説明

プラズマ処理方法及び処理装置

【課題】成膜種を効率よく生成することができ、高品質の薄膜を成膜することができるプラズマ処理方法及び処理装置を提供する。
【解決手段】被処理体3を収納して被処理体3上に薄膜を成膜する反応チャンバー1と、反応チャンバー1内に配置され、被処理体3を保持するステージ4と、反応チャンバー1内に第1のガスを供給する第1のガス供給部10と、反応チャンバー1内に第1のガスとは異なる第2のガスを供給する第2のガス供給部14と、反応チャンバー1内に高周波放電を発生させる高周波プラズマ源7とを備えるプラズマ処理装置を用い、反応チャンバー1内において、高周波放電によってプラズマ化された第1のガスと、プラズマ化が抑制された第2のガスとを接触させて分解反応を起こさせ、該分解反応に基づいて、ステージ4に保持された被処理体3上に薄膜を成膜する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマを用いて被処理体上に薄膜を成膜するプラズマ処理方法及び処理装置に関し、特に、例えば太陽電池における変換効率の向上や薄膜トランジスタにおける移動度の向上に有用な微結晶シリコン薄膜の成膜に好適に用いられるプラズマ処理方法及び処理装置に関するものである。
【背景技術】
【0002】
従来から、微結晶シリコン薄膜は、薄膜太陽電池における長波長側の吸収層、薄膜トランジスタにおけるチャネル層等として広く用いられている。薄膜トランジスタにおけるチャネル層として微結晶シリコン薄膜を用いた場合、アモルファスシリコン薄膜を用いた場合と比較して、高い移動度が得られることが知られている。
薄膜太陽電池、薄膜トランジスタ等のデバイスの素材となるシリコン膜を成膜する方法としては、従来、プラズマCVD(Chemical Vapor Deposition;化学気相成長)法が広く用いられている。プラズマCVD法では、シラン(SiH)ガス、ジシラン(Si)ガス等のシラン系ガスと希釈用の水素ガスとの混合ガスを高周波放電により分解し、シリコン膜を基板上に堆積させる。
【0003】
プラズマCVD法は、プラズマの生成方法の違いにより、容量結合型と誘導結合型に分類される。容量結合型プラズマCVD法では、平行平板電極間に高周波電圧を印加することにより高周波電界を発生させ、原料ガスをプラズマ化する。この方法は、成膜速度が遅く、数百Paもの高いガス圧を必要とする。このため、2次反応によるポリマーの生成や、反応チャンバー内の放電によるチャンバー壁への付着物質による汚染、電極への付着物質による汚染によって、成膜される膜の膜質が劣化するおそれがある。
【0004】
そこで、最近では、容量結合型プラズマCVD法に代わり、誘導結合型プラズマCVD法が用いられるようになってきている。誘導結合型プラズマCVD法は、高周波コイルに対して高周波電力を印加することにより、誘導結合型プラズマを発生させる。この方法は、高いプラズマ密度を得ることができるため、成膜速度を速くすることができるという特徴を有する。
【0005】
例えば特許文献1には、このような誘導結合型プラズマCVD法及びこれに用いられる誘導結合型プラズマCVD装置が開示されている。
図5は、特許文献1に開示された誘導結合型プラズマCVD装置を模式的に示す図である。図5に示すように、誘導結合型プラズマCVD装置は、反応チャンバー101と、反応チャンバー101の上部外側に配置された渦巻状の高周波コイル102とを有している。反応チャンバー101の上部には、表面に酸素を含まないシリコン膜が蒸着された石英材よりなる誘電体窓103が形成されている。反応チャンバー101内において、誘電体窓103と薄膜を形成すべき基材104との間には、反応ガスを供給するためのリング状のガス供給ノズル105が配置されている。
【0006】
次に、図5に示す誘導結合型プラズマCVD装置の動作について説明する。
真空状態に保持された反応チャンバー101内には、ガス供給ノズル105から反応ガスが供給される。また、高周波コイル102に高周波電力が印加されると、反応チャンバー101内に誘導結合型プラズマが生成する。反応チャンバー101内において生成した誘導結合型プラズマにより反応ガスがプラズマ化され、プラズマ化された反応ガスにより基材104上に薄膜が成膜される。
【0007】
ところで、例えば非特許文献1には、シランを用いたプラズマCVD法においては、長寿命種であるSiHラジカルが主たる成膜種であることが報告されている。他方、SiHラジカル以外の分解生成物であるSiラジカル、SiHラジカル、SiHラジカル等は、原料ガスと2次反応、3次反応を起こし、高次の生成物を生成する短寿命種として知られている。これら短寿命種を排除することは、結晶性の向上に寄与する要因の一つであると考えられている。
