説明

プラズマ処理方法およびプラズマ処理装置

【課題】段差を有する膜構造を高精度にエッチングするプラズマ処理装置またはドライエッチング方法を提供する。
【解決手段】真空容器107と、この真空容器内部の処理室内に配置されその上面にエッチング対象のウェハ112が載せられる下部電極113と、下部電極113にバイアス電位を形成するための高周波電力を供給するバイアス印加装置118,120と、前記処理室内に反応性ガスを導入するガス供給手段111と、前記処理室内にプラズマを生成するための電界を供給する電界供給手段101〜103と、前記高周波電力により前記ウェハ112に入射する前記プラズマ中のイオンのエネルギーの分布を調節する調節装置127とを備えたプラズマ処理装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体製造方法に関し、特に、メタルゲート/high−k構造と段差構造、立体構造を有し、下地膜とマスク層に対して高い選択性が要求され、かつ垂直形状が要求されるゲート電極形成を行うプラズマ処理方法、およびその装置に関する。
【背景技術】
【0002】
デジタル家電、パーソナルコンピュータ、携帯電話等に使用されるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)デバイスにおいては、高集積化、高速化、高機能化が継続的に要求されている。この要求に対し、従来のPoly−Si/SiO構造ゲート電極の微細化とともに、新材料、新構造のゲート電極が検討されている。
【0003】
このようなメタルゲート/high−k構造を有するプレーナ型MOSFETやFIN−FETのゲート電極を形成する方法として用いられるドライエッチング加工の原理は、電磁波で反応性ガスをプラズマ化し、生じたイオンと中性ラジカルを用いたイオンアシスト反応である。したがって、この方法を具現化するプラズマ処理装置は、プラズマ発生機構、反応性ガス導入機構、圧力制御機構、Siウェハを設置するための下部電極機構、Siウェハ搬送機構、それらの動作タイミング等を制御する機構で構成される。この中で下部電極機構は、Siウェハを固定する静電吸着機構、Siウェハの温度制御機構、そして、バイアス印加機構から構成される。
【0004】
以上のような機構を持つプラズマ処理装置を用いて、イオンエネルギー分布(Ion Energy Distribution Function;IEDF)を制御する方法として、印加するバイアスの波形や周波数も影響を及ぼすことが知られている。例えば、パルス状のバイアスを印加する方法と25kHz以下の低周波数と2MHz以上の高周波数を持つ2周波数バイアスを印加する方法により、絶縁膜エッチング時の対Siのエッチングの選択性を向上することが提案されている(たとえば、特許文献1参照)。また、バイアス機構で出力される周波数については、プラズマのシースを通過する時間に依存して、IEDFを持つことが報告されている(例えば、非特許文献1参照)。
【0005】
一方、プラズマ状態検知モニタについては、高周波の電圧、電流、位相をモニタして、チャンバー内壁や下部電極の絶縁被膜の絶縁劣化等の異常を検出する技術が、提案されている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−141341号公報
【特許文献2】特開2007−250755号公報
【非特許文献】
【0007】
【非特許文献1】Journal of Vacuum Science and Technology A Volume 20 p.1759
【発明の概要】
【発明が解決しようとする課題】
【0008】
図3(a)に示される、STI段差310を有し、多層膜構造を持つメタルゲート/high−kゲート電極をドライエッチングして形成する際、従来のプラズマ処理装置を用いた場合では、図3(b)に示すように、high−kゲート絶縁膜の下地抜け312を防止し、裾引き形状314の発生を防止して垂直な裾形状を得ることを両立させることは困難であった。同様の下地選択性と垂直加工性、基板上に設けた配線の疎密に基づく疎密形状差の発生といった問題は、FIN‐FETのゲートエッチングにおいてはさらに厳しい。50nm程度のFINの段差上部の下地抜けとゲート長部分の上部のサイドエッチと下部の裾残りなど垂直方向の形状差が特性バラツキの要因となるからである。
【0009】
本発明の目的は、STI構造や立体ゲート構造(FIN‐FET等)を有し、金属材料とhigh−k材料を含む複数層の膜から構成されるゲート電極材料をドライエッチング加工する際、下地膜選択性が高く垂直加工を安定に実現するプラズマ処理方法またはプラズマ処理装置を提供することにある。
【課題を解決するための手段】
【0010】
上記目的は、真空容器と、この真空容器の処理室内に配置されその上面にエッチング対象のウェハを設置する下部電極と、この下部電極にバイアス電位を形成するための複数の周波数のバイアス電力を供給するバイアス印加機構と、前記処理室内に反応性ガスを導入するガス供給機構と、前記処理室内のガス圧力を調整する機構と、前記処理室内にプラズマを生成するための電磁波供給機構を具備するプラズマ処理装置において、前記ウェハに入射するイオンのエネルギーとIEDFとを独立に変化させるIEDF制御機構と、バイアス周波数に対するプラズマ状態を検知する機構とを備えたプラズマ処理装置により達成される。
【0011】
このとき、IEDF制御機構が、複数の周波数を発振する電源部と各々の整合器から構成され、さらに、プラズマ状態を検知する機構が、バイアス印加機構側からの各々の周波数に対するプラズマインピーダンスを検知する機構を備えたプラズマ処理装置により達成される。
【0012】
また、上記目的は、その表面にhigh−k材料上に金属材料を含む複数層の膜から構成され段差構造を有する膜構造を備えたウェハを真空容器内部の処理室内の下部電極上に設置する工程と、この処理室内にエッチングガスを導入する工程と、処理圧力を調整する工程と、前記処理室内にプラズマを生成する工程と、前記ウェハ上にバイアス電位を形成するための1または複数の周波数のバイアス電力を供給する工程と、前記バイアス電力の出力を異ならせて前記膜構造をエッチングするプラズマ処理方法において、前記バイアス印加機構側からプラズマインピーダンスの時間変化を検知する工程と、その検知結果に応じて終点判定する工程と、終点判定した後に前記ウェハ上に入射するイオンエネルギーとその分布を独立に制御する工程とを有することを特徴とするプラズマ処理方法により達成される。
【0013】
また、前記ウェハ上に入射するイオンエネルギーとその分布を独立に制御する工程が、複数の周波数のバイアス電力の出力とそれらの混合比を変化させること、また、前記プラズマのインピーダンスの時間変化を検知する工程後に、壁面状態成分とウェハ直上成分のインピーダンスを分離する工程を含み、分離されたデータをデータベースまたは、変動モデルと比較する工程と、その比較結果に応じて、壁面クリーニングする工程、もしくは、次回のウェハ処理条件を変化させる工程を有するプラズマ処理方法により実現することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の実施例に係るプラズマ処理装置の断面図。
【図2】400kHzと13.56MHzと2周波混合バイアスでのIEDFを示すグラフ。
【図3】段差と金属材料とhigh−k材料を含む多層構造を持つプレーナ型CMOS−FETの断面図。(a)エッチング処理前、(b)従来方法でエッチング処理、(c)本発明を用いてエッチング処理。
【図4】図3の断面構造のSiウェハを処理した際に使用した、電気的な終点判定と2周波数バイアスのタイムシーケンスを示す図と従来終点判定方法でのタイミング比較を示す図。
【図5】本発明で終点判定するフロー図。
【図6】終点判定のためのウェハ直上のイミタンスチャート。(a)本発明、(b)1周波数。
【図7】本発明で安定化、変動補正するフロー図。
【図8】Poly−Siレートの分布およびpoly−SiレートとSiOレート、選択性の混合比依存性を示す図。(a)低周波と高周波の混合比0%時、(b)低周波と高周波の混合比20%時、(c)低周波と高周波の混合比100%時、(d)poly−SiレートとSiOレート、選択性の混合比依存性。
【図9】図7のフロー図を実現する機構を示す図。
【図10】ハードマスクサンプルの断面形状の模式図。(a)エッチング前、(b)従来方法の高周波数バイアスでハードマスクエッチング後、(c)従来方法の高周波数バイアスでゲートエッチングした後、(d)本発明の複数の高周波数バイアスでゲートエッチングした後。
【図11】図10(a)の断面構造のSiウェハを処理した際に使用した、EPDと2周波数バイアスのタイムシーケンスを示す図。
【図12】FIN−FET構造のサンプルの鳥瞰図および断面図。(a)ゲートエッチ前、(b)本発明を用いてゲートエッチ処理後、(c)本発明を用いて処理したFIN−FET構造のサンプルの図12(a)におけるA−A’線での断面図。
【図13】FIN−FETを処理した際に使用したタイミングシーケンスを示す図。(a)EPD波形、(b)下部電極の温度、(c)添加ガス流量、(d)ガス圧力、(e)入射UHF電力、(f)IEDF制御機構の分配比。
