Hart静的接触角角度計を使用して静的接触角を測定した。
【0080】
結果を表5に表わす。報告された値は、各3滴の測定の平均であり、実施例24に関しては4回の重複測定および実施例25に関しては2回の重複測定を示す。
【0081】
【表5】

【0082】
表5のデータは、より高い分子量を有するフルオロコポリマー8は、より低い分子量を有するフルオロコポリマー9よりもわずかに高い静的接触角を生じることを示す。
【0083】
実施例26および27
実施例26および27に関しては、それぞれ、LUPEROXTM26−M50開始剤を使用して、CF3CF2CF2CH2OC(O)C(CH3)=CH2(FBMA)を1.7%および10%アクリル酸(AA)と共重合することにより、100%メチルペルフルオロブチルエーテル(HFE−7100)からなる高フッ素化溶媒中、2つのフルオロコポリマーを約30%固体で製造した。各フルオロコポリマーを製造するために使用した装填物(グラム)を以下の表6に示す。
【0084】
【表6】

【0085】
各フルオロコポリマーに関して、装填物を反応容器に入れ、4回、乾燥窒素でパージし、残留酸素レベルを最小化した。容器を密封し、得られた混合物を80℃で23時間、撹拌下で加熱し、重合反応を完了させた。反応後、容器を開封し、均質性に関してポリマー溶液を検査した。
【0086】
実施例26のポリマーに関しては、高フッ素化溶媒中で、透明、濃厚、均質ポリマー溶液が形成された。実施例27のポリマーに関しては、高フッ素化溶媒から硬質の白色固体が溶出分離していた。従って、安全性および環境的理由で好ましい高フッ素化溶媒からの適用に関して、最大フルオロコポリマー溶解性を保証するために、10%未満の共重合アクリル酸を含有するフルオロコポリマーを使用することが有利である。

【特許請求の範囲】
【請求項1】
部分的にフッ素化された溶媒と、フルオロアルキル(メタ)アクリレート/(メタ)アクリル酸コポリマーとを含むコーティング組成物であって、前記フルオロアルキル基は6個以下の炭素原子を有するものであり、そして前記フルオロアルキル基がペルフルオロアルキル基である場合には前記コポリマーは5重量%以下の(メタ)アクリル酸を含む、コーティング組成物。
【請求項2】
前記コポリマーが次式:
【化1】

(式中、a+bの合計は、化合物がポリマー性であるような数であり、
1は水素またはメチル基であり、
2は、1〜約4個の炭素原子を含有する直鎖または分枝鎖アルキルであり、
Qは共有結合または有機二価架橋基であり、
fは、6未満の炭素原子を有する完全にフッ素化された末端基を含むフルオロ脂肪族基であり、
そしてXは水素原子または遊離ラジカル開始剤から誘導された基である)で表わされる、請求項1に記載のコーティング組成物。
【請求項3】
fが3または4個の炭素原子を有する、請求項2に記載の組成物。
【請求項4】
Qが−CH2−である、請求項2に記載の組成物。
【請求項5】
前記部分的にフッ素化された溶媒が、ヒドロクロロフルオロカーボン、ヒドロフルオロカーボンおよびヒドロフルオロエーテルから選択される、請求項1に記載の組成物。
【請求項6】
前記フッ素化エーテルが次式
(R−O)x−R’f (I)
(式中、xは約1または2であり、Rは、約1〜4個の炭素原子を有するアルキル基を表わし、そしてR’fはフルオロ脂肪族基を表わす)で表わされる、請求項1に記載の組成物。
【請求項7】
請求項1〜6のいずれか一項に記載のコーティング組成物の硬化物を含む膜。
【請求項8】
1.5未満の屈折率を有する、請求項7に記載の膜。
【請求項9】
磁気媒体ディスクに使用するためのスライダーであって、請求項1〜6のいずれか一項に記載のコーティング組成物の硬化物の薄膜を有するスライダー。
【請求項10】
請求項1〜6のいずれか一項に記載のコーティング組成物の硬化膜を含むペリクルであって、前記膜がフレームに固定されたペリクル。
【請求項11】
請求項1〜6のいずれか一項に記載のコーティング組成物を含む、摩擦接触の領域を超えて潤滑剤が拡散するのを防ぐための抗移行コーティングであって、前記コーティング組成物が前記摩擦接触の領域の付近に予め定められたパターンで配置されているコーティング。
【請求項12】
2重量%以下の(メタ)アクリル酸を含む、請求項1〜6のいずれか一項に記載の組成物。

【公開番号】特開2013−28807(P2013−28807A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−180827(P2012−180827)
【出願日】平成24年8月17日(2012.8.17)
【分割の表示】特願2002−521601(P2002−521601)の分割
【原出願日】平成13年8月15日(2001.8.15)
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】