また、非特許文献2及び非特許文献3には、水素ラジカルが微結晶シリコン薄膜の形成に影響を与えることが報告されている。
このように、高品質な微結晶シリコン薄膜を形成するためには、高次生成物やその前駆体を除去し、SiHラジカル及び水素ラジカルを増加させることが必要であることが明らかにされている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平10−27762号公報
【非特許文献】
【0009】
【非特許文献1】松田彰久、「シランプラズマ中における原料ガスの解離過程」、プラズマ・核融合学会誌、社団法人プラズマ・核融合学会、2000年8月、第76巻、第8号、p.760-765
【非特許文献2】A.Matsuda、「Growth mechanism of microcrystalline silicon obtained from reactive plasmas」、Thin Solid Films、米国、Elsevier B.V.、1999年1月11日、第337巻、p.1-6
【非特許文献3】小川俊輔、野々村修一、「微結晶系薄膜太陽電池の開発動向と透明電極表面保護膜」、表面技術、社団法人表面技術協会、2008年、第59巻、第3号、p.155-160
【発明の概要】
【発明が解決しようとする課題】
【0010】
従来、薄膜系シリコン太陽電池では、アモルファスシリコン層と微結晶シリコン層とが積層されたタンデム構造を採用することにより、効率的な光吸収を実現し、変換効率の向上を図ることが行われている。しかしながら、アモルファスシリコン層は光吸収率が高く、0.2〜0.3μm程度の膜厚で6〜7%程度の光変換率を達成している一方で、微結晶シリコン層は光吸収率が低く、1.5〜2μm程度の膜厚が必要であるにもかかわらず3〜5%程度の光変換効率しか得られないのが現状である。
【0011】
他方、薄膜トランジスタでは、微結晶シリコンは、アモルファスシリコンより高い応答性が得られる可能性があり、また、多結晶シリコンでは応用困難なG5以上(第5世代以降)の大型基板への応用も期待されている。
これらの用途においては、例えば結晶化度や欠陥密度のような微結晶シリコン薄膜の膜質を改善することが重要である。膜質を改善することにより、太陽電池においては光変換効率の向上に、薄膜トランジスタにおいては応答性の向上に大きく貢献することができる。
【0012】
高品質な微結晶シリコン薄膜を成膜するためには、前述の通り、水素ラジカルとSiHラジカルが必要であるといわれている。しかしながら、一般的に、シラン(SiH)と水素(H)とが同時に存在するような空間では、プラズマエネルギーを上げると、水素の解離が進行し、水素ラジカルの生成量が増加するが、同時にシランの解離も進行する。このため、成膜種であるシリル(SiH)ラジカルの生成量が相対的に減少する。逆に、シランの解離を抑制するためにプラズマエネルギーを下げると、水素の解離する割合も減少し、その結果として水素ラジカルの生成量が減少する。
このように、水素ラジカルの生成量とSiHラジカルの生成量とを同時に増加することは、相反する両立困難なことであると知られている。
【0013】
また、誘導結合型プラズマCVD法においては、これに特有のアンテナ近傍における高密度プラズマによってシランの解離が進行する。このため、SiHラジカルの生成がうまくできず、SiHラジカルの生成量よりもSiラジカル、SiHラジカル、SiHラジカルの生成量が増加する。これらSiHラジカル以外のラジカルはシランと2次反応又は3次反応をすることにより、ダイマー、トリマー等が生成され、結果として膜の欠陥密度が増加し、膜質が低下するという問題が生じる。
上記のような理由により、従来のプラズマCVD法では、膜質を向上するためにSiHラジカルの生成量と水素ラジカルの生成量の両方を増加させることは困難である。
【0014】
この発明は、上記のような従来の課題を解決するためになされたもので、成膜種を効率よく生成することができ、高品質の薄膜を成膜することができるプラズマ処理方法及び処理装置を提供することを目的としている。
【課題を解決するための手段】
【0015】
すなわち、本発明のプラズマ処理装置は、
被処理体を収納して該被処理体上に薄膜を成膜する反応チャンバーと、
前記反応チャンバー内に配置され、前記被処理体を保持するステージと、