【図14】サンプルの断面形状の模式図。(a)エッチングする前、(b)本発明を用いてサンプルをハードマスクまでエッチング後、(c)従来の技術を用いてサンプルをエッチング処理した後の深孔の断面形状、(d)本発明を用いてサンプルをエッチング処理した後の深孔の断面形状。
【図15】図1に示す実施例に係るプラズマ処理装置の制御装置の構成の概略を示す模式図。
【発明を実施するための形態】
【0015】
以下に、図面を参照して本発明の実施の形態を説明する。まず、本発明の実施の形態が対象とする膜構造の一例を、図3を用いて説明する。図3(a)は、メタルゲート/high−k構造を持つプレーナ型CMOSのエッチング処理前のサンプル断面図、図3(b)は従来方法でのエッチング処理後の断面図、図3(c)本発明でのエッチング処理後の断面図を示している。
【0016】
図3(a)において、ウェハは、Si基板309の上に形成されたSTI308と、Si基板309とSTI308の上に形成されたHfSiON(high−k)絶縁膜307と、High−k絶縁膜307の上に形成されたメタルゲート電極層306と、この上に順次積層形成されたゲートCap層305と、下層マスク304と、中間層マスク303と、BARC(反射防止膜)層302と、この上に形成されたレジスト301とからなる。この図に示すような、STI308形成に起因するSTI段差310を有するプレーナ型積層メタル/high−kゲート電極を、400kHz単一のバイアス周波数を持つ従来機構のゲートエッチング装置でCl/HBrガスを用いてエッチングした場合、図3(b)に示すように、MOS型FETとなるアクティブ部分のゲート電極下部311で、HfSiON(high−k)膜の下地抜け312が発生した。また、STI段差310の隅部には裾広がり状にSTI段差部のゲート電極材料の残り313が生じてしまった。一方、配線部分であるフィールド部分のゲート下部では下地抜けはないものの形状が裾広がりとなる裾引き形状314やSTI表面にSTI上のゲート電極材料の残り315が発生してしまった。
【0017】
すなわち、積層メタル/high−kゲート電極のエッチング加工においては、ゲート電極近傍の下地high−k選択性の向上と裾引き形状発生の防止との両立が困難であることが分かった。
【0018】
図3(b)に示した400kHzバイアスで下地選択性の向上と裾引き形状発生の防止が困難な原因は、イオンのエネルギー分布(Ion Energy Distribution Function;IEDF)が平均エネルギーを中心に広がりを持つこと、薄膜で光学的に不透明な材料のエッチング終点判定が遅れてしまうことが原因である。
【0019】
まず、このようなイオンのエネルギー分布について、同じ時間平均のイオンエネルギーで異なる分布の例を図2に示す。図2は、電子温度3eV、入射イオンの質量数79.9、プラズマ密度1×1010cm−3のプラズマ下で、低周波数400kHz、高周波数13.56MHzにおけるウェハ上にVpp=200VのRFを印加した場合の複数のIEDFの例を示す模式図である。400kHzのIEDF203では、時間平均の100eVに対して、分布幅204は約200eVで、0V近辺と200V近辺に2つのピークをもつことがわかる。一方、高周波数の13.56MHzのIEDF201は、分布幅202は約50eVと狭くなる。そして、低周波数と高周波数2つの周波数を100Vppずつ混合させたIEDF205は、中間の分布を持つことがわかる。これは、高周波バイアスほど、イオンを加速させるシース電圧変化の周期が早くなり、イオンがシースを通過する時間よりシース振動時間が小さく、イオンがシース変動に追随できず電場の平均値で加速されるようになるためである。
【0020】
このように、400kHzの周波数でエッチングをした場合、時間平均のイオンエネルギーの2倍程度の高エネルギーイオンが選択性を劣化させると同時に0eV程度の低エネルギーイオンが裾引き形状の原因となり、両者の課題の両立が困難であったと考えられる。したがって、選択性と裾引き形状を両立させるためには、高周波でイオンエネルギー分布を狭くすることが好ましい。一方、低周波時の大きな広がりを持つ分布は、例えば、高エネルギーのイオンで表面の変質層を物理的にスパッタする時や、高エネルギーイオンが必要な絶縁膜エッチング時などに利用するとよい。また、低周波を用いることで、プラズマの解離や分布に影響することなく、平均イオンエネルギーに対して広がった分布の高エネルギーイオンを活用することができる。このように、多層膜を一貫してエッチングする場合は、IEDFを制御できることが必要となる。
【0021】
一方、図3(b)の形状異常のもうひとつの原因である終点判定の遅れは、ゲート電極の薄膜化(10〜30nm程度)に対応するために、エッチング速度を低下させる必要があることに起因する。すなわち、従来の発光分光を用いた方法では、エッチング速度が遅い場合、反応生成物のプラズマ中の組成比が小さくなるため、プラズマ中の発光強度も弱くその変化も小さい。
【0022】
また、従来の膜厚干渉方式で終点判定する場合では、被エッチング材料であるゲート電極の厚さが検知する光源波長(200〜800nm)の1/4波長に対して小さいので周期性を見出しにくい領域であり、かつ、ゲート電極材料の表面ラフネスが存在したり、下地high−k膜が2nm程度と薄く均質でない場合が多いので、干渉波形の強度も小さくなり、膜厚換算の誤差が大きく再現性が悪い。さらに、干渉波形の強度が、干渉光の視野角内の被エッチング面積に依存するため、パターン付きウェハではさらに終点判定が困難である。
【0023】
一方、本発明で使用するプラズマの電気特性を検知する方式は、ウェハ直上の反応生成物の密度が高いシース部分の変化に敏感なため、初期膜厚が薄くとも、ラフネスがあろうとも検知可能である。さらに、装置の安定稼動に関して、低周波と高周波の複数の周波数のウェハ直上のインピーダンスを検知することで、プラズマ壁面状態の変化とウェハ直上の変化を分離して終点検知実施することが可能となる。
【0024】
一般に、プラズマ中に印加させるバイアスについて等価回路表示すると、高周波の角速度ω、低周波の角速度ωウェハ直上のシースのインピーダンス(Zy、y=H、L)だけでなく、チャンバー壁面に形成されるシースのインピーダンス(Zy,y=H、L)から成る電気回路として下記(1)式および(2)式で表記される。尚、高周波数の高周波バイアス電力が供給された時の電圧と電流をそれぞれV、Iとし、低周波数の高周波バイアス電力が供給された時の電圧と電流をそれぞれV、Iとし、ウェハ直上成分の抵抗成分とリアクタンス成分とインダクタンス成分と容量成分をそれぞれR、X、L、Cとし、処理室の壁面状態成分の抵抗成分とリアクタンス成分とインダクタンス成分と容量成分をそれぞれR、X、L、Cとする。すなわち、異なる周波数での電圧(V1y、y=H、L)、電流(I1y、y=H、L)、位相のモニタ値を検出し、高周波側の(1)式、低周波側の(2)式、インピーダンスと周波数の関係である(3)式の連立方程式を実部、虚部に対し解くことで、ウェハ直上とチャンバー壁面のインピーダンス情報を分離することが可能となる。
【数1】

【数2】

【0025】
本発明は、このような複数の周波数によって複数種のインピーダンスを分離して検知できるという知見に基づいて想起されたものであり、以下説明する実施の例において、段差構造を有するプレーナ型CMOSFETの多層構造ゲートをエッチングする際生じる各種の形状異常(疎密形状差、ノッチング、サイドエッチ、下地膜の損傷、裾、下地抜け、テーパ形状等)といった問題点を、複数の周波数を有するイオンエネルギー分布(IEDF)制御機構と複数のプラズマインピーダンス検知器を有するバイアス印加機構を備えたプラズマ処理装置を用いて解決する。
【0026】
[実施例1]
まず、本発明を具現化する装置の実施例を説明する。図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を示す縦断面図である。この図に示すプラズマ処理装置では、真空容器の内部に配置された処理室の内側でプラズマを形成し、このプラズマを用いてその処理室内に配置された半導体ウェハ等の被エッチング材料である基板状の試料を処理するプラズマ処理装置となっている。このプラズマ処理装置におけるプラズマの発生機構は、450MHzのUHF電源101と、インピーダンス検出器付高速応答UHF整合器102と、アンテナ103と、電磁石104を備えて構成されている。
【0027】
真空容器を構成するエッチングチャンバー107内へUHF波を放出するアンテナ103は、真空を維持する石英板105より大気側に設置されている。エッチングガスは、マスフローコントローラとストップバルブから構成されるガス流量を数秒で変えられる高速応答反応性ガス導入機構111を通して、エッチングガスを混合した後、シャワープレート106から、エッチングチャンバー107内に導入される。エッチング中のガス圧力は、高真空ポンプ109の直上にある高速応答圧力制御機構110で制御することが可能である。
【0028】
被エッチング材料であるSiウェハ112を設置する下部電極113は、その上面であってSiウェハ112が載せられる載置面の外周側及び側壁を覆って配置された略リング形状のサセプタ114を備え、同心円状に2つ以上で、熱的に異なる領域となるように構成されており、温度制御機構115を用いて、各々の領域で下部電極の温度を所定に制御することが可能である。エッチング処理中は、直流電源116で発生される−2000v〜+2000Vの直流電圧を用いてウェハ112を静電吸着させ、Siウェハ112と下部電極113の隙間にHeを充填し、圧力制御を行っている。このような静電吸着技術を用いることで、エッチング中のSiウェハ112の温度を調節している。