前記反応チャンバー内に第1のガスを供給する第1ガス供給部と、
前記反応チャンバー内に前記第1のガスとは異なる第2のガスを供給する第2ガス供給部と、
前記反応チャンバー内に高周波放電を発生させる高周波プラズマ源と、を備え、
前記反応チャンバー内において、前記高周波放電によってプラズマ化された第1のガスと、プラズマ化が抑制された前記第2のガスとを接触させて分解反応を起こさせ、該分解反応に基づいて、前記ステージに保持された前記被処理体上に薄膜を成膜するように構成されていることを特徴とする。
【0016】
また、本発明のプラズマ処理方法は、
被処理体を収納した反応チャンバー内に、第1のガスと、該第1のガスとは異なる第2のガスとを供給し、
前記反応チャンバー内において、高周波放電により前記第1のガスをプラズマ化し、
プラズマ化された前記第1のガスと、プラズマ化が抑制された前記第2のガスとを接触させて分解反応を起こさせ、該分解反応に基づいて、前記被処理体上に薄膜を成膜することを特徴とする。
【0017】
第2のガスは、例えば解離したガスが被処理体に直接作用することで成膜を行うものであり、このようなガスを高周波放電によって直接プラズマ化してしまうと、高品質の薄膜を成膜することが困難になる。例えば、シランガスの解離が進行すると、所望のSiHラジカルの生成がうまくできず、Siラジカル、SiHラジカル、SiHラジカルの生成量が増加し、結果として高品質の微結晶シリコン薄膜が形成されない。
上記本発明によれば、高周波放電により第1のガスをプラズマ化する一方、高周波放電による第2のガスのプラズマ化を抑制し、このプラズマ化が抑制された第2のガスとプラズマ化された第1のガスとの接触によって第2のガスの分解反応が起きるため、高周波放電による第2のガスの解離が早期に進行することはなく、成膜種を効率よく生成して、高品質の薄膜を成膜することができる。
【0018】
第1のガスとしては、水素ガス、又は水素ガスと希ガス、ホスフィンガス及びジボランガスのうちの1種以上とを含むものが挙げられる。例えば、水素+希ガス、水素+ホスフィン、水素+ホスフィン+希ガス、水素+ジボラン、水素+ジボラン+希ガスなどが示される。
第2のガスとしては、例えば微結晶シリコン薄膜の成膜を行うシランガス、ジシランガス等のシラン系ガスが挙げられる。
【0019】
前記反応チャンバー内には、例えば高周波放電によるプラズマ化を抑制するプラズマ抑制エリアを形成する区画部を設けることで、第2のガスのプラズマ化を抑制できる。この場合、前記第1ガス供給部によりプラズマ抑制エリア外に第1のガスを供給し、前記第2ガス供給部によりプラズマ抑制エリア内に第2のガスを供給する。そして、プラズマ抑制エリア内に、プラズマ抑制エリア外の第1のガスが流入するように構成することで、プラズマ抑制エリア内で、プラズマ化された第1のガスとプラズマ化が抑制された第2のガスとを接触させることができる。なお、前記ステージは、プラズマ抑制エリア側に設置することで、成膜を効果的に行うことができる。このように、反応チャンバー内に区画部によりプラズマ抑制エリアを形成することにより、第2のガスのプラズマ化を効果的に抑制することができ、高品質の薄膜の成膜に必要な成膜種を効率よく生成することができる。
【0020】
なお、前記区画部は、例えば、反応チャンバー内を仕切る遮蔽板により構成することができる。遮蔽板には、プラズマ抑制エリア内にプラズマ抑制エリア外の第1のガスが流入可能なように、プラズマ抑制エリア外とプラズマ抑制エリア内とを連通する連通部を設けるのが望ましい。連通部は、遮蔽板に複数形成することができ、隣接する連通部の間隔を、第1のガスの平均自由行程のオーダー程度となるように設定することが望ましい。このように連通部の間隔を設定することにより、第1のガスが連通部を通過した後に十分に被処理体上に行き亘らせることができ、第2のガスと効率よく接触させることができる。
【0021】
また、前記第1ガス供給部は、前記被処理体よりも前記高周波プラズマ源の近傍に第1のガスを供給するように設けられているのが望ましい。このように第1ガス供給部を設置することにより、第1ガス供給部から供給される第1のガスを早期に大量にプラズマ化させてプラズマ処理の効率を向上することができる。
【0022】
また、前記第2ガス供給部は前記高周波プラズマ源から離れて前記被処理体の近傍に第2のガスを供給するように設けられているのが望ましい。例えば第2ガス供給部に備える第2ガス吹出口を被処理体の近傍に配置するのが望ましい。このように第2ガス供給部を配置することにより、第2ガス供給部から供給される第2のガスのプラズマ化をより確実に抑制することができる。この際に、第2のガスが第2ガス供給部で反応チャンバー内に供給される際に、プラズマ源に直接触れない位置で第2のガスが吹き出されるようにするのが望ましい。
【0023】
高周波プラズマ源は、誘導結合型であることが望ましいが、その他の型であってもよい。また、高周波プラズマ源は、反応チャンバーに対して種々の態様で配置することができる。
例えば、反応チャンバーの外周部に、誘電体からなるプラズマ生成筒を外方に突出するように設け、このようなプラズマ生成筒の外周に、高周波プラズマ源を配置することができる。反応チャンバーの外周部に外方に突出するように設けられたプラズマ生成筒の外周に高周波プラズマ源を配置することにより、高周波プラズマ源による高周波放電が反応チャンバー内の全域に亘って発生するのを回避することができる。すなわち、高周波放電をプラズマ生成筒内に局所的に発生させることができる。したがって、第2のガスのプラズマ化を確実に抑制することができる。
【0024】
また、反応チャンバー内に、第1ガス供給部の一部として誘電体からなるガス供給筒体を設置し、このガス供給筒体を通して反応チャンバー内に第1のガスが供給するように構成するとともに、前記反応チャンバー内であって該ガス供給筒体の外周に高周波プラズマ源を配置するようにしてもよい。前記反応チャンバー内でガス供給筒体の外周に高周波プラズマ源を配置することによって、高周波プラズマ源による高周波放電が効果的に第1のガスに及ぶとともに、プラズマ化された第1のガスをガス供給筒体を通して速やかに所望の位置にまで移送することができる。このため、ガス供給筒体は、プラズマ抑制エリア方向に伸長して、プラズマ抑制エリアに向いた開口を有するのが望ましい。また、高周波プラズマを該ガス供給筒体近傍の限られたエリアに及ぼすようにでき、反応チャンバー内の全域に亘って影響が及ぶのを回避することができる。このため、上記ガス供給筒体は、先端がプラズマ抑制エリアに至らない長さとし、該プラズマ抑制エリアから離れた位置に高周波プラズマ源を配置するのが望ましい。したがって、上記構成により第1のガスが確実にプラズマ化されるとともに第2のガスのプラズマ化をより確実に抑制することができる。
【0025】
また、プラズマ抑制エリア外の第1のガスをプラズマ抑制エリア内に導入するためには、種々の方法を用いることができ、例えば、反応チャンバー内の圧力差を利用した方法が挙げられる。具体的には、プラズマ抑制エリア外をプラズマ抑制エリア内に対して陽圧にする。このような圧力差を設けることにより、プラズマ抑制エリア外にある第1のガスをプラズマ抑制エリア内に容易に導入することができる。
【発明の効果】
【0026】
すなわち、本発明によれば、高周波放電によりプラズマ化された第1のガスと、プラズマ化が抑制された第2のガスとを接触させて第2のガスの分解反応を起こさせ、被処理体上に高品質の薄膜を効率よく成膜することができる。例えば、反応チャンバー内に第1のガスとして水素ガスを供給し、第2のガスとしてシランガスを供給して被処理体上に微結晶シリコン膜を形成する場合には、高品質な微結晶シリコン薄膜の成膜に必要なSiHラジカルの生成と、徴結晶シリコン薄膜の形成に必要となる水素ラジカルの生成を独立して行うことができ、これらラジカルの反応に基づいて高い結晶化度を有する高品質の微結晶シリコン薄膜を成膜することができる。
【図面の簡単な説明】
【0027】
【図1】本発明のプラズマ処理装置の一実施形態を示す説明図である。
【図2】同じく、その第2のガス供給部(遮蔽板)の平面構造を示す上面図及び下面図である。
【図3】同じく、プラズマ源の設置位置を反応チャンバー内に変更した他の実施形態のプラズマ処理装置の概略図である。
【図4】同じく、反応チャンバー、第2のガス供給部、及びステージに電位差を与える他の実施形態のプラズマ処理装置の概略図である。
【図5】従来の誘導結合型プラズマCVD装置を模式的に示す図である。
【発明を実施するための形態】
【0028】
以下、この発明の一実施形態を図に基づいて説明する。図1は当該実施形態のプラズマ処理装置の概略を示すものである。
このプラズマ処理装置は、内部を真空状態に維持可能な反応チャンバー1を有しており、該反応チャンバー1には、反応チャンバー1内部を真空状態にするための真空排気系2が接続されている。
また、反応チャンバー1の底部側には、被処理体3を保持するステージ4が配置されている。被処理体3は、例えば、半導体基板、ガラス基板等の基板である。