【0029】
そして、下部電極113には、プラズマ中からウェハ112にイオンを引き込み、そのイオンエネルギー分布を制御するためのバイアス印加機構117が接続されている。このバイアス印加機構117は、入射イオンエネルギー分布を制御するIEDF制御機構127とプラズマ状態検知器(plasma impedance monitor:以下、PIMと表記することがある)126から構成される。本実施例では、IEDF制御機構127として、複数の周波数の電力を発信して供給する電源を備えたものであり、低周波バイアス電源部120と、低周波用整合部121と、高周波バイアス電源部118と、高周波用整合部119で構成したものを使用した。低周波バイアス電源部120の周波数に400kHz、高周波バイアス電源部118の周波数に13.56MHzを用い、それぞれが、最低1W程度から最大電力150W程度(連続正弦波)/12インチ径相当で出力でき、500Hz〜3kHzの範囲でon−off変調を行う、時間変調(Time Modulate:以下、TMと表記することがある)機能を備えているものを用いた(変調時最大電力500W程度)。
【0030】
この際、高周波整合部119、低周波用整合部121は、最低の出力において、例えば最大出力の0.5%以上の出力、1Wの出力から整合できるような感度にする必要がある。一方、プラズマ状態検知器126として、プラズマ状態検知器126をIEDF制御機構127と下部電極113の間に設置することで、各々の周波数に対する電圧、電流、位相の時間変化、すなわち電子密度、電子温度の時間的な変化を含んだインピーダンスの変化を検知する。
【0031】
なお、本実施例に係るプラズマ処理装置では、エッチング処理中のプラズマ発光を受光する発光受光部122が、例えばエッチングチャンバー107を構成する容器低部に配置されている。この発光受光部122からの出力は発光分光器123に送信される。
【0032】
また、下部電極113上のSiウェハ112に対向して、プラズマ中、もしくは外部光源の干渉光を受光することでSiウェハ表面の膜厚を検出する膜厚干渉モニタ124が備えられている。さらに、エッチングチャンバー107の側壁の外周表面には、これを覆って配置され、この側壁の温度をプラズマ処理中、処理前後とで各々適切な値に調節するためのヒータ108が配置されている。
【0033】
さらに、本実施例のプラズマ処理装置には、事前に設定した値に基づき各部の出力値とそのタイミングを制御したり、その各部に配置された各部の動作を検知するセンサからの出力を受信し、これらの受信した結果を用いて演算したり、または記憶装置からデータを読み出して各部の動作の指令を発信したりする制御装置125が備えられている。この制御装置125は、上記UHF電源101、インピーダンス検出器付高速応答UHF整合器102、ヒータ108、真空ポンプ109、高速応答圧力制御機構110、高速応答反応性ガス導入機構111、温度制御機構115、IEDF制御機構127とこの内部に配置された高周波バイアス電源部118等、さらに、発光分光器123、膜厚干渉モニタ124、プラズマ状態検知器126と通信可能に構成され、これらからの出力を受けてこれら各部に動作信号を発信する。例えば、プラズマ状態検知器126または発光分光器123または膜厚干渉モニタ124からの出力を受けてSiウェハの膜厚や処理の終点(End Point)等処理の状態を検出し、この検出結果に応じてIEDF制御機構127、UHF電源101、インピーダンス検出器付高速応答UHF整合器102、ヒータ108、真空ポンプ109、高速応答圧力制御機構110、高速応答反応性ガス導入機構111、温度制御機構115へ動作信号を算出し発信して動作を調節する。インピーダンス検出機付高速応答UHF整合器102は、UHF電源101に対して複数以上の整合点を記録しその整合経路を選択して整合させる整合装置として働く。
【0034】
このような、図1のプラズマ処理装置を用いて、図3(a)に示すようなSTI段差310とArFレジスト301/BARC302/中間層マスク303/下層マスク304/ゲートCap層305/メタルゲート電極層306/HfSiON絶縁膜307構造を有するプレーナ型のMOSの、10〜30nmの薄いメタルゲート電極層306(TiN)部分を、本発明を用いてエッチングする場合の例を、図4のタイムチャートを用いて、以下に説明する。
【0035】
BARC302からゲートCap層305まで、同一チャンバーでエッチング処理した後、TiN(メタルゲート電極層)306のブレークスルー(Break‐through:以下、BTと表記することがある)ステップを実施する。このBTステップの目的は、BARC302のオーバーエッチング(以下、OEと表記することがある)時の酸素と結合してできた、TiNエッチングを阻害するTiO表面層を除去するためである。BTステップの条件としては、Ar100〜200cc、圧力1Pa、UHF印加電力500W、400kHz、バイアス低周波印加電力50〜100Wを使用した。400kHz低周波バイアスを用いることで、TiOの除去に必要な高エネルギーを得やすくした。
【0036】
図4(a)は、プラズマ状態検知器126内の400kHz用のプラズマインピーダンスモニタで、電圧、電流、位相を検知した結果のインピーダンスの時間変化による終点判定(EPD)である。TiNのBTステップが進行するにつれて、表面のTiOが除去されTi、N等がプラズマシース近傍に放出されたことで、電子密度、シース厚さなどの電気特性が変化したことに起因する。このようにインピーダンスが大きくなる時刻401で、メインエッチング(以下、MEと表記することがある)に移行した。
【0037】
TiN306のMEステップでは、ClもしくはHClをベースにHBr、NF、CF、SFを添加して、圧力0.2Pa、UHF印加電力500Wの条件で行っている。TiNのMEステップのバイアスには、400KHz低周波バイアスに13.56MHz高周波バイアスを50%混合して使用した(図4(b)、TiNのME時の2周波混合比403)。その理由は、高周波バイアス印加の利点である狭い分布幅で低エネルギーイオンによる裾のこりを押さえつつ、低周波バイアス印加の利点である高エネルギーイオンによる異方性を得るためと、チャンバー壁面に形成されたシースとウェハ直上に形成されたシースのインピーダンスを分離して、ウェハ直上インピーダンスで高精度な終点判定をできるようにするためである。MEステップの終点判定は、プラズマ状態検知器126で検知されたプラズマインピーダンスが変化し始めた時刻402でTiNのOE1ステップに切り替えて、IEDF制御機構127の出力404を、高周波バイアス電力100%で処理した。これは、次のOE1ステップでは、STI段差、膜厚、回路パターンの疎密差や被エッチング材料差、ウェハ面内差に起因して異なってくるエッチング量をそろえる必要があるため、下地まで到達したパターンでは、下地high−kとの選択性を維持しつつ、下地まで到達していない部分をエッチングする必要があるからである。
【0038】
このときに、プラズマ状態検知器126の信号を使用することで、図4(c)に示す従来の反応生成物やエッチャントの発光ピークの時間変化を検知する方式で得られた終点406より1〜5秒程度早めにMEの終点を取得でき、下地high−k膜へのイオンによる損傷を軽減することが可能となる。
【0039】
その後、プラズマ状態検知器126の信号が安定する時刻で、OE2ステップへ移行した。OE2ステッププラズマ条件は、HBr/O、Ar希釈、全流量200〜400cc、圧力3〜10Pa、UHF高周波電源101の出力500〜700Wである。高周波バイアス電力80%、低周波バイアス電力20%の混合バイアス電力を使用した(図4(c)、TiNのOE2時の2周波混合比405)。これは、下地選択性とSTIの段差部分や非開口部分の裾引き形状を低減しつつ、電子シェーディングダメージの低減が目的である。すなわち、平均イオンエネルギーの倍近い高イオンエネルギーの比率をわずかに混在させることで、裾引き形状の低減と選択性を維持しイオン衝撃による物理ダメージを抑制できる。すなわち、ソース、ドレインのリセッションを低減することができる。そして、マスク上部に帯電した電子を低エネルギーのイオンで中和させることで、電子シェーディングによりノッチングが生起されることを回避することができる。
【0040】
以上、本発明を適用することで、図3(c)のようなメタルゲート電極加工において、下地抜けなく垂直加工することが可能となる。
【0041】
本実施例のゲート電極構造以外に、その他のhigh−k材料として、ZrO、Y、La、LaAlOx、LaSiOx、Al、HfO、HfAlO(N)などの絶縁材料であったり、メタルゲート電極層として、TiN以外に、TaN、TaSiN、TaC、Ru、HfN、MoN等金属材料であったりする場合にも、同様な効果を得ることができる。
【0042】
上記実施例では、IEDF制御機構127に2つの異なる周波数を発振する電源部118、120と整合部119、121で構成される機構を用いた。この方法は、他のIEDF制御、たとえば、クリップバイアスと比較して、発振器や整合器の構造が簡便である利点がある。バイアス印加機構117としてクリップバイアス電源を用いた場合、連続する複数の周波数の重ね合わせと同じことになるので,高価にはなるが、連続する周波数レンジをもつプラズマ状態検知器126を備えることで対応することが可能となる。