ステージ4には、ステージ4にバイアス電圧を印加するためのバイアス電源5が接続されている。さらに、ステージ4には、ステージ4上の被処理体3を加熱するための加熱用ヒーター(図示せず)が埋設されている。
【0029】
反応チャンバー1の上側外周部には、反応チャンバー1と連通する複数のプラズマ生成筒6が外方に突出して設けられており、該プラズマ生成筒6は、誘電体により構成されている。各プラズマ生成筒6の外周には、プラズマ生成筒6内に高周波放電を発生させる高周波プラズマ源7が設置されている。高周波プラズマ源7の一端にはマッチングボックス8を介して高周波電源9が接続されており、他端は接地電位に接続されている。
【0030】
複数のプラズマ生成筒6には、反応チャンバー1内に第1のガスを供給する第1ガス供給部10が接続されている。第1ガス供給部10は、反応チャンバー1外に設置された第1ガスソース19および該第1ガスソース19に接続された複数の第1ガス供給管12と、各第1ガス供給管12の先端に接続され、前記プラズマ生成筒6内の天板に配置された第1ガス吹出部13とを有している。第1ガス吹出部13の先端には、下向きに形成した第1ガス吹出口13aが設けられている。
第1ガス吹出口13aは、高周波プラズマ源7の内周側に位置しており、高周波プラズマ源7の高周波放射方向にガス吹き出し方向を有している。すなわち、第1ガス供給部10は、高周波プラズマ源7の近傍に第1のガスを供給するように設けられている。
【0031】
被処理体3上に微結晶シリコン薄膜を成膜する場合、第1のガスとして、水素ガス、又は水素ガスと希ガス、ホスフィンガス及びジボランガスのうちの1種以上とを含むものが用いられる。第1のガスにホスフィンガスを含ませることにより、リンがドープされた微結晶シリコン薄膜が成膜される。また、第1のガスにジボランガスを含ませることにより、ホウ素がドープされた微結晶シリコン薄膜が成膜される。
【0032】
さらに、反応チャンバー1には、該反応チャンバー1内に第2のガスを供給する第2ガス供給部14が接続され、該反応チャンバー1内に第2ガス供給部14の一部である第2ガス吹出部17が配置されている。第2のガス供給部14は、反応チャンバー1外に設置された第2ガスソース15と該第2ガスソース15に接続された複数の第2ガス供給管16と、各第2ガス供給管16の先端に接続され、前記プラズマ生成筒6内に配置された第2ガス吹出部17とを有している。
前記第2ガス供給管16は金属製で高周波が内部に侵入するのを防止する。第2ガス供給管16は、前記反応チャンバー1外から前記プラズマ生成筒6の外方またはプラズマ生成筒6、6間を通って反応チャンバー1内に貫通し、その先端に第2ガス吹出部17が設けられている。該第2ガス吹出部17は、前記プラズマ生成筒6の下方側に位置しており、高周波プラズマ源7よりもステージ4上に配置される被処理体3の近くに配置されている。これにより第2のガスは、高周波放電に直接触れることなく、また、高周波放電の影響を受けることなく被処理体3の近傍に供給される。
【0033】
図2は、第2ガス吹出部17周辺の平面構造を示すものであり、図2(a)は平面視の図、図2(b)は底面視の図である。
反応チャンバー1内では、該チャンバー1内を上下に区画する遮蔽板20が前記ステージ4の直上に配置されており、該遮蔽板20に前記第2ガス供給管16がそれぞれ接続されて、下方に開口している。この第2ガス供給管16の開口下方側が前記第2ガス吹出部17となっている。また、遮蔽板20には、前記第2ガス供給管16が接続された箇所の間に上下に貫通する連通部21が形成されている。
上記遮蔽板20は、反応チャンバー1内を上下に区画する本発明の区画部に相当し、その上方側空間がプラズマ抑制エリア外となるプラズマエリア1aに割り当てられ、その下方側空間がプラズマ抑制エリア1bに割り当てられている。遮蔽板20は、高周波が上方から下方に容易には侵入しない材質で構成するのが望ましい。また、連通部21は、プラズマエリア1a内の第1のガスが、プラズマ抑制エリア1bに流入するのに十分な大きさを有していればよく、大きく形成しすぎると、高周波の侵入を許し、プラズマ抑制エリア1b内の第2のガスのプラズマ化を招くため好ましくない。また、隣接する連通部21の間隔は、真空状態でのプラズマエリア1a内における第1のガスの平均自由行程のオーダー程度となっている。
【0034】