【0043】
また、混合比率の制御は、本実施例ではイオンを加速する電圧の目安になるVppを指標にしたが、Vppだけではなく、出力パワーの比率で行っても良い。その際、出力パワーは電流と電圧の掛け算となること、アースの配置や面積等によってVpp値も異なるので、この点を考慮する必要がある。もしくは、図2に示すような計算モデルを元に、所望のエネルギー分布となるよう各電源の出力を制御する方式も可能である。その際は、エネルギー分布を計算するために必要なプラズマ密度、電子温度等検出する機構を備えることで制御精度を向上することが可能である。
【0044】
さらに、今回はIEDF制御に、バイアス電源として、高周波数側は13.56MHzを低周波数側は400kHzを使用したが、基本的に2つの周波数の差が開いている方が、IEDFの制御範囲が広がり、また、チャンバー壁面とウェハ直上のインピーダンスを分離する観点でも好ましい。また、それぞれの周波数の高調波も活用できるように、御互いが整数倍とならないほうがよい。この際、プラズマ生成との独立性や良好な面内分布を維持するため、高周波数側の周波数は、プラズマ生成機構の周波数よりは低いことが望ましい。例えば、ECRの場合は、100MHz以上でイオンエネルギーとプラズマ密度の独立制御性が困難となるので、4MHz以上100MHz以下が望ましい。一方、低周波側の周波数は、100kHz未満では、Si上の絶縁層でチャージアップが発生しやすく不適である。したがって、低周波数には、100kHz以上4MHz未満を、高周波には1MHz以上100MHz未満の周波数のうち、できるだけ周波数差の大きいものを組み合わせることが望ましい。また、混合する周波数帯は、プラズマ発生機構にも依存する。例えば、今回のように分布制御に磁場を使用するプラズマ発生機構では、E×Bのクロスインピーダンスの影響も考慮して高周波数側で13.56MHzを用いた。ICP、CCP等は、プラズマソース周波数との兼ね合いを調整した上、27.60MHz等を用いることも可能である。
【0045】
[実施例2]
実施例1では、壁面状態のインピーダンスが変わらないとしてウェハ単体処理におけるインピーダンスの絶対値で終点を得たが、ウェハ量産加工ではチェンバー壁面状態起因の経時変化が存在する場合がある。このチャンバー壁面状態変動を分離して、終点を取得する実施例を以下に示す。実施例1で記載した、TiNのMEにおける2周波混合比50%で終点判定を実施する場合、図5の終点判定フローに示すように、複数の周波数に応じたインピーダンスを検知する工程501の後、壁面とウェハ直上の夫々のインピーダンスを前記(1)、(2)、(3)式に基づき分離する工程502を行い、終点判定を行なう工程503を実施し、IEDF制御機構127、UHF電源101、高速応答圧力制御機構110、高速応答反応性ガス導入機構111、温度制御機構115の出力を変化させる工程を行う504。このとき使用した終点判定の模式図を図6に示す。
【0046】
図6(a)は、分離工程後の壁面部分のインピーダンス変化を除いたウェハ直上のインピーダンス変化を複素インピーダンスによるイミタンスチャート上にプロットしたものである。例えば、終点判定前のインピーダンス602が完全にエッチング膜が除去されたときのインピーダンス601に移行する場合を考える。整合器に依存するチューニング用コンデンサやチューニング用コイルによって、整合経路603をとる際、設定した複素インピーダンス範囲604を通過した点605の時刻で終点判定を実施する。
【0047】
一方、図6(b)は、従来法である単一バイアス周波数で検出されたインピーダンス変化をイミタンスチャート上にプロットした模式図である。経時変化が存在する場合、エッチング処理時間が増加するにつれて、チャンバーの壁面インピーダンスが変化し606、終点判定する以前に設定インピーダンス範囲604を超えてしまい、終点判定前ができなくなる。この現象を、本発明の複数の周波数のインピーダンス検知し、壁面とウェハ直上を分離する工程を実施する方法によれば、壁面状態に影響なく、ウェハ終点を安定に取得でき、IEDF制御と組み合わせることで、下地抜けなく、裾引き形状も生じないメタルゲート/high−k構造のエッチング形状を安定に得ることができる。
【0048】
図5のフローは、制御装置125内の制御プログラムによって実行したり、プラズマ状態検知器126の制御ソフトに記載することで実施する。本実施例では、図3(a)の断面構造サンプルの各層のうち、デバイス特性にインパクトの大きい、メタルゲート電極層(TiN)306について記述したが、各BARC302、中間層マスク303、下層マスク304、ゲートCap層305等各層における終点判定に使用してもよい。
【0049】
[実施例3]
次に、分離されたチャンバー壁面とウェハ直上のインピーダンス変化を利用する実施例を以下に示す。図3(a)記載のメタルゲート/high−kゲート電極のエッチング処理を複数枚実施する場合のTiNのME終点判定ステップのフロー図を、図7に示す。実施例2の要領で、複数の周波数に応じたインピーダンスを検知する工程501の後、壁面とウェハ直上の夫々のインピーダンスを(1)、(2)、(3)式に基づき分離する工程502を実施し、分離したチャンバー壁面のインピーダンスとウェハ直上のインピーダンスを過去の同じステップの状態(過去のインピーダンス変化などのデータ、変動モデル式)と比較する工程701を実施する。
【0050】
比較工程701において、現在進行中のインピーダンスや電流、電圧、位相をデータベースに記録し、過去のデータと比較することで、ウェハ毎の経時変化を分類する。その分類に応じて、壁面状態を判断し、壁面状態をリセットするクリーニング処理や変化を補正するように各装置出力の値を適正に調整する工程702を実行することで、分離されたインピーダンス情報を経時変化抑制に活用することができる。
【0051】
例えば、この分類時に、高周波バイアス側の電圧、電流、位相もしくはインピーダンスのみが極端に変化している場合は、ウェハ面内のバイアスの均一性が変化していると判断し、次のウェハ処理においてバイアスの面内分布が均一になるようにバイアスの面内分布を調整することで、バイアス均一性をフィードバック制御して、歩留まり低下を抑制することが可能となる。このバイアスの均一性補正方法として、2周波数バイアスの混合比を調整することで実現できる。例えば、低周波(400kHz:VppL)と高周波(13.56MHz:VppH)の混合比(VppH/(VppH+VppL))を0%、20%、100%時と変化させた場合のPoly−Siエッチングレートの分布の変化を図8(a)、(b)、(c)、に示す。エッチング条件は、処理ガスとしてHBr/Oを用い、その圧力を3Paとし、UHF電力を500Wとした。
【0052】
バイアス電力として13.56MHzの混合比0%の時Poly−Siのエッチングレートの中高分布は11%である(図8(a))。バイアス電力として13.56MHzの混合比20パーセントのときPoly−Siのエッチングレートの中高分布は0%である(図8(b))。バイアス電力として13.56MHzの混合比100%のときPoly−Siのエッチングレートの中高分布は12%である(図8(c))。すなわち、高周波バイアス電力13.56MHz混合比が増加するにつれウェハ端部の分布が持ち上がり、混合比97%で端高の12%とバイアス混合比でウェハの分布を制御できる。
【0053】
図8(d)は、この高周波バイアス13.56MHzと低周波バイアス400kHzのモニタ電圧VH、VLの混合比を、VH+VLがほぼ一定となるように変化させて、200mmウェハ上のpoly−Siエッチングレート801、SiOエッチングレート802を測定した結果である。SiOエッチングレート802は、10倍して示してある。高周波バイアス13.56MHzの混合比率が増加するにつれ、poly−Siエッチングレートは2割程度の減少で一定なのに対し、SiOエッチングレートは激減し、対酸化膜の選択性(選択比)803が増加する。このように、バイアスの混合比を変化させて、ウェハ面内レートを制御する際、混合比30%以上で制御すると、OEに十分耐えられる高い選択性の領域(選択比200のライン804以上)となり、好ましい。その他、エッチングレートや形状の面内分布を修正する手段としては、電磁石104の出力やガス流れ分布、ウェハステージの面内分布等と組み合わせて制御することも可能である。
【0054】
また、ウェハ処理枚数が進むにつれ、同じエッチングステップでチャンバー壁面の低周波インピーダンスと高周波インピーダンスのみが変化していく場合には、チャンバー壁面状態が変化していると、観察者が判断し、もしくは制御装置125で判断し、プラズマ処理装置のプラズマクリーニングを自動または手動で行ったり、部品の交換を促したり、変動を補正するモデルに基づき、IEDF制御機構127、UHF電源101、高速応答圧力制御機構110、高速応答反応性ガス導入機構111、温度制御機構115の出力を変化させる。
【0055】
以上、ウェハ直上またはチャンバー壁面のインピーダンス、または、低周波バイアスのインピーダンスまたは高周波バイアスのインピーダンスで装置状態やウェハ処理状態を分類する例を挙げたが、さらに、変化する方向(例えば、インダクター側かコンダクター側か)の情報も考慮することで、より詳細な分類とデータベース構築と変動要因抽出が可能で、その変動要因に応じた適切なフィードバック制御を実施することが可能となる。
【0056】
このように、加工形状に大きな影響を与えるエッチングステップ(MEステップや終点判定ステップ)に2周波数混合のIEDF制御バイアスを使用し、そのインピーダンスを計測し、記録し、過去のデータベースや変動モデルと比較する方法によって、エッチング特性変動に対して、自動補正することが可能となる。
【0057】
この方法を具現化する機構を図9に示す。制御装置125にデータベース901が接続されている。制御装置125への入力信号としては、実施例1、2記載のバイアス印加機構117内のプラズマ状態検知器126の出力だけに限られない。すなわち、制御装置125への入力信号としては、従来のプラズマ発光分光器123の出力(発光スペクトル)やインピーダンス検出器付高速応答UHF整合器102(プラズマ発生周波数から見たプラズマのインピーダンス、電流、電圧、位相)と膜厚干渉モニタ124の出力(ウェハ上の残膜)の出力、そして、その他機構、例えば、UHF電源101、電磁石104、ヒータ108、高速応答圧力制御機構110、高速応答反応性ガス導入機構111、温度制御機構115、直流電源116の各モニタ値を用いることができる。制御装置125は夫々の入力データを記憶する。制御装置125は、データベース901内に記録してある過去のデータと新たに入力されたデータを比較または参照し、データベース901内もしくは制御装置125内の変動モデルと照合した結果をもとに、IEDF制御機構127や各制御装置の制御信号を出力する。このように、本発明の複数の周波数に対応するプラズマ状態検知器126の情報のみならず、発光スペクトル等の各制御機構のモニタ値も参照することで、より詳細な装置状態、ウェハ処理状態の分類し、適切な処置を施すことが可能となる。
【0058】
[実施例4]
次に、図10を参照して、図10(a)に示すプレーナ型のArFレジスト301/BARC302/TEOS(ハードマスク)1001/Poly−Si1002/HfSiO307がSi基板309上に積層された構造を有するCMOSゲートを、本発明を用いて加工する場合の実施例を説明する。
【0059】
図10(a)はハードマスクを含む多層膜マスク構造を持つプレーナCMOSのエッチング前の断面形状、図10(b)は従来方法の高周波数バイアスでハードマスクエッチングした後の断面形状、図10(c)は従来方法の高周波数バイアスでゲートエッチングした後の断面形状、図10(d)は本発明でエッチング処理した後の断面形状をそれぞれ示している。
【0060】
図10(a)に示すBARC膜302の下方にハードマスク1001、及びその下方にPoly−Siゲート電極層1002が配置された断面構造を持つSiウェハを、26MHzや13.56MHzの比較的高周波の従来技術(単一周波数バイアス電源)を用いて、ハードマスクパターン1001をエッチングした場合の例が図10(b)である。この図で示したようにハードマスク1001部分には側壁保護膜1004が付着し、テーパ形状1003になる。また、図10(c)に示すようにPoly−Siゲート電極層1002の下部とHfSiON絶縁膜307との境目において、密パターン側部分でノッチング1005が発生し、且つ下地HfSiON絶縁膜307の一部絶縁破壊が発生し易い。
【0061】
以下、本発明のプラズマ状態検知器126とIEDF制御バイアスを適用して図10(a)に示す断面構造を持つ12インチウェハをエッチングする例を説明する。図1のエッチング装置の下部電極113に図10(a)に示す断面を持つSiウェハ112を設置し、トリミングとエッチング処理を行った。
【0062】
図11を用いて、このトリミングまたはエッチングする場合の2周波数バイアスを印加する動作を説明する。図11は、図1に示す実施例に係るプラズマ処理装置が行う処理の動作の時間に伴う変化を示すグラフである。このグラフは動作を縦軸に時間を横軸にとって示したタイムシーケンスを示す図と成っている。なお、本図において、図1のプラズマ処理装置の動作のトリガーは、実施例1、2記載のような本発明を用いた終点判定方法や、プラズマからの発光分光器123からの出力の波形を用いており、図11(a)の発光強度の縦軸は相対値となっている。また、図11(b)は、それぞれ2つの周波数のバイアスのオン/オフの状態と高周波数側のバイアス電力の混合比を示している。
【0063】
BARC302のMEステップには、O/Arガスにハロゲン系(CF、CHF、CH、CHCl、Cl、HBr、HCl等)ガスを添加して、全ガス流量を100〜400cc、圧力を0.8Pa〜10Pa程度に調整して、500W〜800WのUHF電源出力で生成したプラズマを用いた。12インチウェハの面内のプラズマ分布を、複数の電磁石104の電流値で制御する。プラズマが着火した後、図11(b)に示すように、400kHzの低周波バイアス電源部120を30W〜50W程度印加し、レジスト301をトリミングしつつ、BARC層302をエッチングする(BARCのME処理)。このとき、13.56MHzの高周波バイアスは印加せず、高周波バイアスの混合比は0%である。
【0064】
400kHzの低周波のIEDFを用いることで、低イオンが側壁部分にも入射しやすくなり等方的トリミングが効率的に実施され、また高エネルギーイオンにより、側壁のラインエッジ粗さ(Line Edge Roughness:LER)をそぎ落として、低減する効果を両立することができる。この時のトリミング量は、ガスの混合比や圧力、プラズマソースパワー(UHF電源101の出力)、下部電極の温度、OE時間で適宜制御した。BARCのMEの終点1101は、プラズマ中のCN387nmの発光強度の変極点を用いた。
【0065】
BARCのMEの終点を検出した後、BARCをオーバーエッチング(OE)する。OE中は、選択性を向上するため、バイアス電力を10W程度低下させ、さらに、13.56MHzの高周波バイアスに切り替え、低周波バイアス0として、高周波バイアスの混合比を100%とした(BARCのOE処理)。
【0066】
次いで、ハードマスクであるTEOS1001のMEステップには、SF、CF、CHF、CH、O、Ar、Heのガスのうちから適宜のガスを混合し、全ガス流量を100cc〜400cc、圧力を0.4〜1.5Pa、UHF出力を500〜800Wとしてプラズマを生成し、下部電極バイアスパワーを80W〜150Wとしてエッチングした(ハードマスクのME処理)。バイアス電力の周波数は、高エネルギーピークを持つブロードなIEDFとなる低周波バイアス電源部の出力を混合比100%で使用した。これは、TEOSエッチングに必要な高パワーでもウェハ近傍で反応生成物の再解離を抑制するためである。この再解離を抑制することで、図10(b)のようなテーパ形状1003を有し、疎密形状差のあるハードマスクではなく、垂直に加工することができた(図10(d))。この低周波バイアス、高パワーを使用する際、ウェハ上同様にアース部分にもイオン衝撃がおこるため、削られたアース材料を含む反応生成物が石英表面に付着しエッチング特性の経時変化や異物発生を引き起こす場合がある。この場合は、過解離せず、面内の加工寸法を維持するような範囲で、高周波混合比を増加させることで、アーススパッタを軽減することが可能となる。
【0067】
このようなハードマスクエッチングの終点1102で、OE切り替えた。OEステップでは、下地Poly−Si1002との選択性を向上させる目的で高周波100%に切り替え、処理時間がSTI段差相当分となるようにした(ハードマスクのOE処理)。
【0068】
その後、Poly−Si1002のブレークスルー(BT)ステップを開始した。Poly−SiのBT処理におけるプラズマ条件は、ガス系としてCl、HBr、O、ArまたはHe等のガスの単体またはそれらの混合ガスを用い、全流量を200〜300cc、圧力を0.4〜0.8Pa、UHF出力を500〜700Wとした。IEDF制御機構127の条件は、400kHz低周波数バイアスを100%印加した(Poly−SiのBT処理)。これは、高エネルギーイオンでパターン底面カーボン系物質、酸化物質等を除去し、低エネルギーイオンで側壁の保護膜も除去しやすくなるためである。Poly−Siエッチングでは、その加工形状がデバイス特性に大きな影響を与えるので、実施例1、2に記載する本発明を適用した方法で終点判定を行った。
【0069】
Poly−Si1002のMEは、13.56MHzの高周波比率50%のIEDFを使用した(Poly−SiのME処理)。Poly−SiのMEの終点1104は、プラズマ状態検知器126の信号を実施例2に示した方法で取得した。
【0070】
Poly−SiのME処理の終点を検出した後、OE処理を行う。このOE処理はOE1とOE2の2つのステップで行われる。OE1ステップでは、下地選択性とエッチング形状(垂直性、裾形状なし)を両立させるため、低圧条件が望ましい。低圧条件で下地選択性を得るためには、一般に、イオンエネルギーを低下させる必要があるが、400kHzの低周波数で、低バイアスにすると低エネルギーイオンが存在するため、イオンの指向性がさらに低下し、裾形状が残りやすい。したがって、OE1ステップには、MEと同じ処理ガスを用いて、13.56MHzの高周波バイアスを100%混合したIEDFを使用した(Poly−SiのOE1処理)。バイアス電力は10W〜50W(Vpp250V以下)である。