なお、連通部21は、遮蔽板20の上面側から下面側に掛けて徐々に径が大きくなるテーパ穴で形成することができる。この形状によってプラズマエリア1aからプラズマ抑制エリア1b内に流入した第1のガスが、プラズマ抑制エリア1b内で効果的に拡散し、第2のガスとの効果的な接触が可能になる。また、上記テーパ穴形状は、プラズマ抑制エリア1bに流入した第1のガスがプラズマエリア1aに逆流するのを阻止する。
なお、プラズマ抑制エリア1bに対してプラズマエリア1aを陽圧に設定することにより、プラズマエリア1a内から連通部21を通してプラズマ抑制エリア1bへガスが速やかに移動する。前記陽圧は、プラズマエリア1aの圧力及びプラズマ抑制エリア1bの圧力の設定によって実現することができ、また、プラズマ抑制エリア1bに接続された真空排気系2による緩やかな排気に伴って実現することができる。
【0035】
また、遮蔽板20の下方には上記第2ガス供給管16の各開口に対応した複数の第2ガス吹出部17が設けられている。該第2ガス吹出部17は、複数の小孔からなる第2ガス吹出口17aが形成された板状の形状からなり、前記各連通部21、21間に位置しており、遮蔽板20と上下に通気空間を隔てて該遮蔽板20に固定されている。したがって、第2のガス吹出部17では上記第2ガス吹出口17aを通して下方への第2のガスの吹き出しが可能になっている。
また、遮蔽板20と第2ガス吹出部17とは、第2ガス吹出部17の側方からガスの吹き出しが可能になっている。すなわち、第2ガス吹出部17の周縁には、遮蔽板20下方に設けた案内突条20aが小隙間を有して配置されている。該案内突条20aは、内周面が下方に向けて内径が大きくなるテーパ案内面で形成されており、これに合わせて第2ガス吹出部17の外周面を下方に向けて大径になるテーパー面で形成して前記テーパー案内面と前記テーパー面とを対向させている。このテーパー案内面とテーパ面との隙間から斜め下方に向けて第2のガスの吹き出しが可能になっている。
すなわち、第2ガス吹出部17では、下方および側方から第2ガスが吹き出される。
【0036】
次に、上記プラズマ処理装置の動作について説明する。
まず、ステージ4上に被処理体3を保持する。次いで、真空排気系2により反応チャンバー1内を排気し、反応チャンバー1内を所定の真空度の真空状態とする。反応チャンバー1内が所定の真空度になった後、ステージ4に埋設された加熱用ヒーターにより、ステージ4上の被処理体3を例えば300℃前後に加熱する。また、バイアス電源5により、ステージ4に所定のバイアス電圧を印加する。ステージ4にバイアス電圧を印加することにより、ガスがステージ4側に引かれ、効率よくプラズマ処理を行うことが可能となる。この際に真空排気系2では、反応チャンバー1内が所定の圧力状態に維持されるように排気を継続する。
【0037】
次いで、第1ガス供給部10では、第1ガスソース19、第1ガス供給管12を通して第1ガス吹出部13に第1のガスを供給する。これとともに、第2ガス供給部14では、第2ガスソース15、第2ガス供給管16を通して第2ガス吹出部17に第2のガスを供給する。この際、プラズマ抑制エリア1bに対してプラズマエリア1aが陽圧になるように両ガスの供給を行い、また、真空排気系2による排気を行う。
この実施形態では被処理体3上に微結晶シリコン薄膜を成膜するため、第1のガスとして水素を用い、第2のガスとして、例えば、シラン(SiH)ガス又はジシラン(Si)ガスを用いる。ただし、本発明としては第1のガスおよび第2のガスが上記に限定されないことは既述したとおりである。
【0038】
また、高周波プラズマ源7には、マッチングボックス8を介して高周波電源9により高周波電圧を印加する。プラズマ生成筒6内では、第1ガス吹出部13の第1ガス吹出口13aを通して第1のガスが吹き出される。プラズマ生成筒6では、高周波プラズマ源7による高周波放電によって誘導結合型プラズマが発生し、前記第1のガスが、例えば電子密度1011cm−1以上の高密度にプラズマ化される。
プラズマ化された第1のガスは、陽圧になっているプラズマエリア1aから連通部21を通してプラズマ抑制エリア内に次第に流入する。
【0039】
プラズマ抑制エリア1bでは、上記したように第2のガスが第2ガス吹出部17を通して供給されている。この際に、第2のガスは、高周波プラズマ源7により発生する高周波放電の影響を受けず、プラズマ化が抑制されてプラズマ抑制エリア1b内に供給されている。
プラズマ抑制エリア1b内では、プラズマ化された前記第1のガスとプラズマ化が抑制された第2のガスとが接触し、第2のガスは分解反応を起こす。この結果、被処理体3上に薄膜が形成される。