【0071】
そして、STI段差部分や面内、p/nゲート差、疎密パターン差に起因するPoly−Siを除去するOE2ステップへ移行した。OE2ステッププラズマ条件は、処理ガスはHBr/OをArで希釈し、全流量200〜400cc、圧力3〜10Pa、UHF出力は500〜700Wである。高周波バイアス80%と低周波バイアス20%の2周波数混合バイアスを使用した(Poly−SiのOE2処理)。これは、下地選択性と電子シェーディング低減を両立させる目的である。すなわち、平均イオンエネルギーの倍近い高イオンエネルギーの比率を低減することで、下地選択性を維持し、イオン衝撃による物理ダメージを抑制できる。そして、低エネルギーのイオンによるマスク上部に帯電した電子を中和させることで、電子シェーディングによるノッチングを回避することができる。
【0072】
以上、多層膜構造のエッチングサンプルで、被エッチング材料が変わると、プラズマ状態検知器126や発光分光器123、または膜厚干渉モニタ124の信号をトリガーにして次のステップへ移行する際のIEDF制御機構127の設定例について説明したが、図15に、ステップ切り替え時にIEDF制御電源の出力電圧(Vpp)がオーバーシュートして過剰な電圧が被エッチング材料に印加されることで、選択性が低下しないようにするための制御装置の構成の概略を示す。
【0073】
図15は、図1に示す実施例に係るプラズマ処理装置の制御装置の機能構成の概略を示す模式図である。予め設定されたエッチングの処理条件(レシピ)に従い、プラズマソース電源(UHF電源101)、高速応答圧力制御機構110、高速応答反応性ガス導入機構111の出力値やタイミングを制御する制御装置125によって、IEDF制御機構127の出力電圧とタイミングが制御されている。IEDF制御機構127には、遅くともX−1番目のエッチングステップ中に、X番目の高周波バイアス電源部118の出力設定値SVHxと低周波バイアス電源部120の出力設定値SVLxや、X番目のステップの高周波用整合部119の安定点の設定値SPHxと低周波用整合部121の安定点の設定値SPLxが、制御装置125からの信号で事前にセットされている。
【0074】
この際に、X−1番目終了からX番目の高周波用整合部119の安定点の過渡的設定値SPHyと低周波用整合部121の安定点の過渡的設定値SPLyも適宜複数点設定しておくことで、X番目ステップへ移行する際、オーバーシュート等せず、スムースに応答することができる。このとき、移行中のモニタ値のMPHx、MPLx(負荷からの入射電力と反射電力、整合状態など)をもとに、過渡的設定点の値SPHy、SPLyや電源出力値SVHx、SVLxを出力させることで、フィードバック制御することも可能である。また、高周波用整合部119、低周波用整合部121の信号だけでなく、プラズマ状態検知器126の電圧、電流、位相、インピーダンス信号をモニタしてフィードバク制御してもよいし、データベース901の過去の値を参照してもよい。このように、次の目標点に対し、最短時間でスムースに単調的に時間変化する機構と方法を示したが、IEDF制御機構127の過渡現象制御と同様に、UHF電源101、高速応答圧力制御機構110、高速応答反応性ガス導入機構111、温度制御機構115に対しても同様に実施可能である。
【0075】
[実施例5]
次に、図1のプラズマ処理装置を用いて、図12に示す高段差を所有する立体構造FIN−FETを形成する際の処理方法の実施例を説明する。図12(a)はエッチング前の膜構造を示す斜視図、図12(b)は本実施例を用いてエッチングした後の膜構造を示す斜視図、図12(c)は図12(a)に示すA−A線を通る面で切った縦断面図である。
【0076】
図12(a)および図12(c)において、高段差を所有する立体構造FIN−FETのエッチング前の膜構造は、Si基板309上に形成されたSiO層1203と、Si層1202と、TiN層1204と、BARC302と、レジスト301とからなる。SiO層1203の上には、FIN部分1201が形成され、さらにSiO層1203とFIN部分1201の上には、high−k絶縁膜1205が形成されている。1208はFIN部分1201とゲート電極の際部分を示している。本例では、図12(a)の膜構造からレジスト301をマスクにしてエッチングを開始し、図12(b)に示す膜構造を得るドライエッチングである。図12(b)では、1205はhigh−k絶縁膜、1206はTiN層1204をエッチングして形成したTiNゲート電極を示す。また、Si層1202はTiNゲート電極1206の両側に位置しこれに向かって延在する複数のFIN部分1201を備えている。このFIN部分1201を有する図12(a)の膜構造の縦断面を図12(c)に示す。
【0077】
図12(a)に示したような構造を持つウェハでは、FIN部分1201の段差の上部と下部のOE量差が大きく、デバイス特性に大きな影響を与えるゲート長部分が垂直方向となるので、実施例1から実施例4までに記したIEDF制御だけでなく、ガス、圧力、整合器、電極温度を連動させて、反応生成物やエッチャント、イオンのフラックスに関連したステップ間の過渡現象の制御が重要となる。
【0078】
このようなエッチング処理の過渡現象に追随するための機構として、高速応答UHF整合器102には、ステップ間の連続放電時にプラズマ入射電力がオーバーシュートやアンダーシュートせず、単調増加、または、単調減少変化を1秒程度で安定させる性能を備えるものを用いることが好ましい。その性能を実現するためには、例えば、着火と安定点といった複数の整合パラメータとその整合経路の最適値を設定する機能を有することで実現できる。単調増加は応答曲線の時間微分が常に正、単調減少応答曲線の時間微分が常に負と定義する。
【0079】
また、反応生成物やエッチャントのフラックス量の過渡現象に追随するため、高速応答反応性ガス導入機構111には、プラズマ放電中に新たにガスを添加したり、減少させたりする際、流量がオーバーシュート、アンダーシュートしないようにすることができるような機構、例えば、ガスが溜まって突発しないように待ち時間の間ガスを流し続けるような機構を用いることで実現することができる。
【0080】
さらに、このようなガス流量の変化に伴うプラズマの圧力変動に追随して、2秒程度で圧力を安定化できる高速応答圧力制御機構110を備えることが望ましい。このような機能は、例えば、圧力差ができるだけ生じないようなガス配管構造にしたり、圧力制御アルゴリズムを最適化することで実現できる。そして、反応生成物のSiウェハ面内分布の変化に追随することにも対応するために、下部電極113は、できる限りの高速(1℃/sec以上)でステップ間で温度を昇降でき、かつ分割された内側、外側、もしくはそれ以上の部分が独立に制御できる性能を持つことが望ましい。これは、例えば、下部電極部に内部にヒータと温度センサ、Heガス圧制御する等を備えた温度制御機構115を備えることで実現することができる。
【0081】
このような機能を有する機構を備えた図1に示したエッチング装置用いてSOI(Si on Insulator)基板上に作成されたFINFETエッチングを実施した際のエッチング処理のタイムシーケンスを、図13に示す。図13(a)は例えば発光強度を用いたEPD用の信号の時間変化、図13(b)は処理中の下部電極113の温度、図13(c)はエッチングチャンバー107に供給される添加ガスの流量、図13(d)はエッチングチャンバー107内のガスの圧力、図13(e)はアンテナ103からエッチングチャンバー内に導入されるUHF電力の値、図13(f)はIEDF制御機構127が行う複数の周波数によるバイアスの分配比を示すグラフである。
【0082】
下部電極113の電極温度を制御する温度制御機構115の初期設定値は、図13(b)のように内周部1311および外周部1312の温度をそれぞれ40℃で開始した。まず、BARC層302のMEステップを、O/Cl/Ar/CFを用いて上記の実施例4で示したプロセスの手順に準じて行い、プラズマ発光強度が減少始めた時刻1302でBARCのOEステップへ移行した。OE中は、下地のTiN1204との選択性が必要となるため、TiNのエッチャントとなるClを、発光強度が落ちきる時間1301以下で次第に単調減少させたランプ制御を行った(1303)。従来技術のガス流量制御波形1304では、Clガスのエアオペレーションバルブの開閉制御のみだったため、瞬時減少となっていた。また、従来技術でのプラズマ中の圧力変動1307は、Clガスのストップバルブを瞬時に閉じたため、急激に減少した後、5秒くらいかけて設定圧力へと戻っていた。
【0083】
一方、本実施例では、高速応答反応性ガス導入機構111と高速応答圧力制御機構110を用いることで反応生成物の減少に合わせてエッチャント量を徐々に減少させ、それによる圧力変動を補正することで一定にすることができる。また、圧力が一定となるので、従来技術のUHF整合器で発生していたプラズマ入射電力の変動1309や、Vppの変動も抑制することができ、形状異常を抑制できる。
【0084】