具体的には、第1のガスとして水素ガスを用い、第2のガスとしてシラン(SiH)ガスを用いる場合、高周波プラズマ源7によるシランガスのプラズマ化を抑制しつつ、水素ガスのプラズマ化によって生じた水素ラジカルにより、シランガスの分解反応が起きる。これにより、成膜種となるSiHラジカルへのシランガスの分解を促進するとともに、Siラジカル、SiHラジカル、SiHラジカルの生成を抑制することができる。こうして、SiHラジカルの生成量と水素ラジカルの生成量とを同時に増加させ、被処理体3上に高品質の微結晶シリコン薄膜を成膜することができる。
本発明のプラズマ処理装置により成膜された薄膜は高品質であり、これを用いて太陽電池、薄膜トランジスタ等のデバイスを形成した場合、良好な電気的特性を得ることができる。
【0040】
なお、前記した高周波プラズマ源7と第1ガス吹出部13の位置関係は上記に限定されるものではなく適宜変更することができ、また、それぞれの数も適宜変更することができる。
【0041】
(実施形態2)
上記実施形態では、高周波プラズマ源7の設置位置を反応チャンバー1外としていたが、高周波プラズマ源の設置位置を反応チャンバー1内としてもよい。
図3は、高周波プラズマ源7の設置位置を反応チャンバー1内に変更した他の実施形態を示すものである。なお、前記実施形態1と同様の構成については同一の符号を付してその説明を省略または簡略化する。
図3に示すように、反応チャンバー1内のプラズマエリア1aでは、反応チャンバー1の天板部に誘電体からなるガス供給筒体25が吊設されている。ガス供給筒体25には、該ガス供給筒体25に第1のガスを供給する第1ガス供給管12が接続されており、第1ガス供給管12は第1ガスソース19に接続されている。したがって、この実施形態では、第1ガスソース19、第1ガス供給管12、ガス供給筒体25によって第1ガス供給部10が構成されている。
【0042】
ガス供給筒体25の外周には、反応チャンバー1内に位置するように高周波プラズマ源26が配置されている。高周波プラズマ源26の一端は、反応チャンバー1の上部から外部に引き出され、マッチングボックス8を介して高周波電源9に接続されている。高周波プラズマ源26の他端は、反応チャンバー1の上部から外部に引き出され、接地電位に接続されている。
【0043】
第1ガスソース19、第1ガス供給管12を通してガス供給筒体25に供給される第1のガスは、ガス供給筒体25内を移動しつつ高周波プラズマ源26により高周波放電を受けてプラズマ化される。また、ガス供給筒体25から吹き出された後も、上記高周波放電によって第1のガスのプラズマ化が進行する。プラズマ化された第1のガスは、前記実施形態と同様にプラズマエリア1aからプラズマ抑制エリア1bに流入し、該プラズマ抑制エリア1b内でプラズマ化が抑制された第2のガスと接触してプラズマ処理に供される。このように、高周波プラズマ源26を反応チャンバー1内に設置してもよい。
【0044】
(実施形態3)
また、上記では、ステージ4にバイアス電源5を接続していたが、遮蔽板20にもバイアス電源を更に接続する等して、遮蔽板20、及びステージ4の各部材間に電位差を与えるようにしてもよい。
図4は、反応チャンバー1、遮蔽板20、及びステージ4の各部材間に電位差を与えるようにした他の実施形態を示すものである。なお、前記実施形態1と同様の構成については同一の符号を付してその説明を省略または簡略にする。
図4に示すように、ステージ4には、上記と同様にバイアス電源5が接続されている。また、遮蔽板20には、遮蔽板20にバイアス電圧を印加するためのバイアス電源28が接続されている。さらに、反応チャンバー1は、接地電位に接続されている。例えば、ステージ4の電位>遮蔽板20>反応チャンバー1の電位を与えることで、プラズマエリアから遮蔽板20にガスが引き寄せられ、さらに、ステージ4側にガスが引き寄せられて、ステージ4上の被処理体3に対し効率よくプラズマ処理を行うことが可能になる。
【0045】
以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の説明に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
【符号の説明】
【0046】
1 反応チャンバー
1a プラズマエリア
1b プラズマ抑制エリア
3 被処理体
4 ステージ
5 バイアス電源
7 高周波プラズマ源
10 第1ガス供給部
13 第1ガス吹出部
13a 第1ガス吹出口
14 第2ガス供給部
17 第2ガス吹出部
17a 第2ガス吹出口
20 遮蔽板
21 連通部
26 高周波プラズマ源

【特許請求の範囲】
【請求項1】
被処理体を収納して該被処理体上に薄膜を成膜する反応チャンバーと、
前記反応チャンバー内に配置され、前記被処理体を保持するステージと、
前記反応チャンバー内に第1のガスを供給する第1ガス供給部と、
前記反応チャンバー内に前記第1のガスとは異なる第2のガスを供給する第2ガス供給部と、
前記反応チャンバー内に高周波放電を発生させる高周波プラズマ源と、を備え、
前記反応チャンバー内において、前記高周波放電によってプラズマ化された第1のガスと、プラズマ化が抑制された前記第2のガスとを接触させて分解反応を起こさせ、該分解反応に基づいて、前記ステージに保持された前記被処理体上に薄膜を成膜するように構成されていることを特徴とするプラズマ処理装置。
【請求項2】
前記反応チャンバー内で前記高周波放電によるプラズマ化を抑制するプラズマ抑制エリアを形成する区画部を備え、
前記第1ガス供給部は、前記プラズマ抑制エリア外に前記第1のガスを供給し、
前記第2ガス供給部は、前記プラズマ抑制エリア内に前記第2のガスを供給し、
前記プラズマ抑制エリアは、該プラズマ抑制エリア外の前記第1のガスが流入するように構成されており、該プラズマ抑制エリア側に前記ステージが設置されていることを特徴とする請求項1記載のプラズマ処理装置。
【請求項3】
前記区画部は、前記反応チャンバー内を仕切る遮蔽板により構成されており、該遮蔽板に前記プラズマ抑制エリア外と該プラズマ抑制エリア内とを連通する連通部が形成されていることを特徴とする請求項2記載のプラズマ処理装置。
【請求項4】
前記第1ガス供給部が、前記被処理体よりも前記高周波プラズマ源の近傍に第1のガスを供給するように設けられ、
前記第2ガス供給部が、前記高周波プラズマ源から離れて前記被処理体の近傍に第2のガスを供給するように設けられていることを特徴とする請求項1〜3のいずれかに記載のプラズマ処理装置。
【請求項5】
前記反応チャンバーの外周部に、誘電体からなるプラズマ生成筒が外方に突出して設けられており、
前記プラズマ生成筒の外周に、前記高周波プラズマ源が配置されていることを特徴とする請求項1〜4のいずれかに記載のプラズマ処理装置。
【請求項6】
前記第1ガス供給部は、前記反応チャンバー内に設置された誘電体からなるガス供給筒体を有しており、
前記反応チャンバー内であって前記ガス供給筒体の外周に、前記高周波プラズマ源が配置されていることを特徴とする請求項1〜4のいずれかに記載のプラズマ処理装置。
【請求項7】
前記第1のガスが、水素ガスまたは、水素ガスと、希ガス、ホスフィンガス及びジボランガスのうちの1種以上とを含み、
前記第2のガスが、モノシランガスおよびジシランガスの一方または両方を含むものであることを特徴とする請求項1〜6のいずれかに記載のプラズマ処理装置。
【請求項8】
被処理体を収納した反応チャンバー内に、第1のガスと、該第1のガスとは異なる第2のガスとを供給し、
前記反応チャンバー内において、高周波放電により前記第1のガスをプラズマ化し、
プラズマ化された前記第1のガスと、プラズマ化が抑制された前記第2のガスとを接触させて分解反応を起こさせ、該分解反応に基づいて、前記被処理体上に薄膜を成膜することを特徴とするプラズマ処理方法。
【請求項9】
前記反応チャンバー内に、前記高周波放電によるプラズマ化を抑制するプラズマ抑制エリアが形成されており、
前記第2のガスを前記プラズマ抑制エリア内に供給するとともに、前記第1のガスを該プラズマ抑制エリア外に供給してプラズマ化し、
前記プラズマ抑制エリア内にプラズマ化された前記第1のガスを導入し、該プラズマ抑制エリア内で前記第2のガスとプラズマ化された前記第1のガスとを接触させることを特徴とする請求項8記載のプラズマ処理方法。
【請求項10】
前記プラズマ抑制エリア外を前記プラズマ抑制エリア内に対し陽圧にし、前記プラズマ抑制エリア内外の圧力差によって、前記プラズマ抑制エリア外にある前記第1のガスを、前記プラズマ抑制エリア内に導入することを特徴とする請求項9記載のプラズマ処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−142324(P2012−142324A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2010−291972(P2010−291972)
【出願日】平成22年12月28日(2010.12.28)
【出願人】(000004215)株式会社日本製鋼所 (840)
【Fターム(参考)】