さらに、BARCのOE中のIEDF制御機構127の周波数は、実施例1の記載と同様に400kHz低周波から13.56MHzの高周波に切り替えている。バイアス出力は、30Wから50Wの範囲を使用した。FIN段差1207をエッチングできる時間だけOE処理を行った後、TiN層1204のBTステップへ移行する。この際、ガスを入れ替えるため一度、UHF波出力およびバイアス電力をoffしている。そして、放電を中断してガス置換を行っている10数秒間の間、TiNエッチ中の内周部分の電極温度1311を20℃上昇させておく。これは、TiNエッチング中の再入射する反応生成物の再付着を抑制するためである。また、下部電極113の外周部分の温度1312は、排気効率に起因する反応生成物分布の違いを考慮して、内周部分より10〜20℃低くなるように調節されている。
【0085】
TiN層は、BT、ME、OE1、OE2からなるが、BT、MEは実施例1と同様な本発明による、終点判定方法とエッチング条件を適用した。
【0086】
従来技術のUHF整合器の場合、BTステップSへの移行の際、着火時プラズマ入射電力の変動1308が出現していたが、高速応答UHF整合器102を用いることで、入射電力がオーバーシュート、アンダーシュートなくスムースに移行することができる。これは、高速応答UHF整合器102が着火時と安定時に異なる整合パラメータへ移行する際、その整合経路を適宜設定できるためである。
【0087】
BTステップは、BT処理ガスを導入するとともに、UHF電力を印加しバイアスを低周波数側として行う。BTステップの終了1310を検出すると、BT処理ガスの供給を停止し、UHF電力および低周波数側倍す電力の供給を停止する。
【0088】
次いで、MEステップにおいては、ME処理ガスを供給するとともに、アンテナへのUHF電力の供給を開始し、バイアス電力は低周波数側と高周波数側の電力が1:1となるように供給する。MEステップにおいて、プラズマ状態検知器126のインピーダンスが落ち始めた時刻1314でTiN OE1ステップに切り替えている。
【0089】
OE1ステップは、段差や疎密、面内差に起因したエッチング量をそろえる役目がある。すなわち、早く下地に到達したパターンとまだ下地まで届いていないパターンが混在している。したがって、下地まで到達したパターンで、high−kとの選択性を維持しつつ、下地まで到達していない部分、特に垂直方向のゲート長部分においては、テーパ形状と裾形状低減が必要である。選択性を向上させるために図13(c)に示すように単調増加で次第に減る反応生成物量に合わせて制御するようにF系ガスが添加されている。添加ガスとしては、下地材料とゲート材料を考慮してNF、SF、CF、O、N、CHCl等を用いても良い。ゲート電極/ゲート絶縁膜構造がPoly−Si/SiOの場合は、酸素、もしくは窒素が同様な働きをなす。このとき、高速応答反応性ガス導入機構111、高速応答圧力制御機構110、高速応答UHF整合器102により、ガス流量のオーバーシュート1305や圧力変動1306、入射UHF波の変動1308やVppの変動を生じさせることなく、これらのガスを添加することができる。OE1中は、IEDF制御機構127は、選択性向上のため狭いエネルギー分布を持つよう高周波100%で処理することで、開口部の形状異常(サイドエッチ、下地抜け)なく。疎密パターン差やP/Nゲート部の差を低減することができる。
【0090】
また、本実施例では、TiNのMEの終点1314と同時に電極温度を20℃下げることにより、少なくなる反応生成物の吸着確率を増加させ、選択性を出現させる堆積物の付着量を増加させた。これは反応生成物が少なくなることで、エッチャント比率が上昇することでサイドエッチが入ることを抑制するためである。
【0091】
一方、OE2では、FIN部分とゲート電極の際部分1208に残るTiNを除去する必要がある。ゲート長となるので高精度な制御が必要である。そのため2周波数バイアス1313の高周波13.56MHzを80%Vpp、全電源出力をIEDFの平均が50V以下となるような値(100Vpp以下)を使用した。この理由は、FIN上部のhigh−k絶縁膜に対する高選択性が必要なためである。そして、ゲート電極1206とFIN部分1201の際部1208をエッチングするのに低エネルギールギーイオンで際の上部からそぎ落とすためである。バイアスの全出力を100Vpp以下に抑えることで、選択性とエッチングを両立させることができた。このときのバイアスパワーは、おおよそ1W程度/12インチであった。
【0092】
さらなるOE時間を確保するためには、OE2の途中で次第に低くなる際部の高さに連動させて、混合比を高選択側に増加させるランプ制御波形1316を使用したほうが効果的である。また、上記BARCエッチ、TiNエッチ時の2周波混合比は、パターン密度やFIN高さ(段差の高さ)に応じて適宜調整を行なう必要がある。
【0093】
また、IEDF制御機構127内の高周波用整合部119、低周波整合部121も、高速応答UHF整合器102と同様に、複数整合ポイントとその整合経路を適宜設定する工程を有した方が、イオンエネルギー、もしくはVpp、もしくは出力パワーのハンチングや、オーバーシュート、アンダーシュートを防ぐことができるため好ましい。さらに、エッチングのイオンアシスト反応がスムースに移行できるよう、エッチングに影響のあるプラズマの内部パラメータ(ラジカル種と密度、イオン密度、入射イオンエネルギー、)がスムース(単調増加、または単調減少)で移行するように各機構を制御するアルゴリズムで実施するとよい。プラズマの内部パラメータとは、プラズマの特徴を示す量であるが、それらの量は、ラジカル種、密度、イオン密度は、発光分光器123や新たな密度検知プローブを用いて、また、入射イオンエネルギーに関しては、プラズマ状態検知器126の信号にて検知したものをフィードバック制御したり、事前のデータベースにて、移行点を複数準備して制御するとよい。その際、ステップ移行間のそれぞれの機構の設定値を同時に変化させる必要があるので制御が発散しないようにする必要がある。
【0094】
[実施例6]
次に、μ波−ECR装置を用いたプラズマ処理装置において、ゲート電極以外の膜構造を処理して形成する例を図14に示す。この例では、図14(a)のようなSi基板309に深孔を形成する場合を説明する。この場合のエッチングステップは、BARC302とハードマスク1001とSi309のエッチングステップからなり、BARC層302とハードマスク1001エッチングステップは、実施例4の要領でME、OEプロセスを行った。その後、SF、CF、CHF、CH、SiCl、SiF等のF含有ガスや酸素を混合して、100cc〜300ccのガス流量、0.4〜1.5Paの圧力、プラズマ生成機構であるμ波出力500〜800Wでプラズマを生成し、電極温度内/外差5℃から20℃程度内側を高くしてSi層のエッチングを行っている。図14(b)に示す1401はハードマスクエッチング後のトレンチである。
【0095】
本実施例では、IEDF制御機構127は、イオンエネルギー分布が狭くなるような高周波13.56MHzが100%の成分を使用した。これは、低周波IEDFで存在する低エネルギーのイオンエネルギーが、図14(c)に示すSi層のボーイング1402を助長することを抑制するためである。また、エネルギー分布がそろうことで、レジストのファセット角が大きくなることも抑制でき、深孔の寸法が広がることなく、図14(d)に示すようなボーイングの発生しないホールの高精度加工が可能となる。このような、酸素、SiF、SiClなどのデポガス等とのタイミング制御を行うことで、より微細で高アスペクト加工を実施することができる。
【0096】
以上に示した方法、機構により、段差と金属材料とhigh−k材料を含む多層構造を持つプレーナ型CMOS−FET、立体構造(FiN−FET)等のゲート電極のエッチング処理において、形状異常(疎密形状差、ノッチング、サイドエッチ、下地膜の損傷、裾、下地抜け、テーパ形状等)がないエッチング加工を安定に、実現することできる。
【0097】
これらの機構、実施例は、Siウェハの半導体加工において実施したが、下部電極113の形状を対応させることで、プラズマディスプレイ、液晶、MEMS製造などプラズマエッチング処理全般に適用可能である。
【符号の説明】
【0098】
101 UHF電源
102 インピーダンス検出器付高速応答UHF整合器
103 アンテナ
104 電磁石
105 石英板
106 シャワープレート
107 エッチングチャンバー
108 ヒータ
109 高真空ポンプ
110 高速応答圧力制御機構
111 高速応答反応性ガス導入機構
112 Siウエハ
113 下部電極
114 サセプタ
115 温度制御機構
116 直流電源
117 バイアス印加機構
118 高周波バイアス電源部
119 高周波用整合部
120 低周波バイアス電源部
121 低周波用整合部
122 発光受光部
123 発光分光器
124 膜厚干渉モニタ
125 制御装置
126 プラズマ状態検知器
127 IEDF制御機構
201 高周波数(13.56MHz)のIEDF
202 高周波数時の分布幅
203 低周波数(400kHz)のVpp200VのIEDF
204 低周波数時の分布幅
205 低周波数(400kHz)のVpp100Vと高周波(13.56MHz)Vpp100V混合時のIEDF
301 レジスト
302 BARC
303 中間層マスク
304 下層マスク
305 ゲートCap層
306 メタルゲート電極層
307 HfSiON絶縁膜
308 STI
309 Si基板
310 STI段差
311 アクティブ部分のゲート電極下部
312 HfSiON膜の下地抜け
313 STI段差部のゲート電極材料の残り
314 裾引き形状
315 STI上のゲート電極材料の残り
316 本発明で処理したゲート電極
401 BT終点(インピーダンスが大きくなった時刻)
402 TiNのME終点(インピーダンスが変化し始めた時刻)
403 TiNのME時の2周波混合比
404 TiNのOE1時の2周波混合比
405 TiNのOE2時の2周波混合比
406 従来発光ピークによるTiNのME終点
407 膜厚干渉モニタによるTiNのBTME時の出力波形
408 膜厚干渉モニタによるTiNのME終点
601 完全にエッチング膜が除去されたときのインピーダンス
602 終点判定前のインピーダンス
603 整合経路
604 設定した複素インピーダンス範囲
605 604を整合経路が通過する点
606 経時変化が存在する場合の終点判定前のインピーダンス
607 経時変化が存在する場合の終点判定後のインピーダンス
801 poly−Siレート
802 SiOレート
803 対酸化膜の選択性
804 選択比200のライン
901 データベース
1001 ハードマスク
1002 Poly−Siゲート電極層
1003 テーパ形状疎密形状差のあるハードマスク
1004 側壁に付着した反応生成物
1005 ノッチング
1101 BARCの終点
1102 ハードマスクエッチングの終点
1103 Poly−SiのBTステップの終点
1104 Poly−SiのMEステップの終点
1105 BARCエッチング時の2周波混合比
1106 ハードマスクエッチング時の2周波混合比
1107 Poly−Siエッチングング時の2周波混合比
1108 Poly−SiのOEエッチングング時の2周波混合比
1201 FIN部分
1202 Si層
1203 SiO
1204 TiN層
1205 High−k絶縁膜
1206 エッチングされたTiNゲート電極
1207 FIN段差
1208 FIN部分とゲート電極の際部分
1301 発光強度が落ちきる時間
1302 CN発光強度の減少始め時刻
1303 ランプ制御
1304 従来技術のガス流量制御波形
1305 ガス流量オーバーシュート
1306 圧力変動
1307 従来技術でのプラズマ中の圧力変動
1308 着火時プラズマ入射電力の変動
1309 プラズマ入射電力の変動
1310 発光強度が充分立ち上がった時刻
1311 TiNエッチング中の内周部分の電極温度
1312 TiNエッチ中の外周部分の温度
1313 TiNのMEステップの2周波数バイアス
1314 Ti発光強度が落ち始めた時刻
1315 高速応答反応性ガス導入機構で単調増加に制御されたF系添加ガス流量
1316 ランプ制御波形
1401 ハードマスクエッチング後のトレンチ
1402 ボーイング

【特許請求の範囲】
【請求項1】
真空容器と、前記真空容器の処理室内に配置されウェハを載置し得る下部電極と、前記下部電極に複数の異なる周波数のバイアス電力を供給するバイアス印加機構と、前記処理室内に反応性ガスを導入するガス供給機構と、前記処理室内の圧力を調整する圧力調整機構と、前記処理室内にプラズマを生成するための電磁波を供給する電磁波供給機構と、前記バイアス印加機構と前記ガス供給機構と前記圧力調整機構と前記電磁波供給機構をそれぞれ制御する制御装置とを備えるプラズマ処理装置において、
前記バイアス印加機構は、前記ウェハへの入射イオンエネルギー分布を制御するイオンエネルギー分布制御機構と、プラズマ状態を検知するプラズマ状態検知器とを具備し、前記プラズマ状態検知器は、前記ウェハに複数の異なる周波数の高周波バイアス電力が供給された時のプラズマのインピーダンスを検知して前記検知されたプラズマのインピーダンスを処理室の壁面状態成分とウェハ直上成分のインピーダンスとに分離し、前記制御装置は、前記分離されたウェハ直上成分のインピーダンスと前記分離された処理室の壁面状態成分のインピーダンスをデータベースに予め保存されたリファレンスデータまたはデータベースに予め保存された変動モデル式と比較することによってプラズマ処理装置状態を判定することを特徴とするプラズマ処理装置。
【請求項2】
請求項1記載のプラズマ処理装置において、
前記バイアス印加機構は、複数の異なる周波数を発振する電源部と、複数の異なる周波数に対応する整合部と、複数の異なる周波数に対するインピーダンス検知器とを、または複数の異なる周波数を発振する電源部と、複数の異なる周波数に対応する整合部と、複数の異なる周波数に対する電流、電圧、位相をそれぞれ検知する機構とを具備することを特徴とするプラズマ処理装置。
【請求項3】
請求項1記載のプラズマ処理装置において、
前記プラズマ状態検知器は、高周波数の高周波バイアス電力が供給された時の電圧と電流とウェハ直上成分のインピーダンスと処理室の壁面状態成分のインピーダンスをそれぞれV、I、Z1H、Z2Hとする(1)式と、低周波数の高周波バイアス電力が供給された時の電圧と電流とウェハ直上成分のインピーダンスと処理室の壁面状態成分のインピーダンスをそれぞれV、I、Z1L、Z2Lとする(2)式と、高周波数の高周波バイアスの角速度と低周波数の高周波バイアスの角速度をそれぞれω、ωとし高周波数の高周波バイアス電力が供給された時のウェハ直上成分のインピーダンスと低周波数の高周波バイアス電力が供給された時のウェハ直上成分のインピーダンスとウェハ直上成分の抵抗成分とリアクタンス成分とインダクタンス成分と容量成分をそれぞれZ1H、Z1L、R、X、L、Cとし高周波数の高周波バイアス電力が供給された時の処理室の壁面状態成分のインピーダンスと低周波数の高周波バイアス電力が供給された時の処理室の壁面状態成分のインピーダンスと処理室の壁面状態成分の抵抗成分とリアクタンス成分とインダクタンス成分と容量成分をそれぞれZ2H、Z2L、R、X、L、Cとする(3)式とを用いて前記検知されたプラズマのインピーダンスの時間変化を処理室の壁面状態成分とウェハ直上成分のインピーダンスとに分離することを特徴とするプラズマ処理装置。
【数1】

【数2】

【請求項4】
請求項1記載のプラズマ処理装置において、
前記電磁波供給機構は、前記電磁波の電力を供給する電源と、前記電源に対して複数の整合点を記録し、その整合経路を選択して整合させる整合装置とを具備したことを特徴とするプラズマ処理装置。
【請求項5】
プラズマエッチングによりhigh−k材料と前記high−k材料上に設けられた金属材料とを有するウェハにメタルゲート/high−k構造を有するゲート電極を形成するプラズマ処理方法において、
前記ウェハに複数の異なる周波数の高周波バイアス電力を供給しながらプラズマのインピーダンスの時間変化を検知する工程と、前記検知されたプラズマのインピーダンスの時間変化を処理室の壁面状態成分とウェハ直上成分のインピーダンスとに分離する工程と、前記分離された処理室の壁面状態成分のインピーダンスと前記分離されたウェハ直上成分のインピーダンスをデータベースに予め保存されたリファレンスデータまたはデータベースに予め保存された変動モデル式と比較することによってプラズマ処理装置状態を判定する工程とを有することを特徴とするプラズマ処理方法。
【請求項6】
請求項5記載のプラズマ処理方法において、
前記分離する工程は、高周波数の高周波バイアス電力が供給された時の電圧と電流とウェハ直上成分のインピーダンスと処理室の壁面状態成分のインピーダンスをそれぞれV、I、Z1H、Z2Hとする(1)式と、低周波数の高周波バイアス電力が供給された時の電圧と電流とウェハ直上成分のインピーダンスと処理室の壁面状態成分のインピーダンスをそれぞれV、I、Z1L、Z2Lとする(2)式と、高周波数の高周波バイアスの角速度と低周波数の高周波バイアスの角速度をそれぞれω、ωとし高周波数の高周波バイアス電力が供給された時のウェハ直上成分のインピーダンスと低周波数の高周波バイアス電力が供給された時のウェハ直上成分のインピーダンスとウェハ直上成分の抵抗成分とリアクタンス成分とインダクタンス成分と容量成分をそれぞれZ1H、Z1L、R、X、L、Cとし高周波数の高周波バイアス電力が供給された時の処理室の壁面状態成分のインピーダンスと低周波数の高周波バイアス電力が供給された時の処理室の壁面状態成分のインピーダンスと処理室の壁面状態成分の抵抗成分とリアクタンス成分とインダクタンス成分と容量成分をそれぞれZ2H、Z2L、R、X、L、Cとする(3)式とを用いて前記検知されたプラズマのインピーダンスの時間変化を処理室の壁面状態成分とウェハ直上成分のインピーダンスとに分離することを特徴とするプラズマ処理方法。
【数3】

【数4】

【請求項7】
請求項5記載のプラズマ処理方法において、
前記ゲート電極は、FIN−FETのゲート電極であることを特徴とするプラズマ処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−212894(P2012−212894A)
【公開日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2012−126660(P2012−126660)
【出願日】平成24年6月4日(2012.6.4)
【分割の表示】特願2008−2709(P2008−2709)の分割
【原出願日】平成20年1月10日(2008.1.10)